
EXAMPLES OF RANDOM GROUPS

G. ARZHANTSEVA AND T. DELZANT

Abstract. We present Gromov’s construction of a random group with no
coarse embedding into a Hilbert space.

“Si nous n’étions pas ignorants, il n’y aurait pas de
probabilité, il n’y aurait de place que pour la certitude;”1

Henri Poincaré,
La Science et l’hypothèse, Chapitre XI (1902).

1. Introduction

In the late 1950’s, working on the uniform classification of metric spaces,
Smirnov asked whether every separable metric space is uniformly homeomor-
phic to a subset of a Hilbert space [G]. This was settled negatively by Enflo,
who proved that the Banach space of null sequences c0 does not embed uniformly
homeomorphically into any Hilbert space [E].

Initiating a new theory, Gromov introduced the concept of a coarse embedding
(also termed as a uniform embedding) of metric spaces and asked whether every
separable metric space coarsely embeds into a Hilbert space [GrAI, p. 218].

Definition 1.1 (Coarse embedding). Let (X, dX) and (Y, dY ) be metric spaces.
A map f : X → Y is said to be a coarse embedding if for xn, yn ∈ X, n ∈ N,

dX(xn, yn) →∞ if and only if dY (f(xn), f(yn)) →∞.

Gromov’s question was answered negatively in [Dr. et al.], where the authors
adapt Enflo’s original construction and build an infinite family of finite graphs of
growing degrees admitting no coarse embedding into a Hilbert space.

In “Spaces and questions” [GrSQ], Misha Gromov observed that the above non-
embedding phenomenon is due to the expanding properties of the graphs. He
predicted and then, in “Random walk in random groups” [GrRWRG], constructed
a finitely generated and even finitely presented group that, equipped with a word
length metric, coarsely contains an infinite expander. This group has rather
surprising properties: it admits no coarse embedding into a Hilbert space (or
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1



2 G. ARZHANTSEVA AND T. DELZANT

into any `p with 1 6 p < ∞) and any finite-dimensional linear representation
of this group has finite image. We call this group the monster although in the
words of its inventor it is a “quite simple two-dimensional creature.”

Our objective is to explain Gromov’s construction. Let Θ = (Θn)n∈N be an
infinite family of finite graphs. We shall always consider Θ as the disjoint union of
Θn’s endowed with a metric which coincides with the standard edge-path metric
on each Θn and such that dist(Θn, Θn′) →∞ as n + n′ →∞.

A labelling of Θ (see Section 2 for details) is a simplicial map

m : Θ → W,

where W is a bouquet of oriented loops labelled by letters from a finite alphabet
S. A choice of a base point in each of the connected components of Θ yields an
induced map on the fundamental groups

m∗ : π1(Θ) → π1(W )

and a label preserving simplicial map

fm : Θ → Ca(G(m))

to the Cayley graph of the group G(m) which is, by definition, the quotient of
the free group F (S) := π1(W ) by the normal subgroup generated by the images
of m∗ of the fundamental groups of connected components of Θ.

The goal is to prove

Theorem 1.2 (cf. Theorem7.7). There exist an expander graph Θ = (Θn)n∈N and
a labelling m of Θ such that the map fm : Θ → Ca(G(m)) is a coarse embedding.

The proof goes in three steps.

Step I – Geometry. We start by observing that if the graph is finite and the
labelling m satisfies a certain small cancellation condition, the quotient G(m) is
a non-elementary hyperbolic group and the graph embeds isometrically into its
Cayley graph. This is explained in Section 2, where we extend the classical small
cancellation theory to such graphical quotients of the free group.

In order to embed an infinite family of finite graphs, or, more precisely, the
metric space (Θ, dist), we shall iterate the previous construction by taking suc-
cessive graphical quotients of non-elementary hyperbolic groups (starting with
the free group as above or with a given non-elementary hyperbolic group G0).
The inductive step of such an iteration is done in Section 3, where we appeal
to small cancellation theory over a hyperbolic group and to hyperbolic geometry
of orbispaces to prove the very small cancellation theorem (Theorem 3.10). It
follows that, under the hypothesis of that theorem at the n-th inductive step, the
Cayley graph of the (n + 1)-th graphical quotient group Gn+1 coarsely contains
Θn. Then, by iteration, (Θ, dist) is coarsely embeddable into the Cayley graph
of the direct limit of groups Gn, which is now a lacunary hyperbolic group, see
Section 4.
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Step II – Probability and harmonic analysis. It remains to show the existence
of a labelling required at each inductive step and of a subset I ⊆ N such that ΘI

admits the iteration. We obtain the former in Section 5. We endow the space of all
possible labellings of Θn (and hence, those of Θ) with the Kolmogorov probability
measure and prove (see Proposition 5.9) that simple combinatorial conditions on
a given Θ = (Θn)n∈N imply that, with asymptotic probability 1 as n → ∞,
a random labelling of Θn by generators of a non-elementary hyperbolic group
satisfies the hypotheses of the very small cancellation theorem (Theorem 3.10).
Then, in Section 6 (see Theorem 6.3), we extract from Θ a sub-family ΘI for some
recursive set I ⊆ N that admits the iteration and, therefore, a coarse embedding
into the Cayley graph of the resulting lacunary hyperbolic group.

Step III – Arithmetics. To complete the proof, we have to present an infinite
expander Θ = (Θn)n∈N satisfying the above mentioned combinatorial conditions.
Indeed, in the last section, we show that results of Section 6 apply to certain
regular infinite expanders. Namely, one can take the Selberg expanding family
which is known to have arbitrarily large girth. It follows that the constructed
lacunary hyperbolic group GI(ω) defined by a random labelling ω of a sub-family
ΘI = (Θn)n∈I⊆N of such a family admits no coarse embedding into a Hilbert
space.

Our presentation emphasizes the asymptotic viewpoint and does not aim to
provide explicit estimates on the parameters involved in the construction. Here
are some of them:

- The number of generators k of a hyperbolic group G, the hyperbolicity
constant δ, the spectral radius κreg of the simple random walk on G, and
the Kazhdan constant κ (whenever G has Kazhdan’s property (T));

- Parameters α, β, γ of a local quasi-isometric embedding induced by a ran-
dom labelling of a given graph;

- The parameter λ of the geometric small cancellation condition;
- An infinite family Θ = (Θn)n∈N of graphs of girth ρn and of thinness b.

The main technical result (cf. Theorem 6.3) is the following.

Let Θ = (Θn)n∈N be a family of finite graphs with limn→∞ girth Θn = ∞ and
a uniformly bounded ratio diamΘn

girthΘn
. Let (G, S) be a torsion-free non-elementary

hyperbolic group and κreg the corresponding spectral radius. Assume that Θ is
b-thin with a small enough b > 0 (namely, b + ln κreg < 0). Then, for any given
p ∈ (0, 1), there exists an infinite I ⊆ N such that, with probability at least p,
the quotient group GI(ω) defined by a random labelling ω of ΘI = (Θn)n∈I⊆N is
an infinite finitely generated group and (ΘI , dist) is coarsely embedded into its
Cayley graph.

The paper compiles graduate course lectures on “Random groups” the authors
gave at the Bernoulli Center (EPF Lausanne) during research program “Limits of
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research center (Polish Academy of Sciences) in Summer 2008.

Disclaimer. The technical arguments inevitably require a good understanding
of fundamentals such as hyperbolic groups, geometry of orbispaces, and asymp-
totic invariants of infinite groups.

Acknowledgement. We thank Misha Gromov for explaining the construction of
his group to us, Wolfgang Lück for encouraging us to write this text, and Alain
Valette for comments. We thank the anonymous referee for useful suggestions.

The work of the first author was supported by the Swiss National Science
Foundation grants PP002-68627, PP002-116899, Sinergia Grant CRSI22 130435
and by the ERC grant ANALYTIC no. 259527.

2. Small cancellation theory over free group

2.1. Graph labelling. Let S be a finite set of k elements and F (S) ∼= Fk be
the free group on S of rank k. The group F (S) is the fundamental group of a
bouquet W of k oriented loops labelled by letters from S: F (S) = π1(W ).

Definition 2.1 (Graph labelling). Let Θ be a graph (i.e. a 1-dimensional simpli-
cial complex) with no vertex of degree 1. A labelling of Θ by S is a map m that
to each edge of the graph assigns an orientation and a letter from S. In other
words, m is a simplicial map2

m : Θ → W.

A labelling is reduced if Θ contains no vertex v such that two edges adjacent to
v have the same label and orientation at v (starting or ending simultaneously at
v).

A choice of a base point in each of the connected components of Θ yields an
induced map on the fundamental groups

m∗ : π1(Θ) → π1(W ).

Definition 2.2 (Group defined by a labelled graph). Let m be a labelling of a
graph Θ by S. The group G(m) is defined to be the quotient of the free group
F (S) by the normal subgroup generated by the images of m∗ of the fundamental
groups of the connected components of Θ.

We view such a group G(m) geometrically as follows. Let Θ̇ be the cone over Θ,
that is the disjoint union of the topological cones over the connected components
of Θ such that Θ = ∂Θ̇. We build the CW-complex Πm = W ∪m Θ̇ through
obvious identifications according to the labelling m : Θ → W . The van Kampen
theorem implies

π1(Πm) = G(m).

