DENJOY-CARLEMAN DIFFERENTIABLE PERTURBATION OF POLYNOMIALS AND UNBOUNDED OPERATORS

ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

Abstract

Let $t \mapsto A(t)$ for $t \in T$ be a C^{M}-mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here C^{M} stands for C^{ω} (real analytic), a quasianalytic or non-quasianalytic Denjoy-Carleman class, C^{∞}, or a Hölder continuity class $C^{0, \alpha}$. The parameter domain T is either \mathbb{R} or \mathbb{R}^{n} or an infinite dimensional convenient vector space. We prove and review results on C^{M}-dependence on t of the eigenvalues and eigenvectors of $A(t)$.

Theorem. Let $t \mapsto A(t)$ for $t \in T$ be a parameterized family of unbounded operators in a Hilbert space H with common domain of definition and with compact resolvent. If $t \in T=\mathbb{R}$ and all $A(t)$ are self-adjoint then the following holds:
(A) If $A(t)$ is real analytic in $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of $A(t)$ can be parameterized real analytically in t.
(B) If $A(t)$ is quasianalytic of class C^{Q} in $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of $A(t)$ can be parameterized C^{Q} in t.
(C) If $A(t)$ is non-quasianalytic of class C^{L} in $t \in \mathbb{R}$ and if no two different continuously parameterized eigenvalues (e.g., ordered by size) meet of infinite order at any $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of $A(t)$ can be parameterized C^{L} in t.
(D) If $A(t)$ is C^{∞} in $t \in \mathbb{R}$ and if no two different continuously parameterized eigenvalues meet of infinite order at any $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of $A(t)$ can be parameterized C^{∞} in t.
(E) If $A(t)$ is C^{∞} in $t \in \mathbb{R}$, then the eigenvalues of $A(t)$ can be parameterized twice differentiably in t.
(F) If $A(t)$ is $C^{1, \alpha}$ in $t \in \mathbb{R}$ for some $\alpha>0$, then the eigenvalues of $A(t)$ can be parameterized C^{1} in t.
If $t \in T=\mathbb{R}$ and all $A(t)$ are normal then the following holds:
(G) If $A(t)$ is real analytic in $t \in \mathbb{R}$, then for each $t_{0} \in \mathbb{R}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$ there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_{0} of $A\left(t_{0} \pm s^{N}\right)$ and their eigenvectors can be parameterized real analytically in s near $s=0$.
(H) If $A(t)$ is quasianalytic of class C^{Q} in $t \in \mathbb{R}$, then for each $t_{0} \in \mathbb{R}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$ there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_{0} of $A\left(t_{0} \pm s^{N}\right)$ and their eigenvectors can be parameterized C^{Q} in s near $s=0$.
(I) If $A(t)$ is non-quasianalytic of class C^{L} in $t \in \mathbb{R}$, then for each $t_{0} \in \mathbb{R}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$ at which no two of the different continuously

Date: November 1, 2011.
2000 Mathematics Subject Classification. 26C10, 26E10, 47A55.
Key words and phrases. Perturbation theory, differentiable choice of eigenvalues and eigenvectors, Denjoy-Carleman ultradifferentiable functions.

