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Received: 5 January 2006 / Accepted: 5 October 2006
© Springer Science+Business Media B.V. 2006

Abstract The true prosoluble completion PS(�) of a group � is the inverse limit of
the projective system of soluble quotients of �. Our purpose is to describe examples
and to point out some natural open problems. We discuss a question of Grothendieck
for profinite completions and its analogue for true prosoluble and true pronilpotent
completions.

1. Introduction
2. Completion with respect to a directed set of normal subgroups
3. Universal property
4. Examples of directed sets of normal subgroups
5. True prosoluble completions
6. Examples
7. On the true prosoluble and the true pronilpotent analogues of Grothendieck’s

problem
8. Appendix. Construction of elements in the closure of Grigorchuk group.

By Goulnara Arzhantseva and Zoran S̆unić
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1 Introduction

A group � has a profinite topology, for which the set F of normal subgroups of
finite index is a basis of neighbourhoods of the identity, and the resulting profinite
completion, hereafter denoted by PF(�). The canonical homomorphism

ϕF : � −→ PF(�)

is injective if the group� is residually finite (by definition). The notion of profinite com-
pletion is relevant in various domains (outside pure group theory), including Galois
theory of infinite fields extensions and fundamental groups in algebraic topology [25].
For the theory of profinite groups, there are many papers and several books available
[18,47,54]; see Sect. 1.1 in [50] for a quick introduction and [27] for an early paper.

Besides F , there are other natural families of normal subgroups of � which give
rise to other “procompletions”. The purpose of this report is to consider some vari-
ants, with special emphasis on the true prosoluble completion PS(�) associated to
the family S of all normal subgroups of � with soluble quotients. The corresponding
homomorphism

ϕS : � −→ PS(�)

is injective if the group � is residually soluble (by definition).
On the one hand, we discuss examples including free groups, free soluble groups,

wreath products, SLd(Z) and its congruence subgroups, the Grigorchuk group, and
parafree groups. On the other hand, we discuss some open problems, of which we
would like to point out from the start the following ones.

(i) Let �,� be M two residually finite groups and let ψ : � −→ � be a homo-
morphism such that, at the profinite level, the corresponding homomorphism
PF(ψ): PF(�) −→ PF(�) is an isomorphism. How far from an isomorphism
can ψ be? The problem goes back to Grothendieck [25], and is motivated by
the need to compare two notions of a fundamental group for algebraic varieties.
There are examples with ψ not an isomorphism and PF(ψ) an isomorphism,
with �,� finitely generated [44] and finitely presented [13]. If PF(ψ) is an iso-
morphism, there are known sufficient conditions 1 on � and � for ψ to be an
isomorphism.
Our main interest in this paper is the prosoluble analogue of Grothendieck’s
problem. More precisely, let again �,� be two groups and ψ: � −→ � a homo-
morphism, but assume now that the groups are residually soluble. Assume
that, at the true prosoluble level, the corresponding homomorphism PS(ψ) :
PS(�) −→ PS(�) is an isomorphism. How far from an isomorphism can ψ be?
Additional requirements can be added on � and � (such as finite generation,
finite presentation, ...).

1 Proposition 2 of [45]: if �,� are finitely generated residually finite groups, if� is a soluble subgroup
of GLn(C) for some n ≥ 1, and if PF(ψ) is an isomorphism, then so is ψ .
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(ii) True prosoluble completions provide a natural setting to turn qualitative state-
ments of the kind “some group � is not residually soluble” in more precise
statements concerning the true prosoluble kernel Ker(ϕS : � −→ PS(�)). One
example is worked out in (6.F).

(iii) Can one find interesting characterizations of those groups which are true pro-
soluble completions of residually soluble group? More precisely, let G be a
complete Hausdorff topological group such that, for any g ∈ G, g �= 1, there
exists an open normal subgroup N of G not containing g such that G/N is solu-
ble; how can it be decided whether G is isomorphic to PS(�) for some finitely
generated group �? for some finitely presented group �? The corresponding
questions for profinite groups are standard, and mostly open [34].

Other open problems occur in (4.H), (6.F), (6.G), and (7.C).
We are grateful to Gilbert Baumslag, Slava Grigorchuk, Said Sidki, and John

Wilson for valuable remarks. We also thank Dan Segal and an anonymous referee for
pointing out a mistake in a previous version of this paper.

2 Completion with respect to a directed set of normal subgroups

In this section, we review some classical constructions and facts. See in particular [53],
with Sect. 5 on projective limits, [9], with Chapter 3, Sect. 3, No. 4 on completions and
Sect. 7 on projective limits, and [35], with Problem Q of Chapter 6 on completions.
Defining a topology on a group using a family of subgroups goes back at least to
Garrett Birkhoff [8], see pp. 52–54, and André Weil.

Let � be a group. Let N be a family of normal subgroups of � which is directed,
namely which is such that the intersection of two groups in N contains always a group
in N .

(2.A) Denote by CN (�) the intersection of all elements in N (the letter C stands for
“core”), by � the quotient group �/CN (�), and by N the family of normal subgroups
of � which are images of groups in N . Then N is a basis of neighbourhoods of the
identity for a Hausdorff topology on �. The corresponding left and right uniformities
have the same Cauchy nets; indeed, for x, y ∈ � and N ∈ N , we have x−1y ∈ N if and
only if xy−1 ∈ N. It follows that � can be completed, say with respect to the left uni-
formity, to a Hausdorff complete 2 group which is called here the pro-N -completion
of � and which is denoted by PN (�). The canonical homomorphism

ϕN : � −→ PN (�)

has kernel CN (�) and image dense in PN (�). For N ∈ N , the projection�/CN (�) −→
�/N extends uniquely to a continuous homomorphism

pN : PN (�) −→ �/N

which is onto.

2 Recall that a topological group G is complete if both its left and right uniform structures are com-
plete uniform structures, or equivalently if one of these structures is a complete uniform structure;
see [[9], Chapter 3, §3]. Let � be a topological group and let G denote its completion, as a topological
space, with respect to the left uniform structure; a sufficient condition for G to be a completion of �
as a topological group is that the left and right uniform structures on � have the same Cauchy nets;
see Theorem 1 of No. 4 in the same book.
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(2.B) Observe that the following properties are equivalent

(i) {1} ∈ N ,
(ii) the topology defined by N on � is discrete,

(iii) PN (�) = � and ϕN : � −→ PN (�) is the identity.

More generally, CN (�) ∈ N if and only if the topology defined by N on �/CN (�)
is discrete, if and only if the natural homomorphism �/CN (�) −→ PN (�) is the
identity.

