
ON REAL ANALYTIC FUNCTIONS ON CLOSED

SUBANALYTIC DOMAINS

ARMIN RAINER

Abstract. We show that a function f : X → R defined on a closed uniformly

polynomially cuspidal set X in Rn is real analytic if and only if f is smooth
and all its composites with germs of polynomial curves in X are real analytic.

The degree of the polynomial curves needed for this is effectively related to

the regularity of the boundary of X. For instance, if the boundary of X is
locally Lipschitz, then polynomial curves of degree 2 suffice. In this Lipschitz

case, we also prove that a function f : X → R is real analytic if and only if

all its composites with germs of quadratic polynomial maps in two variables
with images in X are real analytic; here it is not necessary to assume that f

is smooth.

1. Introduction

In this note, we are interested in Hartogs-type characterizations of real analytic
functions. Let us recall two fundamental results due to Bochnak and Siciak: let
U ⊆ Rn be a nonempty open set and f : U → R any function.

Theorem A ([2, 16]). The function f is real analytic if and only if f is smooth
and the restriction of f to each affine line that meets U is real analytic.

Theorem B ([3, 4]). The function f is real analytic if and only if the restriction
of f to each affine 2-plane that meets U is real analytic.

In Theorem A, the assumption that f is smooth cannot be omitted. Recently,
Bochnak, Kollár, and Kucharz [1] proved a global version of Theorem B: a function
f : M → R on a real analytic manifold M of dimension n ≥ 3 is real analytic if f |N
is real analytic for every real analytic submanifold N ⊆ M that is homeomorphic
to the 2-sphere.

We will investigate versions of these results on closed fat subsets X of Rn with
cusps (that X is fat means that it is contained in the closure of its interior, i.e.,
X = X◦). Even if X has Lipschitz boundary, we will have to compose f with
germs of quadratic polynomial maps instead of just affine maps. It will turn out
that the maximal degree of the polynomial maps needed to detect real analyticity
is strongly related to the regularity of the boundary (i.e., to the sharpness of the
cusps).
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A recent result of Kucharz and Kurdyka [9] (see Theorem C below) shows that,
for subanalytic functions on real analytic manifolds, real analyticity can be recog-
nized by restriction to real analytic subsets of dimension one. We will discuss a
variant on suitable closed fat subsets X of Rn.

This note is a natural continuation of our papers [13] and [14]. Before we can
state the results, some terminology must be introduced.

1.1. Plot-analytic functions. Let d,m, n be positive integers. Let X ⊆ Rn be
nonempty. By an (m, d)-plot in X we mean the germ [p] at 0 of a polynomial map
p = (p1, . . . , pn) : Rm → Rn

• of degree at most d, i.e., pi ∈ R[x1, . . . , xm] and max1≤i≤n deg pi ≤ d,
• and image contained in X, i.e., there exists a neighborhood U of 0 in Rm

such that p(U) ⊆ X.

We will write p instead of [p]; this slight abuse of notation will lead to no confusion.
Let Pm,d(X) denote the set of all (m, d)-plots in X. We will also consider

Pm(X) :=

∞⋃
d=1

Pm,d(X)

and call its elements polynomial m-plots in X.
For any function f : X → R and any p ∈ Pm(X) it is meaningful to consider the

function germ f ◦ p at 0 in Rm. We define C ω
m,d(X) to be the set of all functions

f : X → R such that

f ◦ p is a real analytic germ at 0 ∈ Rm, for all p ∈ Pm,d(X).

Furthermore, we set

C ω
m(X) :=

∞⋂
d=1

C ω
m,d(X).

We call the elements of C ω
m,d(X) (m, d)-plot-analytic functions. Recall that f : X →

R is called arc-analytic if f ◦ c is real analytic for each germ c of a real analytic arc
in X. The arc-analytic functions on X form a subset of C ω

1 (X).
Let X ⊆ Rn be closed. Let Cω|X (resp. C∞|X) be the set of all functions

f : X → R such that there exist an open neighborhood U of X in Rn and a real
analytic (resp. smooth) function F : U → R such that F |X = f . Note that each
f ∈ Cω|X is the restriction to X of a holomorphic function defined on an open
neighborhood of X in Cn.