2We identify m with its geometric realization which is a continuous map from the geometric
realization of Θ to that of W .
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For example, if Θ is a disjoint union of circle graphs of length n1, . . . , np, a la-
belling m of Θ is given by a choice of words R1, . . . , Rp of length ni in the alphabet
S ∪S−1, the group G(m) is defined by the presentation 〈S | R1, . . . , Rp〉, and Πm

is the van Kampen polyhedron associated to this presentation [LS, III.2.3]. Ex-
tending the terminology, we say that Πm is the van Kampen polyhedron of G(m).

Let Ca(G(m)) denote the Cayley graph of G(m) with respect to the generating
set S. The map m∗ induces a label preserving simplicial map

fm : Θ → Ca(G(m)).

In general, such a map does not preserve the graph Θ in any natural way. Thus,
the problem is to find an infinite expander Θ and an appropriate labelling m such
that fm is a coarse embedding.

2.2. Small cancellation theory.

Definition 2.3 (Piece). A piece in a labelled graph m(Θ) is a simple path I ⊂ Θ
such that there exists another simple path J ⊂ Θ and a label preserving isometry
from I to J .

The small cancellation conditions for Θ are defined as follows (for p ∈ N and
λ ∈ ]0, 1[ ):

C(p), no cycle in Θ is a disjoint union of fewer than p pieces;

C ′(λ), the length of a cycle in Θ is strictly greater than λ−1 times the length
of the longest piece in this cycle;

C ′′(λ), the girth of Θ is strictly greater than λ−1 times the length of the longest
piece in Θ.

Obviously, C ′′(λ) ⇒ C ′(λ) ⇒ C([λ−1]+1). Observe that if Θ is a disjoint union
of circle graphs this recovers the usual small cancellation conditions. Moreover,
as pointed out by Gromov [GrRWRG] and previously by Rips and Segev [RS], the
classical small cancellation theory (works of Tartakovskii, Greendlinger, Lyndon,
Schupp, etc., see details and references in [LS]) extends to this context: the C(p)
condition for p > 6 implies the asphericity of the van Kampen polyhedron and the
C(7) condition guarantees the hyperbolicity of the group G(m). For a detailed
study of the C ′(1/6) condition, see [Oll].

The idea to produce new groups using small cancellation conditions on general
graphs instead of circle graphs has appeared for the first time in a work of Rips
and Segev related to the Kaplansky problem on zero divisors in group rings [RS].

The next result will not be used in our further arguments. We omit the proof
which can be obtained by standard arguments using van Kampen diagrams.

Theorem 2.4 (Small cancellation theorem). (cf. [GrRWRG, Sec. 2]) Let Θ be a
finite connected graph and m be a reduced C(7) labelling of Θ. Then the group
G(m) is hyperbolic and the map fm : Θ → Ca(G(m)) is an isometric embedding.
Moreover, the van Kampen polyhedron Πm is aspherical and the rational Euler
characteristic satisfies χ(G(m)) = χ(Fk) + b1(Θ).
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3. Small cancellation theory over a hyperbolic group.

Let δ > 0. A geodesic metric space is said to be δ-hyperbolic if every geodesic
triangle in this space is δ-thin [GrHG, 6.3], [CDP, Ch.1, §3]. It is hyperbolic if it
is δ-hyperbolic for some δ > 0. From now on, X denotes a proper δ-hyperbolic
space and ∂X its boundary.

3.1. Quasiconvexity and quasigeodesics.

Definition 3.1 (Cylinder). The cylinder C(Y ) of a subset Y ⊆ X∪∂X is the set
of points lying at a distance not greater than 100δ to a geodesic with endpoints
in Y ∪ ∂Y.

Definition 3.2 (Quasiconvex subset). A subset Y ⊆ X is D-quasiconvex if any
geodesic [x, y] with endpoints in Y belongs to the D-neighbourhood of Y. A subset
is quasiconvex if it is D-quasiconvex for some D > 0.

Every geodesic quadrilateral in X with vertices in X ∪ ∂X is 8δ-quasiconvex,
cf. [CDP, Ch.2]. Therefore, every cylinder is 10δ-quasiconvex.

Definition 3.3 (Projection). Let Y be a subset of X. A map P : X → Y is a
projection if for all y ∈ Y and x ∈ X we have |x− P (x)| 6 |x− y|+ δ.

If δ is strictly positive, or if Y is closed, then such a projection does exist. The
next result is well-known, cf. the proof of [BH, III. Γ.3.11].

Proposition 3.4. Let Y1 and Y2 be two D-quasiconvex subsets of X. The diame-
ter of the projection of Y1 onto Y2 is at most 2D+100δ+diam (C(Y1) ∩ C(Y2)) .¤
Definition 3.5 (Quasigeodesics). Let α, β, γ ∈ R+, α 6 1. A rectifiable path
c : I ⊂ R→ X is an (α, β; γ)-local quasigeodesic if for all x, y ∈ I,

|x− y| 6 γ =⇒ α|x− y| − β 6 |c(x)− c(y)| 6 1

α
|x− y|+ β.

If γ = ∞, we say that c is an (α, β)-global quasigeodesic or, simply, a quasi-
geodesic.

Definition 3.6 (Quasi-isometric embedding). Let Y be a geodesic metric space.
A map c : Y → X is an (α, β; γ)-local quasi-isometric embedding if the restric-
tion of c to each geodesic path in Y of length at most γ satisfies the preceding
inequalities.

If γ = ∞, we say that c is an (α, β)-quasi-isometric embedding or a quasi-
isometric embedding.

Theorem 3.7 (Stability of local quasigeodesics). ([GrHG, 7.2.B], [CDP, Ch.3])
Let α, β ∈ R+. There exist constants γ = γδ(α, β), D = Dδ(α, β) ∈ R+ such that
every (α, β; γ)-local quasigeodesic in X is a D-quasiconvex (α

2
, β)-global quasi-

geodesic.
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In addition, γδ(α, β) = η(α, δ) + 8β and Dδ(α, β) = ς(α, δ) + 8β for some η
and ς independent of β, and the function D satisfies limδ→0,β→0 Dδ(α, β) = 0.

More generally, if c : Y → X is an (α, β; γ)-local quasi-isometric embedding,
then c is an (α

2
, β)-quasi-isometric embedding and c(Y ) is D-quasiconvex. ¤

Remark 3.8 (Homogeneity of γ and D). By rescaling, the functions γ and D are
determined by their values at δ = 1. For instance, one can choose Dx(α, xβ) =
xD1(α, β).

3.2. Hyperbolic groups: the very small cancellation theorem. A group
G is hyperbolic if there exists a discrete cocompact action of G by isometries on
a proper hyperbolic space. An equivalent definition is that G is hyperbolic if its
Cayley graph with respect to a finite generating set is a δ-hyperbolic metric space
for some δ > 0. In this case, we say that G is δ-hyperbolic.

Let G be a non-elementary (that is, with no cyclic subgroups of finite index)
torsion-free δ-hyperbolic group generated by a finite set S. Let X be the universal
cover of the van Kampen polyhedron associated to some presentation of (G,S).
Each 2-cell of X is a regular Euclidean polygon with edges of length 1 (we assume
that the presentation of G has no relations of length 1 and 2). Then X is a proper
simply connected 2δ-hyperbolic space and the group G acts freely discretely and
cocompactly on it. We have Ca(G) ⊂ X and for any g, h ∈ G,

(∗) |g − h|X 6 |g − h|Ca(G) 6 2|g − h|X .

Let Θ be a finite connected graph and m be a labelling of Θ by S. After
choosing a base point, the labelling m induces a homomorphism m∗ : π1(Θ) → G
and a simplicial π1(Θ)-equivariant map c from the universal covering tree T
(viewed with the induced labelling) of Θ to the Cayley graph Ca(G) ⊂ X, sending
the base point of T to the identity vertex of Ca(G). We denote by Y ⊂ X the
image of T under c and by H the subgroup m∗(π1(Θ)) in G. Observe that H
acts freely on Y.

The following invariants of the actions of G on X and of H on Y will allow us
to geometrize the small cancellation condition.

Definition 3.9. Let g ∈ G and x0 be a point in X.
(1) The stable length of g, denoted by [g]X , is the limit

lim
n→∞

|gnx0 − x0|
n

It does not depend on the choice of x0.
(2) The injectivity radius of the action of H on Y ⊂ X is

ρ = min
g∈H\{e}

[g]X

(3) The length of the largest piece is

∆ = max
g∈G\H

diam (projection of gY onto Y )
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(4) The geometric cancellation parameter of the action of H on Y is

λ =
∆

ρ

The next result is crucial for the construction. It specifies the conditions that
guarantee the hyperbolicity of the quotient G = G/〈〈H〉〉, where 〈〈H〉〉 is the
normal subgroup of G generated by H.

The main part of this result has been proved in [GrMCH], see also [DG], except
for claim (iii) which will be needed later on and claim (iv) which is given for
completeness. We keep the above notation.

Theorem 3.10 (The very small cancellation theorem). Given α > 0 and r0 >
4 · 105, there exist two constants λ0 and δ0 such that the following holds.