(2.C) Assume, moreover, that the family N is countable. We can assume without
loss of generality that the elements of N constitute a nested sequence N1 ⊃ N2 ⊃ · · ·
(otherwise, if N = {

Ñj
}

j≥1, set N1 = Ñ1 and choose inductively Nj+1 as a group in N
contained in Nj ∩ Ñj+1). Assume also that ∩i≥1Ni = {1}.

The topology defined by N on � is metrisable. Indeed, define first vi : � −→ {0, 1}
by vi(γ ) = 0 if γ ∈ Ni and vi(γ ) = 1 if not. Define next w : � −→ [0, 1] by w(γ ) =∑

i≥1 2−ivi(γ ). Then the mapping d : �×� −→ [0, 1] defined by d(γ1, γ2) = w(γ−1
1 γ2)

is a left-invariant ultrametric on � which defines the same topology as N .
(2.D) The quotients

�/N where N ∈ N ,

and the canonical projections

pM,N : �/N −→ �/M where M, N ∈ N are such that N ⊂M,

constitute an inverse system of groups of which the inverse limit (also called the
projective limit) lim←−�/N can be identified with PN (�). The following properties are
standard: PN (�) is totally disconnected and complete.

For a group �, denote by Z(�) its centre and by D(�) the subgroup generated by
the commutators; for a topological group G, denote by D(G) the closure of D(G). We
have:

Z(PN (�)) = lim←−Z(�/N) and D(PN (�)) = lim←−D(�/N)

(see [12], Appendix I, No. 2). See also (5.C) below.
(2.E) Let A be a partially ordered set which is directed. Consider an inverse system

consisting of groups �α , with α ∈ A, and homomorphisms pα,β : �β −→ �α , with
α,β ∈ A and α ≤ β. Let � = lim←−�α denote the inverse limit. Even when the groups
�α are not all reduced to {1} and the homomorphisms pα,β are all onto, the natural
homomorphisms pα : � −→ �α need not be onto, and indeed the limit � can be
reduced to one element; see [31]. (If A is the set of natural integers, with the usual
order, it is straightforward to check that the pα are onto.)

Because of this kind of phenomena, we have chosen here to define pro-N -
completions as appropriate topological completions. However, it would be possible
and equivalent to use inverse limits systematically.

3 Universal property

(3.A) Let �, N , and PN (�) be as in the previous section. Let H be a topologi-
cal group. Assume that there is given a family (ψN : H −→ �/N)N∈N of continuous
homomorphisms such that, for M, N ∈ N with N ⊂M, the diagram
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commutes. Then there exists a unique continuous homomorphism ψ : H −→ PN (�)
such that the diagram

commutes for all M ∈ N .
The pro-N -completion PN (�) is characterized up to unique continuous homomor-

phism by this universal property.
Caveat. Even if ψN is onto for each N ∈ N , ψ needs not be onto; see e.g. (6.A)

below.
(3.B) Let M be a subset of N which is cofinal, namely such that any N ∈ N contains

some M in M. Then CM(�) = CN (�), the topology defined on �/CM(�) by M coin-
cides with that defined by N , and the continuous homomorphism PM(�) −→ PN (�)
defined above is an isomorphism.

(3.C) Let M [respectively N ] be a directed family of normal subgroups of a group
� [respectively �] and let ψ : � −→ � be a group homomorphism. Assume that, for
each N ∈ N , the family MN = {M ∈M | ψ(M) ⊂ N} is cofinal in M.

For a given N ∈ N , the family of homomorphisms�/M −→ �/N induced byψ (the
family is indexed by MN) gives rise to a continuous homomorphism PM(�) −→ �/N.
In turn, these give rise to a continuous homomorphism PM(�) −→ PN (�).

This will occur several times in Sect. 4.

4 Examples of directed sets of normal subgroups

(4.A) The set F of normal subgroups of finite index in a group � gives rise to the
profinite completion PF(�) of �. There is a large literature on these completions,
alluded to in the introduction.

For a prime number p, the set Fp of normal subgroups of index a power of p in a
group � gives rise to the pro-p-completion Pp̂(�). See [18,49]. Since Fp ⊂ F , there is
a canonical homomorphism

PF(�) −→ Pp̂(�)

by (3.C). The resulting homomorphism PF(�) −→ ∏
p Pp̂(�) is sometimes an iso-

morphism, as it is the case for Z, and sometimes not, as it is the case for
⊕

n≥5 Alt(n),
or for any non-trivial direct sum of non-abelian finite simple groups.

(4.B) The set S of normal subgroups with soluble quotients gives rise to the true
prosoluble completion PS(�) of �; it is the main subject of the present note.

The prosoluble completion of the literature refers usually to the family FS of nor-
mal subgroups with finite soluble quotients (an exception is [17], where our PS(�) is
called the “pro-solvable completion” of �, and where other variants appear). Since
FS ⊂ F and FS ⊂ S, there are canonical homomorphisms
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PF(�) −→ PFS(�) and PS(�) −→ PFS(�)

by (3.C). See (6.A) and (6.B) for examples.
The adjective “true” should not mislead the reader: for some groups, for example

for an infinite cyclic group, the true prosoluble completion is “much smaller” than the
prosoluble completion.

(4.C) Similarly, we distinguish the true pronilpotent completion PN i(�) from the
pronilpotent completion PFN i(�) of the literature. There are again canonical homo-
morphisms

PF(�) −→ PFS(�) −→ PFN i(�) and PS(�) −→ PN i(�) −→ PFN i(�)

by (3.C).
(4.D) If N is any of the classes appearing in Examples (4.A) to (4.C) above (see also

(4.J) below), PN is a functor. This means that any homomorphismψ : � −→ � factors
through �/CN (�) −→ �/CN (�) and then extends to a continuous homomorphism

PN (ψ) : PN (�) −→ PN (�).

As described in the introduction for F and S, the pro-N -analogue of Grothendieck’s
problem is to find examples of homomorphisms ψ : � −→ �, with �,� residually N
and possibly subjected to some extra conditions (such as finite generation or finite
presentation), such that ψ is not an isomorphism and such that PN (ψ) is one.

(4.E) In a locally compact group which is totally discontinuous, any neighbourhood
of the identity contains an open subgroup (Corollary 1 in Chapter 3, Sect. 4, No. 6 of
[9]). It follows that a group which is profinite is residually finite.

