DENJOY-CARLEMAN DIFFERENTIABLE PERTURBATION OF POLYNOMIALS AND UNBOUNDED OPERATORS

ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

ABSTRACT. Let $t\mapsto A(t)$ for $t\in T$ be a C^M -mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here C^M stands for C^ω (real analytic), a quasianalytic or non-quasianalytic Denjoy-Carleman class, C^∞ , or a Hölder continuity class $C^{0,\alpha}$. The parameter domain T is either $\mathbb R$ or $\mathbb R^n$ or an infinite dimensional convenient vector space. We prove and review results on C^M -dependence on t of the eigenvalues and eigenvectors of A(t).

Theorem. Let $t \mapsto A(t)$ for $t \in T$ be a parameterized family of unbounded operators in a Hilbert space H with common domain of definition and with compact resolvent. If $t \in T = \mathbb{R}$ and all A(t) are self-adjoint then the following holds:

- (A) If A(t) is real analytic in $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of A(t) can be parameterized real analytically in t.
- (B) If A(t) is quasianalytic of class C^Q in $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of A(t) can be parameterized C^Q in t.
- (C) If A(t) is non-quasianalytic of class C^L in $t \in \mathbb{R}$ and if no two different continuously parameterized eigenvalues (e.g., ordered by size) meet of infinite order at any $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of A(t) can be parameterized C^L in t.
- (D) If A(t) is C^{∞} in $t \in \mathbb{R}$ and if no two different continuously parameterized eigenvalues meet of infinite order at any $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of A(t) can be parameterized C^{∞} in t.
- (E) If A(t) is C^{∞} in $t \in \mathbb{R}$, then the eigenvalues of A(t) can be parameterized twice differentiably in t.
- (F) If A(t) is $C^{1,\alpha}$ in $t \in \mathbb{R}$ for some $\alpha > 0$, then the eigenvalues of A(t) can be parameterized C^1 in t.

If $t \in T = \mathbb{R}$ and all A(t) are normal then the following holds:

- (G) If A(t) is real analytic in $t \in \mathbb{R}$, then for each $t_0 \in \mathbb{R}$ and for each eigenvalue z_0 of $A(t_0)$ there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_0 of $A(t_0 \pm s^N)$ and their eigenvectors can be parameterized real analytically in s near s = 0.
- (H) If A(t) is quasianalytic of class C^Q in $t \in \mathbb{R}$, then for each $t_0 \in \mathbb{R}$ and for each eigenvalue z_0 of $A(t_0)$ there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_0 of $A(t_0 \pm s^N)$ and their eigenvectors can be parameterized C^Q in s near s = 0.
- (I) If A(t) is non-quasianalytic of class C^L in $t \in \mathbb{R}$, then for each $t_0 \in \mathbb{R}$ and for each eigenvalue z_0 of $A(t_0)$ at which no two of the different continuously

Date: November 1, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 26C10, 26E10, 47A55.

Key words and phrases. Perturbation theory, differentiable choice of eigenvalues and eigenvectors, Denjoy–Carleman ultradifferentiable functions.

AK was supported by FWF-Project P 23028-N13, PM by FWF-Project P 21030-N13, AR by FWF-Projects J 2771-N13 and P 22218-N13.

- parameterized eigenvalues (which is always possible by [12, II 5.2]) meet of infinite order, there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_0 of $A(t_0 \pm s^N)$ and their eigenvectors can be parameterized C^L in s near s = 0.
- (J) If A(t) is C^{∞} in $t \in \mathbb{R}$, then for each $t_0 \in \mathbb{R}$ and for each eigenvalue z_0 of $A(t_0)$ at which no two of the different continuously parameterized eigenvalues meet of infinite order, there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_0 of $A(t_0 \pm s^N)$ and their eigenvectors can be parameterized C^{∞} in s near s = 0.
- (K) If A(t) is C^{∞} in $t \in \mathbb{R}$, then for each $t_0 \in \mathbb{R}$ and for each eigenvalue z_0 of $A(t_0)$ at which no two of the different continuously parameterized eigenvalues meet of infinite order, the eigenvalues near z_0 of A(t) and their eigenvectors can be parameterized by absolutely continuous functions in t near $t = t_0$.