AK was supported by FWF-Project P 23028-N13, PM by FWF-Project P 21030-N13, AR by FWF-Projects J 2771-N13 and P 22218-N13.
parameterized eigenvalues (which is always possible by [12, II 5.2]) meet of infinite order, there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_{0} of $A\left(t_{0} \pm s^{N}\right)$ and their eigenvectors can be parameterized C^{L} in s near $s=0$.
(J) If $A(t)$ is C^{∞} in $t \in \mathbb{R}$, then for each $t_{0} \in \mathbb{R}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$ at which no two of the different continuously parameterized eigenvalues meet of infinite order, there exists $N \in \mathbb{N}_{>0}$ such that the eigenvalues near z_{0} of $A\left(t_{0} \pm s^{N}\right)$ and their eigenvectors can be parameterized C^{∞} in s near $s=0$.
(K) If $A(t)$ is C^{∞} in $t \in \mathbb{R}$, then for each $t_{0} \in \mathbb{R}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$ at which no two of the different continuously parameterized eigenvalues meet of infinite order, the eigenvalues near z_{0} of $A(t)$ and their eigenvectors can be parameterized by absolutely continuous functions in t near $t=t_{0}$.
If $t \in T=\mathbb{R}^{n}$ and all $A(t)$ are normal then the following holds:
(L) If $A(t)$ is real analytic or quasianalytic of class C^{Q} in $t \in \mathbb{R}^{n}$, then for each $t_{0} \in \mathbb{R}^{n}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$, there exist a neighborhood D of z_{0} in \mathbb{C}, a neighborhood W of t_{0} in \mathbb{R}^{n}, and a finite covering $\left\{\pi_{k}: U_{k} \rightarrow W\right\}$ of W, where each π_{k} is a composite of finitely many mappings each of which is either a local blow-up along a real analytic or C^{Q} submanifold or a local power substitution, such that the eigenvalues of $A\left(\pi_{k}(s)\right), s \in U_{k}$, in D and the corresponding eigenvectors can be parameterized real analytically or C^{Q} in s. If A is self-adjoint, then we do not need power substitutions.
(M) If $A(t)$ is real analytic or quasianalytic of class C^{Q} in $t \in \mathbb{R}^{n}$, then for each $t_{0} \in \mathbb{R}^{n}$ and for each eigenvalue z_{0} of $A\left(t_{0}\right)$, there exist a neighborhood D of z_{0} in \mathbb{C} and a neighborhood W of t_{0} in \mathbb{R}^{n} such that the eigenvalues of $A(t), t \in W$, in D and the corresponding eigenvectors can be parameterized by functions which are special functions of bounded variation (SBV), see 9 or [3], in t.
If $t \in T \subseteq E$, a c^{∞}-open subset in a finite or infinite dimensional convenient vector space then the following holds:
(N) For $0<\alpha \leq 1$, if $A(t)$ is $C^{0, \alpha}$ (Hölder continuous of exponent α) in $t \in T$ and all $A(t)$ are self-adjoint, then the eigenvalues of $A(t)$ can be parameterized $C^{0, \alpha}$ in t.
(O) For $0<\alpha \leq 1$, if $A(t)$ is $C^{0, \alpha}$ in $t \in T$ and all $A(t)$ are normal, then we have: For each $t_{0} \in T$ and each eigenvalue z_{0} of $A\left(t_{0}\right)$ consider a simple closed C^{1}-curve γ in the resolvent set of $A\left(t_{0}\right)$ enclosing only z_{0} among all eigenvalues of $A\left(t_{0}\right)$. Then for t near t_{0} in the c^{∞}-topology on T, no eigenvalue of $A(t)$ lies on γ. Let $\lambda(t)=\left(\lambda_{1}(t), \ldots, \lambda_{N}(t)\right)$ be the N-tuple of all eigenvalues (repeated according to their multiplicity) of $A(t)$ inside of γ. Then $t \mapsto \lambda(t)$ is $C^{0, \alpha}$ for t near t_{0} with respect to the non-separating metric

$$
d(\lambda, \mu)=\min _{\sigma \in \mathcal{S}_{N}} \max _{1 \leq i \leq N}\left|\lambda_{i}-\mu_{\sigma(i)}\right|
$$

on the space of N-tuples.
Part (A) is due to Rellich [22] in 1942, see also [4] and [12, VII 3.9]. Part (D) has been proved in [2, 7.8], see also [13, 50.16], in 1997, which contains also a different proof of (A). (E) and (F) have been proved in [14] in 2003. (G) was proved in [19, 7.1]; it can be proved as (H) with some obvious changes, but it is not a special case since C^{ω} does not correspond to a sequence which is an \mathcal{L}-intersection (see 'definitions and remarks' below and [17]). (J) and (K) were proved in [19, 7.1]. (N) was proved in [15].