Let p be a prime number. Let G be a pro-p-group, namely a profinite group in which
any open subgroup is of index a power of p; assume 3 that G is finitely generated (we
mean as a topological group, i.e. there exists a finite subset of G which generates a
dense subgroup). It is a theorem of Serre that any subgroup of finite index in G is
open (Theorem 4.2.5 in [54]). It follows that, if Pp̂(G) denotes the pro-p-completion
of G viewed as an abstract group, the canonical homomorphism ϕp̂ : G −→ Pp̂(G) is
a continuous isomorphism (see Proposition 1.1.2 in [54]).

Consider, in particular, a finitely generated group � which is residually a finite
p-group and the embedding ϕp̂ : � −→ Pp̂(�) in its pro-p-completion. Then Pp̂(ϕp̂) :
Pp̂(�) −→ Pp̂(Pp̂(�)) is a continuous isomorphism, by which we will from now on
identify Pp̂(Pp̂(�)) with Pp̂(�).

(4.F) By the recent solution, due to Nikolov and Segal, of a conjecture of Serre, any
subgroup of finite index in a finitely generated profinite group is open [40–42]. As a
consequence, the conclusion of (4.E) carries over from pro-p-completions to profinite
completions; more precisely:

Consider a finitely generated group � which is residually finite and the embedding
ϕF : � −→ PF(�) in its profinite completion. Then PF(ϕF ) : PF(�) −→ PF(PF(�))
is a continuous isomorphism, by which we will from now on identify PF(PF(�)) with
PF(�).

(4.G) Say that a subgroup � of a profinite group G has the congruence extension
property if any normal subgroup N of � is of the form N = M ∩ � for some open
normal subgroup M of G.

3 This hypothesis cannot be deleted. Compare with [43] or Example 4.2.13 in [47], where an infinitely
generated profinite group G which is not isomorphic to PF(G) is constructed.
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Let p be a prime number, G a pro-p-group, and� a dense subgroup of G. Observe
that � is residually a finite p-group (since G has this property). Assume, more-
over, that G is finitely generated. Let ψ : � −→ G denote the inclusion and let
Pp̂(ψ) : Pp̂(�) −→ G denote the homomorphism induced by ψ on the pro-p-comple-
tions (recall that we identify Pp̂(G) with G).

On the one hand, the homomorphism Pp̂(ψ) is onto. Indeed, for any open normal
subgroup M of G, the composition of ψ with the projection G −→ G/M is onto, by
density of � in G. On the other hand, the following properties are equivalent:

(i) � has the congruence extension property;
(ii) the pro-p-topology and the topology induced by G coincide on �;

(iii) the homomorphism Pp̂(ψ) : Pp̂(�) −→ G is an isomorphism.

Indeed, (ii) implies (iii) because, for the topology induced by G, the completion of
� coincides with its closure; and (iii) obviously implies (ii). As the topology of a
topological group is determined by the neighbourhoods of the identity, (i) and (ii) are
merely reformulations of each other.

Examples. Let n ≥ 2 be an integer prime to p. Recall that the multiplication by n
is invertible in the group Zp of p-adic integers. Consider the situation where G = Zp

and � = 1
n Z. The inclusion Z ↪→ 1

n Z, which is not an isomorphism, induces a con-
tinuous automorphism of Zp, which is the multiplication by 1

n . This shows that the
pro-p-analogue of Grothendieck’s problem has a straightforward solution.

Consider an irrational p-adic integer x and let now � be the subgroup of Zp gen-
erated by Z and x. Then � ≈ Z2, so that Pp̂(�) is isomorphic to Zp ⊕ Zp and the
homomorphism Pp̂(�) −→ Zp induced by the inclusion � ↪→ Zp is not an isomor-
phism.

(4.H) Let G be a finitely generated profinite group, and � a dense subgroup of
G. Let ψ : � −→ G denote the inclusion. As in (4.G), the corresponding continuous
homomorphism PF(�) −→ G is always onto, and it is an isomorphism if and only if
� has the congruence extension property.

Open problem. Let G be the first Grigorchuk group; it is an infinite group which is
residually a finite 2-group, and all its proper quotients are finite 2-groups. This group
was introduced in [21]; see also Chapter VIII in [30] and the Appendix. It follows that
G embeds in its profinite completion, which coincides with its pro-2-completion, its
true prosoluble completion, and its prosoluble completion. [Though it is a digression
from our main theme, let us point out that P2̂(G) coincides moreover with the closure
Ḡ of G in the compact automorphism group Aut (T ) of the rooted dyadic tree T on
which G acts in the usual way (Theorem 9 in [22]).]

The problem is to find an element g in the complement of G in PF(G) such that the
subgroup � of PF(G) generated by G and g has the congruence extension property.
This would provide one more example of a homomorphism ψ : G −→ � which is not
an isomorphism and which would be such that the homomorphism PF(ψ) is an iso-
morphism, namely one solution to the original Grothendieck problem of a different
nature than the existing ones (from [13,44,45]).

In the Appendix, we provide an effective way to construct all elements g ∈ Ḡ. We
also build elements g ∈ Ḡ that do not belong to G.

(4.I) There are other cases than those appearing above which are potentially inter-
esting, of which we mention here two more.
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For a group �, the following two properties are equivalent:

(i) for any pair N1, N2 of normal subgroups not reduced to {1} in �,
we have N1 ∩N2 �= {1};

(ii) there does not exist normal subgroups N, N1, N2 �= {1} of � such that N =
N1 ×N2;

(we leave it as an exercise to the reader to check this). For � with these properties,
the family N �=1 of all normal subgroups distinct from {1} gives rise to the pronormal
topology on �; see [20].

(4.J) The family A of normal subgroups with amenable quotients gives rise to the
proamenable completion PA(�) of �. By (3.C), there are canonical homomorphisms
from PA(�) to PF(�) and to PS(�). The related notion of residual amenability occurs
for example in [16,19].

5 True prosoluble completions

(5.A) An obvious obstruction to the residual solubility of a group � is the existence of
a perfect subgroup not reduced to one element. Any group � contains a unique maxi-
mal perfect subgroup, that we denote by P� ; this follows from the fact that a subgroup
generated by two perfect subgroups is itself perfect. Observe that P� is contained in
the intersection D∞(�) of all the groups in the derived series of �, but the inclusion
can be strict. (In fact, P� is the intersection of all the groups in the so-called transfinite
derived series of �, but this transfinite series can be as long, without repetition, as the
cardinality of � allows; see [39].)

