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Abstract. We introduce and systematically study the concept of a growth tight
action. This generalizes growth tightness for word metrics as initiated by Grig-
orchuk and de la Harpe. Given a finitely generated, non-elementary group G
acting on a G–space X , we prove that if G contains a strongly contracting el-
ement and if G is not too badly distorted in X , then the action of G on X is
a growth tight action. It follows that if X is a cocompact, relatively hyperbolic
G–space, then the action of G on X is a growth tight action. This generalizes all
previously known results for growth tightness of cocompact actions: every already
known example of a group that admits a growth tight action and has some infinite,
infinite index normal subgroups is relatively hyperbolic, and, conversely, relatively
hyperbolic groups admit growth tight actions. This also allows us to prove that
certain CAT(0) graphs of groups and snowflake groups admit cocompact, growth
tight actions. These provide first examples of non-relatively hyperbolic groups ad-
mitting interesting growth tight actions. Our main result applies as well to cusp
uniform actions on hyperbolic spaces and to the action of the mapping class group
on Teichmüller space with the Teichmüller metric. Towards the proof of our main
result, we give equivalent characterizations of strongly contracting elements and
produce new examples of group actions with strongly contracting elements.

0. Introduction

The growth exponent of a set A with respect to a pseudo-metric d is

δA,d := lim sup
r→∞

log #{a ∈ A | d(o, a) 6 r}
r

where # denotes cardinality and o ∈ A is some basepoint. The limit is independent
of the choice of basepoint.

Let G be a finitely generated group. A left invariant pseudo-metric d on G induces
a left invariant pseudo-metric d̄ on any quotientG/Γ ofG by d̄(gΓ, g′Γ) := d(gΓ, g′Γ).

Definition 0.1. G is growth tight with respect to d if δG,d > δG/Γ,d̄ for every infinite
normal subgroup Γ P G.

One natural way to put a left invariant metric on a finitely generated group is to
choose a finite generating set and consider the word metric. More generally, pseudo-
metrics on a group are provided by actions of the group on metric spaces. Let X be
a G–space, that is, a proper, geodesic metric space with a properly discontinuous,
isometric G–action Gy X . The choice of a basepoint o ∈ X induces a left invariant
pseudo-metric on G by dG(g, g′) := dX (g.o, g′.o).

Define the growth exponent δG of G with respect to X to be the growth exponent
ofG with respect to an induced pseudo-metric dG. This depends only on the G–space
X , since a different choice of basepoint in X defines a pseudo-metric that differs from
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dG by an additive constant. Likewise, let δG/Γ denote the growth exponent of G/Γ
with respect to a pseudo-metric on G/Γ induced by dX .

Definition 0.2. G y X is a growth tight action if δG > δG/Γ for every infinite
normal subgroup Γ P G.

Some groups admit growth tight actions for the simple reason that they lack any
infinite, infinite index normal subgroups. For such a group G, every action on a
G–space will be growth tight. Exponentially growing simple groups are examples,
as, by the Margulis Normal Subgroup Theorem [32], are irreducible lattices in higher
rank semi-simple Lie groups.

Growth tightness1 for word metrics was studied by Grigorchuk and de la Harpe
[24], who showed, for example, that a finite rank free group equipped with the word
metric from a free generating set is growth tight. On the other hand, they showed
that the product of a free group with itself, generated by free generating sets of
the factors, is not growth tight. Together with the Normal Subgroup Theorem,
these results suggest that for interesting examples of growth tightness we should
examine ‘rank 1’ type behavior. Further evidence for this idea comes from the work
of Sambusetti and collaborators, who in a series of papers [41, 42, 43, 18] prove
growth tightness for the action of the fundamental group of a negatively curved
Riemannian manifold on its Riemannian universal cover.

In the study of non-positively curved, or CAT(0), spaces there is a well established
idea that a space may be non-positively curved but have some specific directions
that look negatively curved. More precisely:

Definition 0.3 ([5]). A hyperbolic isometry of a proper CAT(0) space is rank 1 if
it has an axis that does not bound a half-flat.

In Definition 1.8, we introduce the notion for an element of G to be strongly
contracting with respect to G y X . In the case that X is a CAT(0) G–space, the
strongly contracting elements of G are precisely those that act as rank 1 isometries
of X (see Theorem 8.2).

In addition to having a strongly contracting element, we will assume that the
orbit of G in X is not too badly distorted. There are two different ways to make
this precise.

We say a G–space is Q–quasi-convex if there exists a Q–quasi-convex G–orbit
(see Definition 1.1 and Definition 1.2). This means that it is possible to travel along
geodesics joining points in the orbit of G without leaving a neighborhood of the
orbit.

Theorem (Theorem 5.4). Let G be a finitely generated, non-elementary group. Let
X be a quasi-convex G–space. If G contains a strongly contracting element then
Gy X is a growth tight action.

Alternatively, we can assume that the growth rate of the number of orbit points
that can be reached by geodesics lying entirely, except near the endpoints, outside
a neighborhood of the orbit is strictly smaller than the growth rate of the group:

1Grigorchuck and de la Harpe define growth tightness in terms of ‘growth rate’, which is just the
exponentiation of our growth exponent. The growth exponent definition is analogous to the notion
of ‘volume entropy’ familiar in Riemannian geometry, and is more compatible with the Poincaré
series in Section 1.1.
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Theorem (Theorem 5.3). Let G be a finitely generated, non-elementary group. Let
X be a G–space. If G contains a strongly contracting element and there exists a
Q > 0 such that the Q–complementary growth exponent of G is strictly less than the
growth exponent of G, then Gy X is a growth tight action.

(See Definition 5.2 for the notion of the Q–complementary growth exponent.)
The proof of Theorem 5.4 is a special case of the proof of Theorem 5.3.
Using Theorem 5.4, we prove:

Theorem (Theorem 7.6). If X is a quasi-convex, relatively hyperbolic G–space and
G does not coarsely fix a peripheral subspace then Gy X is a growth tight action.

This generalizes all previously known results for growth tightness of cocompact
actions: every already known example of a group that admits a growth tight action
and has some infinite, infinite index normal subgroups is relatively hyperbolic, and,
conversely, relatively hyperbolic groups admit growth tight actions [2, 40, 52, 42,
39, 18].

We also use Theorem 5.4 to prove growth tightness for actions on non-relatively
hyperbolic spaces. For instance, we give examples of non-relatively hyperbolic
groups acting on CAT(0) spaces with rank 1 isometries, and we prove that these
actions are growth tight:

Theorem (Theorem 8.3). If G is a finitely generated, non-elementary group and X
is a quasi-convex, CAT(0) G–space such that G contains an element that acts as a
rank 1 isometry on X , then Gy X is a growth tight action.

We even exhibit an infinite family of non-relatively hyperbolic, non-CAT(0) groups
that admit cocompact, growth tight actions. These are a subfamily of the Brady-
Bridson snowflake groups, and are explored in Section 10.

We prove growth tightness for interesting non-quasi-convex actions using The-
orem 5.3. We generalize a theorem of Dal’bo, Peigné, Picaud, and Sambusetti
[18] for Kleinian groups satisfying an additional Parabolic Gap Condition, see Def-
inition 7.10, to cusp-uniform actions on arbitrary hyperbolic spaces satisfying the
Parabolic Gap Condition:

Theorem (Theorem 7.11). Let G be a finitely generated, non-elementary group. Let
Gy X be a cusp uniform action on a hyperbolic space. Suppose that G satisfies the
Parabolic Gap Condition. Then Gy X is a growth tight action.

Once again, our theorems extend beyond actions on relatively hyperbolic spaces,
as we use Theorem 5.3 to prove:

Theorem (Theorem 9.2). The action of the mapping class group of a hyperbolic
surface on its Teichmüller space with the Teichmüller metric is a growth tight action.

Mapping class groups, barring exceptional low complexity cases, are neither rela-
tively hyperbolic nor CAT(0).

In Part 1 of this paper we prove our main results, Theorem 5.3 and Theorem 5.4.
In Part 2 we give equivalent characterizations of strongly contracting elements

(Section 6), and produce new examples of group actions with strongly contracting
elements. These include groups acting on relatively hyperbolic metric spaces (Sec-
tion 7), certain CAT(0) groups (Section 8), mapping class groups (Section 9), and
snowflake groups (Section 10). Our main theorems imply that all these groups admit
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growth tight actions. These are first examples of growth tight actions and groups
which do not come from and are not relatively hyperbolic groups.

0.1. Invariance. Growth tightness is a delicate condition. A construction of Dal’bo,
Otal, and Peigné [17], see Observation 7.9, shows that there exist groups G and non-
cocompact, hyperbolic, equivariantly quasi-isometric G–spaces X and X ′ such that
G y X is growth tight and G y X ′ is not. For cocompact G–spaces, the question
is open:

Question 1. Is growth tightness invariant among cocompact G–spaces?

It would be interesting to have a condition to exclude growth tightness. For
instance, Coulon [15] has shown that for any non-elementary torsion free hyperbolic
group and any finite generating set there exists a sequence of quotients whose growth
exponents limit to that of the group, so there is no hope of establishing a uniform
gap between the growth exponent of a group and those of all of its quotients. At
present, growth tightness can only be excluded for a particular action by exhibiting
a quotient of the group by an infinite normal subgroup whose growth exponent is
equal to that of the group. Even the following question of Grigorchuk and de la
Harpe is still open [24]:

Question 2. Does there exist a word metric for which F2 × F2 is growth tight?

