ADDENDUM TO: "LIFTING SMOOTH CURVES OVER INVARIANTS FOR REPRESENTATIONS OF COMPACT LIE GROUPS, III" [J. LIE THEORY 16 (2006), NO. 3, 579–600.]

ANDREAS KRIEGL, MARK LOSIK, PETER W. MICHOR, AND ARMIN RAINER

ABSTRACT. We improve the main results in [10] using a recent refinement of Bronshtein's theorem [5] due to Colombini, Orrú, and Pernazza [6]. They are then in general best possible both in the hypothesis and in the outcome. As a consequence we obtain a result on lifting smooth mappings in several variables.

A recent refinement of Bronshtein's theorem [5] and of some of its consequences due to Colombini, Orrú, and Pernazza [6] (namely theorem 1 below) allows to essentially improve our main results in [10]; see theorem 2 and corollary 3 below. The improvement consists in weakening the hypothesis considerably: In [10] we needed a curve c to be of class

- (i) C^k in order to admit a differentiable lift with locally bounded derivative,
- (ii) C^{k+d} in order to admit a C^1 -lift, and
- (iii) C^{k+2d} in order to admit a twice differentiable lift.

It turns out that theorem 2 and corollary 3 are in general best possible both in the hypothesis and in the outcome. In theorem 4 and corollary 5 we deduce some results on lifting smooth mappings in several variables.

Refinement of Bronshtein's theorem. Bronshtein's theorem [5] (see also Wakabayashi's version [15]) states that, for a curve of monic hyperbolic polynomials

(1)
$$P(t)(x) = x^n + \sum_{j=1}^n (-1)^j a_j(t) x^{n-j}.$$

with coefficients $a_j \in C^n(\mathbb{R})$ $(1 \leq j \leq n)$, there exist differentiable functions λ_j $(1 \leq j \leq n)$ with locally bounded derivatives which parameterize the roots of P. A polynomial is called hyperbolic if all its roots are real.

The following theorem refines Bronshtein's theorem [5] and also a result of Mandai [14] and a result of Kriegl, Losik, and Michor [8]. In [14] the coefficients are required to be of class C^{2n} for C^1 -roots, and in [8] they are assumed to be C^{3n} for twice differentiable roots.

- 1. **Theorem** ([6, 2.1]). Consider a curve P of monic hyperbolic polynomials (1). Then:
 - (i) If $a_j \in C^n(\mathbb{R})$ $(1 \leq j \leq n)$, then there exist functions $\lambda_j \in C^1(\mathbb{R})$ $(1 \leq j \leq n)$ which parameterize the roots of P.
 - (ii) If $a_j \in C^{2n}(\mathbb{R})$ $(1 \leq j \leq n)$, then the roots of P may be chosen twice differentiable.

Counterexamples (e.g. in [6, section 4]) show that in this result the assumptions on P cannot be weakened.

Date: April 29, 2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 22E45,\ 22C05.$

Key words and phrases. invariants, representations, lifting differentiably.

AK was supported by FWF-Project P 23082-N13. PM was supported by FWF-Project P 21030-N13. AR was supported by FWF-Projects J 2771-N13 and P 22218-N13.

Improvement of the results in [10]. Let $\rho: G \to \mathrm{O}(V)$ be an orthogonal representation of a compact Lie group G in a real finite dimensional Euclidean vector space V. Choose a minimal system of homogeneous generators $\sigma_1, \ldots, \sigma_n$ of the algebra $\mathbb{R}[V]^G$ of G-invariant polynomials on V. Define

$$d = d(\rho) := \max\{\deg \sigma_i : 1 \le i \le n\},\$$

which is independent of the choice of the σ_i (see [10, 2.4]).