(5.B) For a topological group G and an integer n ≥ 0, we denote by Dn(G) the
nth group of the topological derived series, defined inductively by D0(G) = G and

Dn+1(G) = [Dn(G), Dn(G)], where [A, B] stands for the closure of the subgroup of G
generated by commutators a−1b−1ab with a ∈ A and b ∈ B. We denote by G(n) the
quotient G/Dn(G) and by σ(n) : G −→ G(n) the canonical projection.

Recall that a topological group G is “topologically soluble”, namely such that
Dn(G) = {1} for n large enough, if and only if it is soluble, namely such that the nth
term Dn(G) of its ordinary derived series is reduced to {1} for n large enough (see for
example Chapter III, Sect. 9, No. 1 in [11]).

(5.C) For a group � and an integer n ≥ 0, we claim that PS(�)(n) is canonically
isomorphic to �(n). This follows from contemplation of the commutative diagram
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where the existence and canonicity of ψ follow from the universal property of the
projection σ(n). In other words, as the morphism � −→ PS(�)(n) has a range which is
soluble of degree n, this morphism factors through �(n).

(5.D) In a group �, the family S of all normal subgroups with soluble quotients
and the countable family (Dn(�))n≥0 define the same procompletion PS(�), by Item
(3.B).

It follows from (2.C) that the topology on PS(�) can be defined by a metric.
Recall that the family S can be uncountable. Hall has shown that this is the case

for � a free group of rank 2; see [28], and the exposition in [14].
(5.E) For a topological group G and an integer j ≥ 1, we denote by Cj(G) the jth

group of the topological lower central series, defined inductively by C1(G) = G and

Cj+1(G) = [G, Cj(G)] for j ≥ 1. Then G is nilpotent if and only if Cj(G) = {1} for j
large enough. (Compare with (5.B).)

The nilpotent quotients PN i(�)/Cj(PNi(�)) and �/Cj(�) are isomorphic for all
j ≥ 1. (Compare with (5.C).)

The topology on PN i(�) can be defined by a metric. (Compare with (5.D).)

6 Examples

(6.A) Let us show that the canonical homomorphism PS(�) −→ PFS(�) needs not
be onto.

First, consider an infinite cyclic group: � = Z. Since Z is soluble, ϕS : Z −→ PS(Z)
is an isomorphism onto. As any finite quotient of Z is soluble (indeed abelian), the
prosoluble completion of Z coincides with its profinite completion. Hence

Z = PS(Z) �≈ PFS(Z) ≈ PF(Z) ≈
∏

p

Zp.

Here is another family of examples. For k ≥ 2 and d ≥ 1, denote by F(k, d) the
quotient of a non-abelian free group on k generators by the dth term of its derived
series (the free soluble group of class d with k generators). This group is obviously
soluble and infinite, and it is known to be residually finite (Theorem 6.3 in [26]). Hence
F(k, d) = PS(F(k, d)) embeds properly in its profinite completion PF(F(k, d)), and
the latter coincides with PFS(F(k, d)).

(6.B) Similarly, the canonical homomorphisms PS(�) −→ PFS(�) needs not be
injective.

Consider a wreath product � = S  T where S is soluble non-abelian and where T
is soluble infinite. Theorem 3.1 in [26] establishes that � is not residually finite, so that
in particular the morphism ϕFS : � −→ PFS(�) has a kernel not reduced to {1}. But
� is soluble, and therefore isomorphic to PS(�).

For a finitely generated group �, it is a theorem of P. Hall that �/D2(�) is residually
finite [28], so that we have an embedding

�/D2(�) ≈ PS(�)/D2(PS(�)) −→ PF
(
�/D2(�)

)
.

In particular, a finitely generated group � which is soluble of class 2 always embeds
in PF(�).

However, there exists a finitely generated soluble group of class 3 which is non–
Hopfian [29]. In particular, a finitely generated group � which is soluble of class at
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least 3 does not always embed in PF(�) = PFS(�). A finitely presented soluble group
which is non–Hopfian is described in [1].

(6.C) For each integer k ≥ 2, let Fk denote the non-abelian free group on k gen-
erators. This is a residually soluble group (indeed it is residually a finite p-group for
any prime p, by a result of Iwasawa, see No. 6.1.9 in [48]), and therefore embeds in its
true prosoluble completion PS(Fk).

Since the abelianized groups Fk/[Fk, Fk] ≈ Zk are pairwise non-isomorphic, the
true prosoluble completions PS(Fk) are pairwise non-isomorphic by (2.D) or (5.C).

(6.D) For d ≥ 3, the group SLd(Z) is perfect (this is an immediate consequence of
the following fact: any matrix in SLd(Z) is a product of elementary matrices; see for
example Theorem 22.4 in [36]). It follows that PS(SLd(Z)) is reduced to one element
and that PS(GLd(Z)) is the group of order two.

Consider, however, an integer d ≥ 2, a prime p, and the congruence subgroup

�d(p) = Ker (SLd(Z) −→ SLd(Z/pZ)) ,

which is a subgroup of finite index in SLd(Z). Then �d(p) is residually a finite p-group,
and therefore embeds in PS(�d(p)); see for example Proposition 3.3.15 in [47], since
their proof written for d = 2 carries over to any d ≥ 2.

In particular, the property for a group � to embed up to finite kernel in its prosol-
uble completion is not stable by finite index.

(6.E) Groups which are residually soluble and not soluble include Baumslag–
Solitar groups 〈a, t | tapt−1 = aq〉 for |p| , |q| ≥ 2 [46], positive one-relator groups
[6], non-trivial free products4 of soluble groups, and various just non-soluble groups
[15]. Also, some free products of soluble groups amalgamated over a cyclic group are
residually soluble and not soluble [32].

These are potential examples for further investigation of the properties of true
prosoluble completions.

(6.F) For groups which are not residually soluble, it is a natural problem to find out
properties of the true prosoluble kernel

Ker(� −→ PS(�)) =
∞⋂

n=0

Dn(�).

For example, consider the one-relator group5

� = 〈a, b; a = [a, ab]〉
which appears in [5,6]. Baumslag has shown that the profinite kernel of � coincides
with the derived group D(�), which is also the smallest normal subgroup of � contain-
ing a, and which is not reduced to one element by the Magnus Freiheitssatz. As D(�) is
perfect, the true prosoluble kernel of � coincides also with D(�). Since �/D(�) ≈ Z,
we have Z ≈ PS(�) �≈ PF(�) ≈∏

p Zp; compare with (6.A).
Examples to investigate include:

• other one-relator groups which are not residually soluble;
• wreath products as in (6.B);

4 Recall of a particular case of a result of Gruenberg, see Sec. 4 in [26]: any free product of residually
soluble groups is residually soluble. By “non-trivial” free product, we mean that the free product has
at least two factors, and that it is not the free product of two groups of order two.
5 Recall that [x, y] = x−1y−1xy and xy = y−1xy.
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• free products of nilpotent groups with amalgamation (see for example Proposition 7
in [32]);

• parafree groups (see (7.B));
• meta-residually soluble groups, namely groups having a residually soluble normal

subgroup with residually soluble quotient (see Theorem 2 in [33]); particular cases:
free-by-free groups which are not residually soluble.