1.2. UPC sets. Let us recall (cf. [12]) that a closed set X ⊆ Rn is called uniformly
polynomially cuspidal (UPC) if there exist positive integers m,D and a constant
M > 0 such that for each x ∈ X there is a polynomial curve hx : R → Rn of degree
at most D such that

(1) hx(0) = x,
(2) dist(hx(t),Rn \X) ≥M tm for all x ∈ X and t ∈ [0, 1].

In that case, we say that the UPC set X has the characteristic (m,D). (The con-
stant M will not be important for us.) Let char(X) be the set of all characteristics
of X. Note that if (m,D) ∈ char(X) then (m,D) + N2 ⊆ char(X). We define

d(X) := 2 min
(m,D)∈char(X)

max{m,D}.
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Any UPC set X is fat. We say that X is simple if each x ∈ ∂X has a basis of
neighborhoods U such that U ∩ X◦ is connected for all U ∈ U . We shall see in
Example 3.3 that, regarding our results, to be simple is a natural and indispensable
condition.

An important class of UPC sets is the collection of all compact fat subanalytic
sets X ⊆ Rn, see Paw lucki and Plesniak [12].

1.3. Hölder and Lipschitz sets. Let α ∈ (0, 1] and r, h > 0. The set

Γα
n(r, h) :=

{
(x′, xn) ∈ Rn−1 × R : |x′| < r,

( |x′|
r

)α
< xn

h < 1
}

is a truncated open α-cusp. By an α-set we mean a closed fat set X ⊆ Rn such
that X◦ has the uniform α-cusp property : for each x ∈ ∂X there exist ϵ > 0, a
truncated open α-cusp Γ = Γα

n(r, h), and an orthogonal linear map A ∈ O(n) such
that y+AΓ ⊆ X◦ for all y ∈ X∩B(x, ϵ). A bounded open set in Rn has the uniform
α-cusp property if and only if it has α-Hölder boundary; cf. [14, Remark 2.1]. We
say that X is a Hölder set if X is an α-set for some α ∈ (0, 1]; 1-sets are also called
Lipschitz sets. Note that Hölder sets are always simple; see [13, Proposition 3.9].

By definition, any compact α-set X is a UPC set of characteristic (⌈α−1⌉, 1) so
that d(X) ≤ 2⌈α−1⌉, where ⌈x⌉ is the smallest integer m ≥ x. If X is not a β-set
with ⌈β−1⌉ < ⌈α−1⌉, then d(X) = 2⌈α−1⌉. For instance, we have

d(Γ
1/m

n (r, h)) = 2m

for the closure Γ
1/m

n (r, h) of Γ
1/m
n (r, h), where m ∈ N≥1.

1.4. Results.

1.4.1. Smooth plot-analytic functions. The first result extends Theorem A to simple
closed UPC sets with a precise control of the degree of the required polynomial 1-
plots in terms of d(X).

Theorem 1.1. Let X ⊆ Rn be a simple closed UPC set and let d := d(X). Then

C ω
1,d(X) ∩ C∞|X = Cω|X .

We shall see in Example 3.1 that d = d(X) is optimal: in general, C ω
1,d(X) ∩

C∞|X ̸⊆ Cω|X if d < d(X).
If we do not restrict the degree of the polynomial plots, we may infer:

Corollary 1.2. Let X ⊆ Rn be a simple closed set such that for each z ∈ ∂X there
exists a closed UPC set Xz with z ∈ Xz ⊆ X. Then

C ω
1 (X) ∩ C∞|X = Cω|X .

For instance, the corollary applies to the compact subset X = X ′ ∪
⋃∞

m=1Xm of

R2, where Xm := Γ
1/m

2 ( 1
m2 ,

1
m ) + (2

∑m
ℓ=1

1
ℓ2 − 1

m2 ,− 1
m ) and X ′ = [0, π

2

3 ] × [0, 1].