If G is a finite group, we write $V = V_1 \oplus \cdots \oplus V_l$ as orthogonal direct sum of irreducible subspaces V_i . We choose $v_i \in V_i \setminus \{0\}$ such that the cardinality of the corresponding isotropy group G_{v_i} is maximal, and put

$$k = k(\rho) := \max\{d(\rho), |G|/|G_{v_i}| : 1 \le i \le l\}.$$

The mapping $\sigma = (\sigma_1, \ldots, \sigma_n) : V \to \mathbb{R}^n$ induces a homeomorphism between the orbit space V/G and the image $\sigma(V)$. Let $c : \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ be a smooth curve in the orbit space (smooth as a curve in \mathbb{R}^n). A curve $\bar{c} : \mathbb{R} \to V$ is called lift of c if $\sigma \circ \bar{c} = c$. The problem of lifting curves smoothly over invariants is independent of the choice of the σ_i (see [10, 2.2]).

- 2. **Theorem.** Let $\rho: G \to O(V)$ be a representation of a finite group G. Let $d = d(\rho)$ and $k = k(\rho)$. Consider a curve $c: \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ in the orbit space of ρ . Then:
 - (i) If c is of class C^k , then any differentiable lift $\bar{c} : \mathbb{R} \to V$ of c (which always exists) is actually C^1 .
 - (ii) If c is of class C^{k+d} , then there exists a global twice differentiable lift \bar{c} : $\mathbb{R} \to V$ of c.
- **Proof.** (i) Let \bar{c} be any differentiable lift of c. Note that the existence of \bar{c} is guaranteed for any C^d -curve c, by [9]. In the proof of [10, 8.1] we construct curves of monic hyperbolic polynomials $t \mapsto P_i(t)$ which have the regularity of c and whose roots are parameterized by $t \mapsto \langle v_i \mid g.\bar{c}(t) \rangle$ $(g \in G_{v_i} \setminus G)$.

If c is of class C^k , then theorem 1(i) provides C^1 -roots of $t \mapsto P_i(t)$. By the proof of [10, 4.2] we obtain that the parameterization $t \mapsto \langle v_i \mid g.\bar{c}(t) \rangle$ is C^1 as well. Hence \bar{c} is a C^1 -lift of c. Alternatively, the proof of 1(i) in [6] actually shows that any differentiable choice of roots is C^1 .

- (ii) Let c be of class C^{k+d} . The existence of a global twice differentiable lift \bar{c} of c follows from the proof of [10, 5.1 and 5.2], where we use (i) instead of [10, 4.2]. \square
- 3. Corollary. Let $\rho: G \to O(V)$ be a polar representation of a compact Lie group G. Let $\Sigma \subseteq V$ be a section, $W(\Sigma) = N_G(\Sigma)/Z_G(\Sigma)$ its generalized Weyl group, and $\rho_{\Sigma}: W(\Sigma) \to O(\Sigma)$ the induced representation. Let $d = d(\rho_{\Sigma})$ and $k = k(\rho_{\Sigma})$. Consider a curve $c: \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ in the orbit space of ρ . Then:
 - (i) If c is of class C^k , then there exists a global orthogonal C^1 -lift $\bar{c}: \mathbb{R} \to V$ of c.
 - (ii) If c is of class C^{k+d} , then there exists a global orthogonal twice differentiable lift $\bar{c}: \mathbb{R} \to V$ of c.

The examples which show that the hypothesis in 1 are best possible also imply that in general the hypothesis in 2 and 3 cannot be improved.

On the other hand the outcome of 2 and 3 cannot be refined either: A C^{∞} - curve c does in general not allow a $C^{1,\alpha}$ -lift for any $\alpha > 0$. See [7], [1], [4]. But see also [3] and [10, remark 4.2].

Note that the improvement affects also [13, part 6].

Lifting smooth mappings in several variables. From theorem 2 we can deduce a lifting result for mappings in several variables.

4. **Theorem.** Let $\rho: G \to O(V)$ be a representation of a finite group G, $d = d(\rho)$, and $k = k(\rho)$. Let $U \subseteq \mathbb{R}^q$ be open. Consider a mapping $f: U \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ of class C^k . Then any continuous lift $\bar{f}: U \to V$ of f is actually locally Lipschitz.