The purpose of this paper is to prove the remaining parts $(\mathrm{B}),(\mathrm{C}),(\mathrm{H}),(\mathrm{I}),(\mathrm{L})$, (M), and (O).
Definitions and remarks. Let $M=\left(M_{k}\right)_{k \in \mathbb{N}=\mathbb{N} \geq 0}$ be an increasing sequence $\left(M_{k+1} \geq M_{k}\right)$ of positive real numbers with $M_{0}=\overline{1}$. Let $U \subseteq \mathbb{R}^{n}$ be open. We denote by $C^{M}(U)$ the set of all $f \in C^{\infty}(U)$ such that, for each compact $K \subseteq U$, there exist positive constants C and ρ such that

$$
\left|\partial^{\alpha} f(x)\right| \leq C \rho^{|\alpha|}|\alpha|!M_{|\alpha|} \quad \text { for all } \alpha \in \mathbb{N}^{n} \text { and } x \in K
$$

The set $C^{M}(U)$ is a Denjoy-Carleman class of functions on U. If $M_{k}=1$, for all k, then $C^{M}(U)$ coincides with the ring $C^{\omega}(U)$ of real analytic functions on U. In general, $C^{\omega}(U) \subseteq C^{M}(U) \subseteq C^{\infty}(U)$.

Throughout this paper $Q=\left(Q_{k}\right)_{k \in \mathbb{N}}$ is a sequence as above which is log-convex (i.e., $Q_{k}^{2} \leq Q_{k-1} Q_{k+1}$ for all k), derivation closed (i.e., $\sup _{k}\left(Q_{k+1} / Q_{k}\right)^{1 / k}<$ ∞), quasianalytic (i.e., $\sum_{k}\left(k!Q_{k}\right)^{-1 / k}=\infty$), and which is also an \mathcal{L} intersection. We say that Q is an \mathcal{L}-intersection if $C^{Q}=\bigcap\left\{C^{N}\right.$: N non-quasianalytic, log-convex, $N \geq Q\}$. Moreover, $L=\left(L_{k}\right)_{k \in \mathbb{N}}$ is a sequence as above which is log-convex, derivation closed, and non-quasianalytic. Then C^{Q} and C^{L} are closed under composition and allow for the implicit function theorem. See [17] or [16] and references therein.

That $A(t)$ is a real analytic, C^{M} (where M is either Q or L), C^{∞}, or $C^{k, \alpha}$ family of unbounded operators means the following: There is a dense subspace V of the Hilbert space H such that V is the domain of definition of each $A(t)$, and such that $A(t)^{*}=A(t)$ in the self-adjoint case, or $A(t)$ has closed graph and $A(t) A(t)^{*}=A(t)^{*} A(t)$ wherever defined in the normal case. Moreover, we require that $t \mapsto\langle A(t) u, v\rangle$ is of the respective differentiability class for each $u \in V$ and $v \in H$. From now on we treat only $C^{M}=C^{\omega}, C^{M}$ for $M=Q, M=L$, and $C^{M}=C^{0, \alpha}$.

This implies that $t \mapsto A(t) u$ is of the same class $C^{M}(T, H)$ (where T is either \mathbb{R} or \mathbb{R}^{n}) or is in $C^{0, \alpha}(T, H)$ (if T is a convenient vector space) for each $u \in V$ by [13, 2.14.4, 10.3] for C^{ω}, by [16, 3.1, 3.3, 3.5] for $M=L$, by [17, 1.10, 2.1, 2.3] for $M=Q$, and by [13, 2.3], [11, 2.6.2] or [10, 4.14.4] for $C^{0, \alpha}$ because $C^{0, \alpha}$ can be described by boundedness conditions only and for these the uniform boundedness principle is valid.

A sequence of functions λ_{i} is said to parameterize the eigenvalues, if for each $z \in \mathbb{C}$ the cardinality $\left|\left\{i: \lambda_{i}(t)=z\right\}\right|$ equals the multiplicity of z as eigenvalue of $A(t)$.

Let X be a C^{ω} or C^{Q} manifold. A local blow-up Φ over an open subset U of X means the composition $\Phi=\iota \circ \varphi$ of a blow-up $\varphi: U^{\prime} \rightarrow U$ with center a C^{ω} or C^{Q} submanifold and of the inclusion $\iota: U \rightarrow X$. A local power substitution is a mapping $\Psi: V \rightarrow X$ of the form $\Psi=\iota \circ \psi$, where $\iota: W \rightarrow X$ is the inclusion of a coordinate chart W of X and $\psi: V \rightarrow W$ is given by

$$
\left(y_{1}, \ldots, y_{q}\right)=\left((-1)^{\epsilon_{1}} x_{1}^{\gamma_{1}}, \ldots,(-1)^{\epsilon_{q}} x_{q}^{\gamma_{q}}\right)
$$

for some $\gamma=\left(\gamma_{1}, \ldots, \gamma_{q}\right) \in\left(\mathbb{N}_{>0}\right)^{q}$ and all $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{q}\right) \in\{0,1\}^{q}$, where y_{1}, \ldots, y_{q} denote the coordinates of W (and $\left.q=\operatorname{dim} X\right)$.