It is simple, since the cusps Xm converge to the point (π2

3 , 0). The spikes Xm can
be replaced by suitable horn-like sets.
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1.4.2. Plot-analytic functions that are not presupposed to be smooth. Next we will
discuss extensions of Theorem B to closed fat sets. In the following, we will not
assume that f is smooth.

By a simplex in Rn we mean the convex hull of any collection of n + 1 affinely
independent points in Rn.

Theorem 1.3. Let X ⊆ Rn, n ≥ 2, be a simple closed set such that for each
z ∈ ∂X there exists a simplex Xz with z ∈ Xz ⊆ X. Then

C ω
2,2(X) = Cω|X .

This is best possible; see Example 3.2. The assumption is fulfilled for all Lipschitz
sets. At this stage, we do not know if there is an analogue of Theorem 1.3 for Hölder
sets or simple fat closed subanalytic sets. But in dimension two, we can give a fairly
complete answer. Here (for technical reasons) we need to work with

d′(X) := 2 min
(m,D)∈char(X)

m ·D.

For all compact Hölder sets X we have d′(X) = d(X); in general, d′(X) ≥ d(X).

Theorem 1.4. Let X ⊆ R2 be a simple compact fat subanalytic or Hölder set and
let d′ := d′(X). Then

C ω
2,d′(X) = Cω|X .

It is likely that in this statement d′ = d′(X) is not optimal.

Corollary 1.5. Let X ⊆ R2 be a simple closed set such that for each z ∈ ∂X there
exists a compact fat subanalytic set Xz with z ∈ Xz ⊆ X. Then

C ω
2 (X) = Cω|X .

Note that for each Hölder set X ′
z with z ∈ X ′

z ⊆ X we may find a compact fat
subanalytic set Xz with z ∈ Xz ⊆ X ′

z; the converse is not always possible.

1.4.3. Curve-analytic functions. We give an application to curve-analytic functions
on closed fat sets which extends a recent result of Kucharz and Kurdyka [9], see
Theorem C below.

Let X ⊆ Rn be nonempty and f : X → R a function. We say that f is curve-
analytic if for each real analytic arc c : (−ϵ, ϵ) → Rn with image contained in X
there exist δ ∈ (0, ϵ] and a real analytic function F : U → R defined on an open
neighborhood U of c(0) in Rn such that c(t) ∈ U and F (c(t)) = f(c(t)) for all
t ∈ (−δ, δ).
Remark 1.6. If X is a real analytic manifold, then f : X → R is curve-analytic
if and only if f |C is real analytic for every locally irreducible real analytic set C
of dimension 1 in X; see [9, Lemma 2.2]. (That f |C is real analytic means that
for each x ∈ C there is a neighborhood U of x in X and a real analytic function
F : U → R such that f |C∩U = F |C∩U .)

Theorem C ([9]). A subanalytic function f : X → R on a real analytic manifold
X is real analytic if and only if it is curve-analytic.

It is an open question, if the assumption that f is subanalytic is necessary.
By definition, if f : X → R is curve-analytic, then f is arc-analytic, in particular,

f ∈ C ω
1 (X). Thus, any smooth curve-analytic f : X → R is the restriction of a

real analytic function, for all X satisfying the assumptions of Corollary 1.2. More
interestingly, without presupposing that f is smooth, we have:
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Theorem 1.7. Let X ⊆ Rn be a simple closed set such that one of the following
conditions is satisfied:

(1) n is arbitrary and for each z ∈ ∂X there is a simplex Xz with z ∈ Xz ⊆ X.
(2) n = 2 and for each z ∈ ∂X there is a compact fat subanalytic set Xz with

z ∈ Xz ⊆ X.

Let f : X → R be any function such that f |Xz is subanalytic for all Xz appearing
in (1) or (2). Then f is curve-analytic if and only if f ∈ Cω|X .

All the results are proved in Section 2. The examples in Section 3 show that the
connection between the degree of polynomial plots that recognize real analyticity
and the regularity of the boundary is optimal and complement the investigation.

2. Proofs

2.1. Localization of the problems. Proposition 2.2 shows that it suffices to
study the problems locally at boundary points. First we recall a lemma from [13].

