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Abstract. We review and extend the description of ultradifferentiable func-

tions by their almost analytic extensions, i.e., extensions to the complex do-

main with specific vanishing rate of the ∂-derivative near the real domain.
We work in a general uniform framework which comprises the main classical

ultradifferentiable classes but also allows to treat unions and intersections of

such. The second part of the paper is devoted to applications in microlocal
analysis. The ultradifferentiable wave front set is defined in this general set-

ting and characterized in terms of almost analytic extensions and of the FBI

transform. This allows to extend its definition to ultradifferentiable manifolds.
We also discuss ultradifferentiable versions of the elliptic regularity theorem

and obtain a general quasianalytic Holmgren uniqueness theorem.
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1. Introduction

An almost analytic extension of a real function f is an extension F to the complex
domain such that ∂F (z) has a certain growth rate as z approaches the real domain.
It is well-known that this growth rate encodes regularity properties of f .

In this article we review and extend the characterization of ultradifferentiable
function classes by their almost analytic extensions. The almost analytic description
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of Denjoy–Carleman classes goes back to Dynkin [14]. For the non-quasianalytic
classes introduced by Beurling [5] and Björck [6] the characterization was proved
by Petzsche and Vogt [33].

We introduce a uniform approach which generalizes all mentioned results. Our
characterization theorems work under very weak conditions, in particular, we need
not assume non-quasianalyticity. This is achieved by refining the extension method
of Dynkin following the ideas of [37, 38] and combining it with the description of
ultradifferentiable classes by weight matrices which was introduced in [35].

In the special case of Beurling–Björck classes we even obtain a complete char-
acterization of the classes which admit a description by almost analytic extension:
these are precisely the classes that are stable by composition.

In the second part of the paper we apply these results to microlocal analysis.
More precisely, we deal with the ultradifferentiable wave front set. The wave front
set was introduced in the smooth case by Hörmander and in the analytic category
by Sato as a refinement of the singular support. In [18] Hörmander introduced the
ultradifferentiable wave front set with respect to Denjoy–Carleman classes given by
weight sequences. In particular he gave an alternative definition of the analytic wave
front set by the Fourier transform, in contrast to Sato’s approach using holomorphic
extensions. Bony [10] showed that the definitions of Sato, Hörmander and the one
of Bros–Iagolnitzer [12] using the FBI transform describe the same set. The first
author [16] showed that the theorem of Dynkin can be used to prove a version of
Bony’s Theorem for the ultradifferentiable wave front set in the case of Denjoy–
Carleman classes.

On the other hand Albanese–Jornet–Oliaro [1] defined the ultradifferentiable
wave front set for Beurling–Björk classes and proved a microlocal elliptic regularity
theorem. Our aim is to unify and generalize these results.

We begin by recalling and extending the definition of the ultradifferentiable wave
front set to classes given by weight matrices. We characterize it in terms of almost
analytic extensions as well as in terms of the FBI transform. In the last section of
the article we discuss ultradifferentiable versions of the elliptic regularity theorem
and obtain a general quasianalytic Holmgren uniqueness theorem.

1.1. Almost analytic extensions. Let h : (0,∞) → (0, 1] be an increasing con-
tinuous function which tends to 0 as t→ 0. Let ρ > 0. Let U ⊆ Rn be a bounded
open set. We say that a function f : U → R admits an (h, ρ)-almost analytic ex-
tension if there is a function F ∈ C1

c (Cn) and a constant C ≥ 1 such that F |U = f
and

|∂F (z)| ≤ C h(ρd(z, U)), for z ∈ Cn.

Here d(z, U) := infx∈U |x − z| denotes the distance of z to U . A vector valued
function f = (f1, . . . , fm) : U → Rm admits an (h, ρ)-almost analytic extension if
each component fj does.

We wish to emphasize that functions that admit almost analytic extension have
good stability properties:

Proposition 1.1. Suppose that f : U → R has an (h, ρ)-almost analytic exten-
sion and g : V → U has a (k, σ)-almost analytic extension. Then f ◦ g admits
a (max{h, k},max{Cρ, σ})-almost analytic extension, where the constant C equals
the Lipschitz constant of the extension of g.
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Proof. Let F and G denote the respective extensions. Then

∂zi(F ◦G) =

n∑
j=1

∂zjF (G)∂ziGj +

n∑
j=1

∂zjF (G)∂ziGj .

Since G ∈ C1
c , we have d(G(z), G(V )) ≤ Lip(G) d(z, V ). The assertion follows. �

Notice that stability under inverse/implicit functions and solving ODEs follows
in a similar way; we refer to [14].

Let M = (Mk) be a positive sequence. For ρ > 0 we consider the Banach space
BMρ (U) := {f ∈ C∞(U) : ‖f‖Mρ <∞}, where

‖f‖Mρ := sup
x∈U,α∈Nn

|∂αf(x)|
ρ|α|M|α|

,

and the limits

B{M}(U) := indρ∈N BMρ (U) and B(M)(U) := projρ∈N BM1/ρ(U).

Then B{M}(U) and B(M)(U) are called Denjoy–Carleman classes of Roumieu and
Beurling type, respectively. We shall also need the local classes

E [M](U) := projVbU B[M](V ),

where V ranges over the relatively compact open subsets of U ; we write [M] if we
mean either {M} or (M).

Let m = (mk) be the sequence defined by mk := Mk/k! and let us assume that

m
1/k
k →∞ as k →∞. We define

hm(t) := inf
k∈N

mkt
k, for t > 0, and hm(0) := 0. (1.1)

The following theorem is due to Dynkin [14].

Theorem 1.2. Assume that m is logarithmically convex, m
1/k
k → ∞, and

(Mk+1/Mk)1/k is bounded. Let U ⊆ Rn be open. Then f ∈ E{M}(U) if and only
if for each ball B b U the restriction f |B has an (hm, ρ)-almost analytic extension
for some ρ > 0.

Our goal is to extend this result to the Beurling case and to the classes of Beurling
and Björck which were equivalently described by Braun, Meise, and Taylor [11].
These classes are defined in terms of a weight function ω. By a weight function
we mean a continuous increasing function ω : [0,∞) → [0,∞) with ω(0) = 0 that
satisfies

ω(2t) = O(ω(t)) as t→∞, (1.2)

ω(t) = O(t) as t→∞, (1.3)

log t = o(ω(t)) as t→∞, (1.4)

ϕ(t) := ω(et) is convex. (1.5)

Note that (1.4) implies limt→∞ ω(t) =∞.
For ρ > 0 we consider the Banach space Bωρ (U) := {f ∈ C∞(U) : ‖f‖ωρ < ∞},

where, for ϕ∗(t) := sups≥0(st− ϕ(s)),

‖f‖ωρ := sup
x∈U,α∈Nn

|∂αf(x)| exp(− 1
ρϕ
∗(ρ|α|)),
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and the limits

B{ω}(U) := indρ∈N Bωρ (U) and B(ω)(U) := projρ∈N Bω1/ρ(U).

The corresponding local classes are defined by

E [ω](U) := projVbU B[ω](V );

we write [ω] if we mean either {ω} or (ω). We recall that E [ω](U) contains non-trivial
functions with compact support in U if and only if∫ ∞

1

ω(t)

t2
dt <∞;

cf. [11] or [35]. In that case we say that ω is non-quasianalytic and it makes sense
to set

D[ω](U) := E [ω](U) ∩ D(U),

where D(U) denotes the space of smooth functions with compact support in U .
In [33] the authors prove the following result.

Theorem 1.3. Let ω be a concave non-quasianalytic weight function. Let U ⊆ R
be open and f ∈ D(U). Then:

(1) f ∈ D{ω}(U) if and only if there exist ρ > 0 and F ∈ D(Ũ) such that
F |R = f and

sup
z∈C\R

|∂F (z)| exp(ρω?(|y|/ρ)) <∞. (1.6)

(2) f ∈ D(ω)(U) if and only if for each ρ > 0 there exists F ∈ D(Ũ) such that
F |R = f and (1.6).

Here Ũ is an open subset of C such that U = Ũ ∩R and ω?(t) = sups≥0(ω(s)− st).

In [33] the almost analytic extensions were obtained by an explicit formula sug-
gested by Mather based on the Fourier transform. That proof does not work for
quasianalytic classes.

Remark 1.4. In [33] the assumption (1.5) is not made. This condition is important
for the equivalence of the classes E [ω] with the classes originally introduced by
Beurling and Björck using the Fourier transform; cf. [11].

We will prove results which generalize both Theorem 1.2 and Theorem 1.3 and
which work also in the quasianalytic setting. Our most general results are for-
mulated and proved for ultradifferentiable classes defined by weight matrices; see
Theorem 3.2 and Theorem 3.4. We give full details in the proofs, since Dynkin’s
papers seem not to be widely known.

For classes described by weight functions we obtain a complete characterization:

Theorem 1.5. Let ω be a weight function satisfying ω(t) = o(t) as t → ∞. The
following are equivalent.

(1) E{ω} can be described by almost analytic extensions.
(2) E(ω) can be described by almost analytic extensions.
(3) E{ω} is stable under composition.
(4) E(ω) is stable under composition.
(5) ω is equivalent to a concave weight function.
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This follows from the much more comprehensive Theorem 4.8 in which also the
precise meaning of the phrase “E [ω] can be described by almost analytic extensions”
is explained. See also Theorem 4.9 for our new version of Theorem 1.3.

A widely used family of ultradifferentiable classes which falls into this framework
is the scale of Gevrey classes

Gs = E{(k!s)k} = E{t 7→t
1/s}, s > 1;

note that G1 = Cω.

1.2. Applications to microlocal analysis. The uniform approach to ultradiffer-
entiable classes by imposing growth conditions in terms of weight matrices provides
us with a general framework to treat the ultradifferentiable wave front sets for
distributions u ∈ D′. Our setting comprises and generalizes the wave front sets
WF[M] of Hörmander [20] for weight sequences M and WF[ω] of Albanese, Jornet,
and Oliaro [1] for weight functions ω.

In Section 5 we develop the basic properties trying to impose minimal assump-
tions on the weights.

As an application of the description of ultradifferentiable classes by almost ana-
lytic extensions we obtain in Section 6 a characterization of the ultradifferentiable
wave front set by almost analytic extensions; see Corollary 6.3. This description
allows us to show that the ultradifferentiable wave front set is compatible with
pullbacks by mappings of the corresponding ultradifferentiable class and hence the
definition of the wave front set can be extended to ultradifferentiable manifolds;
see Theorem 6.4. Furthermore, we obtain a general ultradifferentiable version of
Bony’s theorem, that is a characterization of the ultradifferentiable wave front set
not only by almost analytic extensions but also in terms of the FBI transform; see
Theorem 6.6.

In the particular case of a weight function the latter takes the following form.

Theorem 1.6. Let ω be a concave weight function satisfying ω(t) = o(t) as t→∞.
Let u ∈ D′(Ω) and (x0, ξ0) ∈ T ∗Ω \ {0}. Then

(1) (x0, ξ0) /∈WF{ω} u if and only if there exist a test function ψ ∈ D(Ω) with
ψ ≡ 1 near x0, a conic neighborhood U×Γ of (x0, ξ0), and a constant γ > 0
such that

sup
(t,ξ)∈U×Γ

eγω(|ξ|)∣∣F(ψu)(t, ξ)
∣∣ <∞. (1.7)

(2) (x0, ξ0) /∈WF(ω) u if and only if there exist a test function ψ ∈ D(Ω) with
ψ ≡ 1 near x0 and a conic neighborhood U × Γ of (x0, ξ0) such that (1.7)
is satisfied for all γ > 0.

We refer to Section 6.3 for the definition of the generalized FBI transform F.
In the last Section 7 we investigate ultradifferentiable versions of the elliptic

regularity theorem. Our most general result is Theorem 7.1 which is formulated
for classes defined by weight matrices. It comprises the versions of Hörmander
[21] for weight sequences M and of Albanese, Jornet, and Oliaro [1] for weight
functions ω as special cases. The proof follows closely the approach of Hörmander.
As a corollary we obtain a general version of Holmgren’s uniqueness theorem; see
Theorem 7.10.

Notice that in the Beurling case we must in general assume that the coefficients
of the linear operator are strictly more regular than the wave front set in question,
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just as in [1]; Hörmander only considers operators with analytic coefficients. There
are however circumstances when the operator can be as regular as the wave front
set (both in the case of a single weight sequence and of a weight function); see
Section 7.2. In particular, this occurs in the setting considered in [1], whence our
result Theorem 7.7 actually strengthens [1, Theorem 4.1].

A further interesting corollary of Theorem 7.1 is the following. We are interested
in the intersection of all non-quasianalytic Gevrey classes

E(G) :=
⋂
s>1

Gs;

this is a non-quasianalytic function class, cf. [35].

Theorem 1.7. Let P (x,D) =
∑
|α|≤m aα(x)Dα be a linear partial differential

operator with E(G)(Ω)-coefficients. Then

WF(G) u ⊆WF(G) Pu ∪ CharP (1.8)

for all u ∈ D′(Ω). If P is elliptic, then WF(G) u = WF(G) Pu.

That Theorem 1.7 follows from Theorem 7.1 will be proved in Section 7.2.

Remark 1.8. It is clearly possible to define ultradistributions and their wave front
sets based on non-quasianalytic weight matrices (as dual spaces of the respective
spaces of ultradifferentiable test functions). For weight sequences and weight func-
tions there exists a comprehensive theory of ultradistributions, see e.g. [24, 25, 27].
One can expect that results similar to those obtained in this paper hold in that sit-
uation. For instance, an elliptic regularity theorem for ultradistributions of Braun–
Meise–Taylor type is proved in [2]. However, it seems that different techniques
will be required, since the growth of the Fourier–Laplace transform of compactly
supported ultradistributions quite differs from the one of classical distributions (cf.
[25]). In [2], for instance, tools from the theory of ultradifferentiable pseudodiffer-
ential operators of infinite order are used. These tools are not yet developed in the
framework of general weight matrices.

Acknowledgment. We wish to thank the anonymous referee for valuable sugges-
tions that improved the presentation of the paper.

2. Weights and ultradifferentiable classes

2.1. Weight sequences. Let µ = (µk) be a positive increasing sequence, 1 = µ0 ≤
µ1 ≤ µ2 ≤ · · · . We associate the sequences M = (Mk) and m = (mk) defined by

µ0µ1µ2 · · ·µk = Mk = k!mk, (2.1)

for all k ∈ N. We call M a weight sequence if M
1/k
k →∞. A weight sequence M is

called non-quasianalytic if ∑
k

1

µk
<∞. (2.2)

We say that M has moderate growth if there exists C > 0 such that Mj+k ≤
Cj+kMjMk for all j, k ∈ N, or equivalently,

µk .M
1/k
k ; (2.3)

we refer to [37, Lemma 2.2] for a proof and further equivalent conditions. (For real
valued functions f and g we write f . g if f ≤ Cg for some positive constant C.)
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Two weight sequences M and N are said to be equivalent if there is a constant

C > 0 such that 1/C ≤M1/k
k /N

1/k
k ≤ C for all k. We write M � N (resp. M�N)

if M
1/k
k /N

1/k
k is bounded (resp. tends to 0).

Remark 2.1. Note that µ uniquely determines M and m, and vice versa. In
analogy we shall use ν ↔ N ↔ n, σ ↔ S ↔ s, etc. That µ is increasing means
precisely that M is logarithmically convex (log-convex for short). Log-convexity
of m is a stronger condition: if m is log-convex we shall say that M is strongly
log-convex.

The results contained in the next lemma are easy to check; the proof is left to
the reader.

Lemma 2.2 (Properties of weight sequences). Let 1 = µ0 ≤ µ1 ≤ µ2 ≤ · · · . Then:

(1) M
1/k
k is increasing, equivalently,

∀k ∈ N>0 : M
1/k
k ≤ µk. (2.4)

(2) MjMk ≤Mj+k for all k, j.

(3) If M
1/k
k →∞, then µk →∞.

(4) If m
1/k
k →∞, then mk/mk−1 = µk/k →∞.

(5) The condition m
1/k
k →∞ implies

∀ρ > 0 ∃C > 0 ∀k ∈ N : kk ≤ CρkMk. (2.5)

2.2. Functions associated with weight sequences. There are a few functions
which one naturally associates with a weight sequence; cf. [29], [24], [13].

Let m = (mk) be a positive sequence satisfying m0 = 1 and m
1/k
k → ∞. We

have already introduced the function hm in (1.1). Furthermore, we need

Γm(t) := min{k : hm(t) = mkt
k}, t > 0, (2.6)

and, provided that mk+1/mk →∞,

Γm(t) := min
{
k :

mk+1

mk
≥ 1

t

}
, t > 0. (2.7)

The next lemma is immediate from the definitions, cf. [38, Lemma 3.2].

Lemma 2.3. Let m = (mk) be a positive sequence satisfying m0 = 1, m
1/k
k →∞,

and mk+1/mk →∞. Then:

(1) hm is increasing, continuous, and positive for t > 0. For large t we have
hm(t) = 1.

(2) Γm is decreasing and Γm(t)→∞ as t→ 0.
(3) k 7→ mkt

k is decreasing for k ≤ Γm(t).
(4) Γm ≤ Γm. If m is log-convex then Γm = Γm.

It will be crucial to also have an “upper bound for Γ in terms of Γ”. The next
lemma provides a sufficient condition for this.

