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Infinite groups with fixed point properties
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We construct finitely generated groups with strong fixed point properties. Let Xac

be the class of Hausdorff spaces of finite covering dimension which are mod–p

acyclic for at least one prime p . We produce the first examples of infinite finitely
generated groups Q with the property that for any action of Q on any X 2 Xac ,
there is a global fixed point. Moreover, Q may be chosen to be simple and to have
Kazhdan’s property (T). We construct a finitely presented infinite group P that admits
no nontrivial action on any manifold in Xac . In building Q , we exhibit new families
of hyperbolic groups: for each n�1 and each prime p , we construct a nonelementary
hyperbolic group Gn;p which has a generating set of size nC2 , any proper subset of
which generates a finite p–group.

20F65, 20F67; 57S30, 55M20

Dedicated to Michael W Davis on the occasion of his 60th birthday

1 Introduction

We present three templates for proving fixed point theorems; two are based on relative
small cancellation theory and one is based on the Higman Embedding Theorem. Each
template demands as input a sequence of groups with increasingly strong fixed point
properties. By constructing such sequences we prove the following fixed point theorems.

For p a prime, one says that a space is mod–p acyclic if it has the same mod–p

Čech cohomology as a point. Let Xac be the class of all Hausdorff spaces X of finite
covering dimension such that there is a prime p for which X is mod–p acyclic. Let
Mac denote the subclass of manifolds in Xac .

Note that the class Xac contains all finite dimensional contractible spaces and all finite
dimensional contractible CW–complexes.
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Theorem 1.1 There is an infinite finitely generated group Q that cannot act without a
global fixed point on any X 2 Xac . If X 2 Xac is mod–p acyclic, then so is the fixed
point set for any action of Q on X . For any countable group C , the group Q can
be chosen to have either the additional properties (i), (ii) and (iii) or (i), (ii) and (iii) 0

described below:

(i) Q is simple;

(ii) Q has Kazhdan’s property (T);

(iii) Q contains an isomorphic copy of C ;

(iii) 0 Q is periodic.

Since a countable group can contain only countably many finitely generated subgroups,
it follows from property (iii) that there are continuously many (ie, 2@0 ) nonisomorphic
groups Q with the fixed point property described in Theorem 1.1.

Recall that for countable groups, Kazhdan’s property (T) is equivalent to the fact that
every isometric action of the group on a Hilbert space has a global fixed point.

No nontrivial finite group has a fixed point property as strong as the one in Theorem
1.1. Any finite group not of prime power order acts without a global fixed point on
some finite dimensional contractible simplicial complex. Smith theory tells us that
the fixed point set for any action of a finite p–group on a finite dimensional mod–p

acyclic space is itself mod–p acyclic, but it is easy to construct an action of a nontrivial
finite p–group on a 2–dimensional mod–q acyclic space without a global fixed point
if q is any prime other than p . Since the fixed point property of Theorem 1.1 passes
to quotients, it follows that none of the groups Q can admit a nontrivial finite quotient.
This further restricts the ways in which Q can act on acyclic spaces. For example, if
X 2 Xac is a locally finite simplicial complex and Q is acting simplicially, then the
action of Q on the successive star neighbourhoods stnC1.x/ WD st.stn.x// of a fixed
point x 2X must be trivial, because stn.x/ is Q–invariant and there is no nontrivial
map from Q to the finite group Aut.stn.x//. Since X D

S
n stn.x/, we deduce:

Corollary 1.2 None of the groups Q from Theorem 1.1 admit a nontrivial simplicial
action on any locally finite simplicial complex X 2 Xac . (We do not assume that Q

satisfies any of the conditions (i) to (iii) 0 .)

The ideas behind the above corollary can be further developed in different directions.
The following was suggested to us by N Monod:

Corollary 1.3 None of the groups Q from Theorem 1.1 admit a nontrivial isometric
action on any proper metric space X 2 Xac . (Again, we do not assume that Q satisfies
any of the conditions (i) to (iii) 0 .)
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Indeed, suppose that x02X is fixed by the action of Q. Then we have a homomorphism
�W Q! Isom.X / such that �.Q/� Stab.x0/, where Stab.x0/ denotes the stabilizer
of x0 in the full isometry group of X . Since X is proper, by a general version of
Arzelà–Ascoli theorem (see Bridson and Haefliger [4, I.3.10]) the group Stab.x0/

is compact (when endowed with the topology of uniform convergence on compact
subsets). If the action of Q on X were nontrivial, then �.g/ 2 Stab.x0/ would be
nontrivial for some g 2Q, and by the Peter–Weyl theorem (see Robert [25, Section 4])
there would be a finite-dimensional irreducible representation � of Stab.x0/ such that
�.�.g//¤ Id. But then � ı�.Q/ would be a nontrivial finitely generated linear group,
which is a contradiction because such groups are residually finite, by a well-known
result of Malcev (see Lyndon and Schupp [17, III.7.11]), whereas Q has no nontrivial
finite quotients.

Using similar arguments we can also rule out nontrivial real analytic actions of the
groups Q (from Theorem 1.1) on any acyclic manifold M : since the action fixes a
point x0 2 M , the image of every element of Q in the group Homeo.M / can be
regarded as an n–tuple of formal power series on n variables with real coefficients
and trivial constant terms, where nD dim.M /. Thus, such an action gives rise to a
homomorphism from Q into the group Hn of such invertible n–tuples of formal power
series with respect to composition. One can argue that Hn is embedded into an inverse
limit of linear groups, therefore every finitely generated subgroup of Hn is residually
finite. As before, the absence of nontrivial finite quotients for Q yields the triviality of
the above homomorphism.

A stronger result concerning triviality of actions on manifolds can be obtained more
directly from Theorem 1.1 by using properties (i) and (iii).

Proposition 1.4 A simple group G that contains, for each n> 0 and each prime p , a
copy of .Zp/

n admits no nontrivial action on any X 2Mac . The group Q in Theorem
1.1 may be chosen to have this property.

Finite p–groups have global fixed points whenever they act on compact Hausdorff
spaces that are mod–p acyclic, but the groups Q do not have this property. Indeed,
if Q is infinite and has property (T) then it will be nonamenable, hence the natural
action of Q on the space of finitely additive probability measures on Q will not have
a global fixed point, and this space is compact, contractible and Hausdorff.

We know of no finitely presented group enjoying the fixed point property described in
Theorem 1.1. However, using techniques quite different from those used to construct
the groups Q, we shall exhibit finitely presented groups that cannot act on a range of
spaces. In particular we construct groups of the following type.
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Theorem 1.5 There exist finitely presented infinite groups P that have no nontrivial
action on any manifold X 2Mac .

Certain of the Higman–Thompson groups [11], such as R Thompson’s vagabond
group V , can also serve in the role of P (cf Remark 4.6).

Theorem 1.1 answers a question of P H Kropholler, who asked whether there exists a
countably infinite group G for which every finite-dimensional contractible G–CW–
complex has a global fixed point. This question is motivated by Kropholler’s study [15]
of the closure operator H for classes of groups, and by the class HF obtained by applying
this operator to the class F of all finite groups. Briefly, if C is a class of groups, then
the class HC is the smallest class of groups that contains C and has the property that
if the group G admits a finite-dimensional contractible G–CW–complex X with all
stabilizers already in HC, then G is itself in HC. Kropholler showed that any torsion-
free group in HF of type FP1 has finite cohomological dimension. Since Thompson’s
group F is torsion-free and of type FP1 but has infinite cohomological dimension by
Brown and Geoghegan [6], it follows that F is not in HF. Until now, the only way
known to show that a group is not in HF has been to show that it contains Thompson’s
group as a subgroup. If Q is any of the groups constructed in Theorem 1.1, then Q

has the property that for any class C of groups, Q is in the class HC if and only if Q

is already in the class C. In particular, Q is not in the class HF. Note that many of the
groups constructed in Theorem 1.1 cannot contain Thompson’s group F as a subgroup,
for example the periodic groups.

Our strategy for proving Theorems 1.1 and 1.5 is very general. First, we express our
class of spaces as a countable union X D

S
n2N Xn . For instance, if all spaces in X

are finite-dimensional, then Xn may be taken to consist of all n–dimensional spaces
in X . Secondly, we construct finitely generated groups Gn that have the required
properties for actions on any X 2Xn . Finally, we apply the templates described below
to produce the required groups.

Template FP (Ruling out fixed-point-free actions) If there is a sequence of finitely
generated nonelementary relatively hyperbolic groups Gn such that Gn cannot act
without a fixed point on any X 2 Xn , then there is an infinite finitely generated group
that cannot act without a fixed-point on any X 2 X .

Template NAfg (Ruling out nontrivial actions) If there is a sequence of nontrivial
finitely generated groups Gn such that Gn cannot act nontrivially on any X 2Xn , then
there is an infinite finitely generated group that cannot act nontrivially on any X 2 X .
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Template NAfp (Finitely presented groups that cannot act) Let .GnI �n;j / .n2N;
j D 1; : : : ;J / be a recursive system of nontrivial groups Gn and monomorphisms
�n;j W Gn!GnC1 . Suppose that each GnC1 is generated by

S
j �n;j .Gn/ and that for

every m 2N there exists n 2N such that Gn cannot act nontrivially on any X 2 Xm .
Then there exists an infinite finitely presented group that cannot act nontrivially on any
X 2 X .

Only the first and third templates are used in the construction of the groups P and Q.
We include the second template with a view to further applications.