Lemma 2.1 ([13, Lemma 6.1]). Let X ⊆ Rn be closed and U ⊆ Rn open with
U ∩ X ̸= ∅. Then there exists an open subset U0 ⊆ U with U0 ∩ X = U ∩ X
such that for all x ∈ U0 and all a ∈ X that realize the distance of x to X, i.e.,
dist(x, a) = dist(x,X), the line segment [x, a] is contained in U0.

Proposition 2.2. Let X ⊆ Rn be a closed fat set. Let f : X◦ → R be real analytic.
Suppose that for all x ∈ ∂X there exists a neighborhood Ux of x in Rn and a real
analytic function Fx : Ux → R such that Fx|Ux∩X◦ = f |Ux∩X◦ . Then there exists a
real analytic extension of f to an open neighborhood of X.

Proof. Let us show that f and the Fx glue coherently to a global real analytic
extension of f . Invoking Lemma 2.1, we replace Ux by the connected component
of (Ux)0 that contains x. Then the open cover {Ux : x ∈ ∂X} ∪ {X◦} of X has the
property that for each z ∈ Ux and each a ∈ X that realizes the distance of z to
X the segment [z, a] lies in Ux. Let V be a connected component of Ux ∩ Uy. For
each z ∈ V and each a ∈ X that realizes the distance of z to X the line segment
[z, a] lies in V . Since X is fat, V has nonempty intersection with X◦, and on this
intersection Fx and Fy coincide with f , by assumption. By the identity theorem,
Fx and Fy coincide on V and hence on Ux ∩Uy, since the connected component V
was arbitrary. □

2.2. Strongly injective homomorphisms. We will use the following result.

Theorem 2.3 ([5, 6]). Let Φ : K{X1, . . . , Xn} → K{Y1, . . . , Yk} be a homomor-
phism of convergent power series rings over the field K. Then the following condi-
tions are equivalent:

(1) Φ is strongly injective, i.e., if Φ̂ denotes the natural extension of Φ to formal

power series, then Φ̂(f) ∈ K{Y1, . . . , Yk} implies f ∈ K{X1, . . . , Xn}.
(2) The generic rank of Φ is n.

2.3. Proof of Theorem 1.1 and Corollary 1.2.

Lemma 2.4. Let X ⊆ Rn be nonempty and closed, f ∈ C∞|X , and d a positive
integer. Then the following conditions are equivalent.

(1) f ∈ C ω
1,d(X).

(2) f ∈ C ω
m,d(X) for all m ≥ 1.
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(3) f ∈ C ω
m,d(X) for some m ≥ 1.

Proof. (1) ⇒ (2) Let f ∈ C ω
1,d(X), m ≥ 1, and p ∈ Pm,d(X). Fix a representative

of p, also denoted by p. So there exists an open neighborhood U of 0 ∈ Rm such
that p(U) ⊆ X. Let x ∈ U , v ∈ Sn−1, and q(t) := x + tv for t near 0 ∈ R such
that q(t) ∈ U . Then the germ of q belongs to P1,1(U) and that of p ◦ q to P1,d(X).
Thus, f ◦ p ◦ q is real analytic, by (1). Since f ◦ p is smooth, f ◦ p is real analytic,
by Theorem A. (In fact, it is clear from the above that f ◦ p|ℓ∩U is real analytic,
where ℓ is the affine line generated by q.)

(2) ⇒ (3) Trivial.
(3) ⇒ (1) This follows easily from the fact that P1,d(X) can be identified with

a subset of Pm,d(X) (viewing x1 7→ p(x1) as (x1, . . . , xm) 7→ p(x1)). □

Proof of Theorem 1.1. The inclusion Cω|X ⊆ C ω
1,d(X)∩C∞|X is clear. Suppose that

f ∈ C ω
1,d(X) ∩ C∞|X . By Theorem A, f |X◦ is real analytic. By Proposition 2.2, it

suffices to show that for each x ∈ ∂X there exist a fat set Πx such that x ∈ ∂Πx and
Π◦

x ⊆ X◦, a neighborhood Ux of x in Rn, and a real analytic function Fx : Ux → R
such that f |Ux∩Π◦

x
= Fx|Ux∩Π◦

x
. Indeed, since X is simple, we may assume (after

possibly shrinking Ux) that Ux ∩X◦ is connected. Thus, f |Ux∩X◦ = Fx|Ux∩X◦ , by
the identity theorem, and Proposition 2.2 implies the statement.