Let β ∈ R and D = Dδ(α, β), γ = γδ(α, β) be the constants given by Theo-
rem 3.7. Assume that c : T → Ca(G) ⊂ X is an (α, β; γ)-local quasi-isometric
embedding and the very small cancellation conditions are satisfied:

δ

ρ
6 δ0,

D

ρ
6 10δ0, and λ 6 λ0.

Then

(i) the quotient G = G/〈〈H〉〉 is a non-elementary torsion-free hyperbolic group;
(ii) the induced map B(e, r0 ρ

1200 sinh r0
) ⊂ G → G is injective;

(iii) the map fm : Θ → Ca(G) induced by the labelling satisfies

(∗∗) |fm(x)− fm(y)| > ρ

diam Θ
· r0

160 · 2π sinh r0

(α

2
|x− y| − β

)

(iv) the hyperbolicity constant of Ca(G) can be estimated explicitly (in terms of
r0, ρ, diam Θ, and δ);

(v) the rational Euler characteristic satisfies χ(G) = χ(G) + b1(H).

We postpone the proof till Section 3.4. The usual C ′(λ) small cancellation
theorem is a version of the previous statement for α = 1, β = δ = 0, and λ 6 1/6.

3.3. The cone off construction. Let Y ⊂ X be a subset connected by recti-
fiable paths. We consider the cylinder C(Y ) of Y as a length space, with the
induced length metric. By definition, C(Y ) is invariant under the action of the
group of isometries of X preserving Y .

Let r0 > 0 be fixed and

Ċ(Y ) = (C(Y )×]0, r0]) ∪ {o}
be the topological cone3 endowed with the length metric ds2 = dr2 + sinh2 r

sinh2 r0
dx2.

3Our cone coincides with the ball of radius r0 centered at o of the (-1)-cone over the scaled
metric space C(Y )/ sinh r0, see [BH, Ch.I.5] for introductory details on the cone construction.
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Let us recall the definition of the curvature in the sense of Alexandroff, for
more information on CAT(−1) spaces (and, more general, CAT(κ) spaces with κ
a real number), see [BH, Part II].

Definition 3.11 (The CAT(−1) inequality). A geodesic metric space X is a
CAT (−1) space if all geodesic triangles [x, y, z] in X satisfy the CAT(−1) in-
equality : for all u, v ∈ [x, y, z], we have

|u− v| 6 |u∗ − v∗|,
where u∗, v∗ are images of u, v under the unique path-isometric map from [x, y, z]
to a hyperbolic triangle [x∗, y∗, z∗] ⊂ H2

−1 with the same sides as [x, y, z].

For example, if Y is a tree, then Ċ(Y ) is a CAT(−1) space4.

Definition 3.12 (The CAT(−1, ε) inequality). A geodesic metric space is a
CAT(−1, ε) space if all geodesic triangles in this space satisfy the CAT(−1) in-
equality up to a given constant ε > 0, that is, keeping the notation above:

|u− v| 6 |u∗ − v∗|+ ε.

All geodesic triangles in the hyperbolic plane H2
−1 are known to be δ-thin with

δ = ln(1 +
√

2). It follows that every CAT(−1, ε) space is δ-hyperbolic with
δ = ln(1 +

√
2) + ε. Hence, such a space is 1-hyperbolic whenever ε is small

enough, for example, if ε = 10−10.
Observe that the CAT(−1, ε) inequality involves only 5 points and geodesics

connecting them. As the cylinder C(Y ) is 10δ-quasiconvex, it is ε0(δ)-hyperbolic
with the hyperbolicity constant ε0(δ) > 0 such that limδ→0 ε0(δ) = 0. This
follows immediately from the fact that the inclusion map C(Y ) ↪→ X is a quasi-
isometry and Theorem 3.7. The lemma of approximation of a δ-hyperbolic space
by a tree [CDP, Ch.8, Th.1] implies that a geodesic pentagon in C(Y ) can be
approximated by a finite metric tree, up to ε1(δ) > 0 such that limδ→0 ε1(δ) = 0.
Since the cone over such a tree is a CAT(−1) space and the cone over the limit
(of uniformly bounded metric spaces over a non-principal ultrafilter) is isometric
to the limit of the cones, we immediately obtain (cf. [DG, Prop.3.2.8]):

Lemma 3.13. There exists a function ε(δ) with limδ→0 ε(δ) = 0 such that the
cone Ċ(Y ) satisfies the CAT(−1, ε(δ)) inequality in the r0/2 neighbourhood of
every point at distance at least r0

2
from the apex o of the cone. ¤

Let H be a subgroup of G acting discretely and cocompactly on X. Given an
H-invariant quasiconvex subset Y ⊂ X, we consider the induced action of H
on Ċ(Y ) and equip the corresponding quotient Ċ(Y )/H with the natural length
structure. Let ρ̃ = infh∈H\{e}, x∈X |hx− x| denote the minimal displacement.

4By definitions or by Berestovskii’s theorem [BH, Th. 3.14, p.188] which implies that the
cone over a CAT(1) space is a CAT(−1) space.
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Lemma 3.14. There exists a function ε(δ) with limδ→0 ε(δ) = 0 such that if
ρ̃ > 2π sinh r0, then the quotient Ċ(Y )/H is a CAT(−1, ε(δ)) space.

Proof. The quotient Ċ(Y )/H of the cone is isometric to the cone over the quotient
C(Y )/H, see [BH, Ex. I.5.22(3)]. The CAT(−1, ε) inequality involves only five
points and we can apply the approximation lemma [CDP, Ch.8, Th.1] as above.
Thus, it suffices to check that if C(Y ) is a tree, that is, C(Y )/H is a graph, then
Ċ(Y )/H is a CAT(−1) space; but if ρ̃ > 2π sinh r0 (= the circumference of the
hyperbolic circle of radius r0) the graph C(Y )/H is a CAT(1) space, cf. [BH,
Ex. II.3.17]. Then, Berestovskii’s theorem [BH, Th. 3.14, p.188] implies that the
cone over such a graph C(Y )/H is a CAT(−1) space, as required. ¤

3.4. Proof of the very small cancellation theorem. We keep the above
notation and suppose that the hypotheses of the very small cancellation theorem
are satisfied. We proceed as in [Gr]MCH, see also [DG].

Normalization. First, we rescale the length structure on X: we divide the
length metric on X by ρ

2π sinh r0
so that the injectivity radius ρ of the action of H

on Y ⊂ X remains bounded below by 2π sinh r0 with respect to this normalized
length structure.

Cone-off. Let Ẋ = X ∪g∈G/H gĊ(Y ) be the the space obtained from X by

attaching a copy of the cone Ċ(Y ) to each gC(Y ) ⊂ X. We endow Ẋ with the
natural length structure induced by the (rescaled) metric on X and the corre-
sponding length structure on the cone Ċ(Y ).

Charts. Let U be the r0

2
–neighborhood of X in Ẋ, that is,

U = X ∪g∈G/H gĊr0/2(Y ),

where Ċr0/2(Y ) consists of all points of the cone Ċ(Y ) ⊂ Ẋ at distance at least
r0/2 from the apex.

Let V = Ċ(Y )/H. The length structure on this space is naturally induced by
the length structure on C(Y ) ⊂ X and the length structure on the cone Ċ(Y ).
This space can also be viewed as a cone over C(Y )/H, see [BH, Ex.I.5.22(3)].

Local curvature. We use the following

Proposition 3.15. (cf.[GrMCH, 7.B],[DG, Theorem 5.2.5]) Under the notation
above, there exist constants δ′0 and λ0 such that if δ < δ′0, D < 10δ′0, λ < λ0, the
space U is a CAT(−1, 10−10) space in the r0/2–neighbourhood of every point.

On the other hand, by Lemma 3.14 (as, obviously, ρ̃ > ρ), there exists a
constant δ′′0 such that if δ < δ′′0 the space V is a CAT(−1, 10−10) space, hence
1-hyperbolic.

Thus, U and V are 1-hyperbolic spaces at the r0/2 neighbourhood of every
point. Set δ0 = min{δ′0, δ′′0}.
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New van Kampen polyhedron. We have G = π1(X/G) and H is the image of
π1(C(Y )/H) under the induced homomorphism π1(C(Y )/H) → π1(X/G). Let
us consider Π = X/G ∪ Ċ(Y )/H, obtained by gluing X/G and Ċ(Y )/H along
C(Y )/H under the natural maps C(Y )/H ↪→ X/G and C(Y )/H ↪→ Ċ(Y )/H.
We equip this space with the normalized length structure on X/G and with the
corresponding length structure on Ċ(Y )/H. By the van Kampen theorem, the
fundamental group of Π = X/G ∪ Ċ(Y )/H is the group G we study.

Local-to-global. The space Π has an orbispace structure (defined for CW-
complexes, see, for example, [BH, Ch. III, G], [DG, 4.1.1]) given by two charts
U and V defined above, with respect to natural maps U → U/G ⊂ Π and

V
id→ V ⊂ Π.
Observe that Ċ(Y )/H and Ċ(Y ) are isometric in the 2π sinh r0

2
neighbourhood

of every point at distance at least r0/2 from the apex as the distance between any
two points of Ċ(Y ) in the same H-orbit is at least 2π sinh r0. Therefore, images
of U and V in Π are compatible on their intersection. Thus, U and V do form
an atlas on Π.