This paper became possible only after some of the results of 16 and 17] were proved, in particular the uniform boundedness principles. The wish to prove the results of this paper was the main motivation for us to work on [16] and [17].

Applications. For brevity we confine ourselves to C^{Q}; the same applies to C^{ω}. Let X be a compact C^{Q} manifold and let $t \mapsto g_{t}$ be a C^{Q}-curve of C^{Q} Riemannian metrics on X. Then we get the corresponding C^{Q} curve $t \mapsto \Delta\left(g_{t}\right)$ of LaplaceBeltrami operators on $L^{2}(X)$. By theorem (B) the eigenvalues and eigenvectors
can be arranged C^{Q} in t. By [1], the eigenfunctions are also C^{Q} as functions on X (at least for those C^{Q} which can be described by a weight function, see [7]). Question: Are the eigenvectors viewed as eigenfunctions then also in $C^{Q}(X \times \mathbb{R})$?

Let Ω be a bounded region in \mathbb{R}^{n} with C^{Q} boundary, and let $H(t)=-\Delta+V(t)$ be a C^{Q}-curve of Schrödinger operators with varying C^{Q} potential and Dirichlet boundary conditions. Then the eigenvalues and eigenvectors can be arranged C^{Q} in t. Question: Are the eigenvectors viewed as eigenfunctions then also in $C^{Q}(\Omega \times \mathbb{R})$?

Example. This is an elaboration of [2, 7.4] and [14, Example]. Let $S(2)$ be the vector space of all symmetric real (2×2)-matrices. We use the C^{L}-curve lemma [16, 3.6] or [17, 2.5]: For each L, there exist sequences $\mu_{n} \rightarrow \infty, t_{n} \rightarrow t_{\infty}, s_{n}>0$ in \mathbb{R} with the following property: For μ_{n}-converging sequences $A_{n}, B_{n} \in S(2)$, i.e., $\mu_{n} A_{n}$ and $\mu_{n} B_{n}$ are bounded in $S(2)$, there exists a curve $A \in C^{L}(\mathbb{R}, S(2))$ such that $A\left(t_{n}+t\right)=A_{n}+t B_{n}$ for $|t| \leq s_{n}$.

Choose a sequence ν_{n} of reals satisfying $\mu_{n} \nu_{n} \rightarrow 0$ and $\left(\nu_{n}\right)^{n} \leq s_{n}$ for all n and use the C^{L}-curve lemma for

$$
A_{n}:=\left(\nu_{n}\right)^{n+1}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad B_{n}:=\nu_{n}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The eigenvalues of $A_{n}+t B_{n}$ and their derivatives are

$$
\lambda_{n}(t)= \pm \nu_{n} \sqrt{\left(\nu_{n}\right)^{2 n}+t^{2}}, \quad \lambda_{n}^{\prime}(t)= \pm \frac{\nu_{n} t}{\sqrt{\left(\nu_{n}\right)^{2 n}+t^{2}}}
$$

Then

$$
\begin{aligned}
\frac{\lambda^{\prime}\left(t_{n}+\left(\nu_{n}\right)^{n}\right)-\lambda^{\prime}\left(t_{n}\right)}{\left(\left(\nu_{n}\right)^{n}\right)^{\alpha}} & =\frac{\lambda_{n}^{\prime}\left(\left(\nu_{n}\right)^{n}\right)-\lambda_{n}^{\prime}(0)}{\left(\nu_{n}\right)^{n \alpha}}= \pm \frac{\nu_{n}}{\left(\nu_{n}\right)^{n \alpha} \sqrt{2}} \\
& = \pm \frac{\left(\nu_{n}\right)^{1-n \alpha}}{\sqrt{2}} \rightarrow \infty \text { for } \alpha>0
\end{aligned}
$$

So the condition (in (C), (D), (I), (J), and (K)) that no two different continuously parameterized eigenvalues meet of infinite order cannot be dropped. By [2, 2.1], we may always find a twice differentiable square root of a non-negative smooth function, so that the eigenvalues λ are functions which are twice differentiable but not $C^{1, \alpha}$ for any $\alpha>0$.