Lemma 2.4 ([38]). Let M and N be weight sequences satisfying m
1/k
k → ∞ and

n
1/k
k →∞. Assume that

∃C ≥ 1 ∀1 ≤ j ≤ k :
µj
j
≤ C νk

k
. (2.8)
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Then, for all t > 0,

Γn(Ct) ≤ Γm(t). (2.9)

We also consider the function

ωm(t) = − log hm(1/t) = sup
k∈N

log
( tk
mk

)
, t > 0, (2.10)

which is increasing, convex in log t, and zero for sufficiently small t > 0. The
log-convex minorant m of m is given by

mk := sup
t>0

tk

exp(ωm(t))
, k ∈ N.

In particular, m is log-convex if and only if m = m.

2.3. Basic properties of Denjoy–Carleman classes. For weight sequences M
and N we have B[M] ⊆ B[N] if and only if M � N and B{M} ⊆ B(N) if and only
if M � N. In particular, M and N are equivalent if and only if the corresponding
classes B[M] and B[N] coincide. By the Denjoy–Carleman theorem (e.g. [20, The-
orem 1.3.8]), B[M](U) contains non-trivial elements with compact support if and
only if M is non-quasianalytic.

2.4. Weight matrices and corresponding spaces of functions. A weight ma-
trix is a family M of weight sequences which is totally ordered with respect to the
pointwise order relation on sequences, i.e.,

(1) M ⊆ RN,
(2) each M ∈M is a weight sequence in the sense of Section 2.1,
(3) for all M,N ∈M we have M ≤ N or M ≥ N.

Let M and N be two weight matrices. We define

M{�}N :⇔ ∀M ∈M ∃N ∈ N : M � N,

M(�)N :⇔ ∀N ∈ N ∃M ∈M : M � N.

M{�)N :⇔ ∀M ∈M ∀N ∈ N : M � N.

We say that M and N are R-equivalent (resp. B-equivalent) if M{�}N{�}M (resp.
M(�)N(�)M) and simply equivalent if they are both R- and B-equivalent.

For a weight matrix M we consider the corresponding Roumieu class

B{M}(U) := indM∈M B{M}(U), (2.11)

and Beurling class

B(M)(U) := projM∈M B(M)(U). (2.12)

For weight matrices M, N we have B[M] ⊆ B[N] if and only if M[�]N and B{M} ⊆
B(N) if and only if M{�)N; cf. [35].

The limits in the definitions (2.11) and (2.12) can always be assumed countable
as is shown in the next lemma.

Lemma 2.5. Let M be a weight matrix. There exists a countable weight matrix
L ⊆M such that B[L](U) = B[M](U) algebraically and topologically.
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Proof. Let us prove the Roumieu case. For every k ∈ N let Mk := {Mk : M ∈M}
which is a subset of R>0.

Case 1: If M := (supMk)k ∈M then M ≥M and hence B{M}(U) = B{M}(U).
Case 2: Assume M 6∈ M but supMk ∈ Mk for all k. For each k there exists

Mk ∈M such that Mk
k = supMk. Then L := {Mk : k ∈ N} is a countable totally

ordered subfamily of M. Moreover, B[L](U) = B[M](U) follows from the claim that
for each M ∈M there exists L ∈ L such that M ≤ L. Since M 6= M, there is a k0

such that Mk0 < supMk0 = Mk0
k0

. Since M is totally ordered, M ≤Mk0 =: L and
the claim is proved.

Case 3: Assume supMk0 6∈ Mk0 for some k0. For each k choose a strictly
increasing sequence Mn

k in Mk such that Mn
k → supMk as n → ∞. For each k

and each n choose L = L(k, n) ∈ M such that Lk = Mn
k . This gives a countable

subfamily L ⊆ M. By construction, for given k0 we clearly find L ∈ L such that
Mk0 < Lk0 which implies B[L](U) = B[M](U) as in Case 2.

The Beurling case is analogous (replacing sup by inf). �

The corresponding local classes are defined by

E [M](U) := projVbU B[M](V ).

We say that a weight matrix M is quasianalytic if each M ∈M is quasianalytic.
For a quasianalytic M the class B[M](U) is quasianalytic in the sense that it cannot
contain non-trivial elements with compact support. It is easy to see that in the
Roumieu case B{M}(U) also the converse is true. In the Beurling case the class
B(M)(U) is quasianalytic if and only if there exists a quasianalytic M ∈ M; this
follows from [43, Proposition 4.7]. In that case we may remove all non-quasianalytic
sequences from M without altering the class (thanks to the total order, see (3)).

Definition 2.6 (Regular weight matrix). A weight matrix M satisfying

(0) m
1/k
k →∞ as k →∞ for all M ∈M

is called R-regular (for Roumieu) if

(1) ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀j ∈ N : Mj+1 ≤ Cj+1Nj ,

(2) ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀t > 0 : Γn(Ct) ≤ Γm(t),

and B-regular (for Beurling) if

(3) ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀j ∈ N : Nj+1 ≤ CjMj ,

(4) ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀t > 0 : Γm(Ct) ≤ Γn(t).

Moreover, M is called regular if it is both R- and B-regular. We say that a weight
matrix M is R-semiregular (resp. B-semiregular) if it satisfies (0) and (1) (resp.
(3)), and M is called semiregular if it is both R- and B-semiregular. Occasionally,
we will also use [semiregular] (or [regular]) and mean that the weight matrix in
question is assumed to be R- or B-semiregular (R- or B-regular) depending on the
case that is considered.

Let us discuss the relations among the conditions in this definition.

Remark 2.7. We have the following equivalences; see [35, Proposition 4.6]:

• Cω ⊆ E(M) if and only if M satisfies (0).
• B{M} (equiv. E{M}) is stable under derivation if and only if M satisfies (1).
• B(M) (equiv. E(M)) is stable under derivation if and only if M satisfies (3).
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Suppose that M is an R-semiregular weight matrix. Then the following three
conditions are gradually weaker:

(1) ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀j ≤ k :
µj
j ≤ C

νk
k

(2) M satisfies Definition 2.6(2).

(3) ∀M ∈M ∃N ∈M ∃C > 0 ∀j ≤ k : m
1/j
j ≤ Cn1/k

k

Indeed, that (1) implies (2) follows from Lemma 2.4; in Example 2.8 we shall
see that (1) is strictly stronger than (2). And that (2) implies (3) follows from
Proposition 1.1 and Theorem 3.2, since (3) holds if and only if the class B{M}
(equiv. E{M}) is stable under composition; cf. [36].

Similarly, if M is a B-semiregular weight matrix, then the following three condi-
tions are gradually weaker:

(4) ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀j ≤ k :
νj
j ≤ C

µk
k

(5) M satisfies Definition 2.6(4).

(6) ∀M ∈M ∃N ∈M ∃C > 0 ∀j ≤ k : n
1/j
j ≤ Cm1/k

k

This follows from Lemma 2.4, Proposition 1.1, Theorem 3.4, and since (6) holds if
and only if the class B(M) (equiv. E(M)) is stable under composition; cf. [36].

The conditions Definition 2.6(2) and Definition 2.6(4) are a minimal requirement
(aside from semiregularity) for our proofs of Theorem 3.2 and Theorem 3.4 to work.

Additionally, we wish to emphasize that (1) holds if and only if M is R-equivalent
to a weight matrix which consists of nothing but strongly log-convex weight se-
quences. In the same way (4) holds if and only if M is B-equivalent to a weight
matrix which consists of nothing but strongly log-convex weight sequences. See [39,
Corollaries 9 and 10].

Example 2.8. There exist two positive sequences M ≤ N such that:

(1) They satisfy (2.9).
(2) If two sequences M′ and N′ satisfy (2.8) (with a possibly different constant),

then either M is not equivalent to M′ or N is not equivalent to N′.

(3) µk/k →∞, νk/k →∞, m
1/k
k →∞, and n

1/k
k →∞ as k →∞.

Proof. Let aj , j ≥ 1, be integers satisfying

a1 := 1, aj+1 ≥ max{a2
j , aj + 3} for all j ≥ 1,

and bj , j ≥ 1, positive numbers such that

b1 := 1, bj+1 > bj ≥ jaj+1 for all j ≥ 1.

We define µ0 := 1 and for k ≥ 1

µk :=

{
ajbj if aj ≤ k < aj+1 − 1

j−aj+1+1(aj+1 − 1)bj if k = aj+1 − 1.

Let cj , j ≥ 1, be positive numbers such that

cj+1 > cj ≥
bj
aj

max
{
aj+2 − 2,

(
jaj+1−1

aj+1−2∏
`=aj

`
) 1
aj+1−aj−1

}
.

Define ν0 := 1 and for k ≥ 1

νk :=

{
ajcj if aj ≤ k < aj+1 − 1

µk if k = aj+1 − 1.
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(1) The various definitions imply that

∀j ≥ 0 ∀k ≥ aj+1 : b
k−aj+1+1
j+1 ≤

νaj+1

aj+1
· · · νk

k
.

In particular, if t > 0 is such that bj =
µaj
aj

< 1
t ≤ bj+1 =

µaj+1

aj+1
, then

taj+1−k−1 ≤
νaj+1

aj+1
· · · νk

k
=

nk
naj+1−1

i.e. nkt
k ≥ naj+1−1t

aj+1−1. Since by construction µk+1

k+1 < 1
t for all k < aj+1 − 1,

we have Γm(t) = aj+1 − 1. Hence nkt
k ≥ nΓm(t)t

Γm(t) for all k ≥ Γm(t) and,

consequently, Γn(t) ≤ Γm(t).
(2) If M′ and N′ satisfy (2.8) and D−1 ≤ (M ′k/Mk)1/k ≤ D as well as D−1 ≤

(N ′k/Nk)1/k ≤ D for a positive constant D, then

∃C,H ≥ 1 ∀1 ≤ j ≤ k :
µj
j
≤ HCk νk

k
.

Clearly, this property is violated by the constructed sequences (to see this replace
j by aj and k by aj+1 − 1).

(3) It is easy to see that µk/k ≤ νk/k for all k. That µk/k →∞ as k →∞ follows

from bj ≥ jaj+1 . This shows all assertions since µk/k →∞ implies m
1/k
k →∞; cf.

the arguments given in [35] before Lemma 2.13. �

The constructed sequences M and N are not log-convex, but since m
1/k
k and

n
1/k
k tend to∞ as k →∞, we have E [M] = E [M] and E [N] = E [N], where M denotes

the log-convex minorant of M; see [35, Theorem 2.15].

For later use we also show the following.

Theorem 2.9. Let M be a weight matrix satisfying m
1/k
k →∞ for all M ∈M. If

ϕ : Ω1 → Ω2 is a real analytic mapping between open sets Ωj ⊆ Rnj , j = 1, 2, then

the pullback ϕ∗ : E [M](Ω2)→ E [M](Ω1) of ϕ is well defined.

Proof. Let us first assume that M consists of a single weight sequence M. In the
Roumieu case the statement follows easily from the proof of [20, Proposition 8.4.1];

it is enough that M is a positive sequence with m
1/k
k →∞.

Suppose that u ∈ E(M)(Ω2) and K ⊆ Ω1 is compact. For each ρ > 0 there exists
C > 0 such that Lk := max{k!,max|α|=k supx∈ϕ(K) |∂αu(x)|} ≤ CρkMk for all k.

Then the sequence Nk :=
√
LkMk satisfies L�N�M and n

1/k
k →∞. So u belongs

to B{N}(ϕ(K)) and, by the Roumieu case, ϕ∗u ∈ B{N}(K) ⊆ B(M)(K).
The general case follows immediately. �

2.5. Whitney ultrajets. Let E be a compact subset of Rn. We denote by J∞(E)
the vector space of all jets F = (Fα)α∈Nn ∈ C0(E,R)N

n

on E. For a ∈ E and p ∈ N
we associate the Taylor polynomial

T pa : J∞(E)→ C∞(Rn,R), F 7→ T paF (x) :=
∑
|α|≤p

(x− a)α

α!
Fα(a),
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and the remainder RpaF = ((RpaF )α)|α|≤p with

(RpaF )α(x) := Fα(x)−
∑

|β|≤p−|α|

(x− a)β

β!
Fα+β(a), a, x ∈ E.

Let us denote by j∞E the mapping which assigns to a C∞-function f on Rn the jet
j∞E (f) := (∂αf |E)α. By Taylor’s formula, F = j∞E (f) satisfies

(RpaF )α(x) = o(|x− a|p−|α|) for a, x ∈ E, p ∈ N, |α| ≤ p as |x− a| → 0.

Conversely, if a jet F ∈ J∞(E) has this property, then it admits a C∞-extension to
Rn, by Whitney’s extension theorem [47] (for modern accounts see e.g. [28, Ch. 1],
[46, IV.3], or [20, Theorem 2.3.6]).

Let M = (Mk) be a weight sequence. For fixed ρ > 0 we denote by BMρ (E) the
set of all jets F such that there exists C > 0 with

|Fα(a)| ≤ Cρ|α|M|α|, α ∈ Nn, a ∈ E,

|(RpaF )α(b)| ≤ Cρp+1Mp+1
|b− a|p+1−|α|

(p+ 1− |α|)!
, p ∈ N, |α| ≤ p, a, b ∈ E.

The smallest constant C defines a complete norm on BMρ (E). We define the
Roumieu class

B{M}(E) := indρ∈N BMρ (E),

and the Beurling class

B(M)(E) := projρ>0 BMρ (E).

An element of B[M](E) is called a Whitney ultrajet of class B[M] on E.
If M is a weight matrix we set

B{M}(E) := indM∈M B{M}(E) and B(M)(E) := projM∈M B(M)(E).

Remark 2.10. If U is an open subset of Rn and F ∈ J∞(U) satisfies

(RpaF )α(x) = o(|x− a|p−|α|) for a, x ∈ U , p ∈ N, |α| ≤ p as |x− a| → 0,

then there exists f ∈ C∞(U) with F = j∞U (f). It follows that the space of functions

and the space of jets that were both denoted by B[M](U) coincide, which justifies
the consistent use of the notation.

2.6. Quasiconvex domains. A subset X of Rn is called quasiconvex if any two
points x, y ∈ X can be joined by a rectifiable path in X of length ≤ C|x − y|, for
some constant C independent of x, y. By a quasiconvex domain in Rn we mean a
non-empty open subset U ⊆ Rn that is quasiconvex.

It follows easily that the closure of any quasiconvex domain U is quasiconvex as
well, in fact, any two points x, y in the boundary of U can be joined by a rectifiable
path of length ≤ C|x− y| (with possibly a larger constant) which lies in U except
the endpoints.

Lemma 2.11. Let U ⊆ Rn be a bounded quasiconvex domain and f ∈ B[M](U).
Then each partial derivative f (α) admits a unique continuous extension fα to U
such that (fα)α∈Nn ∈ B[M](U).

Proof. That the extension fα exists (and is unique) follows from the mean value
theorem, since all first order derivatives of f (α) are uniformly bounded on U . Since
E = U is quasiconvex, (fα) is a Whitney jet of class C∞ and hence extends to a



ALMOST ANALYTIC EXTENSIONS AND MICROLOCAL ANALYSIS 13

smooth function on Rn; cf. [34, Proposition 1.10]. That (fα) ∈ B[M](E) follows
from [34, Lemma 10.1] (which is only formulated for Roumieu classes, but its proof
also shows the Beurling case). �

3. Ultradifferentiable classes by almost analytic extensions

3.1. Characterization theorems. Before we formulate the main theorems of this
section, we need one additional definition.

Definition 3.1. Let M be a weight matrix.

(1) A function f : U → R is called {M}-almost analytically extendable if it has
an (hm, ρ)-almost analytic extension for some M ∈M and some ρ > 0.

(2) A function f : U → R is called (M)-almost analytic extendable if, for all
M ∈M and all ρ > 0, there is an (hm, ρ)-almost analytic extension of f .

Theorem 3.2 (Roumieu case). Let M be an R-regular weight matrix and U ⊆ Rn
a bounded quasiconvex domain. Then f ∈ B{M}(U) if and only if f is {M}-almost
analytically extendable.

Since any open subset of Rn can be exhausted by relatively compact quasiconvex
domains (e.g., connected finite unions of balls) we immediately get a characteriza-
tion of local classes.

Corollary 3.3. Let M be an R-regular weight matrix. Let U ⊆ Rn be open. Then
f ∈ E{M}(U) if and only if f |V is {M}-almost analytically extendable for each
quasiconvex domain V relatively compact in U .

Theorem 3.4 (Beurling case). Let M be a B-regular weight matrix and U ⊆ Rn
a bounded quasiconvex domain. Then f ∈ B(M)(U) if and only if f is (M)-almost
analytically extendable.

Again the following is immediate.

Corollary 3.5. Let M be a B-regular weight matrix. Let U ⊆ Rn be open. Then
f ∈ E(M)(U) if and only if f |V is (M)-almost analytically extendable for each
quasiconvex domain V relatively compact in U .

Remark 3.6. In the case that M consists only of a single weight sequence, Theo-
rem 3.2 reduces to a slight generalization of Dynkin’s original result [14]. In fact,
Dynkin’s assumption that µk/k is increasing implies Definition 2.6(2) with n = m.

If the assumption Definition 2.6(2) is replaced by Remark 2.7(1) which is strictly
stronger, by Example 2.8, then one can use [39, Corollary 9] and the result of Dynkin
to get Theorem 3.2.