By construction, the ball of radius r0/4 centered at any point of Π has a
preimage either in U or in V . This means that the length structure on Π is
r0/4-useful [DG, 4.1.3]. Thus, Π is a compact r0/2-local 1-hyperbolic orbispace
and the following result can be applied.

Theorem 3.16 (Cartan-Gromov-Hadamard). ([GrMCH],[DG, Theorem 4.3.1])
Let δ > 0 and σ > 105δ. Let Π be a compact σ-local δ-hyperbolic orbispace.
Suppose that for every x ∈ Π there exists a σ-useful chart (U,ϕ, x̃). Then,

(1) Π is developable;

(2) The universal cover Π̃ of Π at x is 200δ-hyperbolic;
(3) If (U,ϕ, x̃) is a σ-useful chart of a neighborhood of x ∈ Π and x′ is a

preimage of x in the universal cover Π̃, the developing map (U, x̃) →
(Π̃, x′) is an isometric embedding of the ball B(x̃, σ/10) centered at x̃ ∈ U
of radius σ/10 onto its image.

It follows that Π̃ is 200-hyperbolic. Since G acts discretely and cocompactly

on Π̃, this shows the hyperbolicity of G.
Local injectivity. By (3), the ball B(x̃, r0

40
) ⊂ U maps isometrically onto its

image in Π̃. This means that if h ∈ 〈〈H〉〉, then |h − e|Ca(G) > r0

40
· ρ

2π sinh r0
(e

denotes the identity element). That is, the map B(e, 1
4
· r0

40
· ρ

2π sinh r0
) ⊂ G ↪→ G

is injective. This shows (ii).
The quotient is non-elementary and torsion-free. By construction, G acts freely

on Π̃. Passing from X to the appropriate Rips complex [CDP, Ch.5], we can

assume that Π̃ is contractible. It follows from Smith theory (see, for example,
Th. III.7.11 in [Br]) that G is torsion-free: If the group has torsion then it contains
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a cyclic p-group, but a finite p-group acting on a finite dimensional contractible
CW-complex has a fixed point. If G is elementary, then it would be isomorphic
to Z, contradicting to (ii).

Let us now obtain estimate (∗∗) in (iii) and that of the hyperbolicity constant.
Quasi-isometry. Let x, y ∈ Θ. Since c is a local quasi-isometric embedding,

using (ii), we see that if |fm(x)− fm(y)|Ca(G) 6 1
4
· r0

40
· ρ

2π sinh r0
, then

|fm(x)− fm(y)|Ca(G) = |m(x)−m(y)|Ca(G) > α

2
|x− y| − β.

On the other hand, if |fm(x)− fm(y)|Ca(G) > 1
4
· r0

40
· ρ

2π sinh r0
, then

|fm(x)− fm(y)|Ca(G) >
1

4
· r0

40
· ρ

diam Θ · 2π sinh r0

|x− y|.

Summarizing,

|fm(x)− fm(y)|Ca(G) > ρ

diam Θ
· r0

160 · 2π sinh r0

(α

2
|x− y| − β

)

as required in (∗∗).
Hyperbolicity constant. By construction, Ca(G) is quasi-isometric to Π̃. Since

Π̃ is 200-hyperbolic, in order to estimate the hyperbolicity constant of Ca(G) it
suffices to estimate the parameters of such a quasi-isometry.

Let x, y ∈ Θ. First, we get a lower bound on the distance between their images
m(x) and m(y) in the cone Ċ(Y )/H through that in its base C(Y )/H as follows.
By definition of the length structure on the cone,

|m(x)−m(y)| Ċ(Y )/H = 2 arg sinh

(
sinh r0 · sin

{
2|m(x)−m(y)|C(Y )/H

ρ
· π

2

})
,

whenever |m(x)−m(y)|C(Y )/H 6 ρ

2
;

|m(x)−m(y)| Ċ(Y )/H = 2r0, otherwise.

In particular, |m(x) − m(y)| Ċ(Y )/H = 2r0 at the maximal value of |m(x) −
m(y)|C(Y )/H which is at most diam Θ · 2π sinh r0

ρ
+ 200 (V is 1-hyperbolic, we refer

to the 100-neighborhood in the definition of the cylinder C(Y )). As the right
side function above is concave,

|m(x)−m(y)| Ċ(Y )/H > 2r0

diam Θ · 2π sinh r0

ρ
+ 200

|m(x)−m(y)|C(Y )/H .

That is, denoting $ = 2r0

diamΘ· 2π sinh r0
ρ

+200
, we have

(∗ ∗ ∗) |m(x)−m(y)| Ċ(Y )/H > $|m(x)−m(y)|C(Y )/H .

Next we use the following fact. Its proof is an exercise.
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Lemma 3.17. Let Z, Z1, Z2 be proper geodesic metric spaces such that Z is the
union of Z1 and Z2 along their boundaries, that is, Z = Z1 ∪ Z2 and Z1 ∩ Z2 =
∂Z1 = ∂Z2. Let p : [0, 1] → Z2 be a path with the endpoints p(0), p(1) ∈ ∂Z2

having no other intersection points with ∂Z2. Suppose that for any such p there
exists a path p1 in Z1 with the same endpoints such that their lengths satisfy

`Z1(p1) 6 K`Z2(p)

for some constant K > 0. Then

|x− y|Z1 6 K|x− y|Z .

We apply this result to Z := Π̃, Z1 := X/〈〈H〉〉, Z2 := ∪g∈G\HĊ(Y )/H. The
hypotheses are satisfied as, by (∗∗∗), we have `X/〈〈H〉〉(p1) 6 $−1`∪g∈G\H Ċ(Y )/H(p).

Using the notation above, we obtain

Claim 1. |g − h|X/〈〈H〉〉 6 $−1|g − h|Π̃.

On the other hand, the lemma applies to Z := X/〈〈H〉〉, Z1 :=
(

2π sinh r0

ρ

)
Ca(G),

Z2 := Z \ Z1 as it follows from (∗) that `Ca(G)(p1) 6 2`Z2(p). This gives

Claim 2. 2π sinh r0

ρ
|g − h|Ca(G) 6 2|g − h|X/〈〈H〉〉.

Now we are able to conclude. We have ρ
2π sinh r0

|g − h|Π̃ 6 |g − h|Ca(G) as the

(scaled) graph Ca(G) is embedded into Π̃. On the other hand, by the above
claims,

|g − h|Π̃ > $|g − h|X/〈〈H〉〉 > 1

2
·$ · 2π sinh r0

ρ
|g − h|Ca(G).

In other words,
(

2π sinh r0

ρ

)
Ca(G) ↪→ Π̃ is a

(
2
$

, 0
)
-quasi-isometric embedding.

According to Theorem 3.7, if M = 200D1

(
2
$

, 0
)

then every
(

2
$

, 0
)
-quasigeodesic

triangle in Π̃ is (4M +200)-thin (we use 200-hyperbolicity of Π̃ and the fact that
a path in the M -neighborhood of a geodesic with the same endpoints contains
this geodesic in its 2M -neighborhood [CDP, Ch. 3, Lemme 1.11]). Therefore,

every geodesic triangle in
(

2π sinh r0

ρ

)
Ca(G) is 2

$
(4M + 200)-thin. Thus, G is

ρ
2π sinh r0

· 2
$

(4M + 200)-hyperbolic.

Euler characteristic. As above, we can assume that Π̃ is contractible and
therefore is a model for EG, the universal covering of the classifying space. Then
the Euler characteristic formula follows immediately from the inclusion-exclusion
principle. ¤

4. Renormalization and lacunary hyperbolic groups

The following notion, suggested by Gromov [GrRWRG], aims to capture the
asymptotic geometry of the iterated small cancellation groups. It goes back to
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Rips [R], Bowditch [B], Thomas and Velickovic [TV], and has been made precise
and systematically studied by Ol’shanskii, Osin, and Sapir [OOS].

Definition 4.1 (Lacunary hyperbolic group). A finitely generated group is said
to be lacunary hyperbolic if there exists a sequence (Ri)i∈N of radii such that

limi→∞
Ri+1

Ri
= ∞ and the balls B(e,Ri) of its Cayley graph are δi-hyperbolic

with δi = o(Ri).

Let (Θn; mn)n∈N be a family of finite graphs and mn a labelling of Θn by
generators of a given non-elementary torsion-free hyperbolic group G0; For n > 0,
denote by Gn+1 the quotient of Gn by the normal subgroup generated by Hn =
(mn)∗ (π1(Θn)). The group Hn acts freely on Yn ⊂ Xn = Ca(Gn), the image of the
universal covering tree Tn of Θn under the natural map cn : Tn → Ca(Gn) induced
by the labelling. We denote by ρn, ∆n, and λn the corresponding geometric
invariants of this action.

The next result provides a way to construct a lacunary hyperbolic group start-
ing from (Θn; mn)n∈N.

Proposition 4.2. Let r0 > 4 · 105 and δ0, λ0 be constants provided by the very
small cancellation theorem. Assume that Gn is δn-hyperbolic for n > 0.