Fix x ∈ ∂X. Since X is a UPC set with d = d(X), we have d = 2 max{m,D}
for some (m,D) ∈ char(X). So there is a polynomial curve hx : R → Rn of degree
at most D such that hx(0) = 0 and

dist(hx(t),Rn \X) ≥M tm, x ∈ X, t ∈ [0, 1].

We have hx(t) = tph̃x(t), for some integer p ≥ 1, where h̃x(0) ̸= 0. Let v1 :=

h̃x(0)/|h̃x(0)| and choose unit vectors v2, . . . , vn in Rn such that v1, . . . , vn forms a
basis of Rn. Then

θx(s1, . . . , sn) := hx(s1) + sm2 v2 + · · · + smn vn

is a polynomial map θx : Rn → Rn of degree at most max{m,D} which takes the

set C := {(s1, . . . , s2) : 0 ≤ s1 ≤ 1, |si| ≤
(

M
2(n−1)

)1/m
s1 for i ≥ 2} into X. Indeed,

dist(θx(s1, . . . , sn),Rn \X) ≥ dist(hx(s1),Rn \X) − |s2|m − · · · − |sn|m

≥Msm1 −
n∑

j=2

M
2(n−1)s

m
1

= M
2 s

m
1 ,

if (s1, . . . , sn) ∈ C. Since C is a 1-set and 0 ∈ ∂C, there is a linear isomorphism
ℓ : Rn → Rn such that ℓ(S) ⊆ C, where S is the convex hull of 0, e1, . . . , en. There
is an open neighborhood U of 0 in Rn such that q : Rn → Rn given by

q(x1, . . . , xn) := (x21, . . . , x
2
n)

takes U into S. Thus the polynomial map ψx := θx◦ℓ◦q : Rn → Rn of degree at most
d takes U into X and so we may consider the composite f ◦ ψx|U . By Lemma 2.4,
f◦ψx|U is real analytic. Since f is smooth, by assumption, we have its formal Taylor
series Fx = Txf at x. Then the power series Fx◦ψx = T0(f ◦ψx) has positive radius
of convergence. By Theorem 2.3, Fx has positive radius of convergence and thus
defines a real analytic function, again denoted by Fx, on an open neighborhood Ux



ON REAL ANALYTIC FUNCTIONS ON CLOSED SUBANALYTIC DOMAINS 7

of x in Rn. Clearly, f |Ux∩Πx
= Fx|Ux∩Πx

, where Πx := ψx(U). This shows the
claim and hence completes the proof. □

Proof of Corollary 1.2. This follows easily from Theorem 1.1 (applied to each Xz)
and Proposition 2.2. Note that X is fat. □

2.4. Proof of Theorem 1.3. We need a variant of Lemma 2.4, where f : X → R
is not necessarily smooth.

Lemma 2.5. Let X ⊆ Rn be nonempty, f : X → R any function, and d a positive
integer. Then the following conditions are equivalent.

(1) f ∈ C ω
2,d(X).

(2) f ∈ C ω
m,d(X) for all m ≥ 2.

(3) f ∈ C ω
m,d(X) for some m ≥ 2.

Proof. (1) ⇒ (2) The proof is analogous to the one of Lemma 2.4 except that now
q is a (2, 1)-plot that parameterizes a piece of an affine 2-plane contained in U and
we use Theorem B.

(2) ⇒ (3) Trivial.
(3) ⇒ (1) P2,d(X) can be seen as a subset of Pm,d(X) if m ≥ 2. □

Lemma 2.6. Let q : Rn → Rn be the map defined by q(x1, . . . , xn) := (x21, . . . , x
2
n).