3.2. Proofs of Theorem 3.2 and Theorem 3.4. The arguments in this section
are essentially due to Dynkin [14]. First we recall the Bochner-Martinelli formula.
In the standard Wirtinger notation

1

(2i)n
(dz1 ∧ dz1) ∧ · · · ∧ (dzn ∧ dzn) = dL2n(z)

is the usual volume element of R2n ∼= Cn and

∂F (z) :=

n∑
j=1

∂F (z)

∂zj
dzj .
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Theorem 3.7 (Bochner-Martinelli formula). Let V ⊆ Cn be a bounded domain
with C1 boundary and F ∈ C1(V ). Then

F (z) =

∫
∂V

F (ζ)ω(ζ, z)−
∫
V

∂F (ζ) ∧ ω(ζ, z),

where ω is the (n, n− 1)-form (d̂ζj means that dζj is omitted)

ω(ζ, z) =
(n− 1)!

(2πi)n
1

|z − ζ|2n
n∑
j=1

(ζj − zj) dζ1 ∧ dζ1 ∧ · · · ∧ d̂ζj ∧ · · · ∧ dζn ∧ dζn.

Proposition 3.8. Let M be a positive sequence with m
1/k
k → ∞, ρ > 0, and

U ⊆ Rn bounded open. Any f : U → R with an (hm, ρ)-almost analytic extension
belongs to B{M}(U). If for every ρ > 0 there is an (hm, ρ)-almost analytic extension
of f , then f belongs to B(M)(U).

Proof. Let F be an (hm, ρ)-almost analytic extension of f . Since F has compact
support, Theorem 3.7 implies

f(x) = F (x) = −
∫
Cn
∂F (ζ) ∧ ω(ζ, x), x ∈ U.

By differentiating under the integral sign it is easy to check that f := F |U is of
class C∞ on U with

∂αf(x) = −
∫
Cn
∂F (ζ) ∧ ∂αω(ζ, x), x ∈ U.

By Faà di Bruno’s formula and the Leibniz rule, we get∣∣∣∣∂α( 1

|x− ζ|2n
n∑
j=1

(ζj − xj)
)∣∣∣∣ ≤ C(n)|α||α|!

|x− ζ|2n+|α|−1
.

Choose R > 0 large enough such that U ∪ supp(F ) ⊆ B(0, R). Writing D = (n−1)!
πn ,

we get for x ∈ U ,

|∂αf(x)|
(C(n)ρ)|α|M|α|

≤ D
∫
B(0,R)

Ahm(ρd(ζ, U))

ρ|α|m|α||x− ζ|2n+|α|−1
dL2n(ζ)

≤ AD
∫
B(0,R)

d(ζ, U)|α|

|x− ζ|2n+|α|−1
dL2n(ζ)

≤ AD
∫
B(0,R)

1

|x− ζ|2n−1
dL2n(ζ) <∞.

The assertions follow. �

Lemma 3.9. Let E ⊆ Rn be compact and f = (fα) ∈ B{M}(E) (resp. f ∈
B(M)(E)). Then there exist C,D > 0 (resp. for each D there exists C) such that
for all a1, a2 ∈ E, z ∈ Cn, and α ∈ Nn with |α| ≤ j,

|∂αz T ja1f(z)− ∂αz T ja2f(z)| ≤ CDj+1|α|!mj+1(|a1 − z|+ |a1 − a2|)j−|α|+1.

Proof. For fixed a1, a2 ∈ E and j ∈ N, the function z 7→ T ja1f(z) − T ja2f(z) is a
polynomial in z of degree j satisfying

T ja1f(z)− T ja2f(z) =

j∑
|β|=0

(Rja2f)β(a1)
(z − a1)β

β!
.
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From this the assertion follows easily; cf. [13, Proposition 10]. �

A crucial ingredient in the subsequent construction consists of the so-called reg-
ularized distance. Given a closed set E ⊆ Rn, the distance function z 7→ d(z, E) is
far from being smooth. But it is possible to construct a smoothened version of the
distance, having essentially the same properties.

Proposition 3.10 ([45, VI 2.1 Theorem 2]). Let E ⊆ Rn be closed. There is a
C∞-function δ : Rn \ E → R such that

(1) c1d(z, E) ≤ δ(z) ≤ c2d(z, E) for all z /∈ E,
(2) for all α ∈ Nn and z ∈ Rn \ E,∣∣∂αδ(z)∣∣ ≤ Bαd(z, E)1−|α|,

where the constants Bα, c1, c2 are independent of E.

The following lemma is well-known.

Lemma 3.11. Let E ⊆ Rn be compact. Let α > 1. There exists a Borel measurable
map b : Rn \ E → E such that |x− b(x)| < αd(x,E) for all x ∈ Rn \ E.

Proof. Let {xk}k∈N be a dense subset of E. Define m : Rn \ E → N by m(x) :=
min{k : |x−xk| < αd(x,E)} and x : N→ E by x(k) = xk. Then both m and x are
Borel measurable, hence so is b := x ◦m. �

Proposition 3.12. Let M ≤ N and S be positive sequences such that m
1/k
k , n

1/k
k ,

and s
1/k
k tend to ∞ and

∃C1 ≥ 1 ∀t > 0 : Γn(C1t) ≤ Γm(t), (3.1)

∃C2 ≥ 1 ∀j ∈ N : nj+1 ≤ Cj+1
2 sj . (3.2)

Let E ⊆ Rn be compact. Assume that f = (fα)α ∈ BMC0
(E) satisfies

∀α ∈ Nn ∀x ∈ E : |fα(x)| ≤ CC|α|0 M|α|, (3.3)

∀j ∈ N ∀a1, a2 ∈ E ∀z ∈ Cn :

|T ja1f(z)− T ja2f(z)| ≤ CCj+1
0 mj+1(|a1 − z|+ |a1 − a2|)j+1,

(3.4)

for suitable constants C,C0 > 0. Then there exists an extension F ∈ C∞c (Cn) of f
such that

∀z ∈ Cn : |∂F (z)| ≤ Ahs(12nC0C1d(z, E)), (3.5)

where A = A(C,C0, C1, C2, n).

Proof. By Lemma 3.11, there is a Borel measurable map z 7→ ẑ such that

d(z) ≤ |z − ẑ| < 2d(z), (3.6)

where d(z) = d(z, E). Then

G(z) := T
p(z)
ẑ f(z), z ∈ Cn \ E,

where
p(z) := Γm(8nC0 d(z)),

is Borel measurable and locally bounded. Indeed,

d(z) ≤ 2d(ζ) ≤ 3d(z) for ζ ∈ B(z, d(z)/2), (3.7)

and hence p(ζ) = Γm(8nC0 d(ζ)) ≤ Γm(4nC0 d(z)).
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Let ψ ∈ C∞(C) be a non-negative, rotationally invariant function satisfying∫
ψ dL2 = 1 such that Ψ(z) := ψ(z1) · · ·ψ(zn) has support in the unit ball in Cn.

Define

F (z) :=
(2c2)2n

δ(z)2n

∫
Ψ
(2c2(ζ − z)

δ(z)

)
G(ζ) dL2n(ζ) for z ∈ Cn \ E.

Here δ is the regularized distance for E ⊆ Cn ∼= R2n from Proposition 3.10 and c2
is chosen as in Proposition 3.10(1). If we do not specify the domain of integration,
as above, it should be understood as Cn. It is not hard to see that F is C∞ on
Cn \ E.

For each α = (α1, α2) ∈ Nn × Nn we define Fα : Cn → C by setting

Fα(a) := ∂α1
z ∂α2

z F (a) if a 6∈ E

and if a ∈ E then Fα(a) is uniquely determined by the identity∑
α=(α1,α2)∈Nn×Nn

Fα(a)

α!
Zα1Z

α2
=
∑
β∈Nn

fβ(a)

β!
Zβ in C[[Z,Z]].

Then for all j ∈ N, a ∈ E, and z = x+ iy ∈ Cn,

T jaF (z) :=
∑

α=(α1,α2)
|α|≤j

Fα(a)

α!
(z − a)α1(z − a)α2 = T jaf(z). (3.8)

We will write F = (Fα)α; this should not cause too much confusion with the
function F . We will prove the following two claims from which the theorem follows
easily:

(1) (3.5) holds for all z ∈ Cn \ E.
(2) F 0 is C∞ on Cn and Fα = ∂α1

z ∂α2

z F 0 for all α = (α1, α2) ∈ Nn × Nn.

Let us first show (1). Using Proposition 3.10, it is not hard to see that∣∣∣∂α1
z ∂α2

z

( 1

δ(z)2n
Ψ
(2c2(ζ − z)

δ(z)

))∣∣∣ ≤ Kα

d(z)2n+|α| , (3.9)

for all ζ, z /∈ E and α = (α1, α2) ∈ Nn×Nn. For any polynomial P ∈ C[z], we have

(2c2)2n

δ(z)2n

∫
Ψ
(2c2(ζ − z)

δ(z)

)
P (ζ) dL2n(ζ) = P (z),

which follows from the Cauchy integral formula,

(2c2)2n

δ(z)2n

∫
Ψ
(2c2(ζ − z)

δ(z)

)
ζα dL2n(ζ) =

∫
B(0,1)n

Ψ(ζ)
(
δ(z)
2c2

ζ + z
)α

dL2n(ζ)

=

n∏
j=1

∫
B(0,1)

ψ(ζj)
(
δ(z)
2c2

ζj + zj

)αj
dL2(ζj) = zα.

Thus, if z ∈ Cn \ E, z0 ∈ E, and j ∈ N, we get

F (z) = T jz0f(z) +
(2c2)2n

δ(z)2n

∫
Ψ
(2c2(ζ − z)

δ(z)

)(
G(ζ)− T jz0f(ζ)

)
dL2n(ζ). (3.10)

Hence, by choosing z0 = ẑ,

∂F (z) =

∫
∂
( (2c2)2n

δ(z)2n
Ψ
(2c2(ζ − z)

δ(z)

))(
G(ζ)− T jẑ f(ζ)

)
dL2n(ζ).
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By (3.9), for all j ∈ N,

|∂F (z)| ≤ K

d(z)2n+1

∫
B(z,

δ(z)
2c2

)

|G(ζ)− T jẑ f(ζ)| dL2n(ζ)

≤ K

d(z)
sup

ζ∈B(z,d(z)/2)

|G(ζ)− T jẑ f(ζ)|, (3.11)

where K denotes a generic constant. Now

|G(ζ)− T jẑ f(ζ)| ≤ |T jẑ f(ζ)− T j
ζ̂
f(ζ)|+ |T j

ζ̂
f(ζ)− T p(ζ)

ζ̂
f(ζ)|.

We estimate the summands separately. So fix some arbitrary z ∈ Cn \ E, take
ζ ∈ B(z, d(z)/2) and set

j + 1 := Γn(12nC0C1 d(z)).

Since |ẑ − ζ|+ |ẑ − ζ̂| ≤ 9d(z), (3.4) and the definition of j + 1 give

|T jẑ f(ζ)− T j
ζ̂
f(ζ)| ≤ C(9C0 d(z))j+1mj+1

≤ C(12nC0C1 d(z))j+1 nj+1 = Chn(12nC0C1 d(z)).

By (3.1), (3.7), and Lemma 2.3(2), j + 1 ≤ Γm(12nC0 d(z)) ≤ Γm(8nC0 d(ζ)) =

p(ζ). Thus (using that there are
(
k+n−1
n−1

)
≤ 2k+n−1 many β ∈ Nn such that |β| = k)

|T j
ζ̂
f(ζ)− T p(ζ)

ζ̂
f(ζ)| =

∣∣∣ ∑
j<|β|≤p(ζ)

fβ(ζ̂)
(ζ − ζ̂)β

β!

∣∣∣
≤ C

∑
j<|β|≤p(ζ)

(2nC0d(ζ))|β|m|β| by (3.3)

≤ 2n−1C

p(ζ)∑
k=j+1

(8nC0 d(ζ))kmk2−k

≤ 2n−1C(8nC0 d(ζ))j+1mj+1 by Lemma 2.3(3)

≤ 2n−1C(8nC0 d(ζ))j+1nj+1 since m ≤ n

≤ 2n−1C(12nC0C1 d(z))j+1nj+1

= 2n−1C hn(12nC0C1 d(z)) by (2.6).

Combining the estimates, we get

|∂F (z)| ≤ K

d(z)
hn(12nC0C1 d(z)).

By (3.2) and the definition of hn, we have hn(t)/t ≤ C2hs(t), which implies

|∂F (z)| ≤ Khs(12nC0C1 d(z)).

Thus claim (1) is proved.
Let us show (2). To this end we prove that for all j ∈ N, α = (α1, α2) ∈ Nn×Nn

with |α| ≤ j, z ∈ Cn, and a ∈ E,

|Fα(z)− ∂α1
z ∂α2

z T jaF (z)| = o(|z − a|j−|α|) as |z − a| → 0. (3.12)
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This implies (2): First of all it implies that all Fα are continuous on Cn. If a ∈ E
and z ∈ Cn \E, then, for j > |α|, where ei denotes the i-th standard unit vector in
Rn,

|Fα(z)− Fα(a)−
n∑
i=1

(zi − ai)F (α1+ei,α2)(a)| = o(|z − a|) as |z − a| → 0,

by (3.12) and the fact that T jaF (z) = T jaf(z) is a polynomial. Notice that, by
(3.8), ∂α1

z ∂α2

z T jaF (z) = F (α1,α2)(a) = 0 whenever α2 6= 0. It follows that Fα is C1,

∂eiz F
α = F (α1+ei,α2), and ∂eiz F

α = F (α1,α2+ei).
Now Lemma 3.9 implies, for a1, a2 ∈ E,

|∂α1
z ∂α2

z T ja1F (z)− ∂α1
z ∂α2

z T ja2F (z)| = O
(
(|a1 − a2|+ |z − a1|)j−|α|+1

)
. (3.13)

In particular, it suffices to show (3.12) for a = ẑ, since |ẑ − a| ≤ 3|z − a|. The

estimates for |G(ζ)− T jẑ f(ζ)| above also yield that for ζ ∈ B(z, d(z)/2) we have

|G(ζ)− T jẑ f(ζ)| = O(d(z)j+1).

Since T jẑ f(z) = T jẑF (z) by (3.8), we may conclude with (3.10) for z0 = ẑ and (3.9)
that

|∂α1
z ∂α2

z

(
F − T jẑF

)
(z)| = o(|z − ẑ|j−|α|) as |z − ẑ| → 0,

if z ∈ Cn \ E. Thus (3.12) is proved. �

Proof of Theorem 3.2. The theorem now follows easily from Proposition 3.8,
Lemma 2.11, Lemma 3.9, and Proposition 3.12. �

Proof of Theorem 3.4. Suppose that f ∈ B(M)(U). Let S ∈M and ρ > 0. Since M
is B-regular, there exist M,N ∈M such that (3.1) and (3.2) hold. By Lemma 2.11
and Lemma 3.9, we have (3.3) and (3.4) for C0 = ρ/(12nC1). So Proposition 3.12
yields an extension F ∈ C∞c (Cn) of f such that

|∂F (z)| ≤ Ahs(ρd(z, U)).

Hence f is (M)-almost analytically extendable. The converse follows from Propo-
sition 3.8. �

3.3. A stronger result. Assume that M is a strongly log-convex (i.e. µk/k is

increasing) weight sequence such that m
1/k
k → ∞. Then we can choose the same

extension F of f ∈ B(M)(U) =
⋂
ρ>0B

M
ρ (U) for every ρ.

Theorem 3.13. Let M be a strongly log-convex weight sequence with m
1/k
k → ∞

and (Mk+1/Mk)1/(k+1) bounded. Let U ⊆ Rn be a bounded quasiconvex domain.
Then f ∈ B(M)(U) if and only if f admits an extension F ∈ C1

c (Cn) such that

∀ρ > 0 ∃C ≥ 1 ∀z ∈ Cn : |∂F (z)| ≤ Chm(ρd(z, U)).

Proof. Use [26, Lemma 6] (or Lemma 7.5 below) and the Roumieu result. �

We do not know if a similar statement holds in the general case.
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4. Applications to classes defined by weight functions

In this section we fully characterize when the classes B{ω} and B(ω) admit a
description by almost analytic extensions. It turns out that this feature is equivalent
to several other pertinent properties of the classes.

First we recall the description by associated weight matrices.

4.1. Weight functions and the associated weight matrix. Two weight func-
tions ω and σ are said to be equivalent if ω(t) = O(σ(t)) and σ(t) = O(ω(t)) as
t → ∞. For each weight function ω there is an equivalent weight function ω̃ such
that ω(t) = ω̃(t) for large t > 0 and ω̃|[0,1] = 0. It is thus no restriction to assume
that ω|[0,1] = 0 when necessary.

For weight functions ω and σ we have B[ω] ⊆ B[σ] if and only if σ(t) = O(ω(t))
as t→∞, cf. [6], [11], or [35, Corollary 5.17]; in particular, ω and σ are equivalent
if and only if B[ω] = B[σ].

Definition 4.1 (Associated weight matrix). Following [35, 5.5] we associate with
any weight function ω a weight matrix W = {Wx}x>0 by setting

W x
k := exp( 1

xϕ
∗(xk)), k ∈ N.

Moreover, we define

ϑxk :=
W x
k

W x
k−1

.

Lemma 4.2 ([38, Lemma 2.4]). We have:

(1) Each Wx is a weight sequence (in the sense of Section 2.1).
(2) ϑx ≤ ϑy if x ≤ y, which entails Wx ≤Wy.
(3) For all x > 0 and all j, k ∈ N, W x

j+k ≤W 2x
j W 2x

k and wxj+k ≤ w2x
j w

2x
k .

(4) For all x > 0 and all k ∈ N≥2, ϑx2k ≤ ϑ4x
k .

(5) ∀ρ > 0 ∃H ≥ 1 ∀x > 0 ∃C ≥ 1 ∀k ∈ N : ρkW x
k ≤ CWHx

k .