(6.G) Does there exist a discrete group � which on the one hand is residually
finite and residually soluble, namely for which both homomorphisms � −→ PF(�),
� −→ PS(�) are injective, and which on the other hand is such that the homomor-
phism � −→ PFS(�) is NOT injective?

7 On the true prosoluble and the true pronilpotent analogues of Grothendieck’s
problem

(7.A) Consider as in (4.H) the Grigorchuk group G and its pro-2-completion P2̂(G).

Hypothesis We assume from now on that there exists a finitely generated subgroup �
of P2̂(G) which contains G properly and which has the congruence extension property.

Observe that any finite quotient of� is a 2-group, as a consequence of the congru-
ence extension property; thus, the canonical homomorphism from PF(�) to P2̂(�)

is an isomorphism. Let ψ : G −→ � denote the inclusion. We know from (4.G) that
P2̂(ψ) : P2̂(�) −→ P2̂(G) is an isomorphism.

Lemma With the notation above, a quotient group of � is finite if and only if it is
soluble.

Proof Let N be a normal subgroup of � such that �/N is finite. We have already
observed that the quotient �/N is a finite 2-group, in particular a nilpotent group, a
fortiori a soluble group.

For the converse, we proceed by contradiction and assume that there exists a nor-
mal subgroup N in � such that the quotient �/N is soluble and infinite. Since � is
finitely generated, Zorn’s lemma implies that there exists a normal subgroup M in �
containing N such that �/M is just infinite.

Let �/M = D0 ⊃ D1 ⊃ D2 ⊃ · · · denote the derived series of the just infinite
soluble group �/M; denote by k the smallest integer such that Dk+1 is of infinite
index in�/M. Then Dk+1 = {1} because�/M is just infinite. The group Dk is abelian
and of finite index in �/M; it is therefore finitely generated. The torsion subgroup of
Dk is normal in�/M; it is of infinite index in Dk, and thus also in�/M; hence Dk has
no torsion. Let �1 denote the inverse image of Dk in �; it is a normal subgroup of
finite index containing M. The quotient �1/M is finitely generated and free abelian,
say �1/M ≈ Zd for some d ≥ 1.

Let Q2 be the subgroup of �1/M generated by the cubes, and denote by �2 its
inverse image in �1; observe that �2 is of finite index in �1, and therefore also in �,
and that �1/�2 ≈ (Z/3Z)d. Let �3 be the intersection of all the conjugates of �2
in �; observe that �3 is of finite index in �2, and therefore in �, and that it is also
normal in �. Then �/�3 is a finite quotient of � of order

[� : �1] × [�1 : �2] × [�2 : �3] = [� : �1] × 3d × [�2 : �3].
In particular, 3 divides the order of �/�3.
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We have obtained a contradiction because, since P2̂(�) ≈ PF(�), any finite
quotient of � is a 2-group. This ends the proof. �

Consequence Let G be the Grigorchuk group. If there would exist a dense subgroup
ψ : � −→ P2̂(G) containing properly G and with the congruence extension property,
then the morphism

PS(ψ) : PS(G) −→ PS(�)

induced by ψ on the true prosoluble completions would be an isomorphism.

We have already mentioned that subgroups � of P2̂(G) containing G properly can
be constructed effectively, see the Appendix.

(7.B) Let us describe how Problem (i) from the introduction has been studied for
true pronilpotent completions.

Recall that a group � is parafree if it is residually nilpotent and if there exists a free
group F such that F/Cj(F) and �/Cj(�) are isomorphic for all j ≥ 1. Nonfree parafree
groups have been discovered by Baumslag [3]; later papers include [4,7].

Let � be a parafree group with finitely generated abelianization. Let F be as
above; observe that F is finitely generated. Choose a subset T of � of which the
canonical image freely generates the free abelian group �/C2(�); observe that T
is finite. (Be careful: T needs not generate �.) Let S be a free set of generators
of F such that the canonical image of S and T are in bijection with each other
through the given isomorphism F/C2(F) ≈ �/C2(�), and let ϕ : S �−→ T be a com-
patible bijection. Then ϕ extends to a homomorphism, again denoted by ϕ, from
F to �, and this ϕ induces the given isomorphism from F/C2(F) onto �/C2(�).
A group homomorphism with range a nilpotent group A is onto if and only if its
composition with the abelianization A −→ A/C2(A) is onto (see e.g. [10], Cor-
ollary 4, page A I.70); it follows that the homomorphism ϕ(j) from F/Cj(F) to
�/Cj(�) induced by ϕ is onto for all j ≥ 1. Since the group F/Cj(F) ≈ �/Cj(�)

is Hopfian for all j ≥ 1 (any finitely generated residually finite group is Hopfian, by
Mal’cev theorem [38]), it follows that ϕ(j) is an isomorphism for all j ≥ 1. We have
shown:

Observation A residually nilpotent group � with finitely generated abelianization is
parafree if and only if there exist a free group F of finite rank and a homomorphism
ϕ : F −→ � which induces an isomorphism PN i(ϕ) : PN i(F) −→ PN i(�) on the true
pronilpotent completions.

Note that, in case the set T is moreover generating for �, the group � itself is free;
see Problem 2 on pp. 346–347 of [37]. However, as G. Baumslag discovered, there are
pairs (�, F) as in the observation with � not free and generated by k + 1 elements,
and with F free of rank k, for each k ≥ 2.

There is a related example on P. 173 of [52]. Let F2 be the free group on two
generators x and y. Set y′ = yxyx−1y−1. Let � be the subgroup of F2 generated by x
and y′. Then � is a proper subgroup of F2, because y /∈ � (though � is isomorphic to
F2). The inclusion of � in F2 provides an isomorphism �/Cj(�) −→ F2/Cj(F2) for all
j ≥ 1, and therefore an isomorphism from PN i(�) onto PN i(F2).

(7.C) In [4], there are examples of pairs (F,�) of groups with the following proper-
ties: F is finitely generated and free, both F and � are residually soluble, the quotients
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F/Dj(F) and �/Dj(�) are isomorphic for all j ≥ 0, nevertheless F and � are not
isomorphic (indeed � is not finitely generated).