Let Ir := (−r, r)n ⊆ Rn. Then Qr := q(Ir) is a neighborhood of 0 in the first orthant
Q := {x ∈ Rn : xi ≥ 0 for all 1 ≤ i ≤ n}. For any function f : Qr → R such
that f ◦ q : Ir → R is real analytic there exists a real analytic function F : U → R
defined in a neighborhood U of 0 in Rn such that F |U∩Qr

= f |U∩Qr
.

Proof. This is a consequence of a theorem of Luna [10], since x21, . . . , x
2
d are the

basic invariants of the natural action of the group G = Z2×· · ·×Z2 on R×· · ·×R.
Let us sketch an alternative proof. Take a smooth function χ : Rn → R such that

χ ≡ 1 in a neighborhood of 0 and χ ≡ 0 outside Is, where s < r2. Then f̃ := χf
extends by zero to a function defined on all of Q = q(Rn) and f̃ ◦ q : Rn → R
is a G-invariant smooth function. Thus, by [7] or [15], there is a smooth function

g : Rn → R such that f̃ ◦ q = g ◦ q, i.e., g extends f̃ to Rn. In particular, f has a
smooth extension to a neighborhood of 0 in Rn. If F denotes the Taylor series at 0
of f (equivalently, of g), then F ◦ q = T0(f ◦ q) has positive radius of convergence,
since f ◦ q is real analytic. By Theorem 2.3, F converges and defines a real analytic
function with the desired properties. □

Proof of Theorem 1.3. We have to show C ω
2,2(X) ⊆ Cω|X . Let f ∈ C ω

2,2(X). By
Lemma 2.5, f ∈ C ω

n,2(X). Fix z ∈ ∂X and let Xz be a simplex such that z ∈ Xz ⊆
X. There is an affine isomorphism ℓ : Rn → Rn with ℓ(0) = z such that Xz is the
image of the convex hull of 0, e1, . . . , en under ℓ. So there is an open neighborhood
U of 0 ∈ Rn such that f ◦ ℓ ◦ q : U → R is well-defined and real analytic. It follows
from Lemma 2.6 that f ◦ ℓ|q(U) has a real analytic extension to some neighborhood
of 0 and thus f |ℓ(q(U)) has a real analytic extension to some neighborhood of z.
Since z was arbitrary, the theorem now follows from Proposition 2.2. □

2.5. Proof of Theorem 1.4 and Corollary 1.5. Let d ≥ 3 and consider the
map σ = (σ1, σ2) : R2 → R2 defined by

σ1(x, y) := x2 + y2, σ2(x, y) := Re((x+ iy)d).
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Then σ(R2) = {(x, y) ∈ R2 : x ≥ 0, |y| ≤ xd/2} =: Σ. In fact, in polar coordinates
σ1(reiθ) = r2 and σ2(reiθ) = rd cos(dθ) so that σ maps the circle with radius r
around 0 onto the vertical line segment between the points (r2,±rd). The polyno-
mials σ1 and σ2 are the basic invariants of the dihedral group G = Id2 consisting of
the orthogonal transformations of R2 that preserve the regular d-gon.

Lemma 2.7. Let Ir = (−r, r)2 ⊆ R2. Then Σr := σ(Ir) is a neighborhood of 0 in
Σ. For any function f : Σr → R such that f ◦ σ : Ir → R is real analytic there
exists a real analytic function F : U → R defined in a neighborhood U of 0 in R2

such that F |U∩Σr = f |U∩Σr .

Proof. Follow the proof of Lemma 2.6 and make the obvious modifications. □

Proof of Theorem 1.4. We first assume that X ⊆ R2 is a compact Hölder set. Then
d := d(X) = d′(X) and for each x ∈ ∂X there is an affine isomorphism ℓ : R2 → R2

with ℓ(0) = x and r > 0 such that ℓ(Σr) ⊆ X. If f ∈ C ω
2,d(X), then f ◦ σ : Ir → R

is well-defined and real analytic. Now the result follows from Lemma 2.7 and
Proposition 2.2.