Note that the normed eigenvectors cannot be chosen continuously in this example (see also example [21, §2]). Namely, we have

$$
A\left(t_{n}\right)=\left(\nu_{n}\right)^{n+1}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad A\left(t_{n}+\left(\nu_{n}\right)^{n}\right)=\left(\nu_{n}\right)^{n+1}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

Resolvent Lemma. Let C^{M} be any of $C^{\omega}, C^{Q}, C^{L}, C^{\infty}$, or $C^{0, \alpha}$, and let $A(t)$ be normal. If A is C^{M} then the resolvent $(t, z) \mapsto(A(t)-z)^{-1} \in L(H, H)$ is C^{M} on its natural domain, the global resolvent set

$$
\{(t, z) \in T \times \mathbb{C}:(A(t)-z): V \rightarrow H \text { is invertible }\}
$$

which is open (and even connected).
Proof. By definition the function $t \mapsto\langle A(t) v, u\rangle$ is of class C^{M} for each $v \in V$ and $u \in H$. We may conclude that the mapping $t \mapsto A(t) v$ is of class C^{M} into H as follows: For $C^{M}=C^{\infty}$ we use [13, 2.14.4]. For $C^{M}=C^{\omega}$ we use in addition [13, 10.3]. For $C^{M}=C^{Q}$ or $C^{M}=C^{L}$ we use [17, 2.1] and/or [16, 3.3] where we replace \mathbb{R} by \mathbb{R}^{n}. For $C^{M}=C^{0, \alpha}$ we use [13, 2.3], [11, 2.6.2], or [10, 4.1.14] because $C^{0, \alpha}$ can be described by boundedness conditions only and for these the uniform boundedness principle is valid.

For each t consider the norm $\|u\|_{t}^{2}:=\|u\|^{2}+\|A(t) u\|^{2}$ on V. Since $A(t)$ is closed, $\left(V,\| \|_{t}\right)$ is again a Hilbert space with inner product $\langle u, v\rangle_{t}:=\langle u, v\rangle+$ $\langle A(t) u, A(t) v\rangle$.
(1) Claim (see [2, in the proof of 7.8], [13, in the proof of 50.16], or [14, Claim 1]). All these norms $\left\|\|_{t}\right.$ on V are equivalent, locally uniformly in t. We then equip V with one of the equivalent Hilbert norms, say $\left\|\|_{0}\right.$.

We reduce this to $C^{0, \alpha}$. Namely, note first that $A(t):\left(V,\|\quad\|_{s}\right) \rightarrow H$ is bounded since the graph of $A(t)$ is closed in $H \times H$, contained in $V \times H$ and thus also closed in $\left(V,\| \|_{s}\right) \times H$. For fixed $u, v \in V$, the function $t \mapsto\langle u, v\rangle_{t}=\langle u, v\rangle+\langle A(t) u, A(t) v\rangle$ is $C^{0, \alpha}$ since so is $t \mapsto A(t) u$. By the multilinear uniform boundedness principle ([13, 5.18] or [11, 3.7.4]) the mapping $t \mapsto\langle\quad, \quad\rangle_{t}$ is $C^{0, \alpha}$ into the space of bounded sesquilinear forms on $\left(V,\| \|_{s}\right)$ for each fixed s. Thus the inverse image of $\langle\quad, \quad\rangle_{s}+\frac{1}{2}$ (unit ball) in $L\left(\overline{\left(V,\| \|_{s}\right)} \oplus\left(V,\|\quad\|_{s}\right) ; \mathbb{C}\right)$ is a c^{∞}-open neighborhood U of s in T. Thus $\sqrt{1 / 2}\|u\|_{s} \leq\|u\|_{t} \leq \sqrt{3 / 2}\|u\|_{s}$ for all $t \in U$, i.e., all Hilbert norms \| $\|_{t}$ are locally uniformly equivalent, and claim (1) follows.

By the linear uniform boundedness theorem we see that $t \mapsto A(t)$ is in $C^{M}(T, L(V, H))$ as follows (here it suffices to use a set of linear functionals which together recognize bounded sets instead of the whole dual): For $C^{M}=C^{\infty}$ we use [13, 1.7, 2.14.3]. For $C^{M}=C^{\omega}$ we use in addition [13, 9.4]. For $C^{M}=C^{Q}$ or $C^{M}=C^{L}$ we use [17, 2.2,2.3] and/or [16, 3.5] where we replace \mathbb{R} by \mathbb{R}^{n}. For $C^{M}=C^{0, \alpha}$ see above.