Proof. Let $c: \mathbb{R} \to U$ be a C^{∞} -curve. By theorem 2(i) the curve $f \circ c$ admits a C^1 -lift $\overline{f \circ c}$. A further continuous lift of $f \circ c$ is formed by $\overline{f} \circ c$. By [12, 5.3] we can conclude that $\overline{f} \circ c$ is locally Lipschitz. So we have shown that \overline{f} is locally Lipschitz along C^{∞} -curves. By Boman [2] (see also [11, 12.7]) that implies that \overline{f} is locally Lipschitz.

In general there will not always exist a continuous lift of f (for instance, if G is a finite rotation group and f is defined near 0). However, if G is a finite reflection group, then any continuous f allows a continuous lift (since the orbit space can be embedded homeomorphically in V).

5. Corollary. Let $\rho: G \to \mathrm{O}(V)$ be a polar representation of a compact connected Lie group G. Let $\Sigma \subseteq V$ be a section, $W(\Sigma) = N_G(\Sigma)/Z_G(\Sigma)$ its generalized Weyl group, $\rho_{\Sigma}: W(\Sigma) \to \mathrm{O}(\Sigma)$ the induced representation, $d = d(\rho_{\Sigma})$, and $k = k(\rho_{\Sigma})$. Let $U \subseteq \mathbb{R}^q$ be open. Consider a mapping $f: U \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ of class C^k . Then there exists an orthogonal lift $\overline{f}: U \to V$ of f which is locally Lipschitz.

Proof. The Weyl group $W(\Sigma)$ is a finite reflection group, since G is connected. \square

References

- D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor, Choosing roots of polynomials smoothly, Israel J. Math. 105 (1998), 203–233.
- [2] J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand. 20 (1967), 249–268.
- [3] J.-M. Bony, Sommes de carrés de fonctions dérivables, Bull. Soc. Math. France 133 (2005), no. 4, 619-639.
- [4] J.-M. Bony, F. Broglia, F. Colombini, and L. Pernazza, Nonnegative functions as squares or sums of squares, J. Funct. Anal. 232 (2006), no. 1, 137–147.
- [5] M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat.
 Zh. 20 (1979), no. 3, 493-501, 690, English transl. in Siberian Math. J. 20 (1980), 347-352.
- [6] F. Colombini, N. Orrú, and L. Pernazza, On the regularity of the roots of hyperbolic polynomials, to appear in Israel J. Math.
- [7] G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 203–210.
- [8] A. Kriegl, M. Losik, and P. W. Michor, Choosing roots of polynomials smoothly. II, Israel J. Math. 139 (2004), 183–188.
- [9] A. Kriegl, M. Losik, P. W. Michor, and A. Rainer, Lifting smooth curves over invariants for representations of compact Lie groups. II, J. Lie Theory 15 (2005), no. 1, 227–234.
- [10] ______, Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory 16 (2006), no. 3, 579–600.
- [11] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997, http://www.ams.org/online_bks/surv53/.
- [12] M. Losik, P. W. Michor, and A. Rainer, A generalization of Puiseux's theorem and lifting curves over invariants, to appear in Rev. Mat. Complut., arXiv:0904.2068, 2009.
- [13] M. Losik and A. Rainer, Choosing roots of polynomials with symmetries smoothly, Rev. Mat. Complut. 20 (2007), no. 2, 267–291.
- [14] T. Mandai, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. (1985), no. 21, 115–118.
- [15] S. Wakabayashi, Remarks on hyperbolic polynomials, Tsukuba J. Math. 10 (1986), no. 1, 17–28.

Andreas Kriegl: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

 $E\text{-}mail\ address: \verb|andreas.kriegl@univie.ac.at||$

Mark Losik: Saratov State University, ul. Astrakhanskaya, 83, 410026 Saratov, Russia

 $E\text{-}mail\ address{:}\ \texttt{losikMV@info.sgu.ru}$

Peter W. Michor: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

 $E ext{-}mail\ address: peter.michor@univie.ac.at}$

ARMIN RAINER: FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, NORDBERGSTRASSE 15, A-1090 WIEN, AUSTRIA

 $E\text{-}mail\ address: \verb|armin.rainer@univie.ac.at|$