Recall that F2 × F2 is not growth tight with respect to a generating set that is a
union of free generating sets of the two factors.

0.2. The Hopf Property. A group G is Hopfian if there is no proper quotient of
G isomorphic to G.

Let D be a set of pseudo-metrics on G that is quotient-closed, in the sense that if
Γ is a normal subgroup of G such that there exists an isomorphism φ : G → G/Γ,
then for every d ∈ D, the pseudo-metric on G obtained by pulling back via φ the
pseudo-metric on G/Γ induced by d is also in D. For example, the set of word
metrics on G coming from finite generating sets is quotient-closed.

Suppose further that D contains a minimal growth pseudo-metric d0, ie, δG,d0 =
infd∈D δG,d, and that G is growth tight with respect to d0.

Proposition 0.4. Let G be a finitely generated group with a bound on the cardinal-
ities of its finite normal subgroups. Suppose that there exists a quotient-closed set
D of pseudo-metrics on G that contains a growth tight, infimal growth element d0

as above. Then G is Hopfian.

The hypothesis on bounded cardinalities of finite normal subgroups holds for all
groups of interest in this paper, see Theorem 1.15.

Proof. Suppose that Γ is a normal subgroup of G such that G ∼= G/Γ. Let d
be the pseudo-metric on G obtained from pulling back the pseudo-metric on G/Γ
induced by d0. Since D is quotient-closed, d ∈ D. By minimality, δG,d0 6 δG,d,
but by growth tightness, δG,d 6 δG,d0 , with equality only if Γ is finite. Thus, the
only normal subgroups Γ for which we could have G ∼= G/Γ are finite. However,
if G ∼= G/Γ for some finite Γ then G has arbitrarily large finite normal subgroups,
contrary to hypothesis. �

Grigorchuk and de la Harpe [24] suggested this as a possible approach to the
question of whether a non-elementary Gromov hyperbolic group is Hopfian, in the
particular case that D is the set of word metrics on G. Arzhantseva and Lysenok [2]
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proved that every word metric on a non-elementary hyperbolic group is growth tight.
They conjectured that the growth exponent of such a group achieves its infimum
on some generating set and proved a step towards this conjecture [3]. Sambusetti
[40] gave an examples of a (non-hyperbolic) group for which the set of word metrics
does not realize its infimal growth exponent. In general it is difficult to determine
whether a given group has a generating set that realizes the infimal growth exponent
among word metrics. Part of our motivation for studying growth tight actions is to
open new possibilities for the set D of pseudo-metrics considered above.

Remark. Torsion free hyperbolic groups are Hopfian by a theorem of Sela [45]. Re-
infeldt and Weidmann [38] have announced a generalization of Sela’s techniques
to hyperbolic groups with torsion, and concluded that all hyperbolic groups are
Hopfian.

0.3. The Rank Rigidity Conjecture. The Rank Rigidity Conjecture [14, 6] as-
serts that if X is a locally compact, irreducible, geodesically complete CAT(0) space,
and G is an infinite discrete group acting properly and cocompactly on X , then one
of the following holds:

(1) X is a higher rank symmetric space.
(2) X is a Euclidean building of dimension at least 2.
(3) G contains a rank 1 isometry.

In case (1), the Margulis Normal Subgroup Theorem implies that G is trivially
growth tight, since it has no infinite, infinite index normal subgroups. Conjecturally,
the Margulis Normal Subgroup Theorem also holds in case (2). Theorem 8.3 says
that G y X is a growth tight action in case (3). Thus, a non-growth tight action
of a non-elementary group on an irreducible CAT(0) space as above would provide
a counterexample either to the Rank Rigidity Conjecture or to the conjecture that
the Margulis Normal Subgroup Theorem applies to Euclidean buildings.

It is unclear when growth tightness holds if X is reducible. It is not hard to show
that a direct product of groups acting on a product space with the l1 metric fails
to be growth tight. However, there are also examples [13] of infinite simple groups
acting cocompactly on products of trees.

0.4. Outline of the Proof of the Main Theorem. Sambusetti [40] proved that
a non-elementary free product of non-trivial groups has a greater growth exponent
than that of either factor. Thus, a strategy to prove growth tightness is to find a
subset of the orbit G = G.o that looks like a free product, with one factor that grows
like the quotient group we are interested in. Specifically:

(1) Find a subset A ⊂ G ⊂ X such that δA = δG/Γ. We will obtain A = A.o as a
coarsely dense subset of a minimal section A of the quotient map G→ G/Γ
(see Definition 3.3).

(2) Construct an embedding from the free product set A ∗ Z/2Z ↪→ X . The
existence of a strongly contracting element h ∈ Γ is used in the construction
of this embedding (see Proposition 4.1).

(3) Show that δA,dX < δG/Γ∗Z/2Z,dX . In this step it is crucial that A is divergent
(see Definition 1.3 and Lemma 5.1).

This outline, due to Sambusetti, is nowadays standard. Typically step (2) is
accomplished by a Ping-Pong argument, making use of fine control on the geometry
of the space X . Our methods are coarser than such a standard approach, and
therefore can be applied to a wider variety of spaces. We use, in particular, a
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technique of Bestvina, Bromberg, and Fujiwara [7] to construct an action of G on a
quasi-tree. Verifying that the map from the free product set into X is an embedding
amounts to showing that elements in A do not cross certain coarse edges of the
quasi-tree.

Part 1. Growth Tight Actions

1. Preliminaries

Fix a G–space X . From now on, d is used to denote the metric on X as well
as the induced pseudo-metric on G and G/Γ. Since there will be no possibility of
confusion, we suppress d from the growth exponent notation.

We denote by Br(x) the open ball of radius r about the point x and by Nr(A) :=
∪x∈ABr(x) the open r–neighborhood about the set A. The closed r–ball and closed

r–neighborhood are denoted Br(x) and Nr(A), respectively.
All of the following definitions may be written without specifying C to indicate

that some such C exists: Two subsets A and A′ of X are C–coarsely equivalent if
A ⊂ NC(A′) and A′ ⊂ NC(A). A map φ is C–coarsely well defined if the image of
every point is C–coarsely equivalent to a point. Two maps φ and φ′ with the same
domain and codomain are C–coarsely equivalent or C–coarsely agree if φ(x) is C–
coarsely equivalent to φ′(x) for every x in the domain. A subset A of X is C–coarsely
connected if for every a and a′ in A there exists a chain a = a0, a1, . . . , an = a′ of
points in A with d(ai, ai+1) 6 C.

Definition 1.1. A subset A ⊂ X is C–quasi-convex if for every a0, a1 ∈ A there
exists a geodesic γ between a0 and a1 such that γ ⊂ NC(A).

Definition 1.2. A G–space X is C–quasi-convex if it contains a C–quasi-convex
G–orbit.

For convenience, if X is a quasi-convex G–space we will assume we have chosen a
basepoint o ∈ X such that G.o is quasi-convex.

A group is elementary if it has a finite index cyclic subgroup.
We will use notation to simplify some calculations. Let C be a ‘universal constant’.

For us this will usually mean a constant that depends on G y X and a choice of
o ∈ X , but not on the point in X at which quantities a and b are calculated. Then

• for a 6 Cb we write a
∗≺ b,

• for 1
C
b 6 a 6 Cb we write a

∗� b,

• for a 6 b+ C we write a
+

≺ b, and

• for b− C 6 a 6 b+ C we write a
+� b.

1.1. Poincaré Series and Growth. Let (X , o, d) be a based pseudo-metric space.
Let |x| := d(o, x) be the induced semi-norm. Define the Poincaré series of A ⊂ X
to be

ΘA(s) :=
∑
a∈A

exp(−s|a|)

Another related series is:

Θ′A(s) :=
∞∑
n=0

#(Bn ∩ A) · exp(−sn)

The series Θ and Θ′ have the same convergence behavior, since ΘA(s) = Θ′A(s) ·
(1 − exp(−s)). It follows that the growth exponent of A is a critical exponent for
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Θ′ and Θ: the series converge for s greater than the critical exponent and diverge
for s less than the critical exponent.

Definition 1.3. A ⊂ X is divergent if ΘA diverges at its critical exponent.

1.2. Path Systems and Contracting Elements. We define path systems and
contracting elements following Sisto [47].

Definition 1.4. A path system in X is a transitive collection of uniform quasi-
geodesics that is closed under taking subpaths.

Definition 1.5. Let PS be a path system in X . Let A be a subset of X . A map
πA : X → A is a C–PS–contracting projection if:

(1) πA and IdA are C–coarsely equivalent on A, and
(2) For every P ∈ PS with endpoints x0 and x1, if d(πA(x0), πA(x1)) > C then

d(πA(xi),P) 6 C for both i ∈ {0, 1}.

Definition 1.6. Let PS be an equivariant path system. An element h ∈ G is a
PS–contracting element if for some (hence, any) choice of basepoint o ∈ X :

(1) i 7→ hi.o is a quasi-geodesic, and
(2) there exists a constant C such that for every P ∈ PS with endpoints in
〈h〉 .o there is a C–PS–contracting projection πP : X → P .