The engine that drives the first two templates is the existence of common quotients
established in Theorem 1.6 below. The proof of this theorem, given in Section 2, is
based on the following result of Arzhantseva, Minasyan and Osin [1], obtained using
small cancellation theory over relatively hyperbolic groups: any two finitely generated
nonelementary relatively hyperbolic groups G1 , G2 have a common nonelementary
relatively hyperbolic quotient H .

Theorem 1.6 Let fGngn2N be a countable collection of finitely generated nonele-
mentary relatively hyperbolic groups. Then there exists an infinite finitely generated
group Q that is a quotient of Gn for every n 2N .

Moreover, if C is an arbitrary countable group, then such a group Q can be made to
satisfy the following conditions:

(i) Q is a simple group;

(ii) Q has Kazhdan’s property (T);

(iii) Q contains an isomorphic copy of C .

If the Gn are nonelementary word hyperbolic groups, then claim (iii) above can be
replaced by:

(iii) 0 Q is periodic.

This result immediately implies the validity of Templates FP and NAfg . Indeed, if
Gn are the hypothesized groups of Template FP, the preceding theorem furnishes
us with a group Q that, for each n 2 N , is a quotient of Gn and hence cannot act
without a fixed point on any X 2 Xn . Now let Gn be the hypothesized groups of
Template NAfg . They are not assumed to be relatively hyperbolic. We consider groups
An WDGn�Gn�Gn , which also cannot act nontrivially on any X 2Xn . The group An

is nonelementary and relatively hyperbolic as a free product of three nontrivial groups.
Therefore, Theorem 1.6 can be applied to the sequence of groups An , providing a
group Q1 which, as a quotient of An , cannot act nontrivially on any X 2 Xn for any
n 2N .
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Following the above strategy to prove Theorem 1.1, we first represent Xac as a countable
union Xac D

S
n;p Xn;p , where, for each prime number p , the class Xn;p consists of

all mod–p acyclic spaces of dimension n. Then, in Section 3, we construct the groups
required by Template FP, proving the following result.

Theorem 1.7 For each n 2N and every prime p , there exists a nonelementary word
hyperbolic group Gn;p such that any action of Gn;p by homeomorphisms on any space
X 2 Xn;p has the property that the global fixed point set is mod–p acyclic (and in
particular nonempty).

The mod–p acyclicity of the fixed point for the action of Gn;p on the space X is
a consequence of the following .n;p/–generation property: there is a generating
set S of Gn;p of cardinality nC 2 such that any proper subset of S generates a finite
p–subgroup.

For certain small values of the parameters examples of nonelementary word hyperbolic
groups with the .n;p/–generation property were already known (eg, when n D 1

and p D 2 they arise as reflection groups of the hyperbolic plane with a triangle as a
fundamental domain). Our construction works for arbitrary n and p . For large n it
provides the first examples of nonelementary word hyperbolic groups possessing the
.n;p/–generation property.

We construct the groups Gn;p as fundamental groups of certain simplices of groups
all of whose local groups are finite p–groups. We use ideas related to simplicial
nonpositive curvature, developed by Januszkiewicz and Świa̧tkowski in [13], to show
that these groups are nonelementary word hyperbolic. The required fixed point property
is obtained using Smith theory and a homological version of Helly’s theorem.

Thus, to complete the proof of Theorem 1.1 and Corollary 1.2, it remains to prove
Theorems 1.6 and 1.7. This will be done in Sections 2 and 3, respectively.

The validity of Template NAfp will be established in Section 4; it relies on the Higman
Embedding Theorem. Also contained in Section 4 is Lemma 4.5, which establishes a
triviality property for actions on manifolds. This is used both to provide input to the
Template NAfp and to prove Proposition 1.4.

A version of our paper appeared on the ArXiv preprint server some time ago. A number
of related papers have since become available, including Chatterji and Kassabov [7],
Farb [8], Fisher and Silberman [9] and Weinberger [29]. (A preliminary version of [8]
predates our work.) These papers consider either actions on manifolds or actions on
spaces equipped with CAT.0/–metrics. We emphasize that establishing fixed point
properties for actions on arbitrary spaces in Xac , or indeed simplicial actions on
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simplicial complexes in Xac , is much more difficult. In particular none of [7; 8; 9; 29]
offers an alternative approach to our main result: the construction of a group (other
than the trivial group) that has the fixed point property described in Theorem 1.1.
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2 Relatively hyperbolic groups and their common quotients

Our purpose in this section is to provide the background we need concerning relatively
hyperbolic groups and their quotients. This will allow us to prove Propositions 2.6
and 2.8 below, which immediately imply the assertion of Theorem 1.6. We adopt the
combinatorial approach to relative hyperbolicity that was developed by Osin in [24].

Assume that G is a group, fH�g�2ƒ is a fixed collection of proper subgroups of G

(called peripheral subgroups), and A is a subset of G . The subset A is called a relative
generating set of G with respect to fH�g�2ƒ if G is generated by A[

S
�2ƒH� . In

this case G is a quotient of the free product

F D .��2ƒH�/�F.A/;

where F.A/ is the free group with basis A. Let R be a subset of F such that the
kernel of the natural epimorphism F�G is the normal closure of R in the group F .
In this case we will say that G has the relative presentation

(1) hA; fH�g�2ƒ k RD 1; R 2Ri:

If the sets A and R are finite, the relative presentation (1) is said to be finite.

Set HD
F
�2ƒ.H� n f1g/. A finite relative presentation (1) is said to satisfy a linear

relative isoperimetric inequality if there exists C > 0 such that for every word w in the
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alphabet A[H (for convenience, we will further assume that A�1 DA) representing
the identity in the group G , one has

w
F
D

kY
iD1

f �1
i R˙1

i fi ;

with equality in the group F , where Ri 2R, fi 2F , for i D 1; : : : ; k , and k �Ckwk,
where kwk is the length of the word w .

Definition 2.1 (Osin [24]) The group G is said to be relatively hyperbolic if there is
a collection fH�g�2ƒ of proper peripheral subgroups of G such that G admits a finite
relative presentation (1) satisfying a linear relative isoperimetric inequality.

This definition is independent of the choice of the finite generating set A and the finite
set R in (1) (see Osin [24]).

The definition immediately implies the following basic facts (see Osin [24]):

Remark 2.2

(a) Let fH�g�2ƒ be an arbitrary family of groups. Then the free product G D

��2ƒH� will be hyperbolic relative to fH�g�2ƒ .

(b) Any word hyperbolic group (in the sense of Gromov) is hyperbolic relative to
the family ff1gg, where f1g denotes the trivial subgroup.

The following result is our main tool for constructing common quotients of count-
able families of relatively hyperbolic groups. Recall that a group G is said to be
nonelementary if it does not contain a cyclic subgroup of finite index.

Theorem 2.3 [1, Theorem 1.4] Any two finitely generated nonelementary relatively
hyperbolic groups G1 , G2 have a common nonelementary relatively hyperbolic quo-
tient H .

Consider a sequence of groups .Gn/n2N such that Gi D G1=Ki , i D 2; 3; : : : , for
some Ki CG1 and Ki �KiC1 for all i 2N , i � 2. The direct limit of the sequence
.Gn/n2N is, by definition, the group G1 DG1=K1 where K1 D

S1
nD2 Kn .

Remark 2.4 If G1 is finitely generated and Gn is infinite for every n 2N , then G1
is also infinite.
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Indeed, suppose that G1 is finite, ie, jG1 WK1j<1. Then K1 is finitely generated
as a subgroup of G1 , hence there exists m 2N such that K1 DKm , and G1 DGm

is infinite; this is a contradiction.

Remark 2.5 Any infinite finitely generated group G contains a normal subgroup N

that is maximal with respect to the property jG WN j D1.

Indeed, let N be the set of all normal subgroups of infinite index in G ordered by
inclusion. Consider a chain .Mi/i2I in N . Set M D

S
i2I Mi ; then, evidently,

M C G . Now, if M had finite index in G , then it would also be finitely generated.
Hence, by the definition of a chain, there would exist j 2 I such that M DMj , which
would contradict the assumption jG WMj j D1. Therefore M 2N is an upper bound
for the chain .Mi/i2I . Consequently, one can apply Zorn’s Lemma to achieve the
required maximal element of N .

Proposition 2.6 Let fGigi2N be a countable collection of finitely generated nonele-
mentary relatively hyperbolic groups and let C be an arbitrary countable group. Then
there exists a finitely generated group Q such that

(i) Q is a quotient of Gi for every i 2N ;

(ii) Q is a simple group;

(iii) Q has Kazhdan’s property (T);

(iv) Q contains an isomorphic copy of C .

Proof First, embed C into an infinite finitely generated simple group S (see Lyndon
and Schupp [17, Chapter IV, Theorem 3.5]). Let S 0 be a copy of S . Then the group
K D S �S 0 will be nonelementary and hyperbolic relative to the family consisting
of two subgroups fS;S 0g. Take G0 to be an infinite word hyperbolic group that has
property (T). Then G0 is nonelementary and relatively hyperbolic by Remark 2.2,
hence we can use Theorem 2.3 to find a nonelementary relatively hyperbolic group
G.0/ that is a common quotient of K and G0 (in particular, G.0/ will also be finitely
generated). Now, apply Theorem 2.3 to the groups G.0/ and G1 to obtain their common
nonelementary relatively hyperbolic quotient G.1/. Similarly, define G.i/ to be such
a quotient for the groups G.i �1/ and Gi , i D 2; 3; : : : . Let G.1/ be the direct limit
of the sequence .G.i//1

iD0
.