(6) If ω(t) = o(t) as t→∞ then (wxk)1/k →∞ and ϑxk/k →∞ for all x > 0.

Theorem 4.3 ([35, Corollaries 5.8 and 5.15]). Let ω be a weight function and let
W = {Wx}x>0 be the associated weight matrix. Then, as locally convex spaces,

B[ω](U) = B[W](U) and E [ω](U) = E [W](U).

We have B[ω](U) = B[Wx](U) (or E [ω](U) = E [Wx](U)) for all x > 0 if and only if

∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H. (4.1)

Moreover, (4.1) holds if and only if some (equivalently each) Wx has moderate
growth.

Remark 4.4. Let us emphasize that the fact that E [ω] = E [M] for some weight
sequence M if and only if ω satisfies (4.1) is due to [8].

4.2. Concave weight functions. We will see that the classes B[ω] that admit
description by almost analytic extension are precisely those determined by a concave
weight function ω. The proof depends on the following result obtained in [39].

Proposition 4.5. Let ω be a weight function satisfying ω(t) = o(t) as t→∞ which
is equivalent to a concave weight function. For each x > 0 there exist constants
A,B,C > 0 such that

A−1w
x/B
k ≤ wxk ≤ wxk ≤ CkwBxk for all k ∈ N. (4.2)
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The weight matrix S := {Sx = (k!wxk)k : x > 0} is regular.

Proof. Only the regularity of S was not yet observed in [39]. Notice that wxj+1 ≤
Cjwyj for all j implies wxj+1 ≤ Cjw

y
j for all j which is clear by the properties of the

log-convex minorant, since ω(Cjwyj )j (t) = ωwy (t/C) and hence (Cjwyj )j = (Cjwyj )j .

Since wx is log-convex, Γwx = Γwx . Evidently, (wxk)1/k → ∞ for all x > 0, by

Lemma 4.2 and (4.2). �

Corollary 4.6. Let ω be a weight function satisfying ω(t) = o(t) as t → ∞.
The weight matrix W associated with ω is always semiregular. If additionally ω is
equivalent to a concave weight function, then W is equivalent to a regular weight
matrix.

We will now prove a version of almost analytic extension in the Beurling case
B(ω) for strong weight functions ω which is stronger than provided by the general
Theorem 3.4. Recall that a weight function ω is called strong if

∃C > 0 ∀t > 0 :

∫ ∞
1

ω(tu)

u2
du ≤ Cω(t) + C. (4.3)

Evidently, a strong weight function ω is non-quasianalytic. In fact, (4.3) is equiv-
alent to the validity of the Whitney extension theorem in the classes B[ω]; see [7].
Moreover, a strong weight function ω is equivalent to a concave weight function,
see [31, Proposition 1.3], and satisfies ω(t) = o(t) as t→∞, see [31, Corollary 1.4];
cf. also [7] and [38, Section 3.5].

This stronger results depends on [7, Lemma 4.4] which should be compared with
Lemma 7.6 and Remark 7.8 below.

Theorem 4.7. Let ω be a strong weight function and let W be the associated weight
matrix. Let U ⊆ Rn be a bounded quasiconvex domain. Then f ∈ B(ω)(U) if and
only if f admits an extension F ∈ C1

c (Cn) such that

∀M ∈W ∀ρ > 0 ∃C ≥ 1 ∀z ∈ Cn : |∂F (z)| ≤ Chm(ρd(z, U)). (4.4)

Proof. If f admits an extension satisfying (4.4) then f ∈ B(ω), by Proposition 3.8
and Theorem 4.3. Conversely, let f ∈ B(ω)(U). Set

Lk := max
{

sup
x∈U,|α|≤k

|∂αf(x)|, k!
}

Let us proceed as in the proof of [7, Theorem 4.5]: Define g : [0,∞)→ R by

g(t) := logLk, for k ≤ t < k + 1.

The arguments in [7, Theorem 4.5] show that there exists a convex function h0 :
[0,∞)→ [0,∞) such that g ≤ h0 and h := h∗0(max{0, log t}) satisfies ω(t) = o(h(t))
as t → ∞. We may apply [7, Lemma 4.4] which yields a strong weight function
σ such that ω(t) = o(σ(t)) and σ(t) = o(h(t)). Hence g ≤ h0 = h∗∗0 ≤ (σ(et))∗ +
A for some constant A > 0, whence f ∈ B{σ}(U). Since σ is equivalent to a
concave weight function, there is a regular weight matrix S such that B[σ] = B[S].
Theorem 3.2 implies that there is an extension F ∈ C1

c (Cn) of f and some S ∈ S
and C, ρ > 0 such that

|∂F (z)| ≤ Chs(ρd(z, U)), z ∈ Cn.
Since ω(t) = o(σ(t)) as t → ∞ and hence S{�)W, cf. [35, Lemma 5.16], (4.4)
follows. �
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4.3. A characterization theorem. The next theorem characterizes when the
classes B[ω] admit a description by almost analytic extensions.

Theorem 4.8. Let ω be a weight function satisfying ω(t) = o(t) as t → ∞. The
following are equivalent.

(1) B{ω} can be described by almost analytic extensions, i.e., there is an R-
regular weight matrix S such that f ∈ B{ω}(U) if and only if f is {S}-
almost analytically extendable, for every bounded quasiconvex domain U ⊆
Rn.

(2) B(ω) can be described by almost analytic extensions, i.e., there is a B-regular
weight matrix S such that f ∈ B(ω)(U) if and only if f is (S)-almost
analytically extendable, for every bounded quasiconvex domain U ⊆ Rn.

(3) B{ω} is stable under composition.
(4) B(ω) is stable under composition.
(5) ω is equivalent to a concave weight function.
(6) ∃C > 0 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 : ω(λt) ≤ Cλω(t).
(7) There is a weight matrix S consisting of strongly log-convex weight se-

quences such that B{ω} = B{S}.
(8) There is a weight matrix S consisting of strongly log-convex weight se-

quences such that B(ω) = B(S).
(9) There is a weight matrix M satisfying ∀M ∈ M ∃N ∈ M ∃C ≥ 1 ∀1 ≤

j ≤ k : µj/j ≤ Cνk/k and such that B{ω} = B{M}. (Recall that µk :=
Mk/Mk−1 and νk := Nk/Nk−1.)

(10) There is a weight matrix M satisfying ∀N ∈M ∃M ∈M ∃C ≥ 1 ∀1 ≤ j ≤
k : µj/j ≤ Cνk/k and such that B(ω) = B(M).

(11) There is an R-regular weight matrix M such that B{ω} = B{M}.
(12) There is a B-regular weight matrix M such that B(ω) = B(M).

If ω is a strong weight function, then the extension of f ∈ B(ω)(U) in (2) may be
taken independent of S ∈ S and ρ > 0, as in Theorem 4.7.

Notice that the conditions in the theorem are furthermore equivalent to stability
of the class B[ω] under inverse/implicit functions and solving ODEs and, in terms
of the associated weight matrix W, to

∀x > 0 ∃y > 0 : (wxj )1/j ≤ C (wyk)1/k for j ≤ k

as well as

∀y > 0 ∃x > 0 : (wxj )1/j ≤ C (wyk)1/k for j ≤ k

see [36].

Proof. (1) ⇒ (3) and (2) ⇒ (4) follow from Proposition 1.1. Indeed, hs ≤ ht if
S ≤ T ∈ S. For the Beurling case notice that for any given S ∈ S and ρ > 0 we
know that g has an (hs, ρ)-almost analytic extension G and f has an (hs, ρ/Lip(G))-
almost analytic extension F . Hence, by Proposition 1.1, F ◦G is a (hs, ρ) -almost
analytic extension of f ◦ g.

The equivalence of the conditions (3)–(10) was proved in [39]; for partial results
see also [32, Lemma 1], [15] and [36].

That (5) implies (11) and (12) is a consequence of Lemma 2.4 and Proposi-
tion 4.5.
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The implications (11) ⇒ (1) and (12) ⇒ (2) follow from Theorem 3.2 and The-
orem 3.4, respectively.

The supplement follows from Theorem 4.7. �

In the next theorem we make the connection to Theorem 1.3 which is due to
[33].

Theorem 4.9. Let ω be a concave weight function satisfying ω(t) = o(t) as t→∞.
Let U ⊆ Rn be a bounded quasiconvex domain. Then:

(1) f ∈ B{ω}(U) if and only if there exist F ∈ C1
c (Cn) and ρ > 0 such that

F |U = f and

sup
z∈Cn\U

|∂F (z)| exp(ρω?(d(z, U)/ρ)) <∞. (4.5)

(2) f ∈ B(ω)(U) if and only if for all ρ > 0 there exists F ∈ C1
c (Cn) such that

F |U = f and (4.5).

If ω is a strong weight function, then the extension F in (2) may be taken indepen-
dent of ρ > 0.

Proof. Let W be the associated weight matrix of ω. For each M ∈W there exists
a constant C ≥ 1 such that

ω?(t) ≤ Cωm

(C
t

)
and ωm(t) ≤ Cω?

( 1

eCt

)
+ C (4.6)

for all t > 0; see [38, Corollary 3.11]. Here ωm(t) = − log hm(1/t), cf. (2.10). By
Corollary 4.6, there is a regular weight matrix S which is equivalent to W. Hence
for each S ∈ S there exists C ≥ 1 such that (4.6) holds with ωm replaced by ωs.
In view of Theorem 4.8 the conclusion follows easily. �

5. The ultradifferentiable wave front set

In this section we define and study the wave front set for ultradifferentiable
classes given by weight matrices. This extends the results of Hörmander [18] who
considered only Roumieu classes defined by a single weight sequence. In particular
we observe that our definition coincides with the one of Albanese–Jornet–Oliaro [1]
in the case that the classes are given by a weight function. We will follow primarily
the presentation given in [20, section 8.4-8.6].

In this section weight matrices are just assumed to be R- or B-semiregular. In
Section 6 below we will present stronger results for R- and B-regular matrices.

From now on Ω denotes a non-empty open set in Rn and we shall write E(Ω) :=
C∞(Ω) from time to time. We will use Dj := −i∂j .

5.1. The ultradifferentiable wave front set. Our first preliminary result is the
local characterization of ultradifferentiable functions by the Fourier transform.

Proposition 5.1. Let p0 ∈ Ω and u ∈ D′(Ω).

(1) If M is an R-semiregular weight matrix, then u ∈ E{M} near p0 if and only
if for some neighborhood V of p0 there exist a bounded sequence (uN )N ⊆
E ′(Ω) with u|V = uN |V and some M ∈M and Q > 0 such that

sup
ξ∈Rn
N∈N

|ξ|N
∣∣ûN (ξ)

∣∣
QNMN

<∞. (5.1)
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(2) If M is a B-semiregular weight matrix, then u ∈ E(M) near p0 if and only
if for some neighborhood V of p0 there exists a bounded sequence (uN )N ⊆
E ′(Ω) with u|V = uN |V and such that (5.1) holds for all M ∈M and Q > 0.

Proof. It suffices to slightly modify the proof of [20, Proposition 8.4.2]. Fix M ∈M.
Suppose that for some r > 0 and some constants C, h > 0

|Dαu(x)| ≤ Ch|α|M|α| for all α and |x− x0| < 3r.

There exist smooth cut-off functions χN with support in |x − x0| ≤ 2r, equal 1
when |x− x0| < r, and satisfying

|DαχN | ≤ (C1N)|α|, for |α| ≤ N ; (5.2)

cf. the proof of [20, Proposition 8.4.2]. Then the sequence uN := χNu is bounded
in E ′(Ω) and, thanks to (2.5) and Lemma 2.2(1), satisfies, for |α| = N ,

|DαuN | ≤
∑
β≤α

(
α

β

)
C
|β|
1 N |β|Ch|α−β|M|α−β|

≤ C
∑
β≤α

(
α

β

)
C
|β|
N
h

(
C1h

)|β|
M
|β|
N
N h|α−β|M

|α−β|
N

N ≤ CCh(C2h)NMN ,

for some constant C2. This easily implies (5.1).
For the converse recall that, since (uN )N is bounded in E ′(Ω), the Banach–

Steinhaus theorem implies that there are constants C, µ > 0 such that

|ûN (ξ)| ≤ C
(
1 + |ξ|

)µ
for all N. (5.3)

In V we have Dαu(x) = (2π)−n
∫
Rne

ixξξαûN (ξ) dξ for N = |α|+ n+ 1, since then

(5.1) implies that ξαûN is integrable. Estimating the integrals over |ξ| ≤ Q N
√
MN

and |ξ| ≥ Q N
√
MN separately, using (5.3) and (5.1), we conclude

|Dαu(x)| ≤ C
((

1 +Q N
√
MN

)µ(
Q N
√
MN

)|α|+n
+QNMN

∫ ∞
Q N
√
MN

t−2 dt
)

≤ CQN−1
((

N
√
MN

)|α|+µ+n

+M
(N−1)/N
N

)
≤ CQ|α|

(
N
√
MN

)|α|+n+µ

where C is a generic constant independent from N . Repeated use of Defini-
tion 2.6(1) or Definition 2.6(3) shows u ∈ E [M](V ). �

Definition 5.2. Let M be a weight matrix. Let u ∈ D′(Ω) and (x0, ξ0) ∈ T ∗Ω\{0}.
(1) We say that u is microlocally ultradifferentiable of class {M} at (x0, ξ0) iff

there exist a neighborhood V of x0, a conic neighborhood Γ of ξ0, and a
bounded sequence (uN )N ⊆ E ′(Ω) with uN |V = u|V such that for some
M ∈M and a constant Q > 0 we have

sup
ξ∈Γ
N∈N

|ξ|N
∣∣ûN (ξ)

∣∣
QNMN

<∞. (5.4)

(2) u is called microlocally ultradifferentiable of class (M) at (x0, ξ0) iff there
exist a neighborhood V of x0, a conic neighborhood Γ of ξ0, and a bounded
sequence (uN )N ⊆ E ′(Ω) with uN |V = u|V such that (5.4) is satisfied for
all M ∈M and all Q > 0.
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The ultradifferentiable wave front set WF[M] u of u is the complement of the set of
all (x, ξ) ∈ T ∗Ω \ {0}, where u is microlocally ultradifferentiable of class [M]. For
a weight function ω and the associated weight matrix W we set

WF[ω] u := WF[W] u.

This coincides with the definition given in [1] thanks to Theorem 4.3; see also [35].
For the weight sequence (k!)k (resp. the weight function t 7→ t) we get the analytic
wave front set also denoted by WFA u.

Notice that, in Definition 5.2, M is deliberately an arbitrary weight matrix, since
occasionally we want to compare WF{M} u with WF(M) u. Most of the time we
will assume semiregularity of the particular type.

The distributions uN in Definition 5.2 can be chosen of the form χNu where χN
is a bounded sequence of test functions as shown by the next lemma.

Lemma 5.3. Let M be a weight matrix, K ⊆ Ω compact, u ∈ D′(Ω) of order µ in
K, and F a closed cone.

(1) Suppose that WF{M} u∩ (K ×F ) = ∅. If χN ∈ D(K) and for each α there
exist Mα ∈M and Cα > 0 such that

∣∣Dα+βχN
∣∣ ≤ Cα(Cα N

√
Mα
N

)|β|
, |β| ≤ N = 1, 2, . . . , (5.5)

then χNu is bounded in E ′,µ and there are M′ ∈M and Q,C > 0 such that

|ξ|N |χ̂Nu(ξ)| ≤ CQNM ′N , N ∈ N, ξ ∈ F. (5.6)

(2) Suppose that WF(M) u∩(K×F ) = ∅. If χN ∈ D(K) satisfies (5.5) for some
totally ordered collection of positive sequences Mα such that {Mα}{�)M,
then χNu is bounded in E ′,µ and for all M′ ∈ M and all Q > 0 there is a
constant C such that (5.6) holds.

It is not hard to see that there exist χN which satisfy (5.5); cf. (5.2). We
emphasize that in (2) the sequences Mα are not assumed to be weight sequences
in the sense of Section 2.1 (and do not belong to M).

Proof. The proof of (1) follows closely the arguments in [20, Lemma 8.4.4] with the
only difference that here we have to deal with more than just one weight sequence;
we provide details for later reference.

The boundedness of χNu is evident. Let x0 ∈ K, ξ0 ∈ F \ {0} and choose V , Γ
and uN according to Definition 5.2. Obviously, if suppχN ⊆ V , then χNu = χNuN .
By assumption, uN satisfies (5.3) and (5.4) in Γ for some M′ ∈M and Q > 0. For
convenience we set ` = µ+ n+ 1. Observe that, for η ∈ Rn and k ≥ 0,

|η|`+k ≤
( n∑
j=1

|ηj |
)`+k

=
∑
|γ|=`+k

(
`+ k

γ

)
|ηγ |.
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Together with (5.5) we get, for k ≤ N ,

|η|`+k|χ̂N (η)| ≤
∑
|γ|=`+k

(
`+ k

γ

)
|ηγχ̂N (η)|

≤ C(n, `)k
∑

|α|≤`,|β|=k

| ̂Dα+βχN (η)|

≤ C(n, `)k
∑

|α|≤`,|β|=k

Cα(Cα
N
√
Mα
N )k

≤ C(n, `)kM
k/N
N

for some M ∈M. This implies that, for all N ,∣∣χ̂N (η)
∣∣ ≤ CN+1MN

(
|η|+ N

√
MN

)−N
(1 + |η|)−µ−n−1 (5.7)

for some C > 0. We have χ̂Nu(ξ) = (2π)−n
∫
χ̂N (η)ûN (ξ − η) dη. Let 0 < c < 1

and consider the integrals over |η| ≤ c|ξ| and |η| ≥ c|ξ| separately. Since |η| ≥ c|ξ|
implies |ξ − η| ≤ (1 + c−1)|η|, we find with (5.3) (cf. [20, (8.1.3)])

|χ̂Nu(ξ)| ≤ ‖χ̂N‖L1 sup
|ξ−η|≤c|ξ|

|ûN (η)|+ C
(
1 + c−1

)µ ∫
|η|≥c|ξ|

∣∣χ̂N (η)
∣∣(1 + |η|)µ dη.