If for some $(t, z) \in T \times \mathbb{C}$ the bounded operator $A(t)-z: V \rightarrow H$ is invertible, then this is true locally with respect to the c^{∞}-topology on the product which is the product topology by [13, 4.16], and $(t, z) \mapsto(A(t)-z)^{-1}: H \rightarrow V$ is C^{M}, by the chain rule, since inversion is real analytic on the Banach space $L(V, H)$.

Note that $(A(t)-z)^{-1}: H \rightarrow H$ is a compact operator for some (equivalently any) (t, z) if and only if the inclusion $i: V \rightarrow H$ is compact, since $i=(A(t)-z)^{-1} \circ$ $(A(t)-z): V \rightarrow H \rightarrow H$.
Polynomial proposition. Let P be a curve of polynomials

$$
P(t)(x)=x^{n}-a_{1}(t) x^{n-1}+\cdots+(-1)^{n} a_{n}(t), \quad t \in \mathbb{R}
$$

(a) If P is hyperbolic (i.e., all roots of $P(t)$ are real for each fixed t) and if the coefficient functions a_{i} are all C^{Q} then there exist C^{Q} functions λ_{i} which parameterize all roots.
(b) If P is hyperbolic, the coefficient functions a_{i} are C^{L}, and no two of the different continuously arranged roots (e.g., ordered by size) meet of infinite order, then there exist C^{L} functions λ_{i} which parameterize all roots.
(c) If the coefficient functions a_{i} are C^{Q}, then for each t_{0} there exists $N \in \mathbb{N}_{>0}$ such that the roots of $s \mapsto P\left(t_{0} \pm s^{N}\right)$ can be parameterized C^{Q} in s for s near 0 .
(d) If the coefficient functions a_{i} are C^{L} and no two of the different continuously arranged roots (by [12, II 5.2]) meet of infinite order, then for each t_{0} there exists $N \in \mathbb{N}_{>0}$ such that the roots of $s \mapsto P\left(t_{0} \pm s^{N}\right)$ can be parameterized C^{L} in s for s near 0 .
All C^{Q} or C^{L} solutions differ by permutations.
The proof of parts (a) and (b) is exactly as in [2] where the corresponding results were proven for C^{∞} instead of C^{L}, and for C^{ω} instead of C^{Q}. For this we need only the following properties of C^{Q} and C^{L} :

- They allow for the implicit function theorem (for [2, 3.3]).
- They contain C^{ω} and are closed under composition (for [2, 3.4]).
- They are derivation closed (for [2, 3.7]).

Part (a) is also in [8, 7.6] which follows [2]. It also follows from the multidimensional version [20, 6.10] since blow-ups in dimension 1 are trivial. The proofs of parts (c) and (d) are exactly as in [19, 3.2] where the corresponding result was proven for C^{ω} instead of C^{Q}, and for C^{∞} instead of C^{L}, if none of the different roots meet of infinite order. For these we need the properties of C^{Q} and C^{L} listed above.