Let now X ⊆ R2 be a simple compact fat subanalytic set and d′ = d′(X). Let
f ∈ C ω

2,d′(X). Fix x ∈ ∂X. There exist (m,D) ∈ char(X) with d′ = 2mD, a
polynomial curve hx of degree at most D, and a basis v1, v2 as in the proof of
Theorem 1.1 (on page 6). Consider the polynomial map Θx : R2 → R2 given by

Θx(s1, s2) := hx(s1) + s2v2.

It has degree at most D and takes the cusp S = {(s1, s2) : 0 ≤ s1 ≤ 1, |s2| ≤
M
2 s

m
1 } into X◦ ∪ {x}. The function f ◦ Θx|S belongs to C ω

2,2m(S) and hence it
is the restriction of a real analytic function defined on a neighborhood of S, by
Theorem 1.4 for Hölder sets (since d′(S) = d(S) = 2m). We may compute

∂ks2(f ◦ Θx)(s1, s2) = dkv2f(Θx(s1, s2)), k ∈ N,

for (s1, s2) ∈ S◦ (since f is real analytic in X◦, by Theorem B) and letting
(s1, s2) → (0, 0) we see that the directional derivatives on the right-hand side ex-
tend continuously to x. This remains true for all v2 in a small neighborhood of the
chosen v2. By the proof of [13, Theorem 1.14] or [14, Theorem C], we find that
f is the restriction to X of a C∞-function defined on R2. The cited proof shows
that the derivatives of all orders extend continuously to the boundary of X. Since
compact fat subanalytic sets are Whitney p-regular, for some positive integer p,
these derivatives define a Whitney jet of class C∞ on X which extends to a smooth
function on R2.

Now it suffices to invoke Theorem 1.1 and Lemma 2.4 (since d′(X) ≥ d(X)) in
order to complete the proof of Theorem 1.4. □

Corollary 1.5 follows easily from Theorem 1.4 and Proposition 2.2.

2.6. Proof of Theorem 1.7. If f is the restriction of a real analytic function,
then clearly f is curve-analytic. So suppose that f is curve-analytic.

Lemma 2.8. Let m ≥ 1. Let p ∈ Pm(X) be such that f ◦ p is subanalytic (for
instance, if the image of p is contained in Xz for some z). Then f ◦ p is real
analytic.
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Proof. Let c : (−ϵ, ϵ) → Rm be a real analytic arc in the domain of definition
of (a representative of) p. Since f is curve-analytic, there exist δ ∈ (0, ϵ] and a
real analytic function F : U → R on a neighborhood U of p(c(0)) in Rn such
that p(c(t)) ∈ U and F (p(c(t))) = f(p(c(t))) for all t ∈ (−δ, δ). Thus f ◦ p is
curve-analytic and subanalytic so that f ◦ p is real analytic, by Theorem C. □

By Lemma 2.8, f |Xz
∈ C ω

2 (Xz) and hence f |Xz
∈ Cω|Xz

, thanks to Theorem 1.3
and Theorem 1.4. Then Theorem 1.7 follows from Proposition 2.2.

Remark 2.9. An important step in the proof of Theorem C in [9] is the criterion
that an arc-analytic subanalytic function f defined on an open subset U of Rn is
real analytic at a point x ∈ U if and only if f satisfies the (p, q)-test at x for all pairs
(p, q) of positive integers. That means that for every pair of linearly independent
vectors ξ, ν ∈ Rn and all a, b ∈ R, φ(t) := f(x+ atpξ+ btqν) is a real analytic germ
at 0 ∈ R and the support of φ is contained in Np+ Nq. Theorem 1.7 suggests that
often not all (p, q)-tests are necessary to detect real analyticity.

3. Examples

The first example shows that in general the degree of polynomial test plots in
Theorem 1.1 is optimal.

Example 3.1. Let D be a positive integer. The horn H = {(x, y) ∈ R2 : 0 ≤
x ≤ 1, xD ≤ y ≤ 2xD} is a UPC set with characteristic (D,D) and d(H) = 2D.
Indeed, every polynomial curve h : R → R2 with h(0) = 0 and h([0, 1]) ⊆ H must
be of degree at least D and dist(h(t),R2 \H) ≲ tD for t ∈ [0, 1]. Every polynomial
1-plot in H through 0 must be of degree at least 2D.