(5.8)
If ξ0 ∈ Γ1 ⊆ Γ∪{0} is a closed cone, then we can choose c such that η ∈ Γ if ξ ∈ Γ1

and |ξ − η| ≤ c|ξ|. In this case |η| ≥ (1− c)|ξ|. Combining all this we obtain

sup
ξ∈Γ1

|ξ|N
∣∣χ̂Nu(ξ)

∣∣ ≤ (1− c)−N‖χ̂N‖L1 sup
η∈Γ

∣∣ûN (η)
∣∣|η|N

+ C
(
1 + c−1

)µ+N
∫

(1 + |η|)µ|η|N
∣∣χ̂N (η)

∣∣ dη.
In view of (5.4) and (5.7) we have

sup
ξ∈Γ1

|ξ|N
∣∣χ̂Nu(ξ)

∣∣ ≤ ChNM ′′N
for some M′′ ∈ M and some constants C, h > 0. Since ξ ∈ F \ {0} was chosen
arbitrarily, we see that F can be covered by a finite number of conic neighborhoods
like Γ1 and therefore (5.6) is proven for F and suppχN ⊆ U , where U is a small
enough neighborhood of x0. But K is compact and x0 was also chosen arbitrarily.
Hence K can be covered by finitely many sets Uj in which (5.6) holds. Now let
χN ∈ D(K) satisfy (5.5). As in the proof [20, Lemma 8.4.4] we can choose a
partition of unity χj,N ∈ D(Uj) for each N and each χj,N satisfies (5.5) with Mα

independent of j. Then (5.5) holds also for λj,N = χj,NχN . The statement follows
since

∑
j λj,N = χN .

For part (2) observe that the proof of (5.7) remains unchanged and then the
condition {Mα}{�)M easily implies the statement. �

The basic features of the ultradifferentiable wave front set are collected in the
following proposition (cf. [20] and [1]).

Proposition 5.4. Let M,N be weight matrices and u ∈ D′(Ω). Then:

(1) WF[M] u is a closed and conic subset of T ∗Ω \ {0}.
(2) WF{M} u ⊆WF(M) u.
(3) WFu ⊆WF[N] u ⊆WF[M] u if M[�]N.
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(4) WF(N) u ⊆WF{M} u if M{�)N.
(5) (x, ξ) /∈WF[M] u⇔ (x,−ξ) /∈WF[M] u.
(6) If M is [semiregular] then π1(WF[M] u) = sing supp[M] u.

(7) If M is [semiregular] then WF[M] Pu ⊆ WF[M] u for all linear partial dif-

ferential operators P with E [M]-coefficients.

All these properties also hold for WF[ω] u, in particular, WF[ω] u ⊆ WF[σ] u if
ω(t) = O(σ(t)) and WF(ω) u ⊆WF{σ} u if ω(t) = o(σ(t)) as t→∞.

Proof. The proof of (1)–(5) is straightforward.
(6) If we use Proposition 5.1 and Lemma 5.3, then this follows along the lines of

the proof of [20, Theorem 8.4.5].
(7) We first prove the Roumieu case. If M is R-semiregular, then Definition 2.6(1)

implies WF{M} ∂ju ⊆ WF{M} u. Hence it suffices to show that WF{M} au ⊆
WF{M} u, where a ∈ E{M}. If (x0, ξ0) /∈WF{M} u, then by (1) there are a compact
neighborhood K of x0 and a closed conic neighborhood Γ of ξ0 such that (K ×
Γ) ∩WF{M} u = ∅. Suppose that χN ∈ D(K) satisfies (5.5) and let M ∈ M be

such that a|K ∈ E{M}(K). Observe that, by Definition 2.6(1), for each k there is

M(k) ∈ M such that Mk+j ≤ Cj+1
k M

(k)
j for all j. Moreover, for each M ∈ M,

M
1/k
k is increasing. Thus, for |β| ≤ N and arbitrary α, (the constants change from

line to line)∣∣Dα+β
(
aχN

)∣∣ ≤ 2|α|+|β|
∑

γ≤α+β

∣∣Dα+β−γa
∣∣∣∣DγχN

∣∣
≤ c|β|+1

α

∑
γ=γ′+γ′′,γ′≤α,γ′′≤β

∣∣Dα+β−γa
∣∣∣∣Dγ′+γ′′χN

∣∣
≤ c|β|+1

α

∑
γ′≤α
γ′′≤β

h|α|+|β|−|γ|M|α|+|β|−|γ| Cγ′

(
Cγ′

N

√
Mγ′

N

)|γ′′|

≤ c|β|+1
α

∑
γ′≤α
γ′′≤β

h|β|−|γ
′′|+1

α M
(|α|)
|β−γ′′|Cγ′

(
Cγ′

N

√
Mγ′

N

)|γ′′|

≤ c|β|+1
α (M ′N )

|β|
N ,

where M′ = max{M(|α|),Mγ′ : γ′ ≤ α}. Therefore λN = aχN ∈ D(K) also satisfies
(5.5). Hence (5.6) holds for λNu = χNau and some M′′ ∈M, by Lemma 5.3, that
is, (x0, ξ0) 6∈WF{M} au.

Let us prove the Beurling case. If M is B-semiregular, then Definition 2.6(3)
implies WF(M) ∂ju ⊆WF(M) u. We claim that WF(M) au ⊆WF(M) u if a ∈ E(M).
If (x0, ξ0) /∈WF(M) u, then there are a compact neighborhood K of x0 and a closed
conic neighborhood Γ of ξ0 such that (K × Γ) ∩WF(M) u = ∅. By semiregularity,

we have (N !)N{�)M and there exist χN ∈ D(K) which satisfy (5.5) for N
√
Mα
N

replaced byN . Since a ∈ B(M)(K) we are in the situation of Lemma 5.5 below which
provides a collection of sequences suitable to perform the above computation. It
follows that for each α there is a sequence Lα{�)M such that λN = aχN ∈ D(K)
satisfies (5.5) (with Lα instead of Mα). An analogous statement holds for the
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collection {L̃m}m, where L̃mk := max|α|≤m L
α
k , which is totally ordered and satisfies

Lm{�)M for all m. Thus Lemma 5.3(2) implies the analogue of (5.6) for λNu =
χNau for all M ∈M and Q > 0. Hence (x0, ξ0) 6∈WF(M) au. �

Lemma 5.5. Let M be a B-regular weight matrix, and let a ∈ B(M)(K) for some
compact K ⊆ Rn. Then there exists a collection of positive sequences L with the
following properties:

(1) For each L ∈ L there exists L′ ∈ L such that (Lk+1/L
′
k)1/(k+1) is bounded.

(2) L{�)M and a ∈ B{L}(K).
(3) For each L ∈ L there exists a sequence L′′ ≥ L (not necessarily in L) such

that L′′{�)M and (L′′k)1/k is increasing. Let L′′ := {L′′ : L ∈ L}.
(4) If F ⊆ L ∪ L′′ is finite, then F := maxF defined by Fk := maxL∈F Lk

satisfies F{�)M.

Proof. Let us define L by

Lk := max
{

sup
x∈K,|α|≤k

|∂αa(x)|, k!
}
, k ∈ N.

For ν ≥ 1 set Lνk := Lk+ν and L := {Lν}ν∈N with L0 := L. Then L satisfies (1).

Clearly, a ∈ B{L0}(K). Let M ∈ M and ν ∈ N. Since M is B-regular, there
exists M′ ∈M and C > 0 such that M ′k+ν ≤ Ck+νMk for all k. Then

(Lνk)1/k

M
1/k
k

=
L

1/k
k+ν

M
1/k
k

≤ C1+ν/k
L

1/k
k+ν

(M ′k+ν)1/k
= C1+ν/k

( L
1/(k+ν)
k+ν

(M ′k+ν)1/(k+ν)

)1+ν/k

tends to 0 as k →∞, since L{�)M by assumption. This implies (2).
Given L ∈ L we define L′′ by setting L′′0 := 1 and

(L′′k)1/k := max{L1/j
j : j ≤ k}, k ≥ 1.

Then (L′′k)1/k is increasing and L′′ ≥ L. For M ∈M and ε > 0 there exists j0 such

that
(Lj)

1/j

M
1/j
j

< ε for all j ≥ j0, since L�M . Then, for k ≥ j0,

(L′′k)1/k

M
1/k
k

= max
{max{L1/j

j : j < j0}

M
1/k
k

,
max{L1/j

j : j0 ≤ j ≤ k}

M
1/k
k

}
≤ max

{max{L1/j
j : j < j0}

M
1/k
k

,max
{ L1/j

j

M
1/j
j

: j0 ≤ j ≤ k
}}

≤ max
{max{L1/j

j : j < j0}

M
1/k
k

, ε
}

which equals ε if k is large enough, since M
1/k
k ↗ ∞. This shows L′′{�)M and

hence (3).
(4) follows easily from L{�)M and L′′{�)M. �

Proposition 5.6. Let M be a weight matrix satisfying Definition 2.6(0) and u ∈
D′(Ω).

(1) We have

WF{M} u =
⋂

M∈M

WF{M} u and WF(M) u =
⋃

M∈M

WF(M) u.
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(2) If for all M ∈M there is M′ ∈M such that M � M′ then

WF{M} u =
⋂

M∈M

WF(M) u.

(3) If for all M ∈M there is M′ ∈M such that M′ � M then

WF(M) u =
⋃

M∈M

WF{M} u.

Proof. (1) The first identity is clear from the definition. So is the inclusion⋃
M∈M WF(M) u ⊆ WF(M) u, since the wave front set is closed. Now assume that

(x0, ξ0) 6∈
⋃

M∈M WF(M) u. Then there exist a compact neighborhood K of x0 and
a closed conic neighborhood Γ of ξ0 such that

(K × Γ) ∩
⋃

M∈M

WF(M) u = ∅

and hence (K×Γ)∩WF(M) u = ∅ for all M ∈M. That M satisfies Definition 2.6(0)

guarantees that (N !)N�M for all M ∈M. Let χN ∈ D(K) satisfy (5.5) for N
√
Mα
N

replaced by N . Then, by Lemma 5.3, for all M ∈M and all Q > 0

sup
ξ∈Γ,N∈N

|ξ|N |χ̂Nu(ξ)|
QNMN

<∞,

i.e., (x0, ξ0) 6∈ WF(M) u. This shows (1). Now (2) and (3) follow easily from (1)
and Proposition 5.4(2)&(4). �

5.2. Description of the wave front set by boundary values of holomorphic
functions. Let Γ ⊆ Rn be an open convex cone and set Γr := {y ∈ Γ : |y| < r} for
r > 0. A function g ∈ C1(Ω × Γr) is said to be of slow growth if there exist c > 0
and k ≥ 0 such that

|g(x, y)| ≤ c|y|−k, for y ∈ Γr.

If g is of slow growth, then limΓr3ε→0 g(·, ε) exists in the sense of distributions. We
call this limit the boundary value bΓg of g.

Let us define

I(ξ) :=

∫
|ω|=1

e−ωξ dω.

For n = 1 we have I(ξ) = 2 cosh ξ and, for n > 1, I(ξ) = I0(〈ξ, ξ〉1/2), where

I0(ρ) = cn−1

∫ 1

−1

(
1− t2

)(n−3)/2
etρ dρ

and cn−1 denotes the area of Sn−2. Finally, set

K(z) := (2π)−n
∫
eizξ/I(ξ) dξ, z ∈ X := {z ∈ Cn : |Imz| < 1}.

We recall the content of [20, Lemma 8.4.9 and Lemma 8.4.10]: I0 is an even entire
function such that for every ε > 0 we have

I0(ρ) = (2π)(n−1)/2eρρ−(n−1)/2
(
1 +O(1/ρ)

)
as ρ→∞, | arg ρ| < π/2− ε. (5.9)

There is a constant C > 0 such that

|I0(ρ)| ≤ C(1 + |ρ|)−(n−1)/2e|Re ρ|, for ρ ∈ C.
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The function K is analytic in the connected open set

X̃ :=
{
z ∈ Cn : 〈z, z〉 /∈ (−∞,−1]

}
⊇ X.

For any closed cone Γ ⊆ X̃ such that 〈z, z〉 is never ≤ 0 for z ∈ Γ\{0} there is some
c > 0 such that K(z) = O(e−c|z|) as z →∞ in Γ. We have for real x and y

|K(x+ iy)| ≤ K(iy) = (n− 1)!(2π)−n(1− |y|)−n(1 +O(1− |y|)), as |y| ↗ 1.

The following theorem is a generalization of [20, Theorem 8.4.11].

Theorem 5.7. If u ∈ S ′(Rn) and U = K ∗ u, then U is analytic in X and there
exist C, a, b such that

|U(z)| ≤ C
(
1 + |z|

)a(
1− | Im z|)−b, z ∈ X. (5.10)

The boundary values U(· + iω) are continuous functions of ω ∈ Sn−1 with values
in S ′(Rn), and

〈u, ϕ〉 =

∫
Sn−1

〈U(·+ iω), ϕ〉 dω, ϕ ∈ S. (5.11)

On the other hand, if U is given satisfying (5.10), then the formula (5.11) defines
a distribution u ∈ S ′ with U = K ∗ u.

For all [semiregular] weight matrices M we have(
Rn × Sn−1

)
∩WF[M] u =

{
(x, ω) : |ω| = 1, U is not in E [M] at x− iω

}
.

This follows from a straightforward modification of the proof in [20] using
[semiregularity] of M. The same applies to the following corollary.

Corollary 5.8. Let Γ1, . . .ΓN ⊆ Rn\{0} be closed cones such that
⋃
j Γj = Rn\{0}.

Any u ∈ S ′(Rn) can be written u =
∑
uj, where uj ∈ S ′ and

WF[M] uj ⊆WF[M] u ∩
(
Rn × Γj

)
. (5.12)

If u =
∑
u′j is another such decomposition, then u′j = uj +

∑
k ujk, where ujk ∈ S ′,

ujk = −ukj and

WF[M] ujk ⊆WF[M] u ∩
(
Rn ×

(
Γj ∩ Γk

))
.

The next theorem generalizes [20, Theorem 8.4.15]; it suffices to follow the ar-
guments in [20]; recall that Γ◦ := {ξ ∈ Rn : 〈y, ξ〉 ≥ 0 for all y ∈ Γ} denotes the
dual cone of Γ.

Theorem 5.9. Let M be a [semiregular] weight matrix. Let Γ ⊆ Rn\{0} be an open
convex cone and u ∈ D′(Ω) such that WF[M] u ⊆ Ω\Γ◦. If V b Ω and Γ′ ⊂ Γ is an
open convex cone with closure in Γ ∪ {0}, then there is a function F holomorphic
in V + iΓ′γ of slow growth and u|V − bΓ′F ∈ E [M](V ).

Combining Theorem 5.9 with Corollary 5.8 and [20, Theorem 8.4.8] yields:

Corollary 5.10. Let M be a [semiregular] weight matrix. Let u ∈ D′(Ω) and
(x0, ξ0) ∈ T ∗Ω \ {0}. Then (x0, ξ0) /∈WF[M] u if and only if there exist a neighbor-

hood V of x0, f ∈ E [M](V ), open cones Γ1, . . . ,Γq with the property ξ0Γj < 0 for

all j, and holomorphic functions Fj ∈ O(Ω + iΓjδ) of slow growth such that

u|V = f +

q∑
j=1

bΓjFj .
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Since E [M] is stable by pullback with real analytic mappings, see Theorem 2.9,
we can follow the proof of [20, Theorem 8.5.1] to obtain the following statement.

Theorem 5.11. Let M be a [semiregular] weight matrix. Let F : Ω1 → Ω2 be a real
analytic mapping, where Ωi ∈ Rni are open. If u ∈ D′(Ω2) and NF ∩WF[M] u = ∅,
then

WF[M] F
∗u ⊆ F ∗WF[M] u.

Here NF = {(f(x), η) ∈ Ω2 × Rn2 : F ′(x)T η = 0} is the set of normals of F .

Remark 5.12. If the map F in Theorem 5.11 is a real analytic diffeomorphism
then for all distributions u ∈ D′(Ω2)

WF[M] F
∗u = F ∗WF[M] u.

Hence the ultradifferentiable wave front set can be defined for distributions on real
analytic manifolds.

The following result can be proved in analogy to [20, Theorems 8.5.4 and 8.5.4’].

Theorem 5.13. Let M be a [semiregular] weight matrix. Let X ⊆ Rn and Y ⊆
Rm be open sets and K ∈ D′(X × Y ) be a distribution such that the projection
suppK → X is proper. If u ∈ E [M](Y ) then

WF[M]Ku ⊆
{

(x, ξ) ∈ X×Rn\{0} : (x, y, ξ, 0) ∈WF[M](K) for some y ∈ suppu
}
,

where K is the linear operator with kernel K.

5.3. Toward a quasianalytic Holmgren uniqueness theorem. We want to
close this section with the proof of a generalization of [22, Theorem 7.1] which will
be needed for a version of the Holmgren uniqueness theorem in Theorem 7.10.

