
QUANTIFYNG METRIC APPROXIMATIONS OF DISCRETE GROUPS

GOULNARA ARZHANTSEVA AND PIERRE-ALAIN CHERIX

Abstract. We introduce and systematically study a profile function whose asymptotic be-
havior quantifies the dimension or the size of a metric approximation of a finitely generated
group G by a family of groups F = {(Gα, dα, kα, εα)}α∈I, with each group Gα equipped with
a bi-invariant metric dα and a dimension kα, for strictly positive real numbers εα such that
infα εα > 0. Through the notion of residually amenable profile we introduce, our approach
generalizes classical isoperimetric (or Følner) profiles of amenable groups and recently intro-
duced functions quantifying residually finite groups. Our viewpoint is much more general and
covers hyperlinear and sofic approximations as well as many other metric approximations such
as weakly sofic, weakly hyperlinear, and linear sofic approximations.

1. Introduction

Approximation is ubiquitous in mathematics. In the theory of groups, it is particularly natural

to approximate infinite groups by finite ones. A fundamental realization of this idea has lead

Mal’cev (1940’s) and P. Hall (1955) to the notion of a residually finite group: a group where the

algebraic structure on any finite fixed set of elements is exactly as if these elements were in a

suitable finite quotient of the group.

Once a concept of approximation is coined, a crucial question is how to compare distinct

approximations of the same object, and, in particular, how to quantify the way an object is

approximated. For residually finite groups, there are two main ways of quantifying the approx-

imation of an infinite group by finite ones. The first way is to compute how many subgroups

of a given finite index the group possesses. This is a classical subject of research on the sub-

group growth, initiated by M. Hall (1949), which allows to enumerate how the group can be

approximated by a finite quotient of a prescribed cardinality. The second way of quantifying is

to compute the minimal cardinality among all possible finite quotients that detect the algebraic

structure of the fixed finite set of elements of the residually finite group. This viewpoint is more

recent and it is about the so-called full residual finiteness growth, see below for the definition.

In this paper, we push this second idea of quantifying of approximations of infinite groups

significantly beyond the class of residually finite groups and apply it to much more general

metric approximations of infinite groups in contrast to classical algebraic approximations. Metric

approximations are approximations by groups equipped with bi-invariant metrics (see the next

section for precise definitions) and they are very natural to study. Intuitively, we require that

the algebraic operation on a finite set of group elements of the approximated group is almost as

if these elements were in the approximating group, where ‘almost’ refers to the fixed bi-invariant
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metric. This simple idea has gained a major importance following Gromov’s introduction of

sofic groups (= groups metrically approximated by symmetric groups of finite degrees, endowed

with the normalized Hamming distance) and his settlement, for sofic groups, of Gottschalk’s

surjunctivity conjecture (1973) in topological dynamics. Another renowned example of metric

approximation is that by unitary groups of finite rank, endowed with the normalized Hilbert-

Schmidt distance. This defines the class of hyperlinear groups, appeared in the context of

Connes’ embedding problem (1972) in operator algebra.

We encompass both sofic and hyperlinear groups as well as their generalizations such as linear

sofic groups, weakly sofic groups, and weakly hyperlinear groups into a general framework of

metric approximations by groups with, in addition to a prescribed bi-invariant metric, a dimen-

sion or a size, associated with each of the approximating groups. For instance, the dimension

of a finite symmetric group is chosen to be its degree, of a unitary group – its rank, of a finite

group – its cardinality, etc. Our general quantification function, called metric profile, is then

defined to be, given a finite set of group elements in the approximated group, e.g. the ball of

finite radius with respect to the word length metric, the minimal dimension among all possible

metric approximations which ‘almost’ preserve the algebraic structure of this finite set. Viewed

within sofic groups, our approach is orthogonal to the recently emerged theory of sofic entropy

started in the seminal work of L. Bowen (such a theory is not yet available for an a priori wider

class of hyperlinear groups). Restricted to residually finite groups, the contrast between Bowen’s

viewpoint and our approach is exactly the distinction between the subgroup growth of a group

and the full residual finiteness growth, respectively.

Since metric approximations generalize classical algebraic approximations, the previously

known functions, quantifying ‘exact’ approximations (versus ‘almost’ ones), occur to be up-

per bounds for our metric profile. For example, a knowledge about the full residual finiteness

growth of a residually finite group gives an estimate on the sofic and on the hyperlinear profiles

of such a group. If the approximating groups are amenable, then besides a chosen dimension,

they carry an associated isoperimetric function, the famous Følner function. We make use of this

classical function and of our metric profile philosophy to define the residually amenable profile

for every residually amenable group (and more generally, for every group locally embeddable

into amenable ones). This allows to extend a classical study of Følner functions of amenable

groups to non-amenable groups metrically approximable by amenable ones.

A main aim of this paper is to provide a necessary theoretical base for a further more specific

quantitative analysis of metric approximations of concrete discrete groups. We meticulously

compare our metric profile with previously investigated quantifying functions alluded to above.

Since the classes of groups we study are preserved under several group-theoretical operations

such as taking subgroups, direct and free products, extensions by amenable groups, restricted

wreath products, etc., we also provide the corresponding estimates on the suitable metric profiles.

On the way, we collect some crucial examples and finally formulate a number of open problems.
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