The group G.1/ is finitely generated (as a quotient of G.0/) and infinite (by Remark
2.4), therefore, by Remark 2.5, there exists a normal subgroup N C G.1/ that is
maximal with respect to the property jG.1/ WN j D1. Set QDG.1/=N . Then Q
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is an infinite group which has no nontrivial normal subgroups of infinite index. Being
a quotient of G.0/, makes Q a quotient of K D S � S 0 , therefore it can not have
any proper subgroups of finite index. Thus, Q is simple. Since the homomorphism
'W S �S 0!Q has a nontrivial image, it must be injective on either S or S 0 . Therefore
Q will contain an isomorphically embedded copy of S , and, consequently, of C .

The property (i) for Q follows from the construction. The property (iii) holds because
Q is a quotient of G0 and since Kazhdan’s property (T) is stable under passing to
quotients.

In the case when one has a collection of word hyperbolic groups (in the usual, non-
relative, sense), one can obtain common quotients with different properties by using
Ol 0shanskii’s theory of small cancellation over hyperbolic groups. For example, it
is shown in [20] that if g is an element of infinite order in a nonelementary word
hyperbolic group G , then there exists a number n > 0 such that the quotient of G

by the normal closure of gn is again a nonelementary word hyperbolic group. By
harnessing this result to the procedure for constructing direct limits used in the proof
of Proposition 2.6, we obtain the following statement, first proved by Osin:

Theorem 2.7 [23, Theorem 4.4] There exists an infinite periodic group O , generated
by two elements, such that for every nonelementary word hyperbolic group H there is
an epimorphism � WH �O .

Proposition 2.8 There exists an infinite finitely generated group Q such that

(a) Q is a quotient of every nonelementary word hyperbolic group;

(b) Q is a simple group;

(c) Q has Kazhdan’s property (T);

(d) Q is periodic.

Proof Let O be the group given by Theorem 2.7. Since O is finitely generated, it
has a normal subgroup N C O maximal with respect to the property jO W N j D 1
(see Remark 2.5). Set Q D O=N . Then Q has no nontrivial normal subgroups of
infinite index and is a quotient of every nonelementary word hyperbolic group; thus Q

satisfies (a). In addition, Q is periodic since it is a quotient of O .

Observe that for an arbitrary integer k�2 there exists a nonelementary word hyperbolic
group HDH.k/ which does not contain any normal subgroups of index k (for instance,
one can take H to be the free product of two sufficiently large finite simple groups,
eg, H D Alt.kC 3/�Alt.kC 3/). Therefore the group Q, as a quotient of H , does
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not contain any normal subgroups of index k , for every k � 2, hence it is simple.
It satisfies Kazhdan’s property (T) because there are nonelementary word hyperbolic
groups with (T) and property (T) is inherited by quotients.

Remark 2.9 The method that we used to obtain simple quotients in the proofs of
Propositions 2.6 and 2.8 was highly nonconstructive as it relied on the existence of
a maximal normal subgroup of infinite index provided by Zorn’s lemma. However,
one can attain simplicity of the direct limit in a much more explicit manner, by im-
posing additional relations at each step. For word hyperbolic groups this was done
by Minasyan [19, Corollary 2]. The latter method for constructing direct limits of
word hyperbolic groups was originally described by Ol 0shanskii in [20]; it provides
significant control over the resulting limit group. This control allows one to ensure
that the group Q enjoys many properties in addition to the ones listed in the claim of
Proposition 2.8. For example, in Proposition 2.8 one can add that Q has solvable word
and conjugacy problems.

3 Simplices of finite p–groups with nonelementary word hy-
perbolic direct limits

Theorem 1.7 is an immediate consequence of the following two results, whose proof is
the object of this section.

Theorem 3.1 For every prime number p and integer n� 1 there is a nonelementary
word hyperbolic group G generated by a set S of cardinality nC 2 such that the
subgroup of G generated by each proper subset of S is a finite p–group.

Theorem 3.2 Let p be a prime number. Suppose that a group G has a generating
set S of cardinality nC 2, such that the subgroup generated by each proper subset
of S is a finite p–group. Then for any action of G on a Hausdorff mod–p acyclic
space X of covering dimension less than or equal to n, the global fixed point set is
mod–p acyclic.

We prove Theorem 3.1 by constructing each of the desired groups as the fundamental
group (equivalently, the direct limit) of a certain .nC1/–dimensional simplex of finite
p–groups. The construction of the local groups in each simplex of groups, for fixed p ,
proceeds by induction on n. Provided that m� n, the groups that are assigned to each
codimension m face of the .nC1/–simplex will depend only on m, up to isomorphism.
The codimension zero face, ie, the whole .nC1/–simplex itself, will be assigned the
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trivial group 1, and each codimension one simplex will be assigned a cyclic group of
order p . As part of the inductive step, we will show that the fundamental group of the
constructed .nC1/–simplex of groups maps onto a p–group in such a way that each
local group maps injectively. This quotient p–group will be the group used as each
vertex group in the .nC2/–simplex of groups.

The idea that drives our construction consists of requiring and exploiting existence
of certain retraction homomorphisms between the local groups of the complexes of
groups involved. We develop this approach in Sections 3.2–3.4 below, after recalling
in Section 3.1 some basic notions and facts related to complexes of groups.

Each simplex of groups that we construct will be developable. Associated to any
developable n–simplex of groups G, there is a simplicial complex X on which the
fundamental group G of G acts with an n–simplex as strict fundamental domain. If
the local groups of G are all finite, the corresponding action is proper. Thus we may
show that the group G is word hyperbolic by showing that the associated simplicial
complex X is Gromov hyperbolic. We show that X is indeed hyperbolic by verifying
that it satisfies a combinatorial criterion for the hyperbolicity of a simplicial complex
related to the idea of simplicial nonpositive curvature developed in [13]. More precisely,
we show that X is 8–systolic, and hence hyperbolic. This is the content of Section 3.5.

From the perspective of the subject of simplicial nonpositive curvature, Sections 3.1–3.5
may be viewed as providing an alternative to the construction from [13] of numerous
examples of k –systolic groups and spaces, for arbitrary k and in arbitrary dimension.
The resulting groups are different from those obtained in [13].

From the algebraic perspective, this construction provides new operations of product
type for groups, the so called n–retra-products, which interpolate between the direct
product and the free product. These operations can be further generalized in the spirit
of graph products. We think the groups obtained this way deserve to be studied. Such
groups fall in the class of systolic, or even 8–systolic groups, and thus share various
exotic properties of the latter, as established in [13; 14; 21; 22]. In a future work
we plan to show that n–retra-products of finite groups, for sufficiently large n, are
residually finite.

The last subsection of this section, Section 3.6, contains the proof of Theorem 3.2.
This proof uses a result from Smith theory concerning mod–p cohomology of the
fixed point set of a finite p–group action. It also uses a homological version of Helly’s
theorem for mod–p acyclic subsets.

Remark 3.3 It is because we need to apply Smith theory that the groups previously
constructed in [13] are unsuitable for our purposes. The groups constructed in [13]
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include fundamental groups of simplices of finite groups which are nonelementary
word hyperbolic, but the finite groups occurring in [13] are not of prime power order.

Remark 3.4 A simplified form of the arguments in Section 3.6 shows that the funda-
mental group of any .nC1/–simplex of finite groups cannot act without a global fixed
point by isometries on any complete CAT.0/ space of covering dimension at most n.
Indeed, the Helly-type argument we use goes through almost unchanged, while the fact
that the fixed point set for a finite group of isometries of a complete CAT.0/ space
is contractible replaces the appeal to Smith theory. Versions of this argument have
appeared previously in work of Barnhill [2], Bridson (unpublished) and Farb [8].

3.1 Strict complexes of groups

We recall some basic notions and facts related to strict complexes of groups. The main
reference is Bridson and Haefliger [4], where these objects are called simple complexes
of groups.

A simplicial complex K gives rise to two categories: the category QK of nonempty
simplices of K with inclusions as morphisms, and the extended category QC

K
of

simplices of K including the empty set ∅ as the unique .�1/–simplex. In addition
to the morphisms from QK , the category QC

K
has one morphism from ∅ to � for

each nonempty simplex � of K . A strict complex of groups G consists of a simplicial
complex jGj (called the underlying complex of G), together with a contravariant functor
G from QjGj to the category of groups and embeddings. A strict complex of groups is
developable if the functor G extends to a contravariant functor GC from the category
QC
jGj to the category of groups and embeddings. Given an extension GC of G, we

will denote by G the group GC.∅/. For simplices � � � (allowing � D∅), we will
view the group G.�/ as subgroup in the group G.�/. We will be interested only in
extensions that are surjective, ie such that the group G DGC.∅/ is generated by the
union of its subgroups G.�/ with � ¤∅.

We call any surjective extension GC of G an extended complex of groups. We view the
collection of all possible surjective extensions of G to QC

jGj also as a category, which
we denote by ExtG . We take as morphisms of ExtG the natural transformations from
GC to GC0 which extend the identical natural transformation of G. (Note that, given
extensions GC and GC0 , there may be no morphism between them, and if there is one
then, by surjectivity, it is unique; moreover, the homomorphism from G DGC.∅/ to
G0DGC0.∅/ induced by a morphism is not required to be an embedding, although it is
required to be a group homomorphism.) If G is developable, the category ExtG has an
initial object GCdir , in which the group GCdir.∅/ is just the direct limit of the functor G
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(for brevity, we often denote this direct limit group zG ). Thus for any extension GC of
G, there is a unique group homomorphism from zG to G extending the identity map
on each G.�/ for � 2QjGj . In the cases that will be considered below, the simplicial
complex jGj is simply connected, which implies that zG coincides with what is known
as the fundamental group of the complex of groups G. (In fact, jGj is contractible in
the cases considered below.)