Proposition 5.14. Let M be a quasianalytic R-semiregular weight matrix. Let
u ∈ D′(I) be a distribution on an open interval I of R. If x0 ∈ I is a boundary
point of suppu, then (x0,±1) ∈WF{M} u.

Since WF{M} u ⊆WF(M) u, by Proposition 5.4, only the Roumieu case is inter-
esting.

Proof. By Theorem 5.9, we have a decomposition u = u+ + u−, where u+ ∈ E{M}.
Set v± := u± ◦ f with f(x) := δx√

1+x2
and δ > 0. By Theorem 2.9, v+ ∈ E{M}, i.e.

|v(j)
+ (x)| ≤ CQjMj , for all j ∈ N, x ∈ R, (5.13)

for some C,Q > 0 and some M ∈ M. Now it suffices to follow the arguments
in the proof of [22, Theorem 6.1] which show that the weight sequence M is non-
quasianalytic. (These arguments do not require that M is derivation closed.) �

A straightforward modification of the proof of [20, Theorem 8.5.6] yields the
following version in several variables.

Theorem 5.15. Let M be a quasianalytic R-semiregular weight matrix. Let u ∈
D′(Ω) and let F : Ω → R be real analytic. If x0 ∈ suppu is such that dF (x0) 6= 0
and F (x) ≤ F (x0) for all x ∈ suppu, then (x0,±dF (x0)) ∈WF{M} u.
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6. Characterization of the ultradifferentiable wave front set

In this section all weight matrices are [regular]. We need a microlocalized version
of the almost analytic extension. Now we say that a smooth function F ∈ E(Ω×Γr)
is (h,Q)-almost analytic if there is a constant C ≥ 1 such that∣∣∣∣ ∂F∂z̄j (x, y)

∣∣∣∣ ≤ C h(Q|y|) (x, y) ∈ Ω× Γr, j = 1, . . . , n, (6.1)

where zj = xj + iyj . Let Ω ⊆ Rn be a bounded open set.

Definition 6.1. Let M be a weight matrix. Let u ∈ D′(Ω) and Γ ⊆ Rn an open
convex cone. We say that

(1) u is {M}-almost analytically extendable into Γ if there exist M ∈M, Q > 0,
r > 0, and an (hm, Q)-almost analytic function F ∈ E(Ω × Γr) of slow
growth such that u = bΓF .

(2) u is (M)-almost analytically extendable into Γ if for all M ∈M and all Q >
0 there exist r > 0 and an (hm, Q)-almost analytic function F ∈ E(Ω×Γr)
of slow growth such that u = bΓF .

6.1. Almost analytic description of the ultradifferentiable wave front set.

Theorem 6.2. Let M be a [semiregular] weight matrix. If u ∈ D′(Ω) is [M]-almost
analytically extendable into Γ, then

WF[M] u ⊆ Ω× Γ◦\ {0}. (6.2)

Proof. Assume that u = bΓF , where F ∈ E(Ω× Γr) is an (hm, Q)-almost analytic
function of slow growth, i.e., there exist c, k > 0 such that

|F (x, y)| ≤ c|y|−k, x ∈ Ω, y ∈ Γr.

Let Y0 ∈ Γ and let (x0, ξ0) ∈ T ∗Ω \ {0} with Y0ξ0 < 0. Choose bounded neighbor-
hoods V1 and V2 of x0 such that V1 ⊆ V2 and a sequence (ϕN )N ⊆ D(Ω) such that
suppϕN ⊆ V2, ϕN |V1

= 1, and∣∣∂αϕN (x)| ≤ Q|α|1 (N + 1)|α|, for |α| ≤ N + 1, (6.3)

where Q1 is a constant independent of N . We set

ΦN (x, y) =
∑
|α|≤N

∂αϕN
∂xα

(x)
(iy)α

α!
, for N ≥ k,

and recall from [20, 8.4.8] that the estimate (6.3) yields∣∣∣∣∣∣
∑
|α|=µ

∂αϕN
∂xα

(iY0)α

α!

∣∣∣∣∣∣ ≤ Qµ1 |Y0|µ1
µ!

(N + 1)µ, for 0 ≤ µ ≤ N + 1. (6.4)

Here |Y0|1 =
∑n
j=0 |Y0,j |. For N ≥ k we have (see e.g. [16])

ϕ̂Nu(ξ) =

∫
Ω

F (x, Y0)e−i〈x+iY0,ξ〉ΦN (x, Y0) dx

+ 2i

∫
Ω

∫ 1

0

〈
∂F (x, τY0), Y0

〉
e−i〈x+iτY0,ξ〉ΦN (x, τY0) dτdx

+ (N + 1)

∫
Ω

∫ 1

0

F (x, τY0)τNe−i〈x+iτY0,ξ〉
∑

|α|=N+1

∂αϕN (x)
(iY0)α

α!
dτdx.
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If Y0ξ < 0 we know from [20, p. 285] that the first and third integral above can be
estimated by

QN+1
1

(
eY0ξ + (N − k)!(−Y0ξ)

k−N−1
)
.

Since F is (hm, Q)-almost analytic, the second integral is estimated by (cf. [16])

QN+1
1 QN−k

∫ 1

0

mN−kτ
N−keτY0ξ dτ ≤ QN+1

1 QN−kmN−k(N − k)!(−Y0ξ)
k−N−1,

where Q1 is a suitable constant. We set uN = ϕk+N−1u and observe that there are
an open conic neighborhood V of ξ0 and a constant γ > 0 such that Y0ξ ≤ −γ|ξ|
for all ξ ∈ V . For such ξ we conclude (using e−γ|ξ| ≤ N !(γ|ξ|)−N )∣∣ûN (ξ)

∣∣ ≤ C (QN1 (e−γ|ξ| + (N − 1)!|ξ|−N
)

+ (Q1Q)NMN−1|ξ|−N
)

≤ CQN1
(
N !γ−N + (N − 1)! +QNMN−1

)
|ξ|−N

≤ C(Q1Q)NMN |ξ|−N ,
by (2.5). This shows that (x0, ξ0) /∈WF[M] u.

Since Y0 ∈ Γ was chosen arbitrarily the statement of the theorem follows. �

Combining Theorem 6.2 with Theorem 3.2, Theorem 3.4, and Corollary 5.10 we
obtain the following characterization of the ultradifferentiable wave front set.

Corollary 6.3. Let M be a [regular] weight matrix. Let u ∈ D′(Ω) and (x0, ξ0) ∈
T ∗Ω\{0}. Then (x0, ξ0) /∈ WF[M] u if and only if there are open convex cones

Γ1, . . . ,Γd with ξ0Γj < 0, an open neighborhood V of x0 and distributions uj ∈
D′(V ) such that uj is [M]-almost analytically extendable into Γj for j = 1, . . . , d
and

u|V =

d∑
j=1

uj .

6.2. Invariance by pullback with ultradifferentiable mappings. We are now
ready to show that the ultradifferentiable wave front set is compatible with the
pullback by ultradifferentiable mappings. As a consequence the ultradifferentiable
wave front set can be defined for distributions on ultradifferentiable manifolds.

Theorem 6.4. Let M be a [regular] weight matrix. Let F : Ω1 → Ω2 be an E [M]-
mapping. If u ∈ D′(Ω2) and WF[M] u ∩NF = ∅ then

WF[M] F
∗u ⊆ F ∗WF[M] u.

Here NF = {(F (x), η) ∈ Ω2 × Rn2 : F ′(x)T η = 0} is the set of normals of F .

Proof. First assume that u is [M]-almost analytically extendable into an open con-
vex cone Γ. By Theorem 6.2, WF[M] u ⊆ Ω × Γ◦ \ {0}. Since WF[M] u ∩NF = ∅,
we have F ′(x)T η 6= 0 for all η ∈ Γ◦ \ {0}. Hence F ′(x)TΓ◦ is a closed convex cone
for all x ∈ Ω1. We claim that for x0 ∈ Ω1 we have

WF[M](F
∗u)|x0 ⊆

{
(x0, F

′(x0)T η) : η ∈ Γ◦\ {0}
}
. (6.5)

We can write (see [20, page 296])

F ′(x0)TΓ◦ =
{
ξ ∈ Rn : 〈h, ξ〉 ≥ 0 if F ′(x0)h ∈ Γ

}
.

Let Φ ∈ E(Ω2×Γr) be an (hm, Q)-almost analytic function such that u = bΓΦ. Let
X1 ⊆ Ω1 be a relatively compact quasiconvex neighborhood of x0 and denote by
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F̃ ∈ E(X1 × Rn,Ω2 × Rn) an (hn, ρ)-almost analytic extension of F , which exists
by Theorem 3.2 and Theorem 3.4. Since hm ≤ hn if M ≤ N and since hm is
increasing, we can assume that M = N and Q = ρ.

Let h ∈ Rn and F ′(x0)h ∈ Γ. Then

Im F̃ (x+ iεh) ∈ Γ for small ε > 0 if x ∈ X0,

where X0 is a small neighborhood of x0.
From the proof of the existence of the boundary value of an almost analytic func-

tion (see e.g. [16], for the special case of boundary values of holomorphic functions
see [20]) we observe that the map

R≥0 ×
(
Γ ∪ {0}

)
3 (ε, y) 7−→ Φ̃(ε, y) := Φ

(
F̃ (·+ iεh) + iy

)
∈ D′(X0)

is continuous. Now

Φ̃(ε, y)
ε→0−→ Φ̃(0, y) = Φ(F̃ (·+ 0i) + iy)

y→0−→ F ∗u and

Φ̃(ε, y)
y→0−→ Φ̃(ε, 0) = Φ(F̃ (·+ iεh)) in D′(X0).

Hence by continuity

F ∗u = lim
ε→0

Φ
(
F̃ (·+ iεh)

)
in D′(X0).

Now Φ ◦ F̃ is (hm, CQ)-almost analytic, where the composition is defined and C is

the Lipschitz constant of F̃ (cf. Proposition 1.1). Thus the proof of Theorem 6.2
implies

WF[M] F
∗u|x0

⊆ {(x0, ξ) : 〈h, ξ〉 ≥ 0}.
This proves (6.5).

Now suppose that (F (x0), η0) /∈ WF[M] u. By Corollary 6.3 there are an open
neighborhood V of x0, distributions u1, . . . , ud ∈ D′(V ) and open convex cones
Γ1, . . . ,Γd such that η0Γj < 0 and uj is [M]-almost analytically extendable into Γj
for all j = 1, . . . , d and

u|V =

d∑
j=1

uj .

By assumption, F ′(x)T η 6= 0 when (F (x), η) ∈WF[M] u for x ∈ F−1(V ). Hence we

can assume that F ′(x)T η 6= 0 for η ∈ Γ◦j \ {0} for all j = 1, . . . , d and x ∈ F−1(V ),
since in the proof of Corollary 6.3 the cones Γj can be chosen such that the set
Γ◦j ∩ Sn−1 has small measure and Γ◦j ∩ WF[M] u|F (x) 6= ∅ for x ∈ V . By the
arguments above we have for a smaller neighborhood V0 of x0 that

F ∗u|V0
=

N∑
j=1

F ∗uj |V0

and WF[M](F
∗uj)|x0

⊆
{

(x0, F
′(x0)T η) : η ∈ Γ◦j \{0}

}
for all j = 1, . . . , d. How-

ever, since η0Γj < 0 it follows that (x0, F
′(x0)T η0) /∈ WF[M](F

∗uj) and therefore

(x0, F
′(x0)T η0) /∈WF[M](F

∗u). �

Remark 6.5. If the mapping F in Theorem 6.4 is a diffeomorphism of class E [M],
then

WF[M] F
∗u = F ∗WF[M] u, u ∈ D′(Ω).
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Hence the ultradifferentiable wave front set WF[M] u can be defined for distributions

on ultradifferentiable manifolds of class E [M].

6.3. An ultradifferentiable version of Bony’s theorem. Bony [10] showed
that the analytic wave front can be described either by the Fourier transform, by
holomorphic extensions, or by the FBI transform. The latter can be viewed as a
nonlinear version of the Fourier transform and was introduced by [12].

We use here the generalized FBI transform defined by [4] as

Fu(t, ξ) = cp
〈
u(x), eiξ(t−x)e−|ξ|p(t−x)

〉
, u ∈ E ′(Ω),

where p is a real homogeneous positive elliptic polynomial of degree 2k and c−1
p :=∫

e−p(x)dx, i.e., c|x|2k ≤ p(x) ≤ C|x|2k for constants 0 < c < C.

Theorem 6.6. Let M be a [regular] weight matrix. Let u ∈ D′(Ω) and (x0, ξ0) ∈
T ∗Ω\{0}. Then

(1) (x0, ξ0) /∈WF{M} u if and only if there exist a test function ψ ∈ D(Ω) with
ψ ≡ 1 near x0, a conic neighborhood U × Γ of (x0, ξ0), a weight sequence
M ∈M, and a constant γ > 0 such that

sup
(t,ξ)∈U×Γ

eωM(γ|ξ|)∣∣F(ψu)(t, ξ)
∣∣ <∞. (6.6)

(2) (x0, ξ0) /∈WF(M) u if and only if there exist a test function ψ ∈ D(Ω) with
ψ ≡ 1 near x0, a conic neighborhood U × Γ of (x0, ξ0) such that (6.6) is
satisfied for all weight sequences M ∈M and all γ > 0.

Note that Theorem 1.6 is a direct consequence, since a weight function ω and
the associated weight matrix W = {Wx}x>0 satisfy

∀x > 0 ∃Cx > 0 ∀t > 0 : xωWx(t) ≤ ω(t) ≤ 2xωWx(t) + Cx,

see [23, Lemma 2.5] and [35, Lemma 5.7], and ω and all ωWx satisfy (1.2).

Proof. First let (x0, ξ0) /∈WF[M] u. W.l.o.g. we can assume that x0 = 0.
Suppose that u is locally the boundary value of an (hm, ρ)-almost analytic func-

tion F ∈ E(V × Γδ), i.e. u|V = bΓF , where V is a neighborhood of the origin and
ξ0Γ < 0 is an open convex cone. We assume that this holds either for some M ∈M
and some ρ > 0 or for all M ∈ M and all ρ > 0, depending on the case we treat.
We will show that this implies (6.6) for the same M and either some γ > 0 or all
γ > 0, respectively. By Corollary 6.3, one direction of the theorem follows.

Choose r > 0 such that B2r = {x : |x| < 2r} b V and let ψ ∈ D(B2r) be such
that ψ|Br ≡ 1. Take v ∈ Γδ and define

Q(t, ξ, x) := iξ(t− x)− |ξ|p(t− x).

Then

F(ψu)(t, ξ) = lim
τ→0+

∫
B2r

eQ(t,ξ,x+iτv)ψ(x)F (x+ iτv) dx. (6.7)

As in the proof of [4, Theorem 4.2] we put z = x+ iy, ψ(z) = ψ(x), and

Dτ :=
{
x+ iσv ∈ Cn : x ∈ B2r, τ ≤ σ ≤ λ

}
,

for some λ > 0 to be determined later, and consider the n-form

eQ(t,ξ,z)ψ(z)F (z) dz1 ∧ · · · ∧ dzn.
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Stokes’ theorem implies∫
B2r

eQ(t,ξ,x+iτv)ψ(x)F (x+ iτv) dx

=

∫
B2r

eQ(t,ξ,x+iλv)ψ(x)F (x+ iλv) dx

+

n∑
j=1

∫
Dτ

eQ(t,ξ,z) ∂

∂z̄j

(
ψ(z)F (z)

)
dz̄j ∧ dz1 ∧ · · · ∧ dzn

=

∫
B2r

eQ(t,ξ,x+iλv)ψ(x)F (x+ iλv) dx

+

n∑
j=1

∫
B2r

∫ λ

τ

eQ(t,ξ,x+iσv) ∂ψ

∂z̄j
(x+ iσv)F (x+ iσv) dσdx

+

n∑
j=1

∫
B2r

∫ λ

τ

eQ(t,ξ,x+iσv)ψ(x+ iσv)
∂F

∂z̄j
(x+ iσv) dσdx.

=: I1 + I2 + I3. (6.8)

Since ξ0v < 0 there is an open cone Γ1 containing ξ0 such that ξv ≤ −c0|ξ||v| for all
ξ ∈ Γ1 and some constant c0 > 0. For ξ ∈ Γ1 and t in some bounded neighborhood
W of the origin we have

ReQ(t, ξ, x+ iλv) = λ(ξv)− |ξ|Re p(t− x− iλv)

= λ(ξv)− |ξ|
(
Re p(t− x) +O(λ2)|v|2

)
≤ λ(ξv)− c|ξ|

(
|t− x|2k +O(λ2)|v|2

)
≤ −c0λ|v||ξ|+O

(
λ2
)
|ξ|.

Hence for λ small enough

ReQ(t, ξ, x+ iλv) ≤ −c0
2
λ|v||ξ|, ξ ∈ Γ1, x ∈ B2r, t ∈W. (6.9)

We conclude that there are constants γ1, C1 > 0 such that

|I1| ≤ C1e
−γ1|ξ|, ξ ∈ Γ1, t ∈W.

We recall that Definition 2.6(0) implies that ωM(t) = O(t) as t→∞ (cf. e.g. [24],
[8], or [35]). Hence there are constants γ1, C1 > 0 such that, for all ρ > 0,

|I1| ≤ C1e
−ωM(γ1ρ|ξ|), ξ ∈ Γ1, t ∈W.

For I2 we estimate

ReQ(t, ξ, x+ iσv) ≤ σ(ξv)− c|t− x|2k|ξ|+O
(
λ2
)
|ξ|

≤ −c|t− x|2k|ξ|+O
(
λ2
)
|ξ|.