Suppose that there exist a constant α and a sequence βn with limn→∞ βn = ∞
such that for every n > 0, we have the following.

(i) The sequence of graphs is lacunary: limn→∞ δn

ρn
= 0 and βn diam Θn <

r0ρn+1

1200 sinh r0
.

(ii) γδn(α, βn) 6 ρn

2
and

Dδn (α,βn)

ρn
6 δ0.

(iii) λn = ∆n

ρn
6 λ0.

(iv) cn : Tn → Ca(Gn) is an (α, βn; ρn

2
)-local quasi-isometric embedding.

Then the direct limit G∗ of groups Gn is a lacunary hyperbolic group. Moreover,
the induced maps fmn : Θn → Ca(G∗) satisfy

|fmn(x)− fmn(y)| > ρn

diam Θn

· r0

160 · 2π sinh r0

(α

2
|x− y| − βn

)

Proof. Set Rn = r0 ρn

1200 sinh r0
for n > 0. We have ρn 6 girth Θn 6 2 diam Θn. It

follows from assumption (i) that limn→∞
Rn+1

Rn
= limn→∞

ρn+1

ρn
= ∞ and δn =

o(Rn).
The above conditions (i)–(iv) imply the hypotheses of the very small cancella-

tion theorem for Gn. Therefore, the map B(e, r0 ρn

1200 sinh r0
) ⊂ Gn → Gn+1 is injec-

tive for every n > 0. Since Rn < Rn+1 and diam Θn < Rn+1, the balls B(e,Rn)
in the Cayley graph of G∗ are δn-hyperbolic and natural maps Θn → Ca(Gn+1)
induce the required embeddings fmn : Θn ↪→ Ca(G∗). ¤

In the next section, given a family (Θn)n∈N of graphs and a non-elementary
hyperbolic group G0, we shall see how to construct appropriate labellings of
Θn by generators of G0. The main idea is to give a sufficient condition on the
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asymptotic geometry of the sequence (Θn)n∈N so that a random labelling satisfies
the hypothesis of Proposition 4.2 with a positive probability, arbitrary close to 1
as n →∞.

5. Random labellings and groups

5.1. Random group associated to a graph. Let G be a group generated
by a set S of k generators and Θ be a finite graph. To each labelling m of Θ
by generators from S, we associate the group G(m) which is the quotient of G
by the normal subgroup generated by the image under m∗ of the fundamental
group of Θ (cf. Definition 2.2, where G is the free group on S). The set of
all possible labellings of Θ is naturally equipped with the normalized counting
measure which assigns equal probabilities to all labellings: there are (2k)E of
them, where E denotes the number of edges in Θ. Now, let Θ = (Θn)n∈N be
a family of finite graphs. We consider the space Ω of all possible labellings of
Θ as the product of the above probability spaces endowed with the probability
product measure so that a labelling m of Θ is now considered as an alea ω ∈ Ω.
Such an element ω = (ωn)n∈N ∈ Ω defines a sequence (Gn(ω))n∈N of groups,
where Gn(ω) := G(ωn) is the group associated to a random labeling ωn of the
finite graph Θn.

The objective is to analyze the typical behavior of Gn(ω) as n →∞. The main
question is the following: given appropriate a group G and a family Θ, does the
group Gn(ω) have interesting properties for a randomly chosen element ω ∈ Ω as
n → ∞? In this section we show (see Proposition 5.9 below) that if the initial
group G is non-elementary torsion-free hyperbolic and the family Θ = (Θn)n∈N
is thin enough (that is, parameters b and ξ0 in Definition 5.3 are small enough)
then, with asymptotic probability 1 as n → ∞, a random labelling of Θn by
generators of G satisfies the hypotheses of the very small cancellation theorem
(Theorem 3.10).

5.2. Asymptotic characteristics of graphs and groups. Denote by B(e, r)
the ball of radius r at the identity e ∈ G with respect to the word length metric
associated to S and by #B(e, r) the cardinality of this ball.

Definition 5.1 (Growth entropy). The entropy of the pair (G,S) is the limit

ent(G,S) = lim
r→∞

ln #B(e, r)

r
.

The limit does exist by the submultiplicativity of the growth function #B(e, r).
It is the logarithm of the exponential growth rate of the pair (G,S). Since #B(e, r)
is majorized by 2k(2k − 1)r−1 (which is the growth function of the free group of
rank k with respect to a free generating set), the above limit satisfies

0 6 ent(G,S) 6 ln(2k − 1).
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The group G is of exponential growth if and only if ent(G,S) > 0. In particular,
ent(G,S) > 0 for all non-elementary hyperbolic groups G (however, it is an open
question whether the entropy is uniformly bounded from zero for all hyperbolic
groups, say, on two generators).

Let µ be the standard symmetric probability measure on G, that is, µ is equidis-
tributed over S: the associated random walk is the simple random walk on G
with the transition probabilities given by numbers

µ(g−1h) =

{
1
2k

if g−1h ∈ S ∪ S−1

0 otherwise

The distribution after r steps is given by the convolution power µ∗r = µ ∗µ∗(r−1).
For g ∈ G, µ∗r(g) is the probability that a word of length r in the generators

of G represents the element g. More generally, for a subset B ⊂ G, µ∗r(B) is the
probability that a word of length r represents an element from B.

Definition 5.2 (Spectral radius). The spectral radius of the simple random walk
on G is the number κreg = κreg(G, S) such that

ln κreg = lim sup
r→∞

ln µ∗r(e)
r

.

By a classical result of Kesten [Kes],

ln

√
2k − 1

k
6 ln κreg 6 0

with the right-hand equality if and only if G is amenable. Thus, the number
ln κreg(G, S) is strictly negative whenever G is a non-elementary hyperbolic group.

Observe that5

ln κreg(G, S) > − ent(G, S)

2
.

From now on let Θ = (Θn)n∈N be a family of graphs of girth ρn = girth Θn with
limn→∞ ρn = ∞. Assume that vertices of Θ are of uniformly bounded degree.
Given t > 0, denote by bn(t) the number of distinct simple paths of length t in
Θn.

Definition 5.3 (Thin family of graphs). Let b > 0 and ξ0 ∈]0, 1/2[. The family Θ
is said to be b-thin if there exists a constant C > 0 such that for all 1/2 > ξ > ξ0

we have

bn(ξρn) 6 C exp ξρnb.

For instance, a union over n ∈ N of a constant number of disjoint circle graphs
on n vertices is b-thin for all b > 0.

5By Cauchy-Schwartz inequality, 1 =
(∑

g∈B(e,r) µ∗r(g)
)2

6 #B(e, r)
∑

g∈B(e,r) µ∗r(g)2 =

#B(e, r)µ∗2r(e), whence the required inequality.
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The notion of b-thinness allows a quantitative control on the number of new
relators we add on each inductive step of the construction (that we alluded to
in the introduction). If such a number at the n-th step was too large comparing
with girth Θn, the resulting quotient group would collapse (and the inductive
procedure would not success) like in Gromov’s density model of random groups
whenever the density parameter is strictly larger than 1/2 [GrAI, Ch. 9].

In our arguments below we omit explicit estimates on the parameter ξ0. An
acute reader can choose ξ0 much smaller than λ0 provided by the very small can-
cellation theorem, see Subsection 5.5 and a constant a > 0 satisfying card Θn >
exp{a girth Θn}, given by the specific family we consider, see Theorem 7.4 (or
just set ξ0 = 10−10).

5.3. The entropy language. Let (Ωn)n>0 be a sequence of probability spaces
and An be a measurable subset of Ωn for n > 0.

Definition 5.4 (Entropy of the sequence of events). The entropy of the sequence
A = (An)n>0 is the number

ent(A) = lim sup
n→∞

ln Pr(An)

n
.

Assume now that for every n > 0 the space Ωn is a given finitely generated
group G endowed with a symmetric probability measure µ as above.

Example 1. For ε > 0, consider the event “a word of length n in the generators
of G represents an element of length < εn”. The entropy of this sequence is

ent(ε) = lim sup
n→∞

ln µ∗n(B(e, εn))

n
.

In particular, ent(0) = ln κreg.

Example 2. For ε > 0, consider the event “a word of length n in the generators
of G represents an element at distance < εn from a given element g ∈ G”. Then
the entropy of this sequence is at most

ent(ε) = lim sup
n→∞

ln supg∈G µ∗n(B(g, εn))

n
.

Example 3. For ε > 0, consider the event “two independently chosen words w1

and w2 of length max{|w1|, |w2|} = n satisfy |w1−gw2|+ |g| < εn for some g ∈ G
such that w1 6= g−1w2g”. Then the entropy of this sequence is at most

ent+(ε) = lim sup
n→∞

ln Pr
(
supg∈G,w1 6=g−1w2g, max{|w1|,|w2|}=n(|w1 − gw2|+ |g|) < εn

)

n
.

Lemma 5.5. We have the following general inequalities.