Matrix proposition. Let $A(t)$ for $t \in T$ be a family of $(N \times N)$-matrices.
(e) If $T=\mathbb{R} \ni t \mapsto A(t)$ is a C^{Q}-curve of Hermitian matrices, then the eigenvalues and the eigenvectors can be chosen C^{Q}.
(f) If $T=\mathbb{R} \ni t \mapsto A(t)$ is a C^{L}-curve of Hermitian matrices such that no two different continuously arranged eigenvalues meet of infinite order, then the eigenvalues and the eigenvectors can be chosen C^{L}.
(g) If $T=\mathbb{R} \ni t \mapsto A(t)$ is a C^{L}-curve of normal matrices such that no two different continuously arranged eigenvalues meet of infinite order, then for each t_{0} there exists $N_{1} \in \mathbb{N}_{>0}$ such that the eigenvalues and eigenvectors of $s \mapsto A\left(t_{0} \pm s^{N_{1}}\right)$ can be parameterized C^{L} in s for s near 0 .
(h) Let $T \subseteq \mathbb{R}^{n}$ be open and let $T \ni t \mapsto A(t)$ be a C^{ω} or C^{Q}-mapping of normal matrices. Let $K \subseteq T$ be compact. Then there exist a neighborhood W of K, and a finite covering $\left\{\pi_{k}: U_{k} \rightarrow W\right\}$ of W, where each π_{k} is a composite of finitely many mappings each of which is either a local blowup along a C^{ω} or C^{Q} submanifold or a local power substitution, such that the eigenvalues and the eigenvectors of $A\left(\pi_{k}(s)\right)$ can be chosen C^{ω} or C^{Q} in s. Consequently, the eigenvalues and eigenvectors of $A(t)$ are locally special functions of bounded variation (SBV). If A is a family of Hermitian matrices, then we do not need power substitutions.
The proof of the matrix proposition in case (e) and (f) is exactly as in [2, 7.6], using the polynomial proposition and properties of C^{Q} and C^{L}. Item (g) is exactly as in [19, 6.2], using the polynomial proposition and properties of C^{L}. Item (h) is proved in [20, 9.1, 9.6], see also 18.
Proof of the theorem. We have to prove parts (B), (C), (H), (I), (L), (M), and (O). So let C^{M} be any of C^{ω}, C^{Q}, C^{L}, or $C^{0, \alpha}$, and let $A(t)$ be normal. Let z be an eigenvalue of $A\left(t_{0}\right)$ of multiplicity N. We choose a simple closed C^{1} curve γ in the resolvent set of $A\left(t_{0}\right)$ for fixed t_{0} enclosing only z among all eigenvalues of $A\left(t_{0}\right)$. Since the global resolvent set is open, see the resolvent lemma, no eigenvalue of $A(t)$ lies on γ, for t near t_{0}. By the resolvent lemma, $A: T \rightarrow L\left(\left(V,\| \|_{0}\right), H\right)$ is C^{M}, thus also

$$
t \mapsto-\frac{1}{2 \pi i} \int_{\gamma}(A(t)-z)^{-1} d z=: P(t, \gamma)=P(t)
$$

is a C^{M} mapping. Each $P(t)$ is a projection, namely onto the direct sum of all eigenspaces corresponding to eigenvalues of $A(t)$ in the interior of γ, with finite rank. Thus the rank must be constant: It is easy to see that the (finite) rank cannot fall locally, and it cannot increase, since the distance in $L(H, H)$ of $P(t)$ to the subset of operators of $\operatorname{rank} \leq N=\operatorname{rank}\left(P\left(t_{0}\right)\right)$ is continuous in t and is either 0 or 1 .

So for t in a neighborhood U of t_{0} there are equally many eigenvalues in the interior of γ, and we may call them $\lambda_{i}(t)$ for $1 \leq i \leq N$ (repeated with multiplicity).

Now we consider the family of N-dimensional complex vector spaces $t \mapsto$ $P(t) H \subseteq H$, for $t \in U$. They form a C^{M} Hermitian vector subbundle over U of $U \times H \rightarrow U$: For given t, choose $v_{1}, \ldots, v_{N} \in H$ such that the $P(t) v_{i}$ are linearly independent and thus span $P(t) H$. This remains true locally in t. Now we use the Gram Schmidt orthonormalization procedure (which is C^{ω}) for the $P(t) v_{i}$ to obtain a local orthonormal C^{M} frame of the bundle.

Now $A(t)$ maps $P(t) H$ to itself; in a C^{M} local frame it is given by a normal $(N \times N)$-matrix parameterized C^{M} by $t \in U$.

Now all local assertions of the theorem follow:
(B) Use the matrix proposition, part (e).
(C) Use the matrix proposition, part (f).
(H) Use the matrix proposition, part (h), and note that in dimension 1 blowups are trivial.
(I) Use the matrix proposition, part (g).
(L, M) Use the matrix proposition, part (h), for \mathbb{R}^{n}.
(O) We use the following