If $t \in T = \mathbb{R}^n$ and all A(t) are normal then the following holds:

- (L) If A(t) is real analytic or quasianalytic of class C^Q in $t \in \mathbb{R}^n$, then for each $t_0 \in \mathbb{R}^n$ and for each eigenvalue z_0 of $A(t_0)$, there exist a neighborhood D of z_0 in \mathbb{C} , a neighborhood W of t_0 in \mathbb{R}^n , and a finite covering $\{\pi_k : U_k \to W\}$ of W, where each π_k is a composite of finitely many mappings each of which is either a local blow-up along a real analytic or C^Q submanifold or a local power substitution, such that the eigenvalues of $A(\pi_k(s))$, $s \in U_k$, in D and the corresponding eigenvectors can be parameterized real analytically or C^Q in s. If A is self-adjoint, then we do not need power substitutions.
- (M) If A(t) is real analytic or quasianalytic of class C^Q in $t \in \mathbb{R}^n$, then for each $t_0 \in \mathbb{R}^n$ and for each eigenvalue z_0 of $A(t_0)$, there exist a neighborhood D of z_0 in \mathbb{C} and a neighborhood W of t_0 in \mathbb{R}^n such that the eigenvalues of A(t), $t \in W$, in D and the corresponding eigenvectors can be parameterized by functions which are special functions of bounded variation (SBV), see [9] or [3], in t.

If $t \in T \subseteq E$, a c^{∞} -open subset in a finite or infinite dimensional convenient vector space then the following holds:

- (N) For $0 < \alpha \le 1$, if A(t) is $C^{0,\alpha}$ (Hölder continuous of exponent α) in $t \in T$ and all A(t) are self-adjoint, then the eigenvalues of A(t) can be parameterized $C^{0,\alpha}$ in t.
- (O) For $0 < \alpha \le 1$, if A(t) is $C^{0,\alpha}$ in $t \in T$ and all A(t) are normal, then we have: For each $t_0 \in T$ and each eigenvalue z_0 of $A(t_0)$ consider a simple closed C^1 -curve γ in the resolvent set of $A(t_0)$ enclosing only z_0 among all eigenvalues of $A(t_0)$. Then for t near t_0 in the c^{∞} -topology on T, no eigenvalue of A(t) lies on γ . Let $\lambda(t) = (\lambda_1(t), \ldots, \lambda_N(t))$ be the N-tuple of all eigenvalues (repeated according to their multiplicity) of A(t) inside of γ . Then $t \mapsto \lambda(t)$ is $C^{0,\alpha}$ for t near t_0 with respect to the non-separating metric

$$d(\lambda, \mu) = \min_{\sigma \in \mathcal{S}_N} \max_{1 \le i \le N} |\lambda_i - \mu_{\sigma(i)}|$$

on the space of N-tuples.

Part (A) is due to Rellich [22] in 1942, see also [4] and [12, VII 3.9]. Part (D) has been proved in [2, 7.8], see also [13, 50.16], in 1997, which contains also a different proof of (A). (E) and (F) have been proved in [14] in 2003. (G) was proved in [19, 7.1]; it can be proved as (H) with some obvious changes, but it is not a special case since C^{ω} does not correspond to a sequence which is an \mathcal{L} -intersection (see 'definitions and remarks' below and [17]). (J) and (K) were proved in [19, 7.1]. (N) was proved in [15].

The purpose of this paper is to prove the remaining parts (B), (C), (H), (I), (L), (M), and (O).