For an extended complex of groups GC we consider a space dGC with an action of
G DGC.∅/, the development of GC , given by

dGC D jGj �G=�;

where the equivalence relation � is given by .p;g/� .q; h/ if and only if p D q and
there exists � 2 QjGj so that p 2 � and g�1h 2 G.�/. It suffices to take � to be
the minimal simplex containing p . The G –action is given by gŒp; h�D Œp;gh�. The
quotient by the action of G is (canonically isomorphic with) jGj, and the subcomplex

ŒjGj; 1�D fŒ.p; 1/� W p 2 jGjg

(where Œ.p; 1/� is the equivalence class of .p; 1/ under �) is a strict fundamental
domain for the action (in the sense that every G –orbit intersects ŒjGj; 1� in exactly one
point). The space dGC is a multisimplicial complex, and the (pointwise and setwise)
stabilizer of the simplex Œ�;g� is the subgroup gG.�/g�1 . In the cases considered
below, developments will be true simplicial complexes.

A morphism ' from a strict complex of groups G to a group H is a compatible
collection of homomorphisms '� W G.�/! H; � 2 QjGj (in general not necessarily
injective). Compatibility means that we have equalities '� D '� ı i�� for any � � � ,
where i�� is the inclusion of G.�/ in G.�/. For example, a collection of inclusions
G.�/! GC.∅/ is a morphism G! GC.∅/. A morphism 'W G! H is locally
injective if all the homomorphisms '� are injective.

Suppose we are given an action of a group H on a simplicial complex X , by simplicial
automorphisms, and suppose this action is without inversions, ie, if g 2 H fixes a
simplex of X , it also fixes all vertices of this simplex. Suppose also that the action
has a strict fundamental domain D which is a subcomplex of X . Clearly, D is then
isomorphic to the quotient complex HnX . Such an action determines the extended
associated complex of groups GC , with the underlying complex jGj DD , with local
groups G.�/ WD Stab.�;H / for � �D and with GC.∅/ WDH . The morphisms in G
are the natural inclusions. It turns out that in this situation the development dGC is
H –equivariantly isomorphic with X .

Geometry & Topology, Volume 13 (2009)



Infinite groups with fixed point properties 1243

3.2 Higher retractibility

Now we pass to a less standard part of the exposition. We begin by describing a class
of simplicial complexes, called blocks, that will serve as the underlying complexes
of the complexes of groups involved in our construction. Then we discuss various
requirements on the corresponding complexes of groups. Some part of this material is
parallel to that in Sections 4 and 5 of [12], where retractibility and extra retractibility
stand for what we call in this paper 1–retractibility and 2–retractibility, respectively.

Definition 3.5 (Block) A simplicial complex K of dimension n is a chamber complex
if each of its simplices is a face of an n–simplex of K . Top dimensional simplices are
then called chambers of K . A chamber complex K is gallery connected if each pair
of its chambers is connected by a sequence of chambers in which any two consecutive
chambers share a face of codimension 1. A chamber complex is normal if it is
gallery connected and all of its links (which are also chamber complexes) are gallery
connected. The boundary of a chamber complex K , denoted @K , is the subcomplex
of K consisting of all those faces of codimension 1 that are contained in precisely one
chamber. A block is a normal chamber complex with nonempty boundary. The sides
of a block B are the faces of codimension 1 contained in @B . We denote the set of all
sides of B by SB .

Note that links B� of a block at faces � � @B are also blocks and that @.B� /D .@B/� .

Definition 3.6 (Normal block of groups) A normal block of groups over a block B

is a strict complex of groups G with jGj D B satisfying the following two conditions:

(1) G is boundary supported, ie G.�/D 1 for each � not contained in @B ;

(2) G is locally S–surjective, ie, every group G.�/ is generated by the unionS
fG.s/ W s 2 SB; � � sg, where we use the convention that the empty set

generates the trivial group 1.

An extended normal block of groups is an extension GC of a normal block of groups G
such that the associated morphism 'W G!G.∅/ is S –surjective, ie G.∅/ is generated
by the union

S
fG.s/ W s2SBg. (To simplify notation, we write G.�/ instead of GC.�/

to denote the corresponding groups of GC .)

Given an extended normal block of groups GC over B , its development dGC is
tesselated by copies of B . More precisely, dGC is the union of the subcomplexes
of the form ŒB;g�, with g 2G.∅/, which do not intersect each other except at their
boundaries, and which we view as tiles of the tesselation. Moreover, the action of G.∅/
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on dGC is simply transitive on these tiles. By S–surjectivity of ' , dGC is a normal
chamber complex. If jG.s/j> 1 for all s 2 SB then the chamber complex dGC has
empty boundary. If B is a pseudo-manifold and jG.s/j � 2 for all s 2 SB , then dGC

is a pseudo-manifold.

Definition 3.7 (1–retractibility) An extended normal block of groups GC is 1–
retractible if for every � � jGj there is a homomorphism r� W G.∅/!G.�/ such that
r� jG.s/ D idG.s/ for s 2 SjGj; s � � , and r� jG.s/ D 1 otherwise.

In the next two lemmas we present properties that immediately follow from 1–retracti-
bility. We omit the straightforward proofs.

Lemma 3.8
(1) The homomorphisms r� , if they exist, are unique.

(2) Let '� W G.�/!G.∅/ be the homomorphisms of the morphism 'W G!G.∅/.
Then for each � we have r�'� D idG.�/ . Thus r� is a retraction onto the
subgroup G.�/ <G.∅/.

(3) The inclusion homomorphisms '�� W G.�/!G.�/, for � � � , occurring as the
structure homomorphisms of G, satisfy '�� D r�'� .

Motivated by property (3) above, we define homomorphisms r�� W G.�/!G.�/, for
any simplices �; � of jGj, including ∅, by putting r�� WD r�'� .

Lemma 3.9 Each of the homomorphisms r�� is uniquely determined by the following
two requirements:

(1) r�� jG.s/ D idG.s/ for s 2 SjGj , s � � , s � � ;

(2) r�� jG.s/ D 1 otherwise (ie for s 2 SjGj , s � � , s not containing � ).

In particular, we have r�∅D '� , r∅� D r� and r�� D '�� whenever � � � . Moreover,
if � � � then r�� is a retraction (left inverse) for the inclusion '�� .

To define higher retractibility properties for an extended normal block of groups GC

we need first to introduce certain new blocks of groups called unfoldings of GC at the
boundary simplices � � @jGj.

Definition 3.10 (Unfolding of GC at � ) Let GC be a 1–retractible extended normal
block of groups. Let � � @jGj be a simplex, and denote by d�G.∅/ the kernel of the
retraction homomorphism r� W G.∅/! G.�/. The unfolding of GC at � , denoted
d�G, is the complex of groups associated to the action of the group d�G.∅/ on the
development dGC . The extended unfolding d�GC is the same complex of groups
equipped with the canonical morphism to the group d�G.∅/.
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Define a subcomplex d� jGj � dGC by d� jGj WD
S
fŒB;g� W g 2G.�/g. We will show

that the above defined unfolding d�GC is an extended normal block of groups over
d� jGj. This will be done in a series of lemmas, in which we describe the structure of
d� jGj and d�GC in detail.

Lemma 3.11 d� jGj is a strict fundamental domain for the action of the group d�G.∅/
on the development dGC . In particular, jd�Gj D d� jGj.

Proof We need to show that the restriction to d� jGj of the quotient map q� W dGC!
d�G.∅/ndGC is a bijection. This follows by observing that the map j� from
d�G.∅/ndGC to d� jGj defined by j� .d�G.∅/ � Œp;g�/D Œp; r� .g/� is the inverse of
q� jd� jGj .

To proceed with describing d� jGj, we need to define links for blocks of groups. This
notion will also be useful in our later considerations.

Definition 3.12 (Link of a block of groups) Let G be a normal block of groups and
let � be a simplex of jGj. The link of GC at � is an extended normal block of groups
GC� over the link jGj� given by GC� .�/ WDG.� � �/ for all � � jGj� , including the
empty set ∅ (with the convention that ∅� � D � ).

We skip the straightforward argument for showing that the above defined extended
complex of groups is an extended normal block of groups.

The next lemma describes the links of the complex d� jGj. We omit its straightforward
proof. In this lemma and in the remaining part of this section, we will denote by � � �
the face of � spanned by the vertices of � not contained in � .

Lemma 3.13 Let Œ�;g� be a simplex of d� jGj, where � � jGj and g 2 G.�/. For
any simplex � � jGj� let d�jG� j be the strict fundamental domain for the action of the
group d�G� .∅/ on the development dGC� . Then the link of d� jGj at Œ�;g� has one of
the following two forms depending on � :

(1) .d� jGj/Œ�;g� Š d��� jG� j if � and � span a simplex of jGj, where we use
convention that d∅jG� j D dGC� ;

(2) .d� jGj/Œ�;g� Š jGj� otherwise.

Lemma 3.13 easily implies the following corollary. The proof of part (1) uses induction
on the dimension of B and S–surjectivity of the extending morphism; we omit the
details.
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Corollary 3.14
(1) d� jGj is a normal chamber complex.