However, nothing like the observation of Item (7.B) holds for the quotients by the
groups of the derived series. We do not know if there exist a finitely generated free
group F, a group � which is residually soluble and not free, and a homomorphism
ψ : F −→ � such that ψ induces an isomorphism F/Dj(F) −→ �/Dj(�) for all j ≥ 1,
or equivalently such that PS(ψ) : PS(F) −→ PS(�) is an isomorphism.
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Appendix: Construction of elements in the closure of Grigorchuk group

The group known as Grigorchuk group (also the first Grigorchuk group) was intro-
duced in [21]. More information on this remarkable group can be found in [23,30].
Here we only introduce as much as is necessary to describe the elements in the closure
Ḡ of Grigorchuk group G in the pro-finite group Aut (T ) of binary rooted tree auto-
morphisms. In fact, we describe constraints that need to be satisfied “near the top”
of the portraits of the elements in G (and therefore in Ḡ as well). These constraints, if
satisfied by an element g in Aut (T ) at each of its sections (see below for details), guar-
antee that g belongs to the closure Ḡ. The constraints may be viewed as an effective
version of the more conceptual description given by Grigorchuk in [23].

Grigorchuk group can be viewed as a group of automorphisms of the binary rooted
tree T . The vertices of the rooted binary tree T are in bijective correspondence with
the finite words over X = {0, 1}. The empty word ∅ is the root, the set Xn of words of
length n over X constitutes level n in the tree and every vertex u at level n has two
children at level n+ 1, namely u0 and u1. The group Aut (T ) of automorphisms of T
decomposes algebraically as

Aut (T ) = (Aut (T )× Aut (T )) � S(2), (1)

where S(2) = {1, σ } = {(), (01)} is the symmetric group of order 2 acting on Aut (T )×
Aut (T ) by permuting the coordinates. The normal subgroup Aut (T )× Aut (T ) is the
stabilizer of the first level of T . The elements in Aut (T ) of the form g = (g0, g1) act
on T by

(0w)g = 0wg0 , (1w)g = 1wg1 ,

while the elements of the form g = (g0, g1)σ act by

(0w)g = 1wg0 , (1w)g = 0wg1 ,

for any word w over X. The automorphisms g0 and g1 in the decomposition g =
(g0, g1)σ

ε of g, where ε is 0 or 1, are called sections of g at the vertices 0 and 1, respec-
tively. This definition is recursively extended to a notion of a section of g at any vertex
of T by declaring g∅ = g and gux = (gu)x, for u a word over X and x a letter in X.
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Grigorchuk group G is, by definition, the group generated by the automorphisms
a, b, c and d of T , whose decompositions, in the sense of (1), are given by

a = (1, 1)σ ,

b = (a, c),

c = (a, d), (2)

d = (1, b).

Therefore, the action of a, b, c, and d on T is given by

(0w)a = 1w, (1w)a = 0w,
(0w)b = 0wa, (1w)b = 1wc,
(0w)c = 0wa, (1w)c = 1wd,
(0w)d = 0w, (1w)d = 1wb,

for any word w over X. It is easy to establish that

a2 = b2 = c2 = d2 = 1, bc = cb = d, bd = db = c, cd = dc = b.

These relations are called simple relations in G. The stabilizer StabG(X) in G of level 1
in T is

StabG(X) = 〈b, c, d, aba, aca, ada〉,
and the decompositions of aba, aca and ada are given by

aba = (c, a),

aca = (d, a),

ada = (b, 1).

(3)

The decomposition formulae given in (2) and (3) and the simple relation aa = 1 are
sufficient to calculate the decomposition of any element in G. For example,

abdabac = aba ada b aca a = (c, a)(b, 1)(a, c)(d, a)(1, 1)σ = (cbad, aca)σ .

Of course, we could make use of the other simple relations to write either

abdabac = · · · = (cbad, aca)σ = (dad, aca)σ .

or

abdabac = acabac = aca b aca a = (d, a)(a, c)(d, a)(1, 1)σ = (dad, aca)σ ,

but this will not be necessary for our purposes (and would, in fact, be counterproduc-
tive in the proof of one of our lemmata).

Let g be an arbitrary element in Aut (T ). The portrait of g is the binary rooted
tree T with additional decoration on the vertices defined recursively as follows. If
g = (g0, g1) stabilizes level 1 in T then the portrait of g consists of the portrait of g0
hanging below the vertex 0, the portrait of g1 hanging below the vertex 1 and the root,
which is decorated by 0. If g = (g0, g1)σ does not stabilize level 1 (i.e., it is active at
the root) the portrait looks the same as in the previous case, except that the root is
decorated by 1. Thus, the portrait of g is the binary tree T with additional decoration
αu(g) on each vertex u, which is equal to 0 or 1 depending on whether g is active at
the vertex u or not.
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For every vertex xy on level 2, define

βxy(g) = αxy(g)+ αxȳ0(g)+ αxȳ1(g),

where the addition is performed modulo 2 and ȳ denotes the letter in {0, 1} different
from y. When g is assumed, the notation αu(g) and βu(g) is simplified to αu and βu.

Theorem 1 For any element g in Grigorchuk group G the portrait decoration satisfies
the following constraints.

(i) If α0 = α1 = 0 then

β00 = β11 = β01 = β10.

(ii) If α0 = 0 and α1 = 1 then

β00 �= β11 = β01 = β10.

(iii) If α0 = 1 and α1 = 0 then

β00 = β11 = β01 �= β10.

(iv) If α0 = α1 = 1 then

β00 = β11 �= β01 = β10.

We say that an automorphism g in Aut (T ) simulates G if its portrait decoration
satisfies the constraints in Theorem 1. Recall that the pro-finite group Aut (T ) is a
metric space with a natural metric derived from the filtration of Aut (T ) by its level
stabilizers and defined as follows. The distance between two tree automorphisms g
and h is

d(g, h) = inf

{
1

[Aut (T ) : StabAut (T )(Xn)]
∣
∣
∣
∣ g−1h ∈ StabAut (T )(Xn)

}
.

In other words, if g and h agree on words of length n, but do not agree on words of
length n+ 1, then the distance between g and h is 1

22n−1 .

Theorem 2 Let g be a binary tree automorphism. The following conditions are equiv-
alent.

(i) g belongs to the closure Ḡ of Grigorchuk group G in the pro-finite group Aut (T );
(ii) all sections of g simulate G;

(iii) the distance from any section of g to G in the metric space Aut (T ) is at most 1
215 .