Definition 1.7. A path system PS is minimizing if it contains a geodesic between
each pair of points in X .

Definition 1.8. An element h ∈ G is a strongly contracting element if there exists
a minimizing path system PS in X for which h is a PS–contracting element.

1.3. Axes for Contracting Elements.

Definition 1.9. The elementary closure E(h) of an element h ∈ G is the unique
maximal virtually cyclic subgroup of G containing h, if such a subgroup exists.

Lemma 1.10. Let h ∈ G be a PS–contracting element.

E(h) = {g ∈ G | 〈h〉 .o and g 〈h〉 .o are coarsely equivalent}

Proof. This follows from [16, Lemma 6.5]. �

Definition 1.11. If h is a contracting element, the (quasi)-axis of h, with respect
to the basepoint o, is H := E(h).o ⊂ X .

A quasi-geodesic γ is Morse if for every λ there exists a Cλ such that every
(λ, λ)–quasi-geodesic with endpoints on γ is contained in NCλ(γ).

Lemma 1.12 (Morse, [47, Lemma 2.10]). Let h ∈ G be a PS–contracting element.
Then i→ hi.o is a Morse quasi-geodesic in X and i→ hi is a Morse quasi-geodesic
in G with respect to any word metric on G.

Dahmani, Guirardel, and Osin [16] define the concept of a hyperbolically embedded
subgroup. This is a generalization of a peripheral subgroup of a relatively hyperbolic
group. We will not state the definition, but we will quote some of their results.

Theorem 1.13 ([47, Theorem 5.6]). Let h ∈ G be a PS–contracting element. Then
E(h) is hyperbolically embedded.
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Lemma 1.14. If h is a PS–contracting element then there exists a PS–contracting
projection πH : X → H. Moreover, πH can be chosen so that g.πH(x) = πH(g.x) for
all x ∈ X and for all g ∈ E(h).

The second part of the lemma occurs in the proof of [47, Theorem 5.6]. The first
part is implicit there. We give a brief sketch of the proof:

Proof. Given x ∈ X let M(C, x) denote the set of paths P ∈ PS such that
P : [0, TP ]→ X with P0,PTP ∈ 〈h〉 .o such that d(πP(x), {P0,PTP}) > C.

Using the Morse property it can be shown that there are constants K0 and K1

such that for all x ∈ X there exists a point π(x) ∈ H such that

{πP(x) | P ∈M(K0, x)} ⊂ NK1(π(x))

It is easy to see that π defines a PS–contracting projection.
Now define πH(x) :=

⋃
g∈E(h) g.π(g−1.x). �

From the projection πH we can also define PS–contracting projections onto each
translate of H by πgH : X → gH : x 7→ g.πH(g−1.x).

Let us mention two additional results about hyperbolically embedded subgroups
that are relevant.

Theorem 1.15 ([16, Theorem 2.23]). If G has a hyperbolically embedded subgroup
then G has a maximal finite normal subgroup.

Recall that this theorem guarantees one of the hypotheses of Proposition 0.4.

Theorem 1.16 ([34]). Let G be a non-elementary group acting minimally on a
simplicial tree T with at least 3 vertices. Suppose that G does not fix a point in
∂T and that there exist vertices u and v of T such that the pointwise stabilizer of
{u, v} is finite. Then G contains an infinite order element h such that E(h) is
hyperbolically embedded in G.

In particular, this theorem can be applied when T is the Bass-Serre tree corre-
sponding to a non-trivial splitting of G as a graph of groups [46].

Corollary 1.17 ([34]). Let G be a finitely generated, non-elementary group that
splits non-trivially as a graph of groups and is not an ascending HNN-extension.
Suppose that there exist two edges of the corresponding Bass-Serre tree whose sta-
bilizers have finite intersection. Then G contains an infinite order element h such
that E(h) is hyperbolically embedded in G.

1.4. The Projection Complex. We now follow the method of Bestvina, Bromberg,
and Fujiwara [7] to build a projection complex PK(Y) and a blown-up projection
complex Y . Let Y be the collection of coarse equivalence classes of G–translates of
H. For each Y ∈ Y let πY be the projection map defined in the previous section,
and let dπY (x, z) := diameter{πY (x), πY (z)}.

This choice of Y and projection maps satisfy Bestvina, Bromberg, and Fujiwara’s
projection axioms.

Definition 1.18 (Projection Axioms). A set Y and projection distances dπY satisfy
the projection axioms if there exist ξ and η such that for all distinct W,X, Y, Z ∈ Y:

(0) dπY (X) 6 ξ
(1) dπY (X,Z) = dπY (Z,X)
(2) dπY (X,W ) 6 dπY (X,Z) + dπY (Z,W )
(3) min{dπX(Y, Z), dπY (X,Z)} 6 ξ
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(4) |{V ∈ Y | dπV (X, Y ) > η}| <∞

Lemma 1.19. The set of coarse equivalence classes of G–translates of H and pro-
jection distance defined above satisfy the projection axioms.

Proof. This is part of the proof of [47, Theorem 5.6]. �

From any Y and projection distances satisfying axioms (1)–(4), one can build a
projection complex PK(Y) whose vertices are the elements of Y, and two vertices
X,Z are joined by an edge if dY (X,Z) < K for all Y (up to a small perturbation.
For details, see [7].)

A quasi-tree is a geodesic metric space that is quasi-isometric to a simplicial tree.
Manning [31] gave a characterization of quasi-trees as spaces satisfying a ‘bottleneck’
property. We use an equivalent formulation:

Definition 1.20 (Bottleneck Property). A geodesic metric space satisfies the bottle-
neck property if there exists a number ∆ such that for all x and y in X , and for any
point m on a geodesic segment from x to y, every path from x to y passes through
the ∆–neighborhood of m.

Theorem 1.21 ([31, Theorem 4.6]). A geodesic metric space is a quasi-tree if and
only if it satisfies the bottleneck property.

Theorem 1.22 ([7, Theorem D]). For sufficiently large K the projection complex
PK(Y) is a quasi-tree.

Moreover, we can blow-up each vertex of PK(Y) to be a copy of a Cayley graph of
E(h). Specifically, choose the generating set of E(h) consisting of h and all elements
g ∈ E(h) such that d(o, g.o) 6 diam(〈h〉 \H). Let Y denote the set of copies of E(h),
one for each vertex of PK(Y). Let Y0 be the copy of E(h) corresponding to H, and
fix a basepoint ? ∈ Y0. Define projection maps to agree with the projection maps in
X . For each pair X,Z ∈ Y that come from adjacent vertices in PK(Y), attach an
edge of length K ′ from every point in πX(Z) to every point of πZ(X). The resulting
graph we call Y . As before, we define dπY (x, y) := dY(πY (x), πY (z)).

Lemma 1.23 ([7, Lemma 3.1]). The constant K ′ can be chosen sufficiently large
with respect to K so that dY(x, z) > dπY (x, z) for each Y ∈ Y, with equality if and
only if both x and z are in Y . In particular, Y is totally geodesically embedded.

Theorem 1.24 ([7, Theorem 3.10]). Y is a quasi-tree.

Lemma 1.25. Let ∆ be the bottleneck constant for Y. There is a number N such
that for all n > N the points hn.? are all contained in a single component of Y\B∆(?)
and the points h−n.? are all contained in a different single component of Y \ B∆(?).

Proof. This follows directly from the bottleneck property, since 〈h〉 .o lies within
bounded Hausdorff distance from a geodesic in Y . �

Let us call the component of Y \ B∆(?) containing the large positive powers of h
the ‘h∞ component’, and the component containing the large negative powers the
‘h−∞ component’.

Corollary 1.26. There exists a number K such that if dπH(o, g.o) > K then the
closest point of 〈h〉 .? ∈ Y to g.? is hεn.? for ε ∈ {±1} and n > 0, and g.? is in the
hε∞ component of Y \ B∆(?).
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Proof. Since i → hi.o is a quasi-geodesic, the map that sends x ∈ H to the set of
vertices of Y0 corresponding to elements {g ∈ E(h) | g.o = x} is a quasi-isometry
between H with its induced metric in X and Y0 with its induced metric in Y .
Also, i → hi.? is a quasi-geodesic. Thus, for large enough dπH(o, g.o), if hεn.? is a
closest point to g.? in 〈h〉 .? we may assume that n > N from Lemma 1.25 and
dY(?, hεn.?) > 2∆ + 1. Thus, no geodesic from g.? to hεn.? in 〈h〉 .? can enter B∆(?),
which, together with Lemma 1.25, implies that g.? is in the same complementary
component of B∆(?) as the points hεn

′
.? for all n′ > N . �

2. Abundance of Contracting Elements and Quotients

Lemma 2.1. If G contains a PS–contracting element then so does every infinite
normal subgroup of G. In particular, if PS is minimizing then every infinite normal
subgroup of G contains a strongly contracting element.

Proof. Let PS be an equivariant path system in X , and let h be a PS–contracting
element. Every non-trivial power of h is also a PS–contracting element. Let Γ be
an infinite normal subgroup of G. If Γ < E(h) then, since Γ is infinite and 〈h〉 is
finite index in E(h), some power of h is in Γ, and we are done. Otherwise, choose
an element g ∈ Γ such that g /∈ E(h). We claim that for sufficiently large n the
element ghng−1h−n ∈ Γ is PS–contracting. This can be proven with an argument
similar to [47, Lemma 4.1]. �

We also note that the existence of a PS–contracting element implies that the
action is interesting from the point of view of growth tightness: the growth exponent
is positive and there exist infinite, infinite index normal subgroups.