(2) The boundary @.d� jGj/ is the subcomplex of d� jGj consisting of the simplices
of form Œ�;g� for all � � @jGj not containing � and for all g 2 G.�/. In
particular, the set of sides of d� jGj is the set

Sd� jGj D fŒs;g� W s 2 SjGj; s does not contain �;g 2G.�/g:

For a subgroup H < G and an element g 2 G , we denote by H g the conjugation
gHg�1 . The next lemma describes the local groups of the unfolding d�G.

Lemma 3.15 Let d�G be the unfolding of G and let Œ�;g� be a simplex of d� jGj
(with � � jGj and g 2G� ). Then

d�G.Œ�;g�/D Œker.r�� W G.�/!G.�//�g < d�G.∅/;

and consequently

d�G.Œ�;g�/D g �
D[

G.s/ W s 2 SjGj; s � �; s does not contain �
E
�g�1:

In view of Corollary 3.14(2), Lemma 3.15 implies the following.

Corollary 3.16 For simplices Œ�;g� of d� jGj not contained in the boundary @.d� jGj/
we have d�G.Œ�;g�/D 1.

Another consequence of Lemma 3.15, which will be useful later, is the following.

Corollary 3.17 Let GC be an extended normal block of groups, and let � be a simplex
of jGj. Then for any simplex Œ�;g� � d� jGj, with � � jGj and g 2 G.�/, we have
Œd�G�Œ�;g� Š d���GC� , where Š denotes an isomorphism of extended complexes of
groups, and where d∅GC� denotes here the trivial strict complex of groups over dGC�
(ie all of the local groups are trivial).

As a consequence of the results above, from Lemma 3.11 to Corollary 3.16, we obtain
the following.

Corollary 3.18 Given an extended normal block of groups GC , each of its unfoldings
d�GC is an extended normal block of groups.

We are now in a position to define recursively higher retractibilities.

Definition 3.19 (n–retractibility) Let n be a natural number. An extended normal
block of groups GC is .nC1/–retractible if it is 1–retractible, and for every simplex
� � @jGj the unfolding d�GC is n–retractible.
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Example 3.20 (n–retractible 1–simplex of groups) Consider the extended complex
of groups GC with jGj equal to a 1–simplex, with the vertex groups G.v/ cyclic of
order two and with G.∅/ dihedral of order 2k , where generators of the vertex groups
correspond to standard generators of the dihedral group. This complex of groups is
clearly an extended normal block of groups. Moreover, it is n–retractible but not
.nC1/–retractible in the case when k D 2n.2mC 1/ for some m.

Remark 3.21
(1) Note that an n–retractible extended normal block of groups is always k –retrac-

tible for each k � n.

(2) All links in a 1–retractible normal block of groups are 1–retractible.

(3) From Corollary 3.17 and the above remark (2) one can easily deduce using
induction on n that if GC is n–retractible and � is a simplex of jGj, then GC�
is also n–retractible.

3.3 n–retractible extensions

Our next objective is to establish results that give partial converses to property in Remark
3.21(3). These will allow us to pass up one dimension in our recursive construction of
n–retractible simplices of groups, in the next subsection.

Proposition 3.22 Let G be a normal block of groups. If for some natural number n

all the links in G (as extended complexes of groups) are n–retractible then

(1) G is developable;

(2) the extension GCdir of G (in which G.∅/ coincides with the direct limit zG of G)
is n–retractible.

Proof To prove part (1), we need to show that G admits a locally injective morphism
 W G!H to some group H . To find  , for each � � jGj we construct a morphism
xr� W G!G.�/ identical on the group G.�/ of G. We then take as H the direct product
H D

L
fG.�/ W � � jGjg and as  the diagonal morphism  D

L
fxr� W � � jGjg,

which is then clearly locally injective.

Fix a simplex � 2 jGj. To get a morphism xr� as above, we will construct an appropriate
compatible collection of homomorphisms xr�� W G.�/! G.�/, for all � � jGj, such
that xr�� D idG.�/ . To do this, for any simplex � � jGj consider the set of sides
S� D fs 2 SjGj W � � sg. Fix a simplex � � jGj. If S� \ S� D ∅, put xr�� to be the
trivial homomorphism. Otherwise, consider the simplex �D

T
fs Ws2S�\S� g. Clearly,

we have then �� � and � � � . In particular, we have the inclusion homomorphism
i�� W G.�/!G.�/, which is identical on the subgroups G.s/ W s 2 S� \S� .
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Recall that we denote by � �� the face of � spanned by all vertices not contained in �.
Since � � � , the groups G.�/ and G.�/ coincide with the link groups GC� .∅/ and
GC� .� � �/, respectively. Since the link GC� is 1–retractible, we have the retraction

r���W GC� .∅/!GC� .� � �/

such that r���jGC� .s/D idGC� .s/ for s 2 SjGj� ; s � � �� and r���jGC� .s/D 1 otherwise
(cf Definition 3.7).

Put xr�� WD i�� ı r��� . We claim that xr�� satisfies the assertions (1) and (2) of
Lemma 3.9, when substituted for r�� . This follows from the identification of the
groups G.s/; s 2 SjGj with the groups GC� .s � �/, for � � s , and from the fact that
s� � 2 SjGj� (because @.jGj�/D .@jGj/� ).

Now, we need to check the compatibility condition xr�2� Dxr�1� ı i�2�1
for all simplices

�1 � �2 in jGj. This follows from the coincidence of the maps on both sides of the
equality on the generating set

S
fG.s/ W s 2 SjGj; s � �2; g of G.�2/. This coincidence

is a fairly direct consequence of assertions (1) and (2) of Lemma 3.9, satisfied by the
maps xr�1� and xr�2� .

Finally, assertion (1) of Lemma 3.9 clearly implies that xr�� D idG.�/ , which concludes
the proof of developability of G.

We now turn to proving part (2). To deal with the case nD 1 we need to construct the
map r� W zG!G.�/ as required in Definition 3.7, for any � � jGj.

Consider the maps xr�� W �� jGj constructed in the proof of part (1), and the morphism
xr� W G!G.�/ given by these maps. Let r� W zG!G.�/ be the homomorphism induced
by this morphism. The requirements of Definition 3.7 for r� follow then easily from
the assertions of Lemma 3.9 satisfied by the maps xr�� (we skip the straightforward
details). Thus 1–retractibility of links of G implies 1–retractibility of GCdir .

Now suppose that n> 1. If links in G are n–retractible, it follows that links in d�G
are .n�1/–retractible for all � . By induction, it follows that the unfoldings d�GCdir
are .n�1/–retractible, and so GCdir is n–retractible.

Example 3.23 (n–retractible 2–simplex of groups) Consider the triangle Coxeter
group Wn;m given by

Wn;m D hs1; s2; s3 j s
2
i ; .sisj /

k for i ¤ j i;

where k D 2n.2mC 1/. The Coxeter complex for this group is a triangulation of
the (hyperbolic) plane on which the group acts by simplicial automorphisms, simply
transitively on 2-simplices. Let GC be the extended 2–simplex of groups associated
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to this action. Links in G at vertices are then isomorphic to the 1–simplex of groups
from Example 3.20. Thus, in view of Proposition 3.22 and Remark 3.21(3), GC is
n–retractible, but not .nC1/–retractible.

A more subtle way of getting n–retractible extensions is given in the following theorem,
which will be used directly, as a recursive step, in our construction in Section 3.4.

Theorem 3.24 Let G be a normal block of groups in which all links are n–retractible.
Then there exists an extension GCmin of G that has the following properties.

(1) GCmin is the minimal n–retractible extension of G in the following sense: if
GC is any n–retractible extension of G then there is a unique morphism of
extended complexes of groups GC!GCmin which extends the identity on G (ie
a morphism in the category ExtG );

(2) If all G.�/ are finite, so is Gmin.∅/;
(3) If all G.�/ are p–groups of bounded exponent, so is Gmin.∅/;
(4) If all G.�/ are soluble groups, then so is Gmin.∅/.

Remark 3.25 Property (1) means that the extended complex of groups GCmin is the
terminal object in the category of n–retractible extensions of G. In particular, it is
unique.

Proof Let GCdir be the direct limit extension of G, as described in Proposition 3.22.
We recursively define iterated unfoldings of GCdir . For each simplex �1 of jGj, define
d�1

GCdir as previously. Suppose that a complex of groups d�1;:::;�k
GCdir has already been

defined. For each simplex �kC1 of the underlying simplicial complex jd�1;:::;�k
GCdirj,

let d�1;:::;�k ;�kC1
GCdir D d�kC1

.d�1;:::;�k
GCdir/. Since G is n–retractible, this allows us

to define extended complexes of groups d�1;:::;�k
GCdir for any k � n. Due to Corollary

3.18, all of these are extended normal blocks of groups.

Note that each of the groups d�1;:::;�k
Gdir.∅/, which we denote zG�1;:::;�k

, is a subgroup
of the direct limit zG of G. Let Nk be the largest normal subgroup of zG which is
contained in every subgroup zG�1;:::;�k

, where �1; : : : ; �k ranges over all allowed
sequences of simplices (ie, all sequences for which d�1;:::;�k

GCdir was defined above).
If we set Gmin.∅/D zG=Nn , the resulting extension is clearly n–retractible. We need
to show it is minimal.

Let GC
0

be any n–retractible extension of G. Clearly, we have the canonical surjective
homomorphism hW zG! G0.∅/, which allows us to express G0.∅/ as the quotient
zG= ker h. To get the homomorphism G0.∅/ ! Gmin.∅/ D zG=Nn as required for
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minimality, we need to show that ker h<Nn . By definition of Nn , it is thus sufficient
to show that ker h< zG�1;:::;�n

for all allowed sequences �1; : : : ; �n .