The proofs will follow from some combinatorial observations on the structure of
words representing elements in G. Before the proofs, we consider some examples.

Example 1 We show how Theorem 1 and Theorem 2 can be used to construct ele-
ments in the closure Ḡ.

The constraints in Theorem 1 imply that exactly 212 different portrait decorations
are possible on levels 0 through 3 for elements in G. Indeed, assume that the portrait
decoration is already freely chosen on levels 0 through 2. In particular, α0 and α1 are
known. There are 8 vertices on level 3, but according to the constraints in Theorem 1
we may choose the decoration freely only on 5 of them. Namely, as soon as we chose
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the decoration for two vertices with common parent, the values of β00, β01, β10 and
β11 are uniquely determined and we may freely choose only the decoration on one of
the vertices in each of the 3 remaining pairs of vertices with common parent, while
the other is forced on us. For example, let us set αu = 1 for all u on level 0 through
level 2.

Further, for all vertices at level 3 whose label ends in 1 choose αu1 = 1. Finally, choose
α110 = 1. At this moment, after making 12 free choices, we have β10 = 1 and, accord-
ing to Theorem 1, we must have β01 = 1, β00 = β11 = 0. In accordance with the other
choices already made on level 3, we must then have

α000 = 1, α010 = 0, α100 = 0.

We may now continue building a portrait of an element in Ḡ by extending (indepen-
dently!) the left half and the right half of the portrait one more level by following only
the constraints imposed by Theorem 1.

As a general strategy (one can certainly choose a different one, guided by any
suitable purpose), we choose arbitrarily the decoration on all vertices whose label
ends in 1 or in 110, and then fill in the decoration on the remaining vertices following
Theorem 1.

If we extend our example one more level by decorating by 1 all vertices whose
label ends in 1 or in 110, we obtain

Continuing in the same fashion (choosing 1 whenever possible) we arrive at the
portrait description of the element f in Ḡ defined by the following decomposition
formulae

f = (�, r) σ ,

� = (r, m) σ ,

r = (m, r) σ ,

m = (n, f ) σ ,

n = (r, m).

There are many ways to see that f (or any section of f ) does not belong to G. Perhaps
the easiest way is to observe that f is not a bounded automorphism, while all elements
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in G are bounded automorphisms of T . Recall that, by definition, an automorphism g
of T is bounded if the sum

∑
u∈Xn αu(g) is uniformly bounded, for all n. Note that f is

defined by a 5-state automaton which is not bounded, while the automaton defining
G is bounded. For more on groups of automorphisms generated by automata see [24],
and for bounded automorphisms and bounded automata see [51].

To aid construction of elements in Ḡ we provide the following table of trees indi-
cating the 8 possibilities for the values of α0, α1, β00, β01, β10, and β11.

In each tree, α0, α1, β00, β01, β10, and β11 are indicated in their respective positions.
To use the table, choose values for α0, α1 and any one of β00, β01, β10, and β11. The
unique tree in the above table that agrees with the chosen values provides the unique
values for the remaining 3 parameters among β00, β01, β10, and β11. For example, if
α0 = α1 = 1 and β11 = 0, the correct pattern in the table is the one in the right upper
corner, indicating that β00 = 0, β01 = 1 and β10 = 1.

The following example provides additional ways to build elements in Ḡ, which
does not rely on Theorem 1 and Theorem 2, but, rather, on the branch structure of
G (see [22] for more details). This approach does not produce all elements in Ḡ, but
does produce some that are easy to describe.

Example 2 Infinitely many elements in Ḡ that are not in G are contained in the fol-
lowing isomorphic copy of K = 〈a−1b−1ab〉G ≤ G (recall that G is a regular branch
group over the normal closure K of the commutator [a, b] in G; see [22] or [30] for
details). For each element k ∈ K define an element k̄ in Ḡ by

k̄ = (k, k̄).

The group K̄ = {k̄ | k ∈ K} is canonically isomorphic to K, but the intersection G ∩ K̄
is trivial. Indeed, the only non-trivial finitary element (element whose activity is trivial
below some level) in G is a. Thus K does not contain any non-trivial finitary elements.
On the other hand, the total activity of the element k̄ at level n is the sum of the total
activities of the element k at levels 0 through n− 1. Since K has no non-trivial finitary
elements, it follows that, for non-trivial k, the element k̄ has unbounded activity. Thus
G ∩ K̄ = {1}.

More generally, an easy way to construct some (certainly not all) elements in Ḡ is to
choose an infinite set of independent vertices V in T (no vertex is below any other ver-
tex) and associate to each such vertex an arbitrary element of K. The automorphism
of T that is inactive at every vertex that does not have a prefix in V and whose sections
at the vertices of V are the assigned elements from K is an element of Ḡ. Indeed, K is
included in the rigid stabilizer of any vertex. This implies that for any finite n-tuple of
independent vertices and any choice of an n-tuple of elements from K, there exists an



Geom Dedicata

element in K that uses the chosen n elements as the sections at the chosen n vertices.
When we construct an element g by selecting (countably) infinitely many independent
vertices and infinitely many corresponding elements in K, we cannot claim that g is
equal to an element of K, but, obviously, there is a sequence of elements in K that
converges to g.

We now prove Theorem 1 and Theorem 2.
Let W be a word over {a, b, c, d}. The letters in B = {b, c, d} are called B-letters. For

a subset C of B the letters in C are called C-letters. Denote by NC(W) the number of
C-letters occurring in W. An occurrence of a B-letter � is called even or odd depending
on whether an even or odd number of a’s appear before � in W. For a parity p ∈ {0, 1}
and a subset C of B, denote by Np

C(W) the number of C-letters of parity p in W. For
parities p, q ∈ {0, 1}, denote by Np,q

b,c (W) the number of {b, c}-letters � of parity p in W
such that the number of {b, c}-letters of parity p̄ that appear before � in W has parity
q (here parity p̄ denotes the parity different from p). For example,

N1
b,c(abcaadabdbcadcbdbabdbc) = 5,

N1,1
b,c(abcaadabdbcadcbdbabdbc) = 3,

N1,0
b,c(abcaadabdbcadcbdbabdbc) = 2,

where, in all examples, the letters that are counted are indicated in boldface. When W
is assumed, the notation Np

C(W) and Np,q
b,c (W) is simplified to Np

C and Np,q
b,c .