Definitions and remarks. Let $M = (M_k)_{k \in \mathbb{N} = \mathbb{N}_{\geq 0}}$ be an increasing sequence $(M_{k+1} \geq M_k)$ of positive real numbers with $M_0 = 1$. Let $U \subseteq \mathbb{R}^n$ be open. We denote by $C^M(U)$ the set of all $f \in C^{\infty}(U)$ such that, for each compact $K \subseteq U$, there exist positive constants C and ρ such that

$$|\partial^{\alpha} f(x)| \leq C \, \rho^{|\alpha|} \, |\alpha|! \, M_{|\alpha|} \quad \text{ for all } \alpha \in \mathbb{N}^n \text{ and } x \in K.$$

The set $C^M(U)$ is a *Denjoy-Carleman class* of functions on U. If $M_k = 1$, for all k, then $C^M(U)$ coincides with the ring $C^\omega(U)$ of real analytic functions on U. In general, $C^\omega(U) \subseteq C^M(U) \subseteq C^\infty(U)$.

Throughout this paper $Q = (Q_k)_{k \in \mathbb{N}}$ is a sequence as above which is log-convex (i.e., $Q_k^2 \leq Q_{k-1}Q_{k+1}$ for all k), derivation closed (i.e., $\sup_k (Q_{k+1}/Q_k)^{1/k} < \infty$), quasianalytic (i.e., $\sum_k (k! \, Q_k)^{-1/k} = \infty$), and which is also an \mathcal{L} -intersection. We say that Q is an \mathcal{L} -intersection if $C^Q = \bigcap \{C^N : N \text{ non-quasianalytic, log-convex, } N \geq Q\}$. Moreover, $L = (L_k)_{k \in \mathbb{N}}$ is a sequence as above which is log-convex, derivation closed, and non-quasianalytic. Then C^Q and C^L are closed under composition and allow for the implicit function theorem. See [17] or [16] and references therein.

That A(t) is a real analytic, C^M (where M is either Q or L), C^{∞} , or $C^{k,\alpha}$ family of unbounded operators means the following: There is a dense subspace V of the Hilbert space H such that V is the domain of definition of each A(t), and such that $A(t)^* = A(t)$ in the self-adjoint case, or A(t) has closed graph and $A(t)A(t)^* = A(t)^*A(t)$ wherever defined in the normal case. Moreover, we require that $t \mapsto \langle A(t)u, v \rangle$ is of the respective differentiability class for each $u \in V$ and $v \in H$. From now on we treat only $C^M = C^{\omega}$, C^M for M = Q, M = L, and $C^M = C^{0,\alpha}$.

This implies that $t \mapsto A(t)u$ is of the same class $C^M(T,H)$ (where T is either \mathbb{R} or \mathbb{R}^n) or is in $C^{0,\alpha}(T,H)$ (if T is a convenient vector space) for each $u \in V$ by [13, 2.14.4, 10.3] for C^{ω} , by [16, 3.1, 3.3, 3.5] for M = L, by [17, 1.10, 2.1, 2.3] for M = Q, and by [13, 2.3], [11, 2.6.2] or [10, 4.14.4] for $C^{0,\alpha}$ because $C^{0,\alpha}$ can be described by boundedness conditions only and for these the uniform boundedness principle is valid.

A sequence of functions λ_i is said to parameterize the eigenvalues, if for each $z \in \mathbb{C}$ the cardinality $|\{i : \lambda_i(t) = z\}|$ equals the multiplicity of z as eigenvalue of A(t).

Let X be a C^{ω} or C^{Q} manifold. A local blow-up Φ over an open subset U of X means the composition $\Phi = \iota \circ \varphi$ of a blow-up $\varphi : U' \to U$ with center a C^{ω} or C^{Q} submanifold and of the inclusion $\iota : U \to X$. A local power substitution is a mapping $\Psi : V \to X$ of the form $\Psi = \iota \circ \psi$, where $\iota : W \to X$ is the inclusion of a coordinate chart W of X and $\psi : V \to W$ is given by

$$(y_1,\ldots,y_q)=((-1)^{\epsilon_1}x_1^{\gamma_1},\ldots,(-1)^{\epsilon_q}x_q^{\gamma_q}),$$

for some $\gamma=(\gamma_1,\ldots,\gamma_q)\in (\mathbb{N}_{>0})^q$ and all $\epsilon=(\epsilon_1,\ldots,\epsilon_q)\in \{0,1\}^q$, where y_1,\ldots,y_q denote the coordinates of W (and $q=\dim X$).