If x ∈ supp(∂ψ/∂z̄j) then |x| ≥ r. Therefore, for |t| ≤ r/2 and λ small enough,
there is a constant γ2 > 0 such that

ReQ(t, ξ, x+ iσv) ≤ −γ2|ξ|, ξ ∈ Γ1.

Hence, for all ρ > 0,

|I2| ≤ C2e
−γ2|ξ| ≤ C2e

−ωM(γ2ρ|ξ|), ξ ∈ Γ1, |t| ≤ r/2, 0 < τ < λ.
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By (6.9), we have for a generic constant C3 > 0 and all k ∈ N

|I3| ≤ C3

∫ ∞
0

e−c0σ|v||ξ|hm(ρσ|v|) dσ ≤ C3

∫ ∞
0

e−c0σ|v||ξ|ρkσk|v|kmk dσ

≤ C3ρ
kc−k0 |ξ|−kk!mk = C3

(
c−1
0 ρ

)k
Mk|ξ|−k

and thus

|I3| ≤ C3hM
(
ρc−1

0 |ξ|−1
)
≤ C3e

−ωM(c0ρ
−1|ξ|).

In the Roumieu case this holds for some M ∈M and some ρ > 0, in the Beurling
case for all M ∈M and all ρ > 0. Since the appearing constants do not depend on
τ , we may conclude (6.6) in view of (6.7) and (6.8).

Let us now prove the converse implication. Fix (x0 = 0, ξ0) and assume that
(6.6) holds either for some M ∈M and some γ > 0 or for all M ∈M and all γ > 0.
We will prove that (0, ξ0) /∈ WF[M] v where v = ψu. We invoke the inversion
formula for the FBI transform [4]

v = lim
ε→∞

∫
Rn×Rn

eiξ(x−t)e−ε|ξ|
2

Fv(t, ξ)|ξ|
n
2k dtdξ.

Let vε(z) denote the above integral for x replaced by z ∈ Cn. Then vε(z) is an
entire function which we split as vε(z) = vε1(z) + vε2(z) + vε3(z) + vε4(z), where

vε1(z) = the integral over {ξ ∈ Rn, |t| ≤ a},
vε2(z) = the integral over {|ξ| ≤ B, a ≤ |t| ≤ A},
vε3(z) = the integral over {ξ ∈ Rn, |t| ≥ A},
vε4(z) = the integral over {|ξ| ≥ B, a ≤ |t| ≤ A}

for certain constants a, A and B to be determined. Following [3] or [4] we see that
vε2, vε3, and vε4 converge to holomorphic functions in a neighborhood of the origin
as ε→ 0.

It remains to look at vε1. Suppose that a is small enough such that Ba ⊆ U . Let
Cj , 1 ≤ j ≤ N , be open acute cones such that

Rn =

N⋃
j=1

Cj

and the intersection Cj ∩ Ck has measure zero for j 6= k. We may assume that

ξ0 ∈ C1, C1 ⊆ Γ, and ξ0 /∈ Cj for j > 1. In particular, by (6.6) we have∣∣F(v)(x, ξ)
∣∣ ≤ Ce−ωM(γ|ξ|) x ∈ Ba, ξ ∈ C1. (6.10)

For j = 2, . . . , N we can choose open cones Γj such that ξ0Γj < 0 and

〈y, ξ〉 ≥ c|y||ξ| for y ∈ Γj , ξ ∈ Cj , (6.11)

for some constant c > 0. For j ∈ {2, . . . , N} and ε > 0 we set

fεj (x+ iy) =

∫
Cj

∫
Ba

eiξ(x+iy−t)−ε|ξ|2Fv(t, ξ)|ξ|
n
2k dtdξ.

Each fεj is entire and for ε → 0 the functions fεj converge uniformly on compact
subsets of the wedge Rn + iΓj to the holomorphic function

fj(x+ iy) =

∫
Cj

∫
Ba

eiξ(x+iy−t)Fv(t, ξ)|ξ|
n
2k dtdξ
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on Rn × iΓj thanks to (6.11). Similarly we define

fε1 (x) =

∫
C1

∫
Ba

eiξ(x−t)−ε|ξ|
2

Fv(t, ξ)|ξ|
n
2k dtdξ

and

f1(x) =

∫
C1

∫
Ba

eiξ(x−t)Fv(t, ξ)|ξ|
n
2k dtdξ.

The functions fε1 , ε > 0, extend to entire functions, whereas f1 is smooth, by
(6.10), since e−ωM is rapidly decreasing. This decrease also shows that fε1 converges
uniformly to f1 in a neighborhood of 0, since∣∣f1(x)− fε1 (x)

∣∣ ≤ C ∫
C1
|ξ|

n
2k e−ωM(γ|ξ|)∣∣1− e−ε|ξ|2∣∣ dξ → 0

by the monotone convergence theorem. Moreover,∣∣Dαf1(x)
∣∣ ≤ ∫

C1

∫
Ba

|ξ|
n
2k
∣∣ξαFv(t, ξ)

∣∣ dtdξ
≤ C

∫
C1
|ξ|

n
2k+|α|e−ωM(γ|ξ|) dξ = C

∫
C1
|ξ|

n
2k+|α|hM( 1

γ|ξ| ) dξ

≤ Cγ−2n+|α|M2n+|α|

∫
C1
|ξ|

n
2k−2n dξ ≤ C ′γ|α|M ′|α|,

for a suitable M′ ∈M. Here we use the [semiregularity] of M. Thus f1 ∈ E [M].
So we have shown that on an open neighborhood V of the origin and some open

cones Γj , j = 2, . . . , N that satisfy ξ0Γj < 0 we can write

v|V = v0 +

N∑
j=2

bΓjfj

with v0 ∈ E [M](V ) and fj holomorphic on V + iΓj for j = 2, . . . , N . This completes
the proof, by Corollary 5.10. �

7. Elliptic regularity

The smooth elliptic regularity theorem, cf. [20, Theorem 8.3.1], states that a
linear differential operator P with smooth coefficients satisfies

WFu ⊆WFPu ∪ CharP, u ∈ D′.
In particular, if P is elliptic then it is microhypoelliptic, i.e., WFPu = WFu.
Analogous results hold in the analytic category (see [40]). Recall that

CharP = {(x, ξ) ∈ T ∗Ω \ {0} : Pm(x, ξ) = 0}
is the characteristic set of P =

∑
|α|≤m aα(x)Dα with principal symbol Pm(x, ξ) =∑

|α|=m aα(x)ξα.

In the ultradifferentiable case an elliptic regularity theorem was proven in [18]
for Roumieu classes given by weight sequences and operators with real analytic
coefficients. In [1] an elliptic regularity theorem was obtained for operators with
ultradifferentiable coefficients of type E [ω].

In this section we prove an elliptic regularity theorem in the general setting of
ultradifferentiable classes defined by weight matrices. As [1] we follow the pattern
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of proof of [18] and we try to find the weakest possible conditions on the weights.
The results of [18] and [1] follow as special cases of our theorem.

7.1. The ultradifferentiable elliptic regularity theorem. We will need a con-
dition with generalizes moderate growth of a sequence:

∀M ∈M ∃N ∈M ∃C > 0 ∀j, k ∈ N : Mj+k ≤ Cj+kNjNk. (7.1)

Note that this is the “Roumieu variant” which will be sufficient for our purpose.
Recall that for an R-semiregular weight matrix condition Remark 2.7(3) is equiv-

alent to

∀M ∈M ∃N ∈M ∃C > 0 ∀k ∈ N : max
α1+···+αj=k

α`>0

mjmα1
. . .mαj ≤ Ck+1nk. (7.2)

Let us point out that the weight matrix W associated with a weight function ω
always satisfies (7.1) (see Lemma 4.2), and W fulfills Remark 2.7(3) if and only if
ω is equivalent to a concave weight function (see Theorem 4.8).

Theorem 7.1. Let M be an R-semiregular weight matrix that satisfies (7.1) and
(7.2) and P (x,D) =

∑
|α|≤m aα(x)Dα a linear partial differential operator with

E{M}(Ω)-coefficients. Then we have the following statements.

(1) If L is a R-semiregular weight matrix such that M{�}L then

WF{L} u ⊆WF{L} Pu ∪ CharP (7.3)

for all u ∈ D′(Ω). If P is elliptic, then WF{L} u = WF{L} Pu.
(2) If L is B-semiregular and M{�)L then

WF(L) u ⊆WF(L) Pu ∪ CharP (7.4)

for all u ∈ D′(Ω). If P is elliptic, then WF(L) u = WF(L) Pu.

Proof. It suffices to show that (x0, ξ0) /∈ WF[L] Pu ∪ CharP for ξ0 6= 0 implies
(x0, ξ0) /∈WF[L] u. Therefore we can assume that there are a compact neighborhood
K of x0 and a closed conic neighborhood V of ξ0 such that the principal symbol
Pm(x, ξ) =

∑
|α|=m aα(x)ξα is non-zero in K × V and

(K × V ) ∩WF[L] Pu = ∅.
By [21, Theorem 1.4.2] there is a sequence (λN ) ⊆ D(K) with λN |U ≡ 1 on some

fixed neighborhood U of x0 such that for all α ∈ Nn there are constants Cα, hα > 0
such that ∣∣Dα+βλN

∣∣ ≤ Cα(hαN)|β| for |β| ≤ N = 1, 2, . . . (7.5)

Now the sequence uN = λ2Nu is bounded in E ′(K) and each of its elements is equal
to u on U . Hence it suffices to show that the sequence (uN )N satisfies (5.4)

• for some Q > 0 and some L ∈ L in the Roumieu case,
• for all Q > 0 and all L ∈ L in the Beurling case.

The first part of the proof is valid in both cases.
Following the approach of Hörmander [21, Theorem 8.6.1] we first want to solve

the equation Qg = e−ixξλ2N , where Qg =
∑

(−D)α(aαg) is the formal adjoint of
P . The ansatz g = e−ixξPm(x, ξ)−1w leads to the equation

w −Rw = λ2N (7.6)

where R = R1 + · · · + Rm and Rj |ξ|j is a differential operator of order ≤ j with

E{M}-coefficients which are homogeneous of degree 0 in ξ if x ∈ K and ξ ∈ V . A
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formal solution of (7.6) would be w =
∑∞
k=0R

kλ2N , but this series may diverge in
general and we cannot consider derivatives of λ2N of arbitrary high order. Hence
we set

wN =
∑

j1+···+jk≤N−m

Rj1 . . . Rjkλ2N

and calculate

wN −RwN = λ2N −
∑

∑k
s=1 js>N−m≥

∑k
s=2 js

Rj1 . . . Rjkλ2N =: λ2N − ρN .

Therefore

Q
(
e−ixξPm(x, ξ)−1wN (x, ξ)

)
= e−ixξ (λ2N (x)− ρN (x, ξ)) .

We obtain

ûN (ξ) =
〈
u, e−i〈·,ξ〉λ2N

〉
=
〈
Pu, e−i〈·,ξ〉P−1

m (·, ξ)wN (·, ξ)
〉

+
〈
u, e−i〈·,ξ〉ρN (·, ξ)

〉
, ξ ∈ V. (7.7)

In order to proceed we make the following claim which will be proved in
Lemma 7.2 below: There exist M ∈ M, h > 0, and constant C > 0 (only de-
pending on R, M, h and the sequence (λN )N ) such that, if j = j1 + · · · + jk and
j + |β| ≤ 2N , then

∣∣Dβ
(
Rj1 . . . Rjkλ2N

)∣∣ ≤ Chj+|β|M j+|β|
N

N |ξ|−j , ξ ∈ V. (7.8)

We use this to estimate the terms on the right-hand side of (7.7) for ξ ∈ V ,
where |ξ| is large. We begin with the second term II :=

〈
u, e−i〈·,ξ〉ρN (·, ξ)

〉
.

Since u is of finite order, say µ, near K, there is a constant Cu that only depends
on K and u such that for all ψ ∈ D(Ω) with suppψ ⊆ K we have∣∣〈u, ψ〉∣∣ ≤ Cu ∑

|α|≤µ

sup
K

∣∣Dαψ
∣∣.

Note that suppx ρN (·, ξ) ⊆ K for all ξ ∈ V and N ∈ N. Thence

II ≤ C
∑
|α|≤µ

∑
β≤α

|ξ||α|−|β| sup
x∈K

∣∣Dβ
xρN (x, ξ)

∣∣ ≤ C ∑
|α|≤µ

|ξ|µ−|α| sup
x∈K

∣∣Dα
xρN (x, ξ)

∣∣,
for ξ ∈ V with |ξ| ≥ 1 and N ∈ N. There are at most 2N terms in ρN and each
term can be estimated by (7.8) (since N ≥ j > N −m), whence∣∣Dα

xρN (x, ξ)
∣∣ ≤ ChN2N |ξ|m−NM

N+µ
N

N

for x ∈ K and ξ ∈ V with |ξ| > 1. Thus, by Definition 2.6(1), there exists M ∈M
and h1 > 0 such that

II ≤ ChN1 |ξ|µ+m−NMN . (7.9)

(1) Let us consider the Roumieu case and assume that M{�}L. Then, by (7.9),
there exists L ∈ L and h > 0 such that

II ≤ ChN |ξ|µ+m−NLN . (7.10)
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The first term I :=
〈
Pu, e−i〈·,ξ〉P−1

m (·, ξ)wN (·, ξ)
〉

in (7.7) is more difficult to esti-

mate. For N > m, |β| ≤ N and ξ ∈ V with |ξ| > M
1/N
N , (7.8) gives

∣∣DβwN (x, ξ)
∣∣ ≤ C N−m∑

j=0

hj+|β|M
j+|β|
N

N |ξ|−j ≤ Ch|β|M
|β|
N
N

N−m∑
j=0

hj ≤ C1h
N
1 M

|β|
N
N

for suitable C1 and h1. Analogously, one obtains a similar bound for w̃N (x, ξ) =
wN (x, ξ)|ξ|mP−1

m (x, ξ). Let

̂̃wN (η, ξ) =

∫
Ω

e−ixηwN (x, ξ) dx

be the partial Fourier transform of w̃N (·, ξ). Then, by the above, there exist M ∈M
and h > 0 such that ∣∣ηβ ̂̃wN (η, ξ)

∣∣ ≤ ChNM |β|
N
N (7.11)

for all N > m, |β| ≤ N , ξ ∈ V with |ξ| > M
1/N
N and η ∈ Rn. So, for some q > 0,(

|η|+M
1
N
N

)N ∣∣∣ ̂̃wN (η, ξ)
∣∣∣ ≤ C(

√
nh)N

N∑
k=0

(
N

k

)
M

k
N
N M

N−k
N

N ≤ CqNMN . (7.12)

Now set f = Pu and recall that by assumption WF{L} f ∩ (K × V ) = ∅. By
Lemma 5.3, we find a sequence (fN )N which is bounded in E ′,µ, equals f in some
neighborhood of K, and there exist L ∈ L and Q > 0 such that∣∣f̂N (η)

∣∣ ≤ CQNLN
|η|N

, for N ∈ N, η ∈W, (7.13)

where W is a conic neighborhood of V . Then w̃Nf = w̃NfN ′ for N ′ = N − µ− n.
In analogy with (5.8) we find, for 0 < c < 1,

(2π)n
∣∣∣̂̃wNf(ξ)

∣∣∣ ≤ (1− c)−N
′
∥∥∥̂̃wN (·, ξ)

∥∥∥
L1

sup
η∈W

∣∣f̂N ′(η)
∣∣|ξ|−N ′ |η|N ′

+ C

∫
|η|>c|ξ|

∣∣∣ ̂̃wN (η, ξ)
∣∣∣ (1 + c−1

)µ(
1 + |η|)µ dη.

By (7.12), if N > n+ µ+m, then∥∥∥̂̃wN (·, ξ)
∥∥∥
L1

≤ CqNMN

∫
Rn

(
|η|+ N

√
MN

)−N
dη

≤ C1q
NMN

∫ ∞
0

(
r + N

√
MN

)−N
rn−1 dr

≤ C1q
NMN

∫ ∞
0

(
r + N

√
MN

)−N ′−1

dr

= C1q
NMN

∫ ∞
N
√
MN

s−N
′−1 ds

= C1q
NM

1−N ′/N
N /N ′

≤ C1q
NM

µ+n
N

N .
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Together with (7.13) and (7.11), and since N
√
MN is increasing, we conclude that

for ξ ∈ V with |ξ| > N
√
MN ,∣∣∣̂̃wNf(ξ)

∣∣∣ ≤ C1

(
q

1− c

)N
M

n+µ
N

N QN
′
LN ′ |ξ|−N

′

+ C2(
√
nh)NMN

∫
|η|>c|ξ|

|η|−N
′−n dη

≤ C1q0

(
qQ

1− c

)N
L
n+µ
N

N L
N ′

N
N |ξ|

−N ′ + C2(
√
nq0h)NLNc

−N ′ |ξ|−N
′

≤ C3q
N
3 LN |ξ|−N

′
, (7.14)

where we used the fact that there is a constant q0 such that M
1/N
N ≤ q0L

1/N
N .

Now setting N∗ = N + n+ µ+m and vN = uN∗ we may conclude from (7.10)
and (7.14) that there exist L ∈ L and h > 0 such that

|ξ|N
∣∣v̂N (ξ)

∣∣ ≤ ChNLN , for ξ ∈ V with |ξ| > M
1/N∗

N∗ .