Result.(6, [5, VII.4.1]) Let A, B be normal $(N \times N)$-matrices and let $\lambda_{i}(A)$ and $\lambda_{i}(B)$ for $i=1, \ldots, N$ denote the respective eigenvalues. Then

$$
\min _{\sigma \in \mathcal{S}_{N}} \max _{j}\left|\lambda_{j}(A)-\lambda_{\sigma(j)}(B)\right| \leq C\|A-B\|
$$

for a universal constant C with $1<C<3$. Here $\|\|$ is the operator norm.
Finally, it remains to extend the local choices to global ones for the cases (B) and (C) only. There $t \mapsto A(t)$ is C^{Q} or C^{L}, respectively, which imply both C^{∞}, and no two different eigenvalues meet of infinite order. So we may apply [2, 7.8] (in fact we need only the end of the proof) to conclude that the eigenvalues can be chosen C^{∞} on $T=\mathbb{R}$, uniquely up to a global permutation. By the local result above they are then C^{Q} or C^{L}. The same proof then gives us, for each eigenvalue $\lambda_{i}: T \rightarrow \mathbb{R}$ with generic multiplicity N, a unique N-dimensional smooth vector subbundle of $\mathbb{R} \times H$ whose fiber over t consists of eigenvectors for the eigenvalue $\lambda_{i}(t)$. In fact this vector bundle is C^{Q} or C^{L} by the local result above, namely the matrix proposition, part (e) or (f), respectively.

References

[1] A. A. Albanese, D. Jornet, and A. Oliaro, Quasianalytic wave front sets for solutions of linear partial differential operators, Integral Equations Operator Theory 66 (2010), no. 2, 153-181.
[2] D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor, Choosing roots of polynomials smoothly, Israel J. Math. 105 (1998), 203-233.
[3] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000.
[4] H. Baumgärtel, Endlichdimensionale analytische Störungstheorie, Akademie-Verlag, Berlin, 1972, Mathematische Lehrbücher und Monographien, II. Abteilung. Mathematische Monographien, Band 28.
[5] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997.
[6] R. Bhatia, C. Davis, and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45-67.
[7] J. Bonet, R. Meise, and S. N. Melikhov, A comparison of two different ways to define classes of ultradifferentiable functions, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 424-444.
[8] J. Chaumat and A.-M. Chollet, Division par un polynôme hyperbolique, Canad. J. Math. 56 (2004), no. 6, 1121-1144.
[9] E. De Giorgi and L. Ambrosio, New functionals in the calculus of variations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 2, 199-210 (1989).
[10] C.-A. Faure, Théorie de la différentiation dans les espaces convenables, Ph.D. thesis, Université de Genéve, 1991.
[11] A. Frölicher and A. Kriegl, Linear spaces and differentiation theory, Pure and Applied Mathematics (New York), John Wiley \& Sons Ltd., Chichester, 1988, A Wiley-Interscience Publication.
[12] T. Kato, Perturbation theory for linear operators, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 132, Springer-Verlag, Berlin, 1976.
[13] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997, http://www.ams.org/online_bks/surv53/.
[14] , Differentiable perturbation of unbounded operators, Math. Ann. 327 (2003), no. 1, 191-201.
[15] A. Kriegl, P. W. Michor, and A. Rainer, Many parameter Hölder perturbation of unbounded operators, Math. Ann., published electronically on June 28, 2011. doi:10.1007/s00208-011-0693-9. arXiv:math.FA/0611506.
[16] , The convenient setting for non-quasianalytic Denjoy-Carleman differentiable mappings, J. Funct. Anal. 256 (2009), 3510-3544.
[17] , The convenient setting for quasianalytic Denjoy-Carleman differentiable mappings, J. Funct. Anal. 261 (2011), 1799-1834.
[18] K. Kurdyka and L. Paunescu, Hyperbolic polynomials and multiparameter real-analytic perturbation theory, Duke Math. J. 141 (2008), no. 1, 123-149.
[19] A. Rainer, Perturbation of complex polynomials and normal operators, Math. Nach. 282 (2009), no. 12, 1623-1636.
[20] , Quasianalytic multiparameter perturbation of polynomials and normal matrices, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4945-4977.
[21] F. Rellich, Störungstheorie der Spektralzerlegung, Math. Ann. 113 (1937), no. 1, 600-619.
[22] _ , Störungstheorie der Spektralzerlegung. V, Math. Ann. 118 (1942), 462-484.
Andreas Kriegl: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

E-mail address: andreas.kriegl@univie.ac.at
Peter W. Michor: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

E-mail address: peter.michor@univie.ac.at
Armin Rainer: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

E-mail address: armin.rainer@univie.ac.at