This paper became possible only after some of the results of [16] and [17] were proved, in particular the uniform boundedness principles. The wish to prove the results of this paper was the main motivation for us to work on [16] and [17].

Applications. For brevity we confine ourselves to C^Q ; the same applies to C^{ω} . Let X be a compact C^Q manifold and let $t \mapsto g_t$ be a C^Q -curve of C^Q Riemannian metrics on X. Then we get the corresponding C^Q curve $t \mapsto \Delta(g_t)$ of Laplace-Beltrami operators on $L^2(X)$. By theorem (B) the eigenvalues and eigenvectors

can be arranged C^Q in t. By [1], the eigenfunctions are also C^Q as functions on X (at least for those C^Q which can be described by a weight function, see [7]). Question: Are the eigenvectors viewed as eigenfunctions then also in $C^Q(X \times \mathbb{R})$?

Let Ω be a bounded region in \mathbb{R}^n with C^Q boundary, and let $H(t) = -\Delta + V(t)$ be a C^Q -curve of Schrödinger operators with varying C^Q potential and Dirichlet boundary conditions. Then the eigenvalues and eigenvectors can be arranged C^Q in t. Question: Are the eigenvectors viewed as eigenfunctions then also in $C^Q(\Omega \times \mathbb{R})$?

Example. This is an elaboration of [2, 7.4] and [14, Example]. Let S(2) be the vector space of all symmetric real (2×2) -matrices. We use the C^L -curve lemma [16, 3.6] or [17, 2.5]: For each L, there exist sequences $\mu_n \to \infty$, $t_n \to t_\infty$, $s_n > 0$ in \mathbb{R} with the following property: For μ_n -converging sequences $A_n, B_n \in S(2)$, i.e., $\mu_n A_n$ and $\mu_n B_n$ are bounded in S(2), there exists a curve $A \in C^L(\mathbb{R}, S(2))$ such that $A(t_n + t) = A_n + tB_n$ for $|t| \leq s_n$.

Choose a sequence ν_n of reals satisfying $\mu_n\nu_n\to 0$ and $(\nu_n)^n\le s_n$ for all n and use the C^L -curve lemma for

$$A_n := (\nu_n)^{n+1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B_n := \nu_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

The eigenvalues of $A_n + tB_n$ and their derivatives are

$$\lambda_n(t) = \pm \nu_n \sqrt{(\nu_n)^{2n} + t^2}, \quad \lambda'_n(t) = \pm \frac{\nu_n t}{\sqrt{(\nu_n)^{2n} + t^2}}.$$

Then

$$\frac{\lambda'(t_n + (\nu_n)^n) - \lambda'(t_n)}{((\nu_n)^n)^{\alpha}} = \frac{\lambda'_n((\nu_n)^n) - \lambda'_n(0)}{(\nu_n)^{n\alpha}} = \pm \frac{\nu_n}{(\nu_n)^{n\alpha}\sqrt{2}}$$
$$= \pm \frac{(\nu_n)^{1-n\alpha}}{\sqrt{2}} \to \infty \text{ for } \alpha > 0.$$

So the condition (in (C), (D), (I), (J), and (K)) that no two different continuously parameterized eigenvalues meet of infinite order cannot be dropped. By [2, 2.1], we may always find a twice differentiable square root of a non-negative smooth function, so that the eigenvalues λ are functions which are twice differentiable but not $C^{1,\alpha}$ for any $\alpha > 0$.