Lemma 1 For any word W over {a, b, c, d} representing an element g in G

N1,0
b,c = β00, N0,1

b,c = β11, N1,1
b,c = β01, N0,0

b,c = β10,

where all equalities are taken modulo 2.

Proof Let the words Wu, for u a word over X of length at most 3, represent the sec-
tions of g at the corresponding vertices, these words being obtained by decomposition
from W, without applying any simple relations other than aa = 1 (i.e., no relations
involving B-letters are applied).

We have (modulo 2)

β00 = α00 + α010 + α011 = α00 +Nb,c(W01)

= N0
b,c(W0)+N0

b,d(W0) = N0
c,d(W0) = N1,0

b,c(W).

The other equalities are obtained in an analogous fashion. �

Lemma 2 Let W be a word over {a, b, c, d}. Modulo 2 we have

(i) if N0
b,c = 0, then N1,1

b,c = N0,1
b,c = N0,0

b,c ;

(ii) if N0
b,c = 1, then N1,0

b,c = N0,1
b,c �= N0,0

b,c ;

(iii) if N1
b,c = 0, then N0,1

b,c = N1,1
b,c = N1,0

b,c ;

(iv) if N1
b,c = 1, then N0,0

b,c = N1,1
b,c �= N1,0

b,c .

Proof (i) Assume N0
b,c is even.

The structure of the word W can be represented schematically by

W = n1 �1 n′1 �2 n2 �3 n′2 . . . nk �2k−1 n′k �2k nk+1,
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where �i, i = 1, . . . , 2k represent all the even occurrences of {b, c}-letters in W and the
numbers ni, n′i represent the number of odd occurrences of {b, c}-letters between the
consecutive even occurrences of {b, c}-letters.

Then (modulo 2)

N1,1
b,c =

k∑

i=1

n′i = |{i | 1 ≤ i ≤ k, n′i is odd }| = N0,1
b,c .

Indeed, for i = 1, . . . , k, the n′i odd occurrences of {b, c}-letters between �2i−1 and �2i
are preceded by an odd number (exactly 2i− 1) of even occurrences of {b, c}-letters.
Thus N1,1

b,c =
∑k

i=1 n′i. On the other hand, for i = 1, . . . , k, whenever n′i is odd exactly
one of �2i−1 and �2i is preceded by an odd number of odd occurrences of {b, c}-letters,
while whenever n′i is even either both or none of �2i−1 and �2i are preceded by an odd
number of odd occurrences of {b, c}-letters. Thus |{i | 1 ≤ i ≤ k, n′i is odd }| = N0,1

b,c
modulo 2.

Since N0,0
b,c +N0,1

b,c = N0
b,c is even, we clearly have N0,0

b,c = N0,1
b,c , modulo 2.

(ii) Assume N0
b,c is odd.

The structure of the word W can be represented schematically by

W = n1 �1 n′1 �2 n2 �3 n′2 . . . n′k−1 �2k−2 nk �2k−1 n′k,

where �i, i = 1, . . . , 2k− 1 represent all the even occurrences of {b, c}-letters in W and
the numbers ni, n′i represent the number of odd occurrences of {b, c}-letters between
the consecutive even occurrences of {b, c}-letters.

Then (modulo 2)

N1,0
b,c =

k∑

i=1

ni = |{i | 1 ≤ i ≤ k, ni is odd }| = N0,1
b,c .

Indeed, for i = 2, . . . , k, the ni odd occurrences of {b, c}-letters between �2i−2 and
�2i−1 are preceded by an even number (exactly 2i − 2) of even occurrences of {b, c}-
letters. In addition, the n1 odd occurrences of {b, c}-letters from the beginning of W
are preceded by no even occurrences of {b, c}-letters. Thus N1,0

b,c =
∑k

i=1 ni. On the
other hand, for i = 2, . . . , k, whenever ni is odd exactly one of �2i−2 and �2i−1 is
preceded by an odd number of odd occurrences of {b, c}-letters, while whenever ni
is even either both or none of �2i−2 and �2i−1 are preceded by an odd number of
odd occurrences of {b, c}-letters. In addition, whether �1 is preceded by an even or
odd number of odd occurrences of {b, c}-letters depends on the parity of n1. Thus
|{i | 1 ≤ i ≤ k, ni is odd }| = N0,1

b,c modulo 2.

Since N0,0
b,c +N0,1

b,c = N0
b,c is odd, we clearly have N0,0

b,c �= N0,1
b,c , modulo 2.

(iii) and (iv) are analogous to (i) and (ii). �

Proof of Theorem 1 Follows directly from Lemma 1, Lemma 2, and the observations
α0 = N0

b,c and α1 = N1
b,c modulo 2. �

Proof of Theorem 2 We use the following (modification of the) description of the
elements in Ḡ provided in [23]. A binary tree automorphism g belongs to Ḡ if and only
if, for each section gu of g, the portrait of gu agrees with the portrait of some element
in G up to and including level 3.
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(i) is equivalent to (iii). Portraits of two automorphisms agree at least up to level 3
if and only if their actions on the tree agree at least up to level 4, which, in turn,
is equivalent to the condition that the distance between the two automorphisms
is at most 1

224−1
= 1

215 .

(i) implies (ii). If g is in Ḡ, then the portrait of each section gu of g agrees with the
portrait of some element in G up to and including level 3. The portrait decorations
of the elements in G must satisfy the constraints in Theorem 1, and therefore
each section gu simulates G.

(ii) implies (i). It is known that [G : StabG(X4)] = 212. Thus, for elements in G, there
are exactly 212 possible portrait decorations on level 0 through 3. The constraints
of Theorem 1 provide for exactly 212 different decorations of the appropriate
size (see the discussion in Example 1). Thus if a tree automorphism simulates
G, then its portrait agrees with the portrait of an actual element in G up to and
including level 3. �

As another application, we offer a proof of the following result, obtained by Grig-
orchuk in [22].

Theorem 3 The Hausdorff dimension of Ḡ in Aut (T ) is 5
8 .

Proof It is known that the Hausdorff dimension can be calculated as the limit

lim inf
n→∞

log[Ḡ : StabḠ(X
n)]

log[Aut (T ) : StabAut (T )(Xn)] ,

comparing the relative sizes of the level stabilizers of Ḡ and Aut (T ) (see [2]). Applying
the strategy of construction of elements in Ḡ indicated in Example 1, it follows that,
in the portrait of an element g in Ḡ, 5 out of 8 vertices at level 3 and below can have
any decoration we choose (0 or 1) and the other three have uniquely determined
decoration. Thus, the limit determining the Hausdorff dimension of Ḡ is 5

8 . �
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