The boundedness of the sequence (vN )N in E ′,µ implies an estimate analogous to
(5.3) and hence we have

|ξ|N
∣∣v̂N (ξ)

∣∣ ≤ CM N+µ
N∗

N∗ , for |ξ| ≤M1/N∗

N∗ . (7.15)

This completes the proof of (1).
(2) Let us treat the Beurling case. The assumption M{�)L and (7.9) yield

that (7.10) holds for all L ∈ L and all h > 0. Moreover, f = Pu now satisfies
WF(L) f ∩ (K × V ) = ∅, by assumption, and hence (7.13) holds for all L ∈ L and
all Q > 0. Together with M{�)L this allows us to finish the proof in analogy to
the Roumieu case in (1). �

It remains to establish the claim (7.8):

Lemma 7.2. There exist M ∈M, h > 0, and constant C > 0 (only depending on
R, M, h and the sequence (λN )N ) such that, if j = j1 + · · ·+ jk and j + |β| ≤ 2N ,
then ∣∣Dβ

(
Rj1 . . . Rjkλ2N

)∣∣ ≤ Chj+|β|M j+|β|
N

N |ξ|−j , ξ ∈ V. (7.16)

Proof. Since both sides of (7.16) are homogeneous of degree −j in ξ ∈ V it suffices
to prove the lemma for |ξ| = 1. The set R ⊆ E{M}(K) of all coefficients of the
operators R1, . . . , Rm is finite. Hence there are constants h and C and a weight
sequence M ∈M such that

|Dαa(x)| ≤ Ch|α|M|α|, for a ∈ R, x ∈ K,α ∈ Nn0 . (7.17)

Thus the assertion is a consequence of the next lemma. �

Lemma 7.3. Let K ⊆ Ω be compact, (λN )N ⊆ D(K) a sequence satisfying (7.5)
and a1, . . . , aj−1 ∈ R. Then there exist M ∈ M and C, h > 0 (independent of N)
such that∣∣Di1(a1Di2(a2 · · ·Dij−1

(aj−1Dijλ2N ) · · · ))
∣∣ ≤ ChjM j

N
N , for j ≤ 2N. (7.18)
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Proof. By (7.5) and (2.5), for each q > 0 and each M ∈M there exists C ′ ≥ 1 such
that

|Dβλ2N | ≤ C ′q|β|M
|β|
N
N for |β| ≤ 2N. (7.19)

The left-hand side of (7.18) is a sum of terms of the form
(Dα1a1) · · · (Dαj−1aj−1)Dαjλ2N for |α1| + · · · + |αj | = j. If Ck1,...,kj is the
number of terms with |α1| = k1, . . . , |αj | = kj , then, thanks to (7.5), (7.17), and
(7.2), there exists M′ ∈M such that the left-hand side of (7.18) is bounded by

C0

∑
Cj−1hj−kjCk1,...,kjmk1 · · ·mkj−1k1! · · · kj−1!h

kj
0 N

kj

≤ C0C
j−1

∑
hj−kjm′j−kjCk1,...,kjk1! · · · kj−1!h

kj
0 N

kj

≤ C0C
j
∑

hj−kjh
kj
0 Ck1,...,kj

k1! · · · kj−1!

(j − kj)!
M ′j−kjN

kj . (7.20)

By (7.1), there exist M′′ ∈ M and a constant q2 > 0 such that M ′j−kj ≤
q
j−kj
2 M ′′σ1

M ′′σ2
if σ1 + σ2 = j − kj . By (2.5), there exists C2 > 0 such that

hj−kjh
kj
0 M

′
j−kjN

kj ≤ C
kj
N

2 (hq2)jM ′′σ1
M ′′σ2

(M ′′N )
kj
N ≤ C

kj
N

2 (hq2)j(M ′′N )
j
N

since N
√
MN is increasing. As noted in [1] and [20, p. 308] one has∑
Ck1,...,kj

k1! · · · kj−1!

(j − kj)!
≤ 2j

j!

∑
Ck1,...,kjk1! · · · kj ! =

2j(2j − 1)!!

j!
≤ 4j .

The lemma follows. �

7.2. Stronger versions in special cases. As a special case of (7.3) we obtain

WF{M} u ⊆WF{M} Pu ∪ CharP, u ∈ D′,

for any P with E{M}-coefficients, where M satisfies the assumptions of Theorem 7.1.
We do not know if an analogous statement holds in this generality in the Beurling
case, but we have two important partial results Theorem 7.4 and Theorem 7.7.

Theorem 7.4. Let M be a strongly log-convex weight sequence of moderate growth

with m
1/k
k →∞ and P (x,D) =

∑
|α|≤m aα(x)Dα a linear partial differential oper-

ator with E(M)-coefficients. Then

WF(M) u ⊆WF(M) Pu ∪ CharP, u ∈ D′.
If P is elliptic, then WF(M) u = WF(M) Pu.

Proof. As in the proof of Theorem 7.1 we fix a compact K ⊆ Ω. Let

Lk := max
{

max
|β|=k

max
|α|≤m

sup
x∈K
|∂βaα(x)|, k!

}
.

Then L � M. By Lemma 7.5 below, there exists a strongly log-convex weight
sequence of moderate growth M′ such that L ≤M′�M. Thus we may apply (the
proof of) Theorem 7.1(2) and the statement follows. �

Lemma 7.5. Let L,M be positive sequences satisfying L � M and L0 = M0 = 1.

Suppose that M is strongly log-convex and satisfies m
1/k
k →∞. Then there exists a

strongly log-convex sequence 9M with 9m
1/k
k → ∞ such that L ≤ 9M � M. If M has

moderate growth, then so does 9M.
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Proof. The first assertion simply follows from [26, Lemma 6]. Since L � M, for all
ρ > 0 there is C > 0 such that

Lk ≤ CρkMk for all k. (7.21)

Let Cρ be the infimum of all C > 0 such that (7.21) holds. Consider the sequence
L̄ = (L̄k) defined by

L̄k := inf
ρ>0

Cρρ
kMk.

Notice that ck := µk/λ̄k, where µk := Mk/Mk−1, λ̄k := L̄k/L̄k−1, is increasing.

Then 9Mk = 9µ1 9µ2 · · · 9µk, 9M0 := 1 with

9µk
k

:= max
{√µk

k
, max
1≤j≤k

λ̄j
j

}
,

satisfies the first part of the assertion; for details see [26, Lemma 6]. Let us check

that 9M has moderate growth if that is true for M. By [37, Lemma 2.2], M has
moderate growth if and only if µ2k . µk. In that case

9µ2k

2k
= max

{√µ2k

2k
, max
1≤j≤2k

λ̄j
j

}
.

9µk
k
,

because for k < j ≤ 2k we have

λ̄j
j

=
µj
jcj
≤ µ2k

2kck
.

µk
kck

=
λ̄k
k

since ck and µk/k are increasing. It follows that 9M has moderate growth. �

We get a similar result for concave weight functions which is a strengthened
version of [1, Theorem 4.1] with operator and wave front set of the same Beurling
class. It depends crucially on the following lemma.

We recall that a weight function ω is equivalent to a concave weight function if
and only if

∃C ≥ 1 ∃t1 > 0 ∀t ≥ t1 ∀λ ≥ 1 :
ω(λt)

λt
≤ Cω(t)

t
; (7.22)

see Theorem 4.8.

Lemma 7.6. Let ω : [0,∞)→ [0,∞) be continuous, increasing, surjective and such
that ω(t) = o(t) as t→∞. Assume that ω satisfies (7.22). Let h : [0,∞)→ [0,∞)
be a function such that ω(t) = o(h(t)) as t → ∞. Then there exists a continuous,
increasing, surjective function σ : [0,∞) → [0,∞) such that ω(t) = o(t) as t → ∞
and

(1) ω(t) = o(σ(t)) as t→∞,
(2) σ(t) = o(h(t)) as t→∞,
(3) σ(λt) ≤ λσ(t) for all λ ≥ 1 and t ≥ t1 (with the same t1 as above).

Proof. Note that (7.22) can be reformulated as follows

∃C ≥ 1 ∃t1 > 0 ∀s ≥ t ≥ t1 :
ω(s)

s
≤ Cω(t)

t
. (7.23)

Let us define

ω1(t) := t sup
s≥t

ω(s)

s
, t ≥ t1,

and extend ω1 to [0, t1] in such a way that ω1 : [0,∞) → [0,∞) is continuous,
increasing, surjective and such that ω(t) = o(t) as t → ∞; that this is possible



44 S. FÜRDÖS, D.N. NENNING, A. RAINER, AND G. SCHINDL

follows from the fact that ω(t) = O(ω1(t)) and ω1(t) = O(ω(t)) as t→∞ which is
a consequence of (7.23). By definition ω1(t)/t is decreasing for t ≥ t1. Moreover,
ω1(t) = o(h(t)) as t→∞.

We define σ : [0,∞) → [0,∞) and 0 = t0 < t1 < t2 < · · · → ∞ as follows:
If tj with odd j is already chosen, take tj+1 > tj to be the smallest solution of
tjω1(tj) = (j + 2)t1ω1(t) which exists since ω1(t)/t→ 0 as t→∞. If tj with even
j is already chosen, choose tj+1 > tj such that

max
{ω1(t)

t
,
ω1(t)

h(t)

}
≤ 1

(j + 1)(j + 3)
for all t ≥ tj+1. (7.24)

This is possible since ω(t) = o(t) and ω1(t) = o(h(t)) as t→∞. Now set

σ(t) :=

{
jω1(t) if t ∈ [tj−1, tj) and j ≥ 1 is odd,

(j − 1)tω1(tj−1)/tj−1 if t ∈ [tj−1, tj) and j ≥ 1 is even.

Then σ is continuous, increasing, and surjective.
That ω1(t) = o(σ(t)) as t → ∞ follows easily from the fact that ω1(t)/t is

decreasing for t ≥ t1.
Observe that for each odd j we have σ(t) ≤ (j + 2)ω1(t) for all t ∈ [tj , tj+2], by

the choice of tj+1. Together with (7.24) this implies σ(t) = o(t) and σ(t) = o(h(t))
as t→∞.

By construction σ(t)/t is decreasing for t ≥ t1. This completes the proof. �

Theorem 7.7. Let ω be a concave weight function and let P (x,D) =∑
|α|≤m aα(x)Dα be a linear partial differential operator with E(ω)-coefficients.

Then
WF(ω) u ⊆WF(ω) Pu ∪ CharP, u ∈ D′.

If P is elliptic, then WF(ω) u = WF(ω) Pu.

Proof. Let L be the sequence defined in the proof of Theorem 7.4. We may proceed
as in the proof of Theorem 4.7 which is based on [7, Theorem 4.5] and obtain a
function h : [0,∞) → [0,∞) such that ω(t) = o(h(t)) as t → ∞. Then Lemma 7.6
provides a ‘weight’ function σ such that ω(t) = o(σ(t)) and σ(t) = o(h(t)) as
t → ∞. As in the proof of Theorem 4.7 we conclude that aα|K ∈ B{σ}(K).
Since σ is equivalent to a concave ‘weight’ function, we may apply (the proof of)
Theorem 7.1(2) and Theorem 4.8. �

Remark 7.8. We remark that formally σ is not a weight function, since it is not
clear that t 7→ σ(et) is convex (see (1.5)). But this is not needed in this context,
since the properties of σ suffice to guarantee that the associated weight matrix
satisfies (7.1) and (7.2); cf. [42, Section 3.1].

In contrast, the proof of Proposition 4.5 depends crucially on (1.5); see [39,
Proposition 3] and [23, Lemmas 2.5 & 3.6]. Therefore, we cannot use Lemma 7.6
in the proof of Theorem 4.7.

Let Gs, s > 1, be the Gevrey sequence defined by Gsk := k!s. It is immediate
from Theorem 7.1 that

WF{Gs} u ⊆WF{Gs} Pu ∪ CharP, u ∈ D′,

if P has E{Gs}-coefficients, and from Theorem 7.4 that

WF(Gs) u ⊆WF(Gs) Pu ∪ CharP, u ∈ D′,
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if P has E(Gs)-coefficients. Now Theorem 1.7 follows easily in view of Proposi-
tion 5.6(3).

Remark 7.9. If we modify the proof of Theorem 7.1 following the lines of [16],
then we obtain (7.3) for distributions u ∈ D′(Ω,Cν), where P is a square matrix of
partial differential operators with ultradifferentiable coefficients.

7.3. Holmgren’s uniqueness theorem. Kawai [41] and Hörmander [18] sepa-
rately showed that the elliptic regularity theorem can be used to prove Holmgren’s
uniqueness theorem [17]. This scheme of proof was applied by the first author [16]
to extend Holmgren’s uniqueness theorem to operators with coefficients in quasi-
analytic Roumieu classes defined by regular weight sequences of moderate growth.
The only other ingredient necessary for the proof was an appropriate version of
Theorem 5.15.

The same proof gives the following.

Theorem 7.10. Let M be a quasianalytic R-semiregular weight matrix that satisfies
(7.1) and (7.2). Let P be a linear partial differential operator with coefficients in
E{M}(Ω). If X is a C1-hypersurface in Ω that is non-characteristic at x0 and
u ∈ D′(Ω) a solution of Pu = 0 that vanishes on one side of X near x0, then u ≡ 0
in a full neighborhood of x0.

In particular, this theorem applies to operators with E{ω}-coefficients for concave
quasianalytic weight functions ω. (Note that the Beurling version of the theorem
follows trivially but is of no interest, since we always have E(M) ⊆ E{M}). In
Section 7.4 we give an example of a concave weight function ω0 such that E{ω0}

is not included in E{G}. Hence Theorem 7.10 applies to a wider class of operators
than the quasianalytic Holmgren theorem given in [16] (in fact a class E{M} with
regular M of moderate growth is contained in some Gevrey class, see [30]).

Therefore we can also extend the quasianalytic versions given in [16] of the
generalizations and applications of the analytic Holmgren theorem given by Bony
[9], Hörmander [19], Sjöstrand [44] and Zachmanoglou [48]; in fact, the assumption
(7.2) guarantees that the classes are stable by solving ordinary differential equations
(with parameters), see [36].

7.4. Quasianalytic classes transversal to all Gevrey classes. We give here
examples of quasianalytic classes that are not contained in E{G}, but satisfy many
of the regularity properties discussed before. More precisely:

(1) We will construct a quasianalytic strongly log-convex weight sequence Q

which is derivation-closed and satisfies q
1/k
k →∞ such that E{Q} * E{G}.

(2) We will show that ωQ is a weight function equivalent to a concave quasi-

analytic weight function and E{ωQ} * E{G}.
Note that Q cannot be of moderate growth (cf. [30]).

We are going to define Q by Q0 = 1 and Qk = k!
∏k
j=1 ρj for k ≥ 1 and a

suitable sequence ρ = (ρk)k to be constructed. In order to define ρ accordingly we
need three more auxiliary sequences (αj)j , (βj)j ⊆ N and (τj)j ⊆ R which will be
chosen iteratively. Let α1 = τ1 = 1. If αj and τj , j ≥ 1, are already chosen, we
pick βj ∈ N such that

βj ≥ eτjαj , (7.25)
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and set

αj+1 :=
(βj − 1)βj

2
and τj+1 := eαj+1 . (7.26)

Clearly, α1 < β1 < α2 < β2 < α3 < · · · . We define

ρk :=

{
τj , if k ∈ Aj := {k ∈ N : αj ≤ k < βj},
ek, if k ∈ Bj := {k ∈ N : βj ≤ k < αj+1}.

By construction, ρk is increasing and hence Q is strongly log-convex. We also have

ρk →∞ and hence q
1/k
k →∞, by the arguments in [35, p. 104]. The sequence Q is

derivation-closed, since ρk ≤ ek for all k.
In order to see that Q is quasianalytic we have to show that

∞∑
k=1

1

kρk
≥
∞∑
j=0

∑
k∈Aj

1

kρk
=

∞∑
j=1

1

τj

∑
k∈Aj

1

k
(7.27)

diverges. Recall that, if γ is the Euler constant, we have
p∑
k=1

1

k
= log p+ γ + εp

and εp → 0 for p→∞. Thus, for j ≥ 2,∑
k∈Aj

1

k
= log

(
βj − 1

αj − 1

)
+ εβj−1 − εαj−1.

By (7.25), log
(
βj−1
αj−1

)
≥ τj , for j ≥ 2, which implies that (7.27) diverges.

Finally, we note that E{Q} ⊆ E{G} if and only if there exists s > 0 such that

sup
k≥1

k
√
qk

ks
<∞.

However, by (7.26),

q1/αj+1
αj+1

≥
( ∏
k∈Bj

ρk

)1/αj+1

= exp
( 1

αj+1

αj+1−1∑
k=βj

k
)

= exp
(αj+1 − 1

2
− 1
)
,

and hence q
1/αj+1
αj+1 /asj+1 is unbounded for all s. This ends the proof of (1).

The function ωQ(t) = supk log(tk/Qk) satisfies ωQ|[0,1] = 0, since Q0 = Q1 = 1.
Furthermore, cf. [29, Chapitre I], ωQ is increasing and satisfies (1.4) and (1.5).
The arguments in the proof of the implication (4) ⇒ (5) in [8, Lemma 12] show
that also (1.3) holds (in fact, ωQ(t) = o(t) as t → ∞). By [23, Lemma 3.4], ωQ

is equivalent to a concave weight function. Hence ωQ is a weight function that is
equivalent to a concave weight function. By [24, Lemma 4.1], ωQ is quasianalytic,

since Q is quasianalytic. We have E{ωQ} * E{G}, since B{Q}(K) ⊆ B{ωQ}(K) for
any compact set K ⊆ Rn.
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