Note that the normed eigenvectors cannot be chosen continuously in this example (see also example [21, $\S 2$]). Namely, we have

$$A(t_n) = (\nu_n)^{n+1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad A(t_n + (\nu_n)^n) = (\nu_n)^{n+1} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Resolvent Lemma. Let C^M be any of C^{ω} , C^Q , C^L , C^{∞} , or $C^{0,\alpha}$, and let A(t) be normal. If A is C^M then the resolvent $(t,z) \mapsto (A(t)-z)^{-1} \in L(H,H)$ is C^M on its natural domain, the global resolvent set

$$\{(t,z) \in T \times \mathbb{C} : (A(t)-z) : V \to H \text{ is invertible}\}$$

which is open (and even connected).

Proof. By definition the function $t \mapsto \langle A(t)v, u \rangle$ is of class C^M for each $v \in V$ and $u \in H$. We may conclude that the mapping $t \mapsto A(t)v$ is of class C^M into H as follows: For $C^M = C^\infty$ we use [13, 2.14.4]. For $C^M = C^\omega$ we use in addition [13, 10.3]. For $C^M = C^Q$ or $C^M = C^L$ we use [17, 2.1] and/or [16, 3.3] where we replace \mathbb{R} by \mathbb{R}^n . For $C^M = C^{0,\alpha}$ we use [13, 2.3], [11, 2.6.2], or [10, 4.1.14] because $C^{0,\alpha}$ can be described by boundedness conditions only and for these the uniform boundedness principle is valid.

For each t consider the norm $||u||_t^2 := ||u||^2 + ||A(t)u||^2$ on V. Since A(t) is closed, $(V, || ||_t)$ is again a Hilbert space with inner product $\langle u, v \rangle_t := \langle u, v \rangle + \langle A(t)u, A(t)v \rangle$.

(1) Claim (see [2, in the proof of 7.8], [13, in the proof of 50.16], or [14, Claim 1]). All these norms $\| \ \|_t$ on V are equivalent, locally uniformly in t. We then equip V with one of the equivalent Hilbert norms, say $\| \ \|_0$.

We reduce this to $C^{0,\alpha}$. Namely, note first that $A(t):(V,\|\ \|_s)\to H$ is bounded since the graph of A(t) is closed in $H\times H$, contained in $V\times H$ and thus also closed in $(V,\|\ \|_s)\times H$. For fixed $u,v\in V$, the function $t\mapsto \langle u,v\rangle_t=\langle u,v\rangle+\langle A(t)u,A(t)v\rangle$ is $C^{0,\alpha}$ since so is $t\mapsto A(t)u$. By the multilinear uniform boundedness principle ([13, 5.18] or [11, 3.7.4]) the mapping $t\mapsto \langle\ ,\ \rangle_t$ is $C^{0,\alpha}$ into the space of bounded sesquilinear forms on $(V,\|\ \|_s)$ for each fixed s. Thus the inverse image of $\langle\ ,\ \rangle_s+\frac{1}{2}$ (unit ball) in $L(\overline{(V,\|\ \|_s)}\oplus (V,\|\ \|_s);\mathbb{C})$ is a c^∞ -open neighborhood U of s in T. Thus $\sqrt{1/2}\|u\|_s\leq \|u\|_t\leq \sqrt{3/2}\|u\|_s$ for all $t\in U$, i.e., all Hilbert norms $\|\ \|_t$ are locally uniformly equivalent, and claim (1) follows.

By the linear uniform boundedness theorem we see that $t\mapsto A(t)$ is in $C^M(T,L(V,H))$ as follows (here it suffices to use a set of linear functionals which together recognize bounded sets instead of the whole dual): For $C^M=C^\infty$ we use [13, 1.7, 2.14.3]. For $C^M=C^\omega$ we use in addition [13, 9.4]. For $C^M=C^Q$ or $C^M=C^L$ we use [17, 2.2, 2.3] and/or [16, 3.5] where we replace $\mathbb R$ by $\mathbb R^n$. For $C^M=C^{0,\alpha}$ see above.