(i) ent(ε) 6 ent(ε) 6 ent(0) + ε ent(G,S) 6 ln κreg + ε ln(2k− 1);
(ii) ent+(ε) 6 ent(0) + 2ε ent(G,S).
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Proof. (i) First and third inequalities are obvious from the definitions. Now for
an element g ∈ G, we see that

(1) µ∗n(B(g, εn)) =
∑

h∈B(g,εn)

µ∗n(h) 6 #B(e, εn)
√

µ∗2n(e)

as for any element h ∈ G we have (µ∗n(h))2 6 µ∗2n(e). (Indeed, if w and w′ are
two words representing h then w(w′)−1 represents the identity e.) This immedi-
ately implies the second inequality.

(ii) For a fixed w1 of length at most n, the probability that a word w2 of length
at most n satisfies w2 = h1w1h2 with |h1| + |h2| < εn for some h1, h2 ∈ G is at
most

µ∗n(h1w1h2)
∑

06t6εn

#B(e, t)#B(e, εn− t) 6

εn#B2(e, εn)
√

µ∗2n(e).

Thus, ent+(ε) 6 ent(0) + 2ε ent(G, S). ¤
The above condition |h1|+ |h2| < εn means that words w1 and w2 have a large

“common” part. Such an intuition comes from the specific case when w1 and w2

would label paths in a tree, see Figure 1.

h1

w2

h2

w2

w1

w1

Figure 1

Definition 5.6 (Rare events). A sequence A = (An)n>0 of events is said to be
rare if ent(A) 6= 0.

In other words, a sequence A = (An)n>0 of events is rare (or the complement
of A is very probable) if the probability of An is at most exp βn whenever β ∈
] ent(A), 0[ for n large enough.

Example 4.

(i) If G is a non-amenable group, then ln κreg 6= 0. Therefore, if An is the
event “a word of length n in the generators of G represents the identity
element”, then ent(A) = ent(0) = ln κreg 6= 0. That is, A is rare.
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(ii) By the previous lemma, the sequence of events of Example 1 is rare

whenever ε < − ent(0)
ln(2k−1)

6 − ent(0)
ent(G,S)

. In other words, for n and r such that
r
n

< − ent(0)
ent(G,S)

, it is rare that a word of length n À r in the generators of

G represents a group element of length < r.

Let (an)n>0 be a non-decreasing sequence of positive real numbers and a its
entropy, that is, a = lim supn→∞

ln an

n
. Then for every ε > 0 there exists a constant

M > 0 such that for every n > 0 we have

an 6 M exp (a + ε)n.

In particular, inequalities (1), applied to the ball B(e, r), show that for every
ε > 0 there exists M > 0 such that for every r > 0 and an integer n > 0 we have

(2) µ∗n(B(e, r)) 6 M exp {( ent(0) + ε)n + ( ent(G,S) + ε)r}.

5.4. Quasigeodesic labellings. Let (G,S) be a non-elementary torsion-free
hyperbolic group, Θ = (Θn)n∈N be b-thin (with respect to a given constant
ξ0 ∈]0, 1/2[, see Definition 5.3), and ωn denote a random labellings of Θn.

Lemma 5.7 (Random labelling is quasigeodesic). Let ε > 0 and l(n) be a func-

tion with limn→∞ l(n) = ∞. Suppose that b + ln κreg < 0 and ε < |b+ln κreg|
ln(2k−1)

. Then

the probability that there exists a simple path w of length ‖w‖ between ξ0ρn and
ρn

2
in Θn such that |ωn(w)|G < ε‖w‖ − l(ρn) is at most

B exp {−l(ρn) ent(G,S)}
for n À 1 and some constant B > 0.

In particular, if b + ln κreg < 0 and α = |b+ln κreg|
2 ln(2k−1)

, then, with asymptotic prob-

ability 1 as n →∞, a random labelling ωn of Θn satisfies, for every simple path
w of length ‖w‖ 6 ρn

2
in Θn,

|ωn(w)|G > α‖w‖ − l(ρn)− αξ0ρn.

Proof. The probability that there exists a simple path w of length ‖w‖ in Θn

such that ξ0ρn 6 ‖w‖ 6 ρn

2
and |ωn(w)|G < ε‖w‖ − l(ρn) is at most

∑

ξ0ρn6‖w‖6 ρn
2

bn(‖w‖)µ∗‖w‖ (B(e, ε‖w‖ − l(ρn))) 6

∑

ξ0ρn6‖w‖6 ρn
2

bn(‖w‖)#B(e, ε‖w‖ − l(ρn))
√

µ∗2‖w‖(e) 6

∑

‖w‖6 ρn
2

M exp{(b′ + ent(0) + ε ent(G,S))‖w‖} exp{−l(ρn) ent(G,S)}
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for M > 0 and b′ > b such that b′ + ln κreg < 0 and b′ + ln κreg + ε ln(2k− 1) < 0
(cf. (2)). It follows that the series

∑

‖w‖6 ρn
2

M exp{(b′ + ent(0) + ε ent(G,S))‖w‖}

converges. Therefore, the required probability is at most

M exp{−l(ρn) ent(G,S)}
1−exp{(b′+ ent(0)+ε ent(G,S))} ,(3)

whence the result for n large enough so that

l(ρn) >
ln

(
M

1−exp{(b′+ ent(0)+λ ent(G,S))}

)

ent(G,S)
.

¤

5.5. Small cancellation condition. Recall that Tn denotes the universal cov-
ering tree of Θn with respect to a fixed base point. A labelling of Θ = (Θn)n∈N
by generators of G induces naturally a map c : Tn → Ca(G). By Lemma 5.7, if
b + ln κreg < 0 and

α = − b + ln κreg

2 ln(2k − 1)
,

then, with asymptotic probability 1 as n →∞, a random labelling ωn of Θ induces
a local quasi-isometric embedding. More precisely, let us define a sequence βn by

βn := l(ρn) + αξ0ρn 6 2αξ0ρn ¿ ρn,(4)

where l(n) is a function with limn→∞ l(n) = ∞. Then, with asymptotic probabil-
ity 1 as n →∞, we have

|c(u)− c(v)| > α|u− v| − βn

for all u, v ∈ Tn at distance 6 ρn

2
and the map c given by a random labelling ωn.

Assume now, in addition, that l(n) = o(n). Then, for large enough integer
n > 0 and small enough ξ0 > 0 we have γδ(α, βn) 6 ρn

2
. Indeed, it follows, for

example, from an explicit formula for γδ(α, βn) obtained in [CDP, Ch.3] (see also
Theorem 3.7) whenever limn→∞ ρn = ∞. Therefore, by Theorem 3.7, applied
to an (α, βn; ρn

2
)-local quasigeodesic in Ca(G) for n large enough, the Hausdorff

distance from any geodesic path [c(u), c(v)] to the path c ([u, v]) , and vise versa,
is at most D = Dδ(α, βn). In fact, in view of the first inequality of (4) and an
explicit estimate for Dδ(α, βn) [CDP, Ch.3], we have D = 8αξ0ρn + ς(α, δ) for
large enough integer n and a function ς(α, δ). Finally, we consider n large enough
so that

8D + 700δ 6 200αξ0ρn.(5)



EXAMPLES OF RANDOM GROUPS 21

Fix λ > 0. Let us evaluate the length of the largest piece in the context of small
cancellation theory with the geometric cancellation parameter λ, see Section 3.
By Definition 3.9 and Proposition 3.4,

∆(Θn) 6 max
g∈G\(ωn)∗(π1(Θn))

diam (C(gc(Tn)) ∩ C(c(Tn))) + 2D + 100δ,

where C(c(Tn)) denotes the cylinder of the image c(Tn) in Ca(G), see Defini-
tion 3.1. As the image is D-quasiconvex, the cylinder C(c(Tn)) is at distance of
at most D + 100δ from c(Tn). Then

∆(Θn) 6 max
g∈G\(ωn)∗(π1(Θn))

diam
(
c(Tn)D+100δ ∩ gc(Tn)D+100δ

)
+ 2D + 100δ,

where c(Tn)D+100δ denotes the (D + 100δ)-neighbourhood of c(Tn) in Ca(G).
Assume that for an element g ∈ G we have

diam
(
c(Tn)D+100δ ∩ gc(Tn)D+100δ

)
+ 2D + 100δ > λρn.

Then there exists two simple paths [u1, v1] and [u2, v2] in Θn and an element h ∈ G
such that, after passing to the lifts of ui, vi in Tn, |c(ui)−c(vi)| > λρn−4D−300δ
for i = 1, 2, |h| = |c(u1) − c(u2)| 6 2D + 200δ, |c(v1) − c(v2)| 6 2D + 200δ, and
the distance from every point of the path c([u1, v1]) to a point of c([u2, v2]) is at
most 4D + 300δ, see Figure 2.

Up to a possible extension of paths c([u1, v1]) and c([u2, v2]) at their endpoints
c(v1) and c(v2) by simple paths of length at most 2D + 150δ and up to cutting
the paths into two parts, we find two disjoint simple paths in Θn labelled by two
(independent) words w1 and w2 of length |wi| 6 λρn for i = 1, 2, and an element
h ∈ G such that

|wi| > λρn

2
, |c(w1)− hc(w2)|+ |h| < 8D + 700δ.