To prove the latter, we will show by induction on k that ker h < zG�1;:::;�k
, for all

1�k � n. For kD1, we have retractions zG!G.�1/ and G0.∅/!G.�1/ commuting
with h such that zG�1

D ker
�
zG!G.�1/

�
and d�1

G0.∅/ D ker
�
G0.∅/!G.�1/

�
.

Hence, we get a canonical homomorphism h�1
W zG�1

! d�1
G0.∅/ with ker H�1

D

ker h. In particular, ker h< zG�1
.

To proceed, observe that (due to Lemma 3.15 applied recursively) the nonextended
unfoldings d�1;:::;�k

Gdir and d�1;:::;�k
G0 coincide for all 1 � k � n. Thus, for any

�2�jd�1
GdirjD jd�1

G0j we can repeat the above argument and get the homomorphism
h�1;�2

W zG�1;�2
! d�1�2

G0.∅/ with ker h�1;�2
D ker h�1

D ker h. Repeating this argu-
ment, we finally get the homomorphisms h�1;:::;�n

W zG�1;:::;�n
! d�1;:::;�n

G0.∅/ with
ker h�1;:::;�n

D ker h. It follows that ker h< zG�1;:::;�n
. This proves statement (1).

To prove statement (2), recall that, by Definition 3.5, the block jGj is finite. If G.�/ is
finite for each � ¤∅, then it follows (by applying recursively Lemmas 3.11 and 3.15)
that each underlying simplicial complex jd�1;:::;�k

Gdirj is finite and that for every
nonempty simplex �� jd�1;:::;�k

Gdirj the group d�1;:::;�k
Gdir.�/ is finite. Hence each

zG�1;:::;�k
has finite index in zG , and there are finitely many such groups for each k � n.

If follows that the intersection of all such subgroups is a subgroup of finite index,
and so each Nk for k � n is a finite index normal subgroup of zG . This proves that
Gmin D zG=Nn is a finite group as claimed in statement (2).

Before proving statements (3) and (4), we first claim that each Nk is equal to the
intersection of the groups zG�1;:::;�k

. To see this, it is useful to change the indexing set.
For �1; : : : ; �k a sequence of simplices of dGCdir of length at most n, define �1 to be
the image of �1 in jGj D zGndGCdir . Assuming that �1; : : : ; �i�1 have already been
defined for some i with 1< i �k , define �i to be the image of �i in jd�1;:::;�i�1

GCdirjD
zG�1;:::;�i�1

ndGCdir . Also define d�1:::;�k
GCdir to be equal to d�1;:::;�k

GCdir , and define
zG�1:::;�k

to be equal to zG�1;:::;�k
.

If x is a point of dGCdir whose stabilizer is some subgroup H < zG , and if g is an
element of zG , the stabilizer of the point g:x is equal to the conjugation gHg�1 . This
observation and induction show that for each g 2 zG , for each k � n and for each
sequence �1; : : : ; �k of simplices of dGCdir , we have

zGg�1;:::;g�k
D g � zG�1;:::;�k

�g�1:

Hence the intersection of the subgroups of the form zG�1;:::;�k
, for fixed k � n, is a

normal subgroup of zG . It follows that this intersection is equal to Nk .
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The above observation combined with the inclusions zG�1;:::;�k
< zG�1;:::;�k ;�kC1

implies
that NkC1 <Nk . To prove statement (3), we will show by induction that for 0� k < n

the quotient groups Nk=NkC1 and zG=NkC1 are p–groups of bounded exponent. Here
we use convention that N0 D

zG .

For k D 0, we need to show that zG=N1 is a p–group of bounded exponent. We
know that N1 is the intersection of the groups of form zG�1

, which are the kernels
of retractions zG!G.�1/. Thus zG=N1 embeds in the product of the groups G.�1/.
Since the latter groups are p–groups of bounded exponent, the assertion follows.

Now we suppose zG=Nk is a p–group of bounded exponent and claim that the group
Nk=NkC1 is too. To see that this is true, recall that the groups zG�1;:::;�kC1

are the
kernels of the retractions zG�1;:::;�k

! d�1:::�k
Gdir.�kC1/. Note also that

NkC1 D

\
zG�1;:::;�kC1

D

\
.Nk \

zG�1;:::;�kC1
/;

and thus NkC1 is equal to the intersection of the kernels of the composed homomor-
phisms

Nk

incl
�! zG�1;:::;�k

r
�! d�1;:::;�k

Gdir.�kC1/:

Now, each of the groups d�1;:::;�k
Gdir.�kC1/ canonically embeds in the quotient zG=Nk

(because the latter is a k –retractible extension of zG ). Thus all these groups are p–
groups of finite exponent. As before, we see that Nk=NkC1 embeds in the product
of p–groups of bounded exponents, hence the assertion. The fact that the quotient
zG=NkC1 is then also a p–group of bounded exponent follows directly. This proves
statement (3).

The proof of statement (4) is similar to that of statement (3).

3.4 The construction and retra-products

Given any n, we construct an n–retractible extended simplex of groups GC , over the
simplex � of arbitrary dimension, as follows:

(1) We put the trivial group on the simplex �.
(2) We put an arbitrary group G.s/ on each codimension 1 face s of �.
(3) Suppose we have already defined groups G.�/ (and inclusion maps between

them) for faces of codimension strictly less than k . Then for a face � of
codimension k � dim�, the group G.�/ is the minimal n–retractible extension,
as in Theorem 3.24, of the simplex of groups over the link simplex �� made of
the already defined groups G.�/, via the canonical correspondence between the
faces of �� and the faces ��� containing � .

(4) Finally, we take as G.∅/ the minimal n–retractible extension of the so far
obtained simplex of groups G over �.
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Definition 3.26 (Retra-product) We will call the group G.∅/ of any simplex of
groups GC obtained as in the construction above the n–retra-product of the (finite)
family of groups G.s/ W s 2 S� . Note that this operation makes sense for any finite
family of groups.

Clearly, the groups G.�/ obtained in the construction above are all the n–retra-products
of the corresponding families of groups G.s/ W s 2 S�; s � � .

Rephrasing Theorem 3.24 in the context of retra-products we get the following properties
of this operation, for an arbitrary natural number n:

(1) The n–retra-product of finite groups is finite;

(2) The n–retra-product of p–groups of bounded exponent is a p–group of bounded
exponent.

It follows that the n–retra-product of finite p–groups is a finite p–group. In particular,
we get the following.

Corollary 3.27 Let G be a nonextended simplex of groups obtained as in the con-
struction above, out of groups G.s/ being finite p–groups. Then all groups G.�/ in
this simplex are finite p–groups.

Remark 3.28 The construction of this subsection was first used in [12], in the 2–
retractible case. For the purposes of this paper, it suffices to consider the case when
each codimension one face of the simplex is assigned the cyclic group Zp of order p .
Even though the construction of the n–retra-products is in principle explicit, one rapidly
loses track of the groups arising.

The n–retra-product of two groups Z2 , occurring at faces of codimension 2, is the
dihedral group D2n of order 2nC1 . We do not even know the orders of the n–retra-
products of three copies of Z2 , except the case nD 2 when this order is 214 .

Note that if G is a nonextended simplex of groups corresponding to GC , obtained by
the construction above, then its direct limit extension GCdir is different from GC , and
in particular the direct limit GCdir.∅/ is different from the n–retra-product G.∅/. This
motivates the following.

Definition 3.29 (Free retra-product) The direct limit of a nonextended simplex of
groups G obtained by the construction above will be called the free n–retra-product
of the (finite) family of the codimension 1 groups G.s/ W s 2 S� .

In the next subsection we will deal with free n–retra-products of finite groups, showing
that for n� 2 they are infinite, and for n� 3 they are nonelementary word-hyperbolic.
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3.5 Simplicial nonpositive curvature, word-hyperbolicity and the proof of
Theorem 3.1

To show that there are nonelementary word-hyperbolic groups arising from the con-
struction of the previous subsection, we will use results of [13] concerning simplicial
nonpositive curvature.

Recall from [13] that the systole sys.K/ of a simplicial complex K is the smallest
number of 1-simplices in any full subcomplex of K homeomorphic to the circle. A
simplicial complex K is k –large if its systole and the systoles of links of all simplices
in K are all at least k . Simplicial complexes whose all links are k –large, for some
fixed k , are the analogs of metric spaces with curvature bounded above. If they are
additionally simply connected, we call them k –systolic complexes. All results of this
subsection are corollaries to the following.

Proposition 3.30 Suppose GC is an n–retractible extended simplex of groups. Then
the development dGC is 2.nC1/–large.

We skip the proof of the proposition until the end of the subsection, first deriving (and
making comments on) its consequences. In particular, we show how this proposition,
together with the results of the previous subsection, implies Theorem 3.1.

Corollary 3.31 Suppose G is a nonextended simplex of groups whose links GC� are
n–retractible, and let GCdir be the direct limit extension of G.

(1) If n� 2 then the development dGCdir is contractible.

(2) If n� 2 and the codimension 1 groups G.s/ are nontrivial, then dGCdir and the
direct limit Gdir.∅/ are both infinite.

(3) If n � 3 then the 1–skeleton of the development dGCdir , equipped with the
polygonal metric, is Gromov-hyperbolic.

(4) If n� 3 and all the groups G.�/ are finite and nontrivial, then the group Gdir.∅/
is nonelementary word-hyperbolic, except when the underlying simplex is the
1–simplex and the vertex groups are of order 2 (in which case it is the infinite
dihedral group).