If for some $(t, z) \in T \times \mathbb{C}$ the bounded operator $A(t) - z : V \to H$ is invertible, then this is true locally with respect to the c^{∞} -topology on the product which is the product topology by [13, 4.16], and $(t, z) \mapsto (A(t) - z)^{-1} : H \to V$ is C^M , by the chain rule, since inversion is real analytic on the Banach space L(V, H).

Note that $(A(t)-z)^{-1}: H \to H$ is a compact operator for some (equivalently any) (t,z) if and only if the inclusion $i: V \to H$ is compact, since $i = (A(t)-z)^{-1} \circ (A(t)-z): V \to H \to H$.

Polynomial proposition. Let P be a curve of polynomials

$$P(t)(x) = x^n - a_1(t)x^{n-1} + \dots + (-1)^n a_n(t), \quad t \in \mathbb{R}.$$

- (a) If P is hyperbolic (i.e., all roots of P(t) are real for each fixed t) and if the coefficient functions a_i are all C^Q then there exist C^Q functions λ_i which parameterize all roots.
- (b) If P is hyperbolic, the coefficient functions a_i are C^L , and no two of the different continuously arranged roots (e.g., ordered by size) meet of infinite order, then there exist C^L functions λ_i which parameterize all roots.
- (c) If the coefficient functions a_i are C^Q , then for each t_0 there exists $N \in \mathbb{N}_{>0}$ such that the roots of $s \mapsto P(t_0 \pm s^N)$ can be parameterized C^Q in s for s near 0.
- (d) If the coefficient functions a_i are C^L and no two of the different continuously arranged roots (by [12, II 5.2]) meet of infinite order, then for each t_0 there exists $N \in \mathbb{N}_{>0}$ such that the roots of $s \mapsto P(t_0 \pm s^N)$ can be parameterized C^L in s for s near 0.

All C^Q or C^L solutions differ by permutations.

The proof of parts (a) and (b) is exactly as in [2] where the corresponding results were proven for C^{∞} instead of C^{L} , and for C^{ω} instead of C^{Q} . For this we need only the following properties of C^{Q} and C^{L} :

- They allow for the implicit function theorem (for [2, 3.3]).
- They contain C^{ω} and are closed under composition (for [2, 3.4]).
- They are derivation closed (for [2, 3.7]).

Part (a) is also in [8, 7.6] which follows [2]. It also follows from the multidimensional version [20, 6.10] since blow-ups in dimension 1 are trivial. The proofs of parts (c) and (d) are exactly as in [19, 3.2] where the corresponding result was proven for C^{ω} instead of C^{Q} , and for C^{∞} instead of C^{L} , if none of the different roots meet of infinite order. For these we need the properties of C^{Q} and C^{L} listed above.

Matrix proposition. Let A(t) for $t \in T$ be a family of $(N \times N)$ -matrices.

- (e) If $T = \mathbb{R} \ni t \mapsto A(t)$ is a C^Q -curve of Hermitian matrices, then the eigenvalues and the eigenvectors can be chosen C^Q .
- (f) If $T = \mathbb{R} \ni t \mapsto A(t)$ is a C^L -curve of Hermitian matrices such that no two different continuously arranged eigenvalues meet of infinite order, then the eigenvalues and the eigenvectors can be chosen C^L .
- (g) If $T = \mathbb{R} \ni t \mapsto A(t)$ is a C^L -curve of normal matrices such that no two different continuously arranged eigenvalues meet of infinite order, then for each t_0 there exists $N_1 \in \mathbb{N}_{>0}$ such that the eigenvalues and eigenvectors of $s \mapsto A(t_0 \pm s^{N_1})$ can be parameterized C^L in s for s near 0.
- (h) Let $T \subseteq \mathbb{R}^n$ be open and let $T \ni t \mapsto A(t)$ be a C^ω or C^Q -mapping of normal matrices. Let $K \subseteq T$ be compact. Then there exist a neighborhood W of K, and a finite covering $\{\pi_k : U_k \to W\}$ of W, where each π_k is a composite of finitely many mappings each of which is either a local blow-up along a C^ω or C^Q submanifold or a local power substitution, such that the eigenvalues and the eigenvectors of $A(\pi_k(s))$ can be chosen C^ω or C^Q in s. Consequently, the eigenvalues and eigenvectors of A(t) are locally special functions of bounded variation (SBV). If A is a family of Hermitian matrices, then we do not need power substitutions.