That is, by choosing (once again) a small enough ξ0 (so that, ξ0 < λ/200), we
obtain, for large enough n given by (5), λρn

2
6 |wi| 6 λρn and

|c(w1)− hc(w2)|+ |h| < 8D + 700δ 6 200αξ0ρn < αλρn.

By Lemma 5.5 (ii), the event “two independent randomly chosen words of
length 6 λρn satisfy this inequality” is a rare event of entropy at most λ( ent(0)+
2α ent(G,S)).

The number of pairs of distinct simple paths in Θn of length in the interval
[λρn

2
, λρn] is of order exp 2bλρn. Thus, the entropy of the event ∆(Θn) > λρn is

at most 2λ(ent(0) + α ent(G,S) + b) which, for α = |b+ent(0)|
2 ln(2k−1)

, gives

Lemma 5.8 (Random labelling satisfies the small cancellation condition). Let
λ > 0 and b > 0. If b+ ent(0) < 0, then, with asymptotic probability 1 as n →∞,
a random labelling of Θn satisfies ∆(Θn) 6 λρn. ¤

Summarizing, if Θ is thin enough, Lemmas 5.7 and 5.8 provide a labelling that
satisfies the hypotheses of the very small cancellation theorem, see Theorem 3.10.
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c(v1)

c(u2) c(v2)
6 D

6 100δ

6 D

c(u1)

6 100δ

> λρn − 2D − 100δ

2D + 150δ6 100δ

6 100δ

6 D 2D + 150δ

h

6 D

Figure 2

Proposition 5.9. Let (G,S) be a non-elementary torsion-free hyperbolic group
generated by a set S of k generators, Θ = (Θn)n∈N be a b-thin family with
limn→∞ girth Θn = ∞, and l(n) a function such that limn→∞ l(n) = ∞ and
l(n) = o(n). Let κ > 0 be a constant satisfying κreg(G, S) < κ.

If b + ln κ < 0 and α = | b+ln κ |
2 ln(2k−1)

, then, for every fixed λ > 0, with asymptotic

probability 1 as n →∞, a random labelling of Θn induces an (α, βn; girthΘn

2
)-local

quasi-isometric embedding Tn ↪→ Ca(G) and satisfies ∆(Θn) 6 λ girth Θn. ¤

6. Random hyperbolic and lacunary hyperbolic groups

We are ready now to analyze typical properties of groups associated to ran-
dom labellings ω of Θ. First, we obtain such properties for groups Gn(ω) as
n →∞, and then for their direct limits for an appropriately chosen recursive
subset I = {ni} ⊆ N.

6.1. Random hyperbolic groups.

Theorem 6.1. Let (G, S) be a non-elementary torsion-free hyperbolic group gen-
erated by a set S of k generators, Θ = (Θn)n∈N be a b-thin family of graphs with
limn→∞ girth Θn = ∞, and l(n) a non-decreasing function with limn→∞ l(n) = ∞
and l(n) = o(n). Let κ > 0 be a constant satisfying κreg(G, S) < κ.

If b + ln κ < 0 and α = | b+ln κ |
2 ln(2k−1)

, then the following properties hold with as-

ymptotic probability 1 as n →∞ for a random labelling ω of Θ.

(i) The group Gn(ω) is non-elementary torsion-free hyperbolic.
(ii) For a fixed R > 0, the restriction of the canonical projection G ³ Gn(ω)

onto the ball B(e, R) ⊂ G is injective.
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(iii) The map fωn : Θn → Ca(Gn+1(ω)) induced by the labelling satisfies

|fωn(x)− fωn(y)| > girth Θn

diam Θn

· αr0

320 · 2π sinh r0

(α

2
|x− y| − βn

)

Proof. It follows from Proposition 5.9, Definition 3.9 of the stable length and
Theorem 3.7 that, with asymptotic probability 1 as n →∞ for a random labelling
ω of Θ, we have girth Θn > ρn > α

2
girth Θn, where ρn denotes the injectivity

radius of the action of Hn = (ωn)∗ (π1(Θn)). It suffices to apply the very small
cancellation theorem (Theorem 3.10) and the fact that l(n) is a non-decreasing
function. ¤

A detailed proof of the next result has been given by Silberman [S], see also
the Bourbaki seminar by Ghys [Gh].

Theorem 6.2. Suppose that Θ is an expander (see Definition 7.3). Under the
hypothesis of Theorem 6.1, with asymptotic probability 1 as n → ∞, the group
Gn(ω) satisfies Kazhdan’s property (T) (see Definition 7.1). ¤

Theorem 6.2, together with Proposition 7.2 below, give a uniform upper bound
on the spectral radii of the simple random walk on all random quotients of (G,S)
and hence allow us to iterate the construction. An alternative way is to start
with a non-elementary torsion-free hyperbolic group which is already Kazhdan,
for instance, with a co-compact lattice in Sp(n, 1), n > 2.

6.2. Random lacunary hyperbolic groups. Let I ⊆ N be an infinite sequence
of integers. We denote by GI(ω) the quotient of G by the normal subgroup
generated by the images under ω∗ = ((ωn)∗)n∈I of the fundamental groups of all
Θn, n ∈ I.

Theorem 6.3. Let (G,S) be a non-elementary torsion-free hyperbolic group gen-
erated by a set S of k generators, Θ = (Θn)n∈N be a b-thin family of graphs with
limn→∞ girth Θn = ∞, and l(n) a non-decreasing function with limn→∞ l(n) = ∞
and l(n) = o(n). Let κ > 0 be a constant satisfying κreg(G, S) < κ.

If b + ln κ < 0, and α = | b+ln κ |
2 ln(2k−1)

, then, for any given p ∈ (0, 1), there exists

an infinite sequence of integers I = {ni} ⊂ N such that with probability at least
p, the group GI(ω) is infinitely presented, of spectral radius at most κ, and the
image of the graph Θni

in the Cayley graph of GI(ω) satisfies

|fωni
(x)− fωni

(y)| > girth Θni

diam Θni

· αr0

320 · 2π sinh r0

(α

2
|x− y| − βni

)
,

where βni
= l(girth Θni

) + αξ0 girth Θni
.

Proof. We proceed as in the proof of Theorem 6.1 but iterate the argument and
apply Proposition 4.2 instead of the very small cancellation theorem. This is
possible as for large enough integer n > 0 and small enough ξ0 > 0 we have

γδn(α, βn) 6 ρn

2
and

Dδn (α,βn)

ρn
6 δ0. Indeed, it suffices to have limn→∞

ρn

δn
= ∞, use
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limn→∞ ρn = ∞ and, for example, explicit formulae for γδn(α, βn) and Dδn(α, βn)
given in [CDP, Ch.3], see Theorem 3.7. ¤

7. Expanders, property (T) and construction of the monster

7.1. Property (T) and co-growth. Let G be a group generated by a finite set
S of cardinality k. The Markov operator is the element

M =
1

2k

∑
s∈S

(
s + s−1

)

of the group ring QG.
If π : G → U(H) is a unitary representation of G and x ∈ H, then

Mx =
1

2k

∑
s∈S

(
π(s)x + π(s−1)x

)
.

Abusing notation, we denote by M both the Markov operator and its image under
π. The operator M is symmetric with spectrum spec(M) in [−1, 1].

Definition 7.1 (Kazhdan’s property (T)). A group G has Kazhdan’s property
(T) (or G is Kazhdan) if there exists κ = κ(G,S) ∈ (0, 1) such that for any
unitary representation π of G

spec(M) ⊆ [−1, κ] ∪ {1}.
A beautiful account of the theory of Kazhdan groups can be found in a recent

monograph [BHV]. The following result is well-known.

Proposition 7.2. Let G be a group with Kazhdan’s property (T), S a set of group
generators, and κ is the Kazhdan constant of the pair (G,S). Then every infinite
quotient (G, S) of (G,S) satisfies κreg(G, S) 6 κ.

Proof. Let us consider the natural action of G on the space L2(G). Since G is
infinite the constant functions are not in L2(G). We have 〈Mnx, x〉 6 κn〈x, x〉.
Applying this to the Dirac function f = δe at the identity, we obtain Mf =
1
2k

∑
a∈S±1 f(a), then

Mnf =
1

(2k)n

∑

words w of length n

f(w),

and

Mnδe =
number of words of length n representing the identity e

number of all words of length n
= µ∗n(e),

that is, µ∗n(e)1/n 6 κ, whence κreg(G, S) 6 κ. ¤
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7.2. Expanders: definition and examples. Let (V,E) be a finite connected
graph. The combinatorial Laplace operator ∆: `2(V ) → `2(V ) is given by the
quadratic form

〈f, ∆f〉 :=
∑

(u,v)∈E

|f(u)− f(v)|2.

It is a positive semidefinite operator. Its smallest eigenvalue is zero and the
corresponding eigenfunction is the constant function. Let λ1 denote the smallest
non-zero eigenvalue.

Definition 7.3 (Expander). A family Θ = (Θn)n∈N of finite connected graphs is
an expander if the following properties hold:

(i) vertices of Θ have uniformly bounded degree;
(ii) the number of vertices in Θn tends to infinity as n →∞;
(iii) λ1(Θn) > λ∞ > 0 uniformly over n ∈ N for some constant λ∞.