(5) If n� 2 and all the groups G.�/ are finite, then the group Gdir.∅/ is virtually
torsion-free.
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Proof First, note that links in dGCdir are isomorphic to the developments of the
n–retractible link simplices of groups G� (see Lemma 3.13(1)), and thus are 2.nC1/–
large. Since dGCdir is the universal cover of G, it is simply connected and hence
2.nC1/–systolic. For n � 2, this means that dGCdir is 6–systolic, and thus it is
contractible by [13, Theorem 4.1(1)]. This proves (1).

To get assertion (2), note that it follows from [13, Proposition 18(2)], that the group
Gdir.∅/ has a nontrivial subgroup that acts on the development dGCdir freely. Thus this
development is a classifying space for this subgroup and, since it has finite dimension,
the subgroup has to be infinite. See also Osajda [21, Corollary 4.3], for a more
elementary argument.

For parts (3) and (4), note first that n � 3 implies 8–systolicity of the development
dGCdir . Part (3) follows then from [13, Theorem 2.1].

Finally, under the assumptions of (4), the group Gdir.∅/ acts on dGCdir properly discon-
tinuously and cocompactly. Thus it follows from (3) that Gdir.∅/ is word-hyperbolic.
If the underlying simplex of jGj is 1–dimensional, the group acts geometrically on
the tree dGCdir , and hence is virtually free nonabelian (except the mentioned case). If
the dimension of the underlying simplex jGj is greater than 1, the fact that the group
is nonelementary follows from [22, Theorem 5.6 and Remark 2 at the end], where it
is shown that this group has one end.

The nonelementariness above can be also shown directly, by noting that the groups as
in (4) contain as a subgroup the free product of three nontrivial finite groups (namely
codimension 1 groups in any vertex unfolding of certain three pairwise disjoint sides).
We do not include the details of this argument.

In order to prove (5), recall that by Theorem 3.24 there exists a finite extension Gmin.∅/
of G. Since the canonical homomorphism �W Gdir.∅/!Gmin.∅/ is injective on the
local groups, the kernel H of � acts freely on the development dGCdir and the index
jGdir.∅/ WH j is finite. Suppose that H contains a nontrivial element h of finite order p ;
without loss of generality, we can assume that p is prime. The space dGCdir is finite-
dimensional by definition and contractible by part (1), so, by Smith fixed point theory
(see Bredon [3, Theorem III.7.11]), the induced action of hhi on this space has a fixed
point. This yields a contradiction with the freeness of the action of H on dGCdir .

Restricting to free n–retra-products, we immediately get the following.

Corollary 3.32 If n � 2 then the free n–retra-product of (at least two) nontrivial
groups is infinite and virtually torsion-free. If n� 3 then the free n–retra-product of (at
least two) nontrivial finite groups is nonelementary word-hyperbolic, except the product
of two groups of order 2.
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Remark 3.33 Note that the construction in the present paper gives new families of k –
systolic groups, for arbitrary k , different from those constructed in [13, Sections 17–20].
These are the free n–retra-products of arbitrary finite groups, where 2.nC 1/� k .

Proof of Theorem 3.1 Let G be the 3–retractible .nC1/–simplex of groups obtained
by the construction of Section 3.4, with all codimension 1 groups G.s/ isomorphic to
the cyclic group Zp of order p . Let G be the direct limit of G, ie the free 3–retra-
product of nC 2 copies of Zp . By Corollary 3.32, G is then nonelementary word
hyperbolic.

Choose a generator for each codimension 1 subgroup G.s/ of G (ie for each factor of
the above free 3–retra-product). Let S be the set formed of these generators. Then
S consists of nC 2 elements, and it generates G since the union

S
fG.s/ W s 2 jGjg

generates G . For any proper subset T � S , the subgroup hT i< G generated by T

coincides with one of the local groups of G. More precisely, for � D
T
fs W s 2 T g we

have hT i DG.�/. By Corollary 3.27, hT i is then a finite p–group, which completes
the proof.

It only remains now to prove Proposition 3.30. We will use the following lemma in the
proof.

Lemma 3.34 Let  be a loop in the 1–skeleton of a simplicial complex K which
has the minimum length L amongst all loops in the 1–skeleton of K in the same free
homotopy class. Then any lift z of  to the universal cover zK of K has the property
that it minimizes distance measured in the 1–skeleton of zK between any two points
whose distance in z is at most L.

Proof Let t be a deck transformation of zK that acts as a translation by the distance
L on the subcomplex z . Suppose that z does not have the property claimed. Then
there exist vertices p and q of z such that q lies on the segment from p to tp and
such that the distance between p and q in the 1–skeleton of zK is strictly smaller than
the distance between them in z . Let ˛ be the segment of z between p and q , and let
˛0 be a path of shorter length in the 1–skeleton of zK from p to q . Denote also by ˇ
be the segment of z between q and tp . Since zK is simply connected, ˛ and ˛0 are
homotopic relative to their endpoints. This homotopy, after projecting to K , yields a
homotopy between  and the loop obtained by projecting ˛0[ˇ . Since the latter loop
is strictly shorter, we get a contradiction.

Proof of Proposition 3.30 The proof is by induction on d , the dimension of the
simplex jGj, followed by induction on n. For d D 0 there is nothing to prove. Let
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GC be an n–retractible d –dimensional simplex of groups. Then links GC� are also
n–retractible (see Remark 3.21(3)), and thus by induction on d their developments
dGC� are 2.nC1/–large. Thus the same holds for links of dGC .

By [13, Corollary 1.5], a simplicial complex X with k –large links is k –large if and
only if the length of the shortest loop in the 1–skeleton of X which is homotopically
nontrivial in X is at least 2.nC 1/. We thus need to show this for X D dGC .

Let  be a homotopically nontrivial polygonal loop in dGC of the shortest length.
Now we start the induction on n. It has been shown in [12, Proposition 4.3(3)], that
the development of any 1–retractible extended simplex of groups is a flag complex.
Hence the length of  is at least 4. This completes the case nD 1 for all d . Clearly
an n–retractible complex is .n�1/–retractible, and so by induction on n, the length of
 is at least 2n.

Let zX be the universal cover of X D dGC , let z be a lift of  to zX , and let
v0; : : : ; vnC1 be some consecutive vertices on z . By Lemma 3.34, we see that z
minimizes distances between the vertices vi W 0� i � nC 1 in the 1–skeleton of zX .
In particular the distance between v0 and vnC1 is equal to nC 1. Let ı denote the
segment of z between v0 and vnC1 , and let ı0 be the segment of z that starts at vnC1

and projects to the segment of  complementary to the projection of ı .

By symmetry of dGC , we may assume that v1 is a vertex of the simplex ŒjGj; 1��dGC .
Consider the fundamental domain D � zX for the group zGv1;:::;vn

D dv1;:::;vn
.∅/

obtained recursively as dvn
: : : dv1

jGj in the way described just before Lemma 3.11.
By Lemma 3.11, D is a strict fundamental domain. It contains the vertices v1; : : : ; vn

in its interior (ie, outside the boundary @D ), and thus contains also v0 and vnC1 . We
identify D with the quotient zGv1;:::;vn

nX . We then look at the projection of ı [ ı0

to D . Since the distance in zX between v0 and vnC1 is nC 1, their distance in D is
also nC 1 (the distance in the quotient cannot increase, while that in the subcomplex
cannot increase). It follows that the length of the projection of ı0 to D is at least nC1,
and so the length of  is at least 2.nC 1/.

3.6 The fixed point property

We now pass to proving Theorem 3.2. The proof will use the following lemma.
The proof of a related result, for contractible CW–complexes, can be found in [16].
We remind the reader that “mod–p acyclic” means “having the same mod–p Čech
cohomology as a point”.

Geometry & Topology, Volume 13 (2009)



Infinite groups with fixed point properties 1257

Lemma 3.35 Fix an integer n> 0, let Y1; : : : ;Yn be closed subspaces of a space X ,
let Y D

Sn
iD1 Yi and let AD

Tn
iD1 Yi , the union and intersection of the Yi respectively.

Suppose that for all subsets I � f1; : : : ; ng with 1� jI j< n, the intersection
T

i2I Yi

is mod–p acyclic. Then the reduced mod–p Čech cohomologies of Y and A are
isomorphic, with a shift in degree of n� 1. More precisely, for each m there is an
isomorphism zH m.Y /Š zH m�nC1.A/.

Proof In the case when nD 1, we have that Y DA and the assertion is trivially true.
Now suppose that n� 2. For 1� i � n�1, let Zi D Yi \Yn , let Z D

S
i Zi , and let

Y 0D
Sn�1

iD1 Yi . By definition, Y �Y 0D Yn�Z , and so by the strong form of excision
that holds for Čech cohomology (see the end of Section 3.3 of [10]), it follows that
H�.Y;Y 0/ŠH�.Yn;Z/.

By induction on n, we see that for each m, zH m.Z/Š zH m�nC2.A/. Also by induction,
we see that Y 0 is mod–p acyclic, since

Tn�1
iD1 Yi is mod–p acyclic by hypothesis. Since

n� 2, the hypotheses also imply that Yn is mod–p acyclic. Hence the long exact se-
quence in reduced cohomology for the pair .Yn;Z/ collapses to isomorphisms, for all i ,
zH i�1.Z/ŠH i.Yn;Z/. Similarly, the long exact sequence in reduced cohomology

for the pair .Y;Y 0/ collapses to isomorphisms, for all i , H i.Y;Y 0/Š zH i.Y /. Putting
these isomorphisms together gives an isomorphism, for all i , of reduced cohomology
groups zH i�1.Z/Š zH i.Y /. The claimed result follows.