The proof of the matrix proposition in case (e) and (f) is exactly as in [2, 7.6], using the polynomial proposition and properties of C^Q and C^L . Item (g) is exactly as in [19, 6.2], using the polynomial proposition and properties of C^L . Item (h) is proved in [20, 9.1, 9.6], see also [18].

Proof of the theorem. We have to prove parts (B), (C), (H), (I), (L), (M), and (O). So let C^M be any of C^ω , C^Q , C^L , or $C^{0,\alpha}$, and let A(t) be normal. Let z be an eigenvalue of $A(t_0)$ of multiplicity N. We choose a simple closed C^1 curve γ in the resolvent set of $A(t_0)$ for fixed t_0 enclosing only z among all eigenvalues of $A(t_0)$. Since the global resolvent set is open, see the resolvent lemma, no eigenvalue of A(t) lies on γ , for t near t_0 . By the resolvent lemma, $A: T \to L((V, \| \cdot \|_0), H)$ is C^M , thus also

$$t\mapsto -\frac{1}{2\pi i}\int_{\gamma}(A(t)-z)^{-1}\;dz=:P(t,\gamma)=P(t)$$

is a C^M mapping. Each P(t) is a projection, namely onto the direct sum of all eigenspaces corresponding to eigenvalues of A(t) in the interior of γ , with finite rank. Thus the rank must be constant: It is easy to see that the (finite) rank cannot fall locally, and it cannot increase, since the distance in L(H,H) of P(t) to the subset of operators of rank $\leq N = \operatorname{rank}(P(t_0))$ is continuous in t and is either 0 or 1.

So for t in a neighborhood U of t_0 there are equally many eigenvalues in the interior of γ , and we may call them $\lambda_i(t)$ for $1 \le i \le N$ (repeated with multiplicity).

Now we consider the family of N-dimensional complex vector spaces $t \mapsto P(t)H \subseteq H$, for $t \in U$. They form a C^M Hermitian vector subbundle over U of $U \times H \to U$: For given t, choose $v_1, \ldots, v_N \in H$ such that the $P(t)v_i$ are linearly independent and thus span P(t)H. This remains true locally in t. Now we use the Gram Schmidt orthonormalization procedure (which is C^{ω}) for the $P(t)v_i$ to obtain a local orthonormal C^M frame of the bundle.

Now A(t) maps P(t)H to itself; in a C^M local frame it is given by a normal $(N \times N)$ -matrix parameterized C^M by $t \in U$.

Now all local assertions of the theorem follow:

- (B) Use the matrix proposition, part (e).
- (C) Use the matrix proposition, part (f).
- (H) Use the matrix proposition, part (h), and note that in dimension 1 blowups are trivial.
- (I) Use the matrix proposition, part (g).
- (L,M) Use the matrix proposition, part (h), for \mathbb{R}^n .
 - (O) We use the following

Result.([6], [5, VII.4.1]) Let A, B be normal $(N \times N)$ -matrices and let $\lambda_i(A)$ and $\lambda_i(B)$ for i = 1, ..., N denote the respective eigenvalues. Then

$$\min_{\sigma \in \mathcal{S}_N} \max_j |\lambda_j(A) - \lambda_{\sigma(j)}(B)| \le C ||A - B||$$

for a universal constant C with 1 < C < 3. Here $\| \|$ is the operator norm.