Theorem 2.2 ([16]). If G contains a PS–contracting element then G has an infinite,
infinite index normal subgroup and positive growth exponent.

Proof. Let h be a PS–contracting element. By Theorem 1.13, E(h) is hyperbolically
embedded. By [16, Theorem 5.15], for a sufficiently large n, the normal closure of
〈hn〉 in G is the free product of the conjugates of 〈hn〉. Since G contains a non-
abelian free group it will have positive growth exponent. �

3. The Minimal Section

Let X be a G–space with basepoint o. Let Γ be an infinite normal subgroup of G.
Let PS be some minimizing, equivariant path system in X such that there exists
an h ∈ Γ that is C–PS–contracting. Let πH : X → H = E(h).o be the projection
defined in Lemma 1.14.

Definition 3.1. For each element gΓ ∈ G/Γ choose an element ḡ ∈ gΓ such that
d(o, ḡ.o) = d(o, gΓ.o) = d(Γ.o, gΓ.o). Let Ḡ := {ḡ | gΓ ∈ G/Γ}. We call Ḡ a minimal
section, and let Ḡ denote Ḡ.o.

Observe that ΘG/Γ(s) = ΘḠ(s).

Lemma 3.2. There exists a constant K such that for every ḡ ∈ Ḡ and for every
f ∈ G we have dπfH(o, ḡ.o) 6 K.

Proof. If D is the diameter of 〈h〉 \H then K := 6C + D will suffice. Suppose
dπfH(o, ḡ.o) > K > 6C +D. Then d(πfH(o), πfH(ḡ.o)) > 4C +D, so there exists an
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n 6= 0 such that d(πfH(o), fhnf−1.πfH(ḡ.o)) 6 D. Thus:

d(o, fhnf−1ḡ.o) < d(o, πfH(o)) + d(πfH(o), πfH(ḡ.o))− 4C + d(πfH(ḡ.o), ḡ.o)

6 d(o, ḡ.o)

The second inequality comes from the fact that fH is PS–contracting for a mini-
mizing PS, so some geodesic from o to ḡ.o passes through the C–neighborhoods of
πfH(o) and πfH(ḡ.o). However, this contradicts the fact that Ḡ is a minimal section,
since fhnf−1ḡ ∈ ḡΓ. �

It will be convenient to consider a subset of Ḡ:

Definition 3.3. Choose η large enough so that if ḡH = ḡ′H then d(ḡ.o, ḡ′.o) < η.
Choose a maximal subset A of Ḡ such that 1 ∈ A and dX(a.o, a′.o) > η for all
a, a′ ∈ A. Let A := A.o.

By maximality, for every ḡ ∈ Ḡ there is some a ∈ A such that d(a.o, ḡ.o) < η.
There are boundedly many points of Ḡ in a ball of radius η, so ΘḠ(s) is bounded
below by ΘA(s) and above by a constant multiple of ΘA(s). In particular, ΘA(s)
has the same convergence behavior as ΘḠ(s).

4. Embedding a Free Product Set

Let A ⊂ Ḡ be as in the previous section, and let A∗ := A \ {1}. Consider the free
product set A∗ ∗Z2 := ∪∞n=1{(a1, . . . , an) | ai ∈ A∗}. For any N > 0 we can map the
free product set into X by (a1, . . . , an) 7→ a1h

Na2h
N · · · anhN .o. Our goal is to show

that for sufficiently large N this map is an injection.

Proposition 4.1. The map A∗ ∗ Z2 → X : (a1, . . . , an) 7→ a1h
N · · · anhN .o is an

injection for all sufficiently large N .

The map is an injection because we have an action of G on the quasi-tree Y , and
for large enough N we have “quasi-edges” of the form [y, yhN ]. We have set things
up so that the a’s do not backtrack across such edges. See Figure 1. We make this
precise:

Proof. By Lemma 3.2, there is a K such that for every f ∈ G and every ḡ ∈ Ḡ we
have dπfH(o, ḡ.o) 6 K. Let ∆ be the bottleneck constant for Y , and let ξ be the
constant from the projection axioms. Suppose that the map Y0 → H : g.? → g.o
is a (λ, η)–quasi-isometry. Choose N large enough so that dY(?, hN/2.?) > 2λ(λ∆ +
K + η + ξ).

Claim 4.1.1. For any ε0, ε1 ∈ {±1} and any a0, a1 ∈ A the two separating balls
B∆(a0h

ε0N/2.?) and B∆(a1h
ε1N/2.?) are disjoint unless a0 = a1 and ε0 = ε1.

Assume the claim is true. By our choice of N , for each a ∈ A and both
ε ∈ {±1} the points ? and a.? are in the same complementary component of
B∆(ahεN/2.?), and the points a.? and ahεN .? are in different complementary com-
ponents of B∆(ahεN/2.?). This fact, together with the claim, implies that for any
a1h

N . . . anh
N ∈ G, with ai ∈ A∗, the following statements hold:

• The balls B∆(a1h
N/2.?), B∆(a1h

Na2h
N/2.?),. . . , B∆(a1h

N . . . anh
N/2.?) are

pairwise disjoint.
• For each 1 6 i 6 n, the points ?, and a1h

N · · · aj−1h
Naj.? for j 6 i are

contained in a common component of B∆(a1h
N · · · aihN/2.?).
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hN .??

a1.?

a′1.?
a1h

Na2.?

a1h
N .?

a1h
Na2h

N .?

a′1h
N .?

B∆(a1hNa2hN/2.?)

B∆(hN/2.?)B∆(h−N/2.?)

B∆(a′1h
N/2.?)

B∆(a1hN/2.?)

Figure 1. A does not cross hN quasi-edges

• For each 1 6 i 6 n, the points a1h
N · · · ajhN .? for j > i are contained in a

common component of B∆(a1h
N · · · aihN/2.?), distinct from the complemen-

tary component containing ?.

This implies a1h
N · · · anhN is non-trivial. Now suppose that a′1h

Na′2h
N · · · a′mhN

is the image of another element of the free product set. If a1 6= a′1, then ?,
a1h

N · · · anhN .?, and a′1h
N · · · a′mhN .? are in three different complementary compo-

nents of the union of the disjoint separating balls B∆(a1h
n · · · an−1h

Nanh
N/2.?) and

B∆(a′1h
n · · · a′m−1h

Na′mh
N/2.?). Thus, a1h

N · · · anhN 6= a′1h
N · · · a′mhN . If a1 = a′1 we

repeat the argument with a2h
N · · · anhN and a′2h

N · · · a′mhN .
It remains only to prove the claim. We wish to show that B∆(a0h

ε0N/2.?) and
B∆(a1h

ε1N/2.?) are disjoint. Clearly B∆(ahN/2.?) and B∆(ah−N/2.?) are disjoint for
any a ∈ A, so suppose a0 6= a1. By our choice of A, this means that a0H and a1H are
different axes. By Lemma 3.2, dπaiH(o, aj.o) 6 K if i 6= j, so dπaiH(aj.o, ai.o) 6 2K,
and dπaiY0

(aj.?, ai.?) 6 2λK + η. The point now is that we have chosen N large

enough so that the ball B∆(aih
εiN/2.?) is far from ai.? along aiY0. By Projection

Axiom (3), both the ball and ai.? project close to aj.? on ajY0. Therefore, the
projections to ajY0 of B∆(aih

εiN/2.?) and B∆(ajh
εjN/2.?) are disjoint, which implies

the balls are disjoint. �

5. Growth Gap

Lemma 5.1 ([18, Criterion 2.4],[40, Proposition 2.3]). If the map

A∗ ∗ Z2 → G : (a1, . . . , an) 7→ a1h
N · · · anhN .o

is an injection, and if exp(|hN | · δA) < ΘA(δA), then δA∗∗Z2 > δA. In particular, the
second condition is true if Ḡ (hence, A) is divergent.

Definition 5.2. Let CompGQ, r ⊂ G.o be the set of points g.o such that there exists a

geodesic [x, y] of length r with x ∈ BQ(o) and y ∈ BQ(g.o) whose interior is contained

in X \ NQ(G.o).
Define the Q–complementary growth exponent of G to be:

δcG := lim sup
r→∞

log #CompGQ, r
r

Theorem 5.3. Let G be a finitely generated, non-elementary group. Let X be a
G–space. If G contains a strongly contracting element and there exists a Q > 0
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such that the Q–complementary growth exponent of G is strictly less than the growth
exponent of G, then Gy X is a growth tight action.

Remark. The proof of Theorem 5.3 follows in part the proof of [18, Theorem 1.4]
for geometrically finite Kleinian groups. For the divergence part of the proof, the
Kleinian group ingredients of [18, Theorem 1.4] are inessential, and our changes are
mostly cosmetic. The real generalization is in the use of Proposition 4.1 instead of
a Ping-Pong argument.

Proof. Let Γ be an infinite, infinite index normal subgroup of G. By Lemma 2.1,
there is a strongly contracting element in Γ. Let Ḡ be a minimal section of G/Γ. If
δḠ 6 δcG then we are done, since δcG < δG, so suppose δḠ > δcG.