Proof of Theorem 3.2 Suppose that X is a p–acyclic G–space of finite covering
dimension. Let g1; : : : ;gnC2 be the elements of S , and let Yi be the points of X that
are fixed by gi . By Smith theory, the fixed point set of the action of any finite p–group
on X is mod–p acyclic. For an explicit reference, see Theorem III.7.11 of Bredon’s
book [3], noting that “finite covering dimension” implies Bredon’s hypothesis “finitistic”
(see page 133 of [3]), and that “X is mod–p acyclic” is equivalent to Bredon’s hypoth-
esis “the pair .X;∅/ is a mod–p Čech cohomology 0–disk”. Hence the subspaces Yi

satisfy the hypotheses of Lemma 3.35. The global fixed point set A for the action of
G on X is equal to the intersection AD

TnC2
iD1 Yi . If A is not mod–p acyclic, then

for some m � �1, the reduced cohomology group zH m.A/ is nonzero. By Lemma
3.35, it follows that the union Y D

SnC2
iD1 Yi has a nonvanishing reduced cohomology

group zH j .Y / for some j � n. Hence the relative cohomology group H jC1.X;Y /

is nonzero for some j � n, and so X must have covering dimension at least nC 1.

4 Finitely presented groups that fail to act

In this section we establish the validity of Template NAfp . We also show the triviality
of actions on manifolds of certain groups, see Lemma 4.5. This immediately implies
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Proposition 1.4 and provides the input to Template NAfp that is needed to prove
Theorem 1.5.

Definition 4.1 A sequence of groups and monomorphisms .GnI �n;j / (n 2N , j D

1; : : : ;J ) is called a recursive system if

(i) each Gn has a presentation hAn k Rni with An finite and
S

n Rn �A� recur-
sively enumerable, where AD

F
nAn ;

(ii) each monomorphism �n;j W Gn ! GnC1 is defined by a set of words Sn;j D

fwn;j ;a2A�nC1
ja2Ang such that wn;j ;aD �n;j .a/ in GnC1 , with

S
n;j Sn;j �

A� recursively enumerable.

We shall be interested only in sequences where, for each sufficiently large integer n,
GnC1 is generated by the union of the images of the �n;j . And in our applications we
shall need only the case J D 2.

Examples 4.2 The following are recursive systems.

(1) Define Gn D SL.n;Z/, set J D 2, and define �n;1 and �n;2 to be the embeddings
SL.n;Z/! SL.nC 1;Z/ defined by

�n;1.M /D

�
M 0

0 1

�
and �n;2.M /D

�
1 0

0 M

�
for all M 2 SL.n;Z/:

(2) Writing Alt.n/ to denote the alternating group consisting of even permutations of
nD f1; : : : ; ng and taking J D 2, define Gn DAlt.n/ and define �n;1; �n;2W Alt.n/!
Alt.nC 1/ to be the embeddings induced by the maps In;1; In;2W n! n+1 defined by
In;1W k! k and In;2W k! kC 1.

Lemma 4.3 Let .GnI �n;j / .n 2N; j D 1; : : : ;J / be a recursive system of nontrivial
groups and monomorphisms �n;j W Gn! GnC1 , and suppose that there exists n0 so
that for each n� n0 , GnC1 is generated by

S
j �n;j .Gn/. Then there exists a finitely

presented group G! which for each n� n0 , contains two isomorphic copies of Gn so
that G! is the normal closure of the union of these two subgroups.

Proof By renumbering, we may assume that n0 D 1. Consider the free product

(2) G D
1
�

nD1
Gn;

and for each j 2 J let �j W G ! G be the injective endomorphism of G whose
restriction to Gn is �n;j .
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Now, let H be the multiple HNN-extension of G corresponding to these endomor-
phisms:

H D hG; t1; : : : ; tj k tj gt�1
j D �j .g/; g 2G; j 2 J i :

In the notation of Definition 4.1, this has presentation

hA; t1; : : : ; tj k Rn .n 2N/; tj at�1
j w�1

n;j ;a .n 2N; j 2 J; a 2An/i:

By hypothesis, this is a recursive presentation. Moreover, since the images of the �n;j
generate GnC1 , the group H is generated by the finite set A1[ft1; : : : ; tJ g.

Now, by the Higman embedding theorem (see Lyndon and Schupp [17, IV.7]), H can
be isomorphically embedded into a finitely presented group B . Suppose that B is
generated by elements x1; : : : ;xl . Without loss of generality we can and do assume
that each of x1; : : : ;xl has infinite order. Indeed, to ensure this one can if necessary
replace B by the free product B �Z of B with the infinite cyclic group generated
by z , which is generated by the elements z; zx1; : : : ; zxl of infinite order. Choose an
element of infinite order y 2 G � B and a subgroup F � G such that F is free of
rank l and

(3) F \ hyi D f1g; F \ hxii D f1g for i D 1; : : : ; l:

Such a choice is possible because G is a free product of infinitely many nontrivial
groups and a cyclic subgroup of B can intersect at most one free factor nontrivially.

Consider, now, the iterated HNN-extension of B :

LD hB; s1; : : : ; sl k sixis
�1
i D y; i D 1; : : : ; li:

Let ff1; : : : ; flg be free basis of F . By (3) and Britton’s lemma [17, IV.2], the subgroup
of L generated by s1; : : : ; sl and F is freely generated by the elements s1; : : : ; sl ,
f1; : : : ; fl . Let L0 be a copy of L and let s0

1
; : : : ; s0

l
; f 0

1
; : : : ; f 0

l
denote the copies of

the corresponding elements. Finally we obtain the group that we seek by defining

G! D hL;L
0
k si D f

0
i ; fi D s0i ; i D 1; : : : ; li:

The group G! is infinite and finitely presented by construction.

A key feature in our construction is that for all k�n the free factor Gk of G is conjugate
in H (and hence in G! ) to a subgroup of Gn , and for k > n the conjugates of Gn by
positive words of length k � n in the letters tj generate Gk . Thus G is the normal
closure of each Gn . Likewise G0 is the normal closure of G0n . All that remains is to
observe that G! is generated by the set fx1; : : : ;xl ; s1; : : : ; sl ;x

0
1
; : : : ;x0

l
; s0

1
; : : : ; s0

l
g,

each of whose elements is conjugate to an element of G or G0 . Thus G! is the normal
closure of Gn[G0m for every n;m� 1.
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The following theorem establishes the validity of Template NAfp .

Theorem 4.4 If the groups Gn satisfy the conditions of Template NAfp , then the
finitely presented group G! constructed in Lemma 4.3 cannot act nontrivially on any
X 2 X .

Proof Suppose that G! acts on a space X 2 X . Then X 2 Xm for some m 2N and
we have a homomorphism ˛W G! ! Homeo.X / that we want to prove is trivial. By
hypothesis, there is some Gn that cannot act nontrivially on X . Hence, in the notation
of the preceding lemma, ˛.Gn/D ˛.G

0
n/Df1g. Therefore the kernel of ˛ is the whole

of G! .

Lemma 4.5 Let G be a simple group that contains a copy of Zk
p . Then G cannot

act nontrivially on any mod–p acyclic manifold X of dimension at most n, where
nD 2k � 1 if p is an odd prime and nD k � 1 if p D 2.

Proof Let E be a subgroup of G isomorphic to Zk
p . It suffices to show that E cannot

act effectively on X , since then the kernel of the action of G is not the trivial group
and so must be equal to G .

A proof that E cannot act effectively on X (with slightly weaker hypotheses on X ) is
given by Bridson and Vogtmann in [5], who attribute the result to P A Smith [27]. The
result can also be deduced from Theorem 2.2 of Mann and Su [18], since a standard
result from Smith theory [3, Theorem III.7.11] implies that the E–fixed point set in X

is nonempty.

A more elementary proof that E cannot act effectively can be given if one restricts to the
case when X is smooth and G acts by diffeomorphisms. First, fix a Riemannian metric
on X that is compatible with the given smooth structure. Next, average this metric
over the E–action to replace it by a metric for which E acts on X by isometries. As
above, Smith theory ensures that there is a point x 2X fixed by E . Taking derivatives
at x gives a linear action of E on the tangent space Tx.X /. Now E has no faithful
real representation of dimension at most n, and so some nonidentity element h 2E

acts trivially on Tx.X /. Since the action of E is by isometries, it follows that h fixes
an open ball around x . But the fixed point set for any isometry is a closed submanifold
of X , and hence h fixes all points of X .

Proof of Theorem 1.5 The preceding lemma tells us that, given any prime p and
positive integer n, any alternating group Alt.m/ with m sufficiently large cannot act
nontrivially on a p–acyclic manifold of dimension less than n. It follows that the
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group G! obtained by applying Theorem 4.4 to the recursive system in Examples 4.2(2)
cannot act nontrivially on a p–acyclic manifold of any dimension, for all primes p .

Remark 4.6 For each fixed prime p , C Röver [26] constructed a finitely presented
simple group containing, for each n, a copy of .Zp/

n . By Lemma 4.5, such a group
cannot act nontrivially on any mod–p acyclic manifold.

Certain of the finitely presented simple groups introduced by Thompson [28] and
Higman [11] contain a copy of every finite group, so these cannot act on a mod–p

acyclic manifold for any p .
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