Finally, it remains to extend the local choices to global ones for the cases (B) and (C) only. There $t \mapsto A(t)$ is C^Q or C^L , respectively, which imply both C^∞ , and no two different eigenvalues meet of infinite order. So we may apply [2, 7.8] (in fact we need only the end of the proof) to conclude that the eigenvalues can be chosen C^∞ on $T = \mathbb{R}$, uniquely up to a global permutation. By the local result above they are then C^Q or C^L . The same proof then gives us, for each eigenvalue $\lambda_i: T \to \mathbb{R}$ with generic multiplicity N, a unique N-dimensional smooth vector subbundle of $\mathbb{R} \times H$ whose fiber over t consists of eigenvectors for the eigenvalue $\lambda_i(t)$. In fact this vector bundle is C^Q or C^L by the local result above, namely the matrix proposition, part (e) or (f), respectively.

REFERENCES

- A. A. Albanese, D. Jornet, and A. Oliaro, Quasianalytic wave front sets for solutions of linear partial differential operators, Integral Equations Operator Theory 66 (2010), no. 2, 153-181.
- [2] D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor, Choosing roots of polynomials smoothly, Israel J. Math. 105 (1998), 203–233.
- [3] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000.
- [4] H. Baumgärtel, Endlichdimensionale analytische Störungstheorie, Akademie-Verlag, Berlin, 1972, Mathematische Lehrbücher und Monographien, II. Abteilung. Mathematische Monographien, Band 28.
- [5] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997.
- [6] R. Bhatia, C. Davis, and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45–67.
- [7] J. Bonet, R. Meise, and S. N. Melikhov, A comparison of two different ways to define classes of ultradifferentiable functions, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 424–444.
- [8] J. Chaumat and A.-M. Chollet, Division par un polynôme hyperbolique, Canad. J. Math. 56 (2004), no. 6, 1121-1144.
- [9] E. De Giorgi and L. Ambrosio, New functionals in the calculus of variations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 2, 199–210 (1989).
- [10] C.-A. Faure, Théorie de la différentiation dans les espaces convenables, Ph.D. thesis, Université de Genéve, 1991.
- [11] A. Frölicher and A. Kriegl, Linear spaces and differentiation theory, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1988, A Wiley-Interscience Publication.
- [12] T. Kato, Perturbation theory for linear operators, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 132, Springer-Verlag, Berlin, 1976.

- [13] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997, http://www.ams.org/online_bks/surv53/.
- [14] _____, Differentiable perturbation of unbounded operators, Math. Ann. **327** (2003), no. 1, 191–201.
- [15] A. Kriegl, P. W. Michor, and A. Rainer, Many parameter Hölder perturbation of unbounded operators, Math. Ann., published electronically on June 28, 2011. doi:10.1007/s00208-011-0693-9. arXiv:math.FA/0611506.
- [16] ______, The convenient setting for non-quasianalytic Denjoy-Carleman differentiable mappings, J. Funct. Anal. 256 (2009), 3510–3544.
- [17] ______, The convenient setting for quasianalytic Denjoy-Carleman differentiable mappings, J. Funct. Anal. 261 (2011), 1799–1834.
- [18] K. Kurdyka and L. Paunescu, Hyperbolic polynomials and multiparameter real-analytic perturbation theory, Duke Math. J. 141 (2008), no. 1, 123–149.
- [19] A. Rainer, Perturbation of complex polynomials and normal operators, Math. Nach. 282 (2009), no. 12, 1623–1636.
- [20] ______, Quasianalytic multiparameter perturbation of polynomials and normal matrices, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4945–4977.
- [21] F. Rellich, Störungstheorie der Spektralzerlegung, Math. Ann. 113 (1937), no. 1, 600–619.
- [22] _____, Störungstheorie der Spektralzerlegung. V, Math. Ann. 118 (1942), 462–484.

Andreas Kriegl: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

 $E ext{-}mail\ address: and reas.kriegl@univie.ac.at}$

PETER W. MICHOR: FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, NORDBERGSTRASSE 15, A-1090 WIEN, AUSTRIA

 $E ext{-}mail\ address:$ peter.michor@univie.ac.at

ARMIN RAINER: FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, NORDBERGSTRASSE 15, A-1090 WIEN, AUSTRIA

E-mail address: armin.rainer@univie.ac.at