Claim 5.3.1. Ḡ is divergent.

Assume the claim, and let A be a maximal separated set in Ḡ as in Definition 3.3.
Then A and Ḡ have the same critical exponent, and are both divergent. By Propo-
sition 4.1, A∗ ∗ Z2 injects into G, so δA∗∗Z2 6 δG. By Lemma 5.1, δA < δA∗∗Z. Thus,
δG/Γ = δA < δA∗∗Z 6 δG, as desired.

It remains to prove the claim.
Let r > 0, and suppose d(o, ḡ.o) = r. Let 0 6M0 6 r and M1 = r −M0. Choose

a geodesic [o, ḡ.o] from o to ḡ.o, and let [o, ḡ.o](M0) denote the point of [o, ḡ.o] at
distance M0 from o.

BQ(o)

o ḡ.og0.o g1.o

x0 x1

[o, ḡ.o]

Figure 2. Splitting a geodesic into three subsegments

First, we suppose that [o, ḡ.o](M0) ∈ X \ NQ(G.o). Let [x0, x1] ⊂ [o, ḡ.o] be the

largest subsegment containing [o, ḡ.o](M0) such that (x0, x1) ⊂ X \ NQ(G.o). Let
m0 = d(o, x0), and let m1 = d(x1, ḡ.o). There exist group elements gi ∈ G such that
d(gi.o, xi) 6 Q. See Figure 2. We have ḡ.o = g0 · g−1

0 g1 · g−1
1 ḡ.o. Now m0 − Q 6

d(o, ḡ0.o) 6 d(o, g0.o) 6 m0 +Q, and m1−Q 6 d(o, g−1
1 ḡ.o) 6 d(o, g−1

1 ḡ.o) 6 m1 +Q.
Furthermore, g−1

0 g1 ∈ CompGQ, r−(m0+m1). Thus, the point ḡ.o can be expressed as a

product of an element of Ḡ of length m0 ± Q, an element of Ḡ of length m1 ± Q,
and the quotient of an element of CompGQ, r−(m0+m1).

(†)
The same is also true if [o, ḡ.o](M0) ∈ NQ(G.o), in which case we can take
m0 = M0 and m1 = r −m0. Then choose g0 = g1 so that the contribution
from CompGQ, r−(m0+m1) is trivial.

Let Vr,Q := #
(
Ḡ.o ∩Nr+Q(o) \ Br−Q(o)

)
. For every M0 +M1 = r we have:

Vr,Q
∗≺

M0∑
m0=0

M1∑
m1=0

Vm0,Q · Vm1,Q ·#CompGQ, r−(m0+m1)
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Choose ξ > 0 such that δḠ > 2ξ+δcG. Since #CompGQ, r−(m0+m1)

∗≺ exp((r− (m0 +

m1))(δḠ − ξ)) whenever r − (m0 +m1) is sufficiently large, it follows that:

(1) Vr,Q · exp(−r(δḠ − ξ))
∗≺(

M0∑
m0=0

Vm0,Q · exp(−m0(δḠ − ξ))

)
·

(
M1∑
m1=0

Vm1,Q · exp(−m1(δḠ − ξ))

)
Set wi := Vi,Q · exp(−i(δḠ − ξ)) and Wi :=

∑i
j=1wi. Then (1) and [18, Lemma 4.3]

imply that
∑

iwi · exp(−is) diverges at its critical exponent, which is:

lim sup
i

logwi
i

=

(
lim sup

i

log Vi,Q
i

)
− (δḠ − ξ) = ξ

So ∞ =
∑

iwi · exp(iξ) =
∑

i Vi,Q · exp(−iδḠ)
∗� ΘḠ(δḠ). �

Theorem 5.4. Let G be a finitely generated, non-elementary group. Let X be a
quasi-convex G–space. If G contains a strongly contracting element then Gy X is
a growth tight action.

Proof. The proof is an easier special case of the proof of Theorem 5.3. If X is
Q–quasi-convex then we can always choose to be in case (†) of the proof. �

Part 2. Strongly Contracting Elements

6. Contraction and Rank 1 Isometries

In this section we relate path system projections to rank 1 isometries.

Definition 6.1. π : X → A is (C,D,E)–contracting if d(x0, x1) < 1
E
d(x0,A) −D

implies d(π(x0), π(x1)) 6 C. We say π is strongly contracting if it is (C,D, 1)–
contracting for some C, D > 0.

Some remarks are in order concerning overuse of the term ‘contracting’. The
term ‘stongly contracting’ is not standard. Indeed, in most of the literature what
we are calling ‘strongly contracting’ is just called ‘contracting’. This is the case, for
example, in the literature on rank 1 isometries of CAT(0) spaces. However, Masur
and Minsky [33] use ‘contracting’ in the sense of Definition 6.1, as do subsequent
papers on the geometry of the mappping class group. In the present paper, we
choose the term ‘strongly contracting’ to emphasize that we want E = 1.

Recall that in Part 1 we also have Sisto’s PS–contracting and related definitions
of contracting and strongly contracting elements. For a PS–contracting element
h, Lemma 1.14 tells us that there is a PS–contracting projection to an axis of h.
We will see in Lemma 6.4 that this projection is contracting. Similarly, we will
see in Proposition 6.6 that an element h is strongly contracting in the sense of
Definition 1.8 if and only if closest point projection to the axis of h is coarsely well
defined and strongly contracting in the sense of Definition 6.1.

Definition 6.2. π : X → A has the Bounded Geodesic Image Property if there
are constants C and D such that for every geodesic γ, if γ ∩ ND(A) = ∅ then
diam(π(γ)) 6 C.

Lemma 6.3. The Bounded Geodesic Image Property for π : X → A implies π is
strongly contracting. The converse is true if π is coarsely equivalent to closest point
projection.
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Proof. First, assume that π has the Bounded Geodesic Image Property, with con-
stants C and D as in the definition. Let x be any point in X \ ND(A). For any y

such that d(x, y) < d(x,A) −D, any geodesic [x, y] remains outside ND(A), so its
projection has diameter at most C. This proves strong contraction.

For the converse, suppose that π is C–coarsely equivalent to closest point projec-
tion and (C,D, 1)–contracting. Enlarging C if necessary, we may assume C > 1.

Let γ : [0, T ]→ X be a geodesic. Let γt = γ(t). Assume that d(π(γ0), π(γT )) > C.

Suppose that γ stays outside of ND+2C(A).
There exists a minimal ti such that d(γ0, γti) > d(γ0,A) −D, otherwise γ would

have C–bounded projection. Likewise, there is a maximal tf such that d(γtf , γT ) >
d(γT ,A)−D. This implies d(π(γ0), π(γti)) and d(π(γtf ), π(γT )) are at most C.

Let sj := ti + 4Cj. Let n be the greatest integer less than
tf−ti

4C
.

d(π(γti), π(γtf )) 6
n∑
j=1

d(π(γsj), π(γsj−1
)) + d(π(γsn), π(γtf ))

6 2C(n+ 1) < 2C +
tf − ti

2
But γ is a geodesic, so:

tf − ti = d(γti , γtf )

6 d(γti , π(γti)) + d(π(γti), π(γtf )) + d(γtf , π(γtf ))

6 D + 3C + 2C +
tf − ti

2
+D + 3C

So tf − ti 6 16C + 4D, which implies d(π(γti), π(γtf )) 6 10C + 2D.

Thus, if γ stays outside ND+2C(A) then d(π(γ0), π(γT )) 6 12C +D, so π has the
Bounded Geodesic Image Property. �

Lemma 6.4 (cf. [47, Lemma 2.4]). Let PS be a path system. Let π : X → A be a C–
PS–contracting projection. Suppose there exists a (λ, ε)–quasi-geodesic connecting
x to y in PS, then there is a constant D depending on λ, ε, and C such that:

(1) (coarse Lipschitz) d(π(x), π(y)) 6 λd(x, y) +D.
(2) (contracting) If d(x, y) < 1

λ
d(x,A)−D then d(π(x), π(y)) 6 C.

Suppose there exists a (λ, ε)–quasi-geodesic connecting x to π(x) in PS, then there
is a constant D depending on λ, ε, and C such that:

(3) (closest point projection) d(x, π(x)) 6 λd(x,A) +D.

Lemma 6.4 is just a restatement of [47, Lemma 2.4], without uniformizing the
constants. The proofs are identical.

Lemma 6.5. If π : X → A is a PS–contracting projection and PS is minimizing
then π is strongly contracting and coarsely agrees with closest point projection to A.

Proof. Strong contraction comes from Lemma 6.4 (2), since we can take each λ = 1.
Let x ∈ X and let a ∈ A such that d(x,A) = d(x, a). Suppose that d(π(x), a) >

2C. Let P ∈ PS be a geodesic from x to a. Since d(a, π(a)) 6 C, we have

d(π(x), π(a)) > C, so P enters NC(π(x)). Thus:

d(x, a) > d(x, π(x)) + d(π(x), a)− 2C > d(x, π(x))

This contradicts the choice of a. �
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Proposition 6.6. π : X → A. The following are equivalent:

(1) π is a contracting projection for the path system of all geodesics.
(2) π is a PS–contracting projection for some minimizing path system PS.
(3) π is strongly contracting and coarsely agrees with closest point projection to
A.