The function f : H → R given by f(x, y) := e−1/(x2+y2) for (x, y) ̸= (0, 0) and
f(0, 0) := 0 belongs to C∞|H and to C ω

1,2D−1(H), simply because f is real analytic

away from 0 and for all p ∈ P1,2D−1(H) we have p(0) ̸= 0.
On the other hand, f ̸∈ C ω

1,2D(H) either by Theorem 1.1 or by observing that

for p(t) := (t2, t2D), which lies in H for all t near 0, the composite

(f ◦ p)(t) = exp
(
− 1

t4(1 + t4(D−1))

)
has no analytic extension to t = 0.

The following easy example shows that Theorem 1.3 is best possible.

Example 3.2. Let X = {x ∈ Rn : xi ≥ 0 for all 1 ≤ i ≤ n} be the first orthant. A
plot p ∈ Pm,1(X) (m arbitrary) can satisfy p(0) = 0 only if p ≡ 0. In other words,
an arbitrary function f ∈ C ω

m,1(X) is unrestricted at 0.

The next example shows that the assumption of being simple is essential.

Example 3.3. Consider the set X1 := {(x, y) ∈ R2 : x ≥ 0, x
√
2 ≤ y ≤ x

√
2 + x2}.

Every smooth curve c inX1 must vanish to infinite order on c−1(0); see [14, Example
6.7]. Thus C ω

m(X1) (m arbitrary) contains elements that do not have a real analytic
extension.

Let X2 := {(x, y) ∈ R2 : x ≤ 0} be the left half-plane and consider X := X1∪X2

which is not simple. But for each point z of ∂X there exists a simple fat compact
subanalytic set Xz such that z ∈ Xz ⊆ X. Again it is easy to find (even smooth)
elements of C ω

m(X) that do not admit a real analytic extension.
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Note that it was wrongly stated in [13, Corollary 1.17] that, in a related result,
the assumption that the set is simple is not needed.

There are algebraic sets X in R2 for which C ω
m(X) (m arbitrary) is essentially

bigger than Cω|X :

Example 3.4. Consider the algebraic set X = {(x, y) ∈ R2 : x3 = y2} and the
function φ : X → R defined by φ(x, y) = y1/3. Then φ ∈ C ω

m(X) for all m ≥ 1.
Indeed, let p = (p1, p2) ∈ Pm(X). The composite u = φ ◦ p satisfies u2 = p1 and
u3 = p2 so that u is smooth, by a result of Joris [8], and in turn real analytic, by
[11, Proposition VI.3.11].

In fact, we can completely describe C ω
m(X): for all m ≥ 1,

C ω
m(X) = φ∗Cω(R) := {g ◦ φ : g ∈ Cω(R)}.

That φ∗Cω(R) is contained in C ω
m(X) is an easy consequence of the fact that φ ∈

C ω
m(X). Conversely, suppose that f ∈ C ω

m(X). Then g(t) := f(t2, t3) defines an
element g ∈ Cω(R) satisfying g(φ(x, y)) = f(y2/3, y) = f(x, y).
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[12] W. Paw lucki and W. Pleśniak, Markov’s inequality and C∞ functions on sets with polynomial

cusps, Math. Ann. 275 (1986), no. 3, 467–480.

[13] A. Rainer, Arc-smooth functions on closed sets, Compos. Math. 155 (2019), 645–680.
[14] , Arc-smooth functions and cuspidality of sets, Journal d'Analyse Mathématique

(2023), to appear, arXiv:2112.14163.
[15] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topol-

ogy 14 (1975), 63–68.
[16] J. Siciak, A characterization of analytic functions of n real variables, Studia Math. 35 (1970),

293–297.

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090

Wien, Austria
Email address: armin.rainer@univie.ac.at


	1. Introduction
	2. Proofs
	3. Examples
	References