We consider Θ endowed with a metric d on the disjoint union of Θn’s which co-
incides with the standard edge-path metric on each Θn and such that d(xn, xn′) >
n + n′ whenever xn ∈ Θn, xn′ ∈ Θn′ , n 6= n′.

In order to construct the monster we shall apply the theorem of random lacu-
nary hyperbolic groups to a specific family Θ = (Θn)n∈N, that is, a family with
limn→∞ girth Θn = ∞, a uniformly bounded ratio diamΘn

girthΘn
, and a small enough

thinness b(Θ). Unfortunately, an easy available expander, that is, a random graph,
has small girth. Therefore, we choose an appropriate family among several ex-
plicit expanders. For instance, we take graphs Θq = Xp,q which are the Cayley
graphs of the projective general linear group PGL2(q) over the field of q elements
for a particular set Sp,q of (p + 1) generators, where p and q are distinct primes

congruent to 1 modulo 4 with the Legendre symbol
(

p
q

)
= −1.

Theorem 7.4. ([M, LPS], cf. [DSV, V]) Let p be fixed.

(i) The graph Θq is p + 1 regular on N = q(q2 − 1) vertices.
(ii) girth Θq > 4 logp q − logp 4.
(iii) The family (Θq)q prime is a family of Ramanujan graphs.

In particular, limq→∞ girth Θq = ∞ and the family (Θq)q prime is an expander.
By a standard result, known as the Expander mixing lemma, the graph Θq is of

diameter O(log N). Thus, the ratio diam Θq

girthΘq
is uniformly bounded over primes q.

Lemma 7.5. The family (Θq)q prime is b-thin for some (finite) constant b > 0.

Proof. Given ξ > ξ0, let us estimate the number of distinct simple paths of length
ξρq in Θq, where ρq = girth Θq. Since graphs are p + 1 regular the number of
such paths at a fixed vertex is of order pξρq . On the other hand, the number of

vertices is of order pdiamΘq 6 pCρq 6 p
Cξρq

ξ0 with a constant C > 0 as the ratio
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diamΘq

girthΘq
is uniformly bounded over primes q. Therefore, the number of paths we

consider is at most B exp ξ ρqb, where b =
(
1 + C

ξ0

)
ln p and B > 0. ¤

Given a non-elementary torsion-free hyperbolic group G and b > 0 from the
preceding lemma, we could have b + ln κreg > 0. That is, the theorem of random
lacunary hyperbolic groups cannot be applied. The next result provides a way
to surmount this obstacle (the proof is immediate from the definitions).

Lemma 7.6. Let Θ = (Θn)n∈N be a family of graphs. If Θ(j) denotes the graph
obtained by subdivision of each edge of Θ into j new edges, then

λ1(Θ
(j)
n ) > λ1(Θn)

j2
and b(Θ(j)) 6 b(Θ)

j
,

girth Θ(j)
n = j girth Θn and diam Θ(j)

n = j diam Θn.

¤

7.3. The monster. We are now ready to apply the theorem of random lacunary
hyperbolic groups, see Theorem 6.3, to a non-elementary torsion-free hyperbolic
group G generated by a set S of k generators and to a specific expander Θ from
the preceding section: a constant κ > 0 is given by Theorem 6.2 (or by Kazhdan’s

constant of (G, S) whenever G satisfies Kazhdan’s property T) and α = | b+ln κ |
2 ln(2k−1)

.

Theorem 7.7. Let 0 < p < 1. There exists an infinite sequence of integers
I = {ni} ⊂ N such that, with probability at least p, the group GI(ω) is infinite
and the image of the graph Θni

in the Cayley graph of GI(ω) satisfies

|fωni
(x)− fωni

(y)| > girth Θni

diam Θni

· αr0

320 · 2π sinh r0

(α

2
|x− y| − βni

)
,

where βni
= l(girth Θni

) + αξ0 girth Θni
. ¤

This group is called the Gromov monster : it contains a coarse image of an
expander.

It is worth noticing that one can easily merge this construction with that
of Tarski monster by Ol’shanskii (see, for example, [Olsh, Ch. 9, § 28.1]) and
obtain a Tarski monster coarsely containing an expander. On the other hand,
the construction can be made recursive, in a non-probabilistic way, providing a
recursively presented group with the above properties. Indeed, the construction
of the expander above is recursive, all labellings can be enumerated, and the
geometric small cancellation condition can be checked in an algorithmic way.
Using the Higman embedding theorem [LS, Th. IV.7.3], the resulting lacunary
hyperbolic group can be embedded into a finitely presented group.

7.4. No coarse embedding into a Hilbert space. The following fundamental
observation is due to Enflo [E], see also [Gh].
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Theorem 7.8. Let Θ = (Θn)n∈N be an expander. Suppose that there is an 1-
Lipschitz map from Θ to a Hilbert space H. Then there exist two sequences of
points xn, yn in Θn at a distance at least ln(card Θn) with images at a uniformly
bounded distance in H.

Corollary 7.9. Let X be a graph, Θ = (Θn)n∈N be an expander with card Θn >
exp{a girth Θn} for some fixed a > 0, and l a non-decreasing function with
limn→∞ l(n) = ∞ and l(n) = o(n). There exists a constant ξ0 > 0 satisfying
the following. Suppose that there exists a simplicial map f : Θ → X and a
constant A > 0 such that for all x, y ∈ Θn,

|f(x)− f(y)| > A
(α

2
|x− y| − l(girth Θn)− αξ0 girth Θn

)
.

Then there is no coarse embedding of X into a Hilbert space.

Proof. Otherwise, we could have α
2

ln(card Θn) 6 C + l(girth Θn) + αξ0 girth Θn

for some constant C > 0, contradicting the hypothesis whenever ξ0 < a
2
. ¤

Corollary 7.10. Gromov’s monster admits no coarse embedding into a Hilbert
space. ¤

More generally, an expander cannot be coarsely embedded into any uniformly
convex Banach space with unconditional basis [Oz] (neither into any `p with
1 6 p < ∞, see [Roe, Prop. 11.30]). It follows that Gromov’s monster admits no
such an embedding (cf. 7.6 below).

7.5. Variant of Kapovich. Using an argument of Misha Kapovich [K], one can
construct a finitely generated group with no coarse embedding into a Hilbert
space and, in addition, with the fixed point property on all buildings and all
symmetric spaces. In order to do this, in the random group construction above,
one starts with the hyperbolic group G0 being a co-compact lattice of Sp(n, 1).
The super-rigidity of this group implies that every infinite quotient of G0, hence
the monster, satisfies this fixed point property. More results in this vein can be
found in [NS].

7.6. Around the Baum-Connes conjecture. Following a remarkable result of
Yu [Yu] on the coarse Baum-Connes conjecture, Higson [Hig] established the injec-
tivity of the Baum-Connes homomorphism with coefficients (hence the Novikov
conjecture on the homotopy invariance of higher signatures) for every discrete
group endowed with an amenable action on a Hausdorff compact space (or, in
other words, for every C∗-exact6 group). This result was generalized to all groups
with coarse embeddings into a Hilbert space [STY].

6A group G is C∗-exact if the spatial tensor product by the reduced C∗-algebra C∗r (G) of
the group preserves short exact sequences of C∗-algebras. A finitely generated C∗-exact group
is known to have a coarse embedding into a Hilbert space [A]. The converse is a well-known
open problem.
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Gromov’s random group construction is actually the only known producing a
finitely generated (and even finitely presented) group with no coarse embedding
into a Hilbert space. Moreover, the following result is true.

Theorem 7.11. [HLS] Let G be a finitely generated group. If the Cayley graph
of G contains a coarsely embedded expander, then G does not satisfy the Baum-
Connes conjecture with coefficients.

Corollary 7.12. Gromov’s monster does not satisfy the Baum-Connes conjecture
with coefficients.

Note that the Novikov conjecture does hold for this group as it holds for every
direct limit of hyperbolic groups, see [STY] and [Ro, Prop. 2.4]. Except for
this monster, there is no other known finitely generated groups which are not
C∗-exact.

Kasparov and Yu proved the Novikov conjecture for every finitely generated
group having a coarse embedding into a uniformly convex Banach space [KY]. On
the other hand, V. Lafforgue constructed an expander with no such an embed-
ding [Laf]. Unfortunately, his expander is of small girth so Gromov’s construction
cannot be immediately applied to produce a new monster group.

The large girth condition plays also a crucial role in a recent work of Willet
and Yu [WY1, WY2], who obtained a refinement of Theorem 7.11.

7.7. Further applications. Gromov’s monster appears to be a notable example
in other deep results. For instance, it is strongly relevant to the study of aspheric-
ity problems. The Borel conjecture is known for direct limits of hyperbolic groups
and hence for Gromov’s monster [L, Remark 4.12]). The geometric method of
Delzant and Gromov [DG] we applied to prove the very small cancellation the-
orem (Theorem 3.10) has been further developed by Coulon in a more general
context of the small cancellation theory for rotating families of groups. He used it
to build new aspherical polyhedra [C]. Finitely presented aspherical groups and
closed aspherical manifolds with extreme properties have been recently produced
by Sapir [Sap], and again Gromov’s monster plays its exceptional part in the
construction.
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