(4) π has the Bounded Geodesic Image Property and coarsely agrees with closest
point projection to A.

Proof. (1) =⇒ (2) is clear. (2) =⇒ (3) is Lemma 6.5. (3) and (4) are equivalent by
Lemma 6.3. We need only show (4) =⇒ (1).

Assume (4), so π : X → A is a map such that:

• d(x, π(x)) 6 d(x,A) + C for all x ∈ X , and

• for every geodesic γ if γ ∩ND(A) = ∅ then diam(π(γ)) 6 C.

Let PS be the path system consisting of all geodesics. Let γ : [0, T ] → X be a
geodesic with projection larger than C. Let t0 and t1 be the first and last times,
respectively, such that γt ∈ ND(A). Then:

d(π(γ0), γt0) 6 d(π(γ0), π(γt0)) + d(π(γt0), γt0) 6 2C +D

Similarly, d(π(γT ), γt1) 6 2C + D. Thus, π is a (2C + D)–PS–contraction. This
completes the proof of Proposition 6.6. �

7. Actions on Relatively Hyperbolic Spaces

Dal’bo, Peigné, Picaud, and Sambusetti [18] proved growth tightness for geomet-
rically finite Kleinian groups. Using our main theorems, Theorem 5.3 and The-
orem 5.4, we generalize their results to all groups acting on relatively hyperbolic
metric spaces.

7.1. Relatively Hyperbolic Metric Spaces.

Definition 7.1 (cf. [19, 48]). Let X be a geodesic metric space and let P be a
collection of uniformly coarsely connected subsets of X . We say X is hyperbolic
relative to the peripheral sets P if the following conditions are satisfied:

(1) For each A there exists a B such that diam(NA(P0) ∩ NA(P1)) 6 B for
distinct P0, P1 ∈ P .

(2) The exists an ε ∈ (0, 1
2
) and M > 0 such that if x0, x1 ∈ X are points such

that for some P ∈ P we have d(xi,P) 6 ε · d(x0, x1) for each i, then every

geodesic from x0 to x1 intersects NM(P).
(3) There exist σ and δ so that for every geodesic triangle either:

(a) there exists a ball of radius σ intersecting all three sides, or

(b) there exists a P ∈ P such that Nσ(P) intersects all three sides and for
each corner of the triangle, the points of the outgoing geodesics from
that corner which first enter Nσ(P) are distance at most δ apart.

We say X is hyperbolic if it hyperbolic relative to P = ∅.

Definition 7.2. A group G is hyperbolic relative to a collection of finitely generated
peripheral subgroups if a Cayley graph of G is hyperbolic relative to the cosets of
the peripheral subgroups.

Definition 7.3 (cf. [26]). Let X be a connected graph with edges of length bounded
below. A combinatorial horoball based on X with parameter a > 0 is a graph whose
vertex set is Vert(X ) × ({0} ∪ N), contains an edge of length 1 between (v, n) and
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(v, n + 1) for all v ∈ Vert(X ) and all n ∈ {0} ∪ N, and for each edge [v, w] ∈ X
contains an edge [(v, n), (w, n)] of length e−an · length([v, w]).

Let X be hyperbolic relative to P . An augmented space is a space obtained from
X as follows. By definition, there exists a constant C such that each P ∈ P is C–
coarsely connected. For each P ∈ P choose a maximal subset of points that pairwise
have distance at least C from one another. Let these points be the vertex set of a
graph. For edges, choose a geodesic connecting each pair of vertices at distance at
most 2C from each other. Use this graph as the base of a combinatorial horoball
with parameter aP > 0. The augmented space is the space obtained from the union
of X with horoballs XP for each P ∈ P by identifying the base of XP with the graph
constructed in P .

Definition 7.4. Let X be a hyperbolic G–space, and let P be the collection of
maximal parabolic subgroups of G. Suppose there exists a G–equivariant collection
of disjoint open horoballs centered at the points fixed by the parabolic subgroups.
The truncated space is X minus the union of these open horoballs. We say G y X
is cusp uniform if G acts cocompactly on the truncated space.

If G acts cocompactly on a G–space X ′ that is hyperbolic relative to a G–invariant
peripheral system P , then an augmented space X can be built G–equivariantly, and
Gy X will be a cusp uniform action.

Several different versions of the following theorem occur in the literature on rela-
tively hyperbolic groups:

Theorem 7.5 ([9, 27, 48]). If X is hyperbolic relative to P then any augmented
space with horoball parameters bounded below is hyperbolic.

If G y X is a cusp uniform action then G is hyperbolic relative to the maximal
parabolic subgroups and the truncated space is hyperbolic relative to boundaries of
the deleted horoballs.

7.2. Quasi-convex Actions.

Theorem 7.6. If X is a quasi-convex, relatively hyperbolic G–space and G does not
coarsely fix a peripheral subspace then Gy X is a growth tight action.

Proof. It follows from [48, Lemma 5.4] that every infinite order element of G that
does not coarsely fix a peripheral subspace is contracting for the path system con-
sisting of all geodesics. We conclude by Theorem 5.4. �

As we have mentioned, our preceding theorem encompasses much of what was
already known about growth tight actions. The theorem was known when X is
the Cayley graph of a hyperbolic group [2], or an arbitrary cocompact hyperbolic
G–space [39]. Gerasimov [22] has shown that a relatively hyperbolic group has
a non-trivial Floyd boundary. Thus, the case when X is the Cayley graph of a
relatively hyperbolic group is a consequence of, an a priori more general2, theorem
of Yang, which also follows from our main results:

Theorem 7.7 ([52, Theorem 1.2]). If G is a finitely generated group with a non-
trivial Floyd boundary and X is a Cayley graph of G then Gy X is a growth tight
action.

2A construction of a non relatively hyperbolic group with a non-trivial Floyd boundary is cur-
rently an open problem.
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The hypothesis that G has a non-trivial Floyd boundary means that every Floyd
boundary of every Cayley graph of G consists of at least three points. See [52] for
details.

Proof. Let X be a Cayley graph of G, and fix some Floyd boundary of X . Gerasimov
and Potyagailo [23, Proposition 8.2.4] prove that any element of G that fixes exactly
two points in a Floyd boundary of X has a quasi-axis in X such that closest point
projection to the quasi-axis satisfies the Bounded Geodesic Image Property. By
Proposition 6.6, such an element is strongly contracting. The theorem then follows
from Theorem 5.4. �

Corollary 7.8. The action of a finitely generated group G with infinitely many ends
on any one of its Cayley graphs is growth tight.

Proof. Stallings’ Theorem [50] says that G splits over a finite subgroup. G is hy-
perbolic relative to the factor groups of this splitting. The result then follows from
Theorem 7.6. �

This corollary generalizes a result of Sambusetti [40, Theorem 1.4], who proved
growth tightness for groups that split over a finite subgroup provided the factor
groups satisfy additional hypotheses.

7.3. Cusp Uniform Actions. Theorem 7.6 and Theorem 7.5 show that if Gy X
is a cusp uniform action on a hyperbolic space then the action of G on the truncated
space is a growth tight action. A natural question is whether G y X is a growth
tight action. This action is not quasi-convex if the parabolic subgroups are infinite,
as geodesics in X will travel deeply into horoballs, and, indeed, an example of Dal’bo,
Otal, and Peigné [17] shows Gy X need not be growth tight.

To see how growth tightness can fail, consider the combinatorial horoball from
Definition 7.3. If X is, say, the Cayley graph of some group and we build the
combinatorial horoball with parameter a > 0 based on X , then the r ball about
a basepoint o ∈ X in the horoball metric intersected with X × {0} contains the
ball of radius C · exp(ar

2
) in the X–metric, for a constant C depending only on a.

Thus, if the number of vertices of balls in X grows faster than polynomially in the
radius, then the growth exponent with respect to the horoball metric will be infinite.
Furthermore, even if growth in X is polynomial we can make the growth exponent in
the horoball be as large as we like by taking a to be sufficiently large. Dal’bo, Otal,
and Peigné construct non-growth tight examples of relatively hyperbolic groups with
two cusps by taking one of the horoball parameters to be large enough so that the
corresponding parabolic subgroup dominates the growth of the group; that is, the
growth exponent of the parabolic subgroup is equal to the growth exponent of the
whole group. Quotienting by the second parabolic subgroup then does not decrease
the growth exponent, so this action is not growth tight.

Not only does this provide an example of a non-growth tight action on a hyper-
bolic space, but since augmented spaces with different horoball parameters are still
equivariantly quasi-isometric to each other, we have:

Observation 7.9. Growth tightness is not invariant among equivariantly quasi-
isometric G–spaces.

Dal’bo, Peigné, Picaud, and Sambusetti [18, Theorem 1.4] show that this is es-
sentially the only way that growth tightness can fail for cusp uniform actions. Their
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proof is for geometrically finite Kleinian groups, but our Theorem 5.3 generalizes
this result.

Definition 7.10. Let G y X be a cusp uniform action on a hyperbolic space.
Let P be the collection of maximal parabolic subgroups of G. Then G satisfies the
Parabolic Gap Condition if δP < δG for all P ∈ P .

Theorem 7.11. Let G be a finitely generated, non-elementary group. Let Gy X be
a cusp uniform action on a hyperbolic space. Suppose that G satisfies the Parabolic
Gap Condition. Then Gy X is a growth tight action.

Proof. Let Q be the diameter of the quotient of the truncated space. The Q–
complementary growth exponent is the maximum of the parabolic growth exponents,
which, by the Parabolic Gap Condition, is strictly less than the growth exponent of
G. Apply Theorem 5.3. �

Corollary 7.12. Let G be a finitely generated group hyperbolic relative to a collection
P of virtually nilpotent subgroups. Then there exists a hyperbolic G–space X such
that Gy X is cusp uniform and growth tight.

Proof. Construct X as an augmented space by taking a Cayley Graph for G and
attaching combinatorial horoballs to the cosets of the peripheral subgroups. Since
the parabolic groups are virtually nilpotent, they have polynomial growth in any
word metric [25]. It follows that the growth exponent of each parabolic group with
respect to the horoball metric is bounded by a multiple of the horoball parameter.
By choosing the horoball parameters small enough, we can ensure G satisfies the
Parabolic Gap Condition. �

8. Rank 1 Actions on CAT(0) Spaces

Let X be a CAT(0) G–space. See, for example, [12] for background on CAT(0)
spaces. Recall that our definition of ‘G–space’ includes the hypothesis that X is
proper, so an element is strongly contracting if and only if it acts as a rank 1
isometry:

Theorem 8.1 ([8, Theorem 5.4]). Let h be a hyperbolic isometry of a proper CAT(0)
space X with axis A. Closest point projection to A is strongly contracting if and
only if A does not bound an isometrically embedded half-flat in X .

Theorem 8.2. Let h ∈ G act as a hyperbolic isometry on X . The following are
equivalent:

(1) h is a PS–contracting element for some equivariant path system PS on X .
(2) E(h) exists and is hyperbolically embedded.
(3) h acts as a rank 1 isometry of X .
(4) h is strongly contracting.

Proof. (1) =⇒ (2) by Theorem 1.13.
If E(h) is hyperbolically embedded, a theorem of Sisto [49] says that h is Morse.

If an axis of h bounds a half-flat in X , then h is not Morse, so h is a rank 1 isometry
for Gy X . Thus, (2) =⇒ (3)

(3) =⇒ (4) =⇒ (1) by Theorem 8.1 and Proposition 6.6. �

Theorem 8.2 and Theorem 5.4 show:
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Theorem 8.3. If G is a non-elementary, finitely generated group and X is a quasi-
convex, CAT(0) G–space such that G contains an element that acts as a rank 1
isometry on X , then Gy X is a growth tight action.

Theorem 8.4. Let G be a non-elementary, finitely generated group that splits non-
trivially as a graph of groups and is not an ascending HNN-extension. Suppose that
the corresponding action of G on the Bass-Serre tree of the splitting has two edges
whose stabilizers have finite intersection. Suppose further that there is a correspond-
ing graph of spaces that is non-positively curved, so that its universal cover X admits
a CAT(0) metric. Then Gy X is a growth tight action.

See Scott and Wall [44] for the graph of spaces construction.

Proof. By Corollary 1.17, G contains an infinite order element h such that E(h) is
hyperbolically embedded. The result follows by Theorem 8.2 and Theorem 8.3. �

The ‘flip-graph-manifolds’ of Kapovich and Leeb [30] are examples of non-relatively
hyperbolic groups that admit growth tight actions by Theorem 8.4.

9. Mapping Class Groups

Let S = Sg,p be a connected and oriented surface of genus g with p punctures.
We require S to have negative Euler characteristic.

Given two orientation-preserving homeomorphisms φ, ψ : S → S, we will consider
φ and ψ to be equivalent if φ ◦ ψ−1 is isotopic to the identity map on S. Each
equivalence class is called a mapping class of S, and the set Mod(S) of all equivalence
classes naturally forms a group called the mapping class group of S.

A mapping class f ∈ Mod(S) is called reducible is there exists an f–invariant
curve system on S and irreducible otherwise. By the Nielsen-Thurston classification
of elements of Mod(S), a mapping class is irreducible and infinite order if and only
it is pseudo-Anosov [51].

Let X be the Teichmüller space of marked hyperbolic structures on S, equipped
with the Teichmüller metric. (See [29] and [37] for more information.)

Theorem 9.1 ([35]). Pseudo-Anosov mapping classes are strongly contracting for
Mod(S) y X .

The action of Mod(S) on Teichmüller space is not quasi-convex. For each ε > 0
there is a decomposition of X into a ‘thick part’ X>ε and a ‘thin part’ X<ε according
to whether the hyperbolic structure on S corresponding to the point x ∈ X has
any closed curves of length < ε. This decomposition is Mod(S)–invariant, and
Mod(S) y X>ε is cocompact (see [36] and [21]).

Theorem 9.2. The action of the mapping class group Mod(S) of S = Sg,p on its
Teichmüller space X with the Teichmüller metric is a growth tight action.

Proof. Let ζ = 6g − 6 + 2p > 2. The growth exponent of Mod(S) with respect
to its action on X is ζ [4]. (We remark that the result of [4] is stated for closed
surfaces, but their proof works in general. For our interest, it is enough that the
growth exponent of Mod(S) is bounded below by ζ. This can be obtained from [28]
and [20].)

Choose an r0 and a maximal r0–separated set in moduli space Mod(S)\X , and
let A be its full lift to X . Given r0 as above and δ = 1

2
, let ε be sufficiently small as
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in [20, Theorem 1.7]. Let Q be the smallest number such that the ε–thick part of X
is contained in NQ(Mod(S).o). Choose a finite subset {a1, . . . , an} ⊂ A such that:

BQ(o) \ NQ(Mod(S).o) ⊂
n⋃
i=1

Br0(ai)

Suppose that g ∈ Mod(S) is such that there exists a geodesic [x, y] between BQ(o)

and BQ(g.o) whose interior stays in X \ NQ(Mod(S).o). Then there are indices i
and j such that x ∈ Br0(ai) and y ∈ Br0(g.aj). This means that every element con-

tributing to Comp
Mod(S)
Q, r of Definition 5.2 also contributes to some N1(Q1,ε, ai, aj, r)

of [20, Theorem 1.7]. The conclusion of [20, Theorem 1.7] is that N1(Q1,ε, ai, aj, r) ≤
G(ai)G(aj) exp(r · (ζ − 1

2
)) for all sufficiently large r, where G is a particular func-

tion on X . There are finitely many such sets, and the function G is bounded on

{a1, . . . , an}, so there is a constant C such that Comp
Mod(S)
Q, r ≤ C · exp(r · (ζ − 1

2
))

for all sufficiently large r. Thus, the Q–complementary growth exponent is at most
ζ − 1

2
< ζ. The theorem now follows from Theorem 9.1 and Theorem 5.3. �

Remark. When the genus of S is at least 3 then there does not exist a cocompact,
CAT(0) Mod(S)–space [11], and Mod(S) has trivial Floyd boundary (so is not rela-
tively hyperbolic) [1], so Theorem 9.2 does not follow from the results of the previous
sections.

10. Snowflake Groups

Let G := BB(1, r) = 〈a, b, s, t | aba−1b−1 = 1, s−1as = arb, t−1at = arb−1〉 be a
Brady-Bridson snowflake group with r > 3. Let L := 2r. These groups have an
interesting mixture of positive and negative curvature properties. G splits as an
amalgam of Z2 = 〈a, b〉 by two cyclic groups 〈arb〉 and 〈arb−1〉, and the action
of G on the Bass-Serre tree T of this splitting satisfies Corollary 1.17, so G has
hyperbolically embedded subgroups. However, we can not automatically conclude
that such a hyperbolically embedded subgroup gives rise to a strongly contracting
element, as there does not exist a cocompact, CAT(0) G–space. If such a space
existed, then the Dehn function of G would be at most quadratic, but Brady and
Bridson have shown [10] that the Dehn function of BB(1, r) is n2 log2 L > n2.

We will fix a G–space X and demonstrate two different elements of G that act
hyperbolically on T such that the pointwise stabilizer of any length 3 segment of
their axes is finite. One of these elements will be strongly contracting for the action
on X , and the other will not. Hence:

Theorem 10.1. G admits a cocompact growth tight action.

Remark. G has a trivial Floyd boundary, thus is non-relatively hyperbolic, by a
theorem of Anderson, Aramayona, and Shackleton [1], so growth tightness cannot
be achieved using Yang’s theorem.

10.1. The Model Space X . Let X be the Cayley graph for G with respect to the
generating set {a, arb, arb−1, s, t}, where the edges corresponding to arb and arb−1

have been rescaled to have length L := 2r.
It is also useful to consider G as the fundamental group of the topological space

obtained from a torus by gluing on two annuli. Choose a basepoint for the torus and
for each boundary component of the annuli. For one annulus, the s–annulus, glue the
two boundary curves to the curves a and arb in the torus, gluing basepoints to the
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basepoint of the torus. For the other annulus, the t–annulus, glue the two boundary
curves to the curves a and arb−1 of the torus. The resulting space is a graph of spaces
[44] associated to the given graph of groups decomposition of G. The fundamental
group of this space is G, which acts freely by deck transformations on the universal
cover X ′. Choose the basepoint o of X ′ to be a lift of the basepoint of the torus.
The correspondence between a vertex g ∈ X and the point g.o ∈ X ′ inspires the
following terminology: A plane is a coset g 〈a, b〉 ∈ G/ 〈a, b〉, which corresponds to
a lift of the torus at the point g.o ∈ X ′. An s-wall is the set of outgoing s–edges
incident to a coset g 〈arb〉 ∈ G/ 〈arb〉. This corresponds to a lift of the s–annulus
at the point g.o ∈ X ′. A t-wall is the set of outgoing t–edges incident to a coset
g 〈arb−1〉 ∈ G/ 〈arb−1〉. This corresponds to a lift of the t–annulus at the point
g.o ∈ X ′. Each wall separates X (and X ′) into two complementary components.
Notice that the origins of consecutive edges in an s–wall are connected by a single
arb–edge of length 2r, while the termini of those edges are connected by a single
a–edges of length 1. We say that crossing an s–wall in the positive direction scales
distance by a factor of 1

L
. The same is true for the t–walls.

10.2. Geodesics Between Points in a Plane. We will define a family of X–
geodesics joining 1 to every point of 〈a, b〉. This is similar to the argument of [10].

For a point of the form (arb)m there is a geodesic of the form: [1, s−1]+s−1[1, am]+
s−1am[s−1, 1]. To see this, first suppose that γ is any geodesic joining 1 to (arb)m.
Now, s−1ams = (arb)m, and s−1ams has length 2 + m, which is already shorter
than any path from 1 to (arb)m that stays in the plane 〈a, b〉. Thus, any γ must
cross some walls. Since 〈a, b〉 is abelian we may assume that γ can be written as a
concatenation of geodesics:

[1, s−1] + s−1[1, an] + s−1an[s−1, 1] + s−1ans[1, t] + s−1anst[1, ap]

+ s−1anst−1ap[t−1, 1] + s−1anst−1apt[1, aq]

This is a path from 1 to s−1anst−1aptaq = (arb)n(arb−1)paq = ar(n+p)+qbn−p =
armbm, so p = n − m and q = −Lp. If p = q = 0 we are done. Otherwise, let
γs = [1, s−1] + s−1[1, an] + s−1an[s−1, 1], γt = s−1ans[1, t−1] + s−1anSt−1[1, ap] +
s−1anst−1ap[t−1, 1], and γ′ = s−1anst−1apt[1, aq], so that γ = γs + γt + γ′. There is a
symmetry that exchanges γt with a geodesic γ′t = s−1ans[1, s−1]+s−1anss−1[1, a−p]+
s−1anss−1a−p[s−1, 1], but this means that γs+γ′t is a path from 1 to (arb)m of length
|γs|+ |γ′t| = |γs|+ |γt| < |γs|+ |γt|+ |γ′| = d(1, (arb)m), which is a contradiction.

For 0 6 m 6 L
2

+ 3, the edge path am from 1 to am is a geodesic of length m. For
L
2

+ 3 6 m 6 L the edge path s−1ast−1ataL−m is a geodesic from 1 to am of length
6 + L−m.

Using the fact that 〈a, b〉 is abelian, for every point axby there is a geodesic from
1 to axby of the form:

[1, (arb)m] + (arb)m[1, (arb−1)n] + (arb)m(arb−1)n[1, ap]

Moreover, |p| < L, since otherwise [1, ap] is of a similar form, and by rearranging
geodesic subsegments we get a path from 1 to axby with backtracking across an
s–wall and a t–wall, contradicting the fact that we started with a minimal length
path. In particular, there is a geodesic from 1 to (arb)m(arb−1)n of the form:

[1, (arb)m] + (arb)m[1, (arb−1)n]
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We can now find geodesics from 1 to axby by induction. For example, Figure 3
shows two geodesics, each of length 5 · 2k − 4 between 1 and aL

k
. (These form a

geodesic loop that bears witness to the Dehn function.)

1 aL
5

(arb)L
4

(arb−1)L
4

s−1

s−1aL
4

t−1

t−1aL
4

Figure 3. Snowflake - The boundary is a geodesic loop of length
2(5 · 25 − 4)

10.3. Projections to Geodesics in X . In this section we consider two different
geodesics:

α(2n) = (s−1t)n

β(n) = s−n

These are geodesics since for each of these paths, every edge crosses a distinct wall.
Let T be the Bass-Serre tree of G, and let o ∈ T be the vertex fixed by the subgroup
〈a, b〉. The orbit map g 7→ g.o sends each of α and β isometrically to a geodesic in
T . We will use πα to denote closest point projection to α, both in X and in T , and
similarly for β.

Both of these geodesics have the property that for any vertices at distance at least
three in the corresponding geodesic of the Bass-Serre tree, the pointwise stabilizers
of the pair of vertices is trivial. We might hope, in analogy to Theorem 8.4, that
these would be strongly contracting geodesics. As in Theorem 8.4, 〈s−1t〉 and 〈s〉
are hyperbolically embedded subgroups in G, but, of the two, we will see only s−1t
is strongly contracting.
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10.3.1. α. We claim that closest point projection πα : X → α is coarsely well defined
and strongly contracting. First, consider πα on 〈a, b〉. The geodesic α enters 〈a, b〉
through the incoming t–wall V at 1, and exits through the outgoing s−1–wall W at
1.

Lemma 10.2. For every v ∈ V and every w ∈ W there exists a geodesic from v to
w that includes the vertex 1.

Proof. The lemma follows from the discussion of geodesics in Section 10.2. �

Lemma 10.3. The orbit map X → T : g 7→ g.o coarsely commutes with closest
point projection to α. In particular, closest point projection to α in X is coarsely
well defined.

Proof. Suppose z ∈ X is some vertex that is separated from 1 by V , and suppose
there is an n > 0 such that α(n) ∈ πα(z). Let σ be a geodesic from z to α(n). Write
σ = σ1 + σ2 + σ3, where σ2 is the subsegment of σ from the first time σ crosses V
until the first time σ reaches W . By Lemma 10.2, we can replace σ2 by a geodesic
segment σ′2 +σ′′2 where the concatenation point is 1. This means that z is connected
to 1 = α(0) by a path σ1 + σ′2. By hypothesis, the length of this path is at least the
length of σ, so σ′′2 and σ3 are trivial and n = 0. It follows immediately that the orbit
map X → T commutes with πα up to an error of 4. (In fact, a little more work will
show the error is at most 2.) �

Lemma 10.4 (Bounded Geodesic Image Property for πα). For any geodesic σ in
X , if the diameter of πα(σ.o) is at least 5, then σ ∩ α 6= ∅.

Proof. Suppose α([−1, 3]).o ⊂ πα(σ.o). Then σ crosses the walls V , W , s−1tV and
s−1tW . Write σ as a concatenation of geodesic subsegments σ1 + σ2 + σ3 + σ4 + σ5,
where σ1 is all of σ prior to the first V crossing, σ2 is the part of σ between the first V
crossing and the last W crossing, σ3 is the part between the last W crossing and the
first s−1tV crossing, which included edges labeled s−1 and t, σ4 is the part from the
first s−1tV crossing until the last s−1tW crossing, and σ5 is the remainder of σ. We
can apply Section 10.2 to replace σ2 by a geodesic σ′2 + σ′′2 with the same endpoints
and concatenated at 1. Similarly, we can replace σ4 by a geodesic σ′4 + σ′′4 with the
same endpoints and concatenated at s−1t. But then we can replace the subsegment
σ2 +σ3 +σ4 of σ by the path σ′′2 + [1, s−1t] +σ′′4 with the same endpoints. This path
is strictly shorter unless σ′′2 and σ′′4 are trivial. This means that [1, s−1t] ⊂ σ∩α. �

By Proposition 6.6, this means:

Corollary 10.5. The element s−1t is strongly contracting for Gy X .

Together with Theorem 5.4, this proves Theorem 10.1.

10.3.2. β. Using the arguments in Section 10.2, we see that πβ(aL
j
) = β(j) for all

j > 0.
In this case, the orbit map does not coarsely commute with closest point pro-

jection, as πβ(aL
k
).o = β(k).o, while πβ(aL

k
.o) = β(0).o. For 0 < j < k there is

a geodesic σj,k from aL
j

to aL
k

such that d(σj,k, β) = d(aL
j
, β). It follows that πβ

is not strongly contracting, since it does not enjoy the Bounded Geodesic Image
Property. In fact, there are points of X for which πβ is not coarsely well defined.

There is another natural projection to consider. Define τβ(x) = β(t) where
πβ(x.o) = β(t).o. So τβ(x) is just the preimage in β of closest point projection
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β(0) = s0 = 1 aL
3

aL
5

s−3

s−5

Figure 4. Geodesics [aL
3
, πβ(aL

3
)] (dashed), [aL

5
, πβ(aL

5
)] (solid),

and σ3,5 = [aL
3
, aL

5
] (dash-dot)

to β.o in T . πβ is a PS–contraction where PS is the path system that consisting
of:

• PS ′ = {geodesics γ ∈ X | diam(τβ(γ)) 6 1}, and
• for each pair of points x, y ∈ X with d(τβ(x), τβ(y)) > 1, every path of the

form: [x, τβ(x)] ∈ PS ′, followed by the subsegment of β from τβ(x) to τβ(y),
followed by [τβ(y), y] ∈ PS ′.

Thus, the element s−1 is a PS–contracting element for G y X , but not a strongly
contracting element.
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