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Abstract. A remarkable theorem of Joris states that a function f is C∞

if two relatively prime powers of f are C∞. Recently, Thilliez showed that

an analogous theorem holds in Denjoy–Carleman classes of Roumieu type.
We prove that a division property, equivalent to Joris’s result, is valid in a

wide variety of ultradifferentiable classes. Generally speaking, it holds in all

dimensions for non-quasianalytic classes. In the quasianalytic case we have
general validity in dimension one, but we also get validity in all dimensions for

certain quasianalytic classes.

1. Introduction

A remarkable theorem of Joris [11, Théorème 2] states: if f : R→ R is a function
and p, q are relatively prime positive integers, then

fp, fq ∈ C∞ =⇒ f ∈ C∞. (1)

Since smoothness can be tested along smooth curves by a theorem of Boman [3],
one immediately infers that the implication (1) holds on arbitrary open subsets of
Rd, d ≥ 1, and on smooth manifolds. (On the other hand, the regularity of a single
power of a function generally says nothing about the regularity of the function
itself; e.g. (1Q − 1R\Q)2 = 1, where 1A is the indicator function of a set A.)

It was soon realized that the statement also holds for complex valued functions
and it led to the study of so-called pseudoimmersions [7, 12, 13, 19]. A simple proof
based on ring theory was given by [1].

Only recently Thilliez [30] showed that Joris’s result carries over to Denjoy–
Carleman classes of Roumieu type E{M}. These are ultradifferentiable classes of
smooth functions defined by certain growth properties imposed upon the sequence
of iterated derivatives in terms of a weight sequence M (which in view of the Cauchy
estimates measures the deviation from analyticity).

By extracting the essence of Thilliez’s proof, we show in this paper that a broad
variety of ultradifferentiable classes has a division property equivalent to Joris’s
result. Let S be a subring (with multiplicative identity) of the ring of germs at
0 ∈ Rd of complex valued C∞-functions. We say that S has the division property
(D) if for any function germ f at 0 ∈ Rd we have(

j ∈ N≥1, f
j , f j+1 ∈ S

)
=⇒ f ∈ S. (2)

If S has property (D), then Joris’s theorem holds in S. Indeed, suppose that p1, p2

are relatively prime positive integers and fp1 , fp2 ∈ S. All integers j ≥ p1p2 can
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be written j = a1p1 + a2p2 for a1, a2 ∈ N, see [11, p.270]. Hence f j ∈ S for all
j ≥ p1p2. Since two consecutive integers are relatively prime, also the converse
holds.1

1.1. Results. Let us give an overview of our results.
The rings of germs in one dimension d = 1 of the following ultradifferentiable

classes have property (D):

• E [M ], Denjoy–Carleman class of Roumieu (Theorems 2.2 and 2.3) and
Beurling type (Theorem 2.6),
• E [ω], Braun–Meise–Taylor classes of Roumieu and Beurling type (Theo-

rem 3.1),
• E [M], ultradifferentiable classes defined by weight matrices of Roumieu and

Beurling type (Theorem 4.2).

It is understood that certain minimal regularity properties of the weights are as-
sumed (see Table 1) which in particular guarantee that the sets of germs are indeed
rings. (Note that by convention [·] stands for {·}, i.e., Roumieu, as well as (·), i.e.,
Beurling.)

Interestingly, the proof in one dimension works for quasianalytic and non-
quasianalytic classes alike. But the tool used to reduce the multidimensional to
the one-dimensional statement is only available in the non-quasianalytic Roumieu
case ([15], [27]). The (multidimensional) Beurling case can often be reduced to
the corresponding Roumieu case. Hence we obtain the following multidimensional
non-quasianalytic results. The rings of germs in all dimensions d of the following
ultradifferentiable classes have property (D):

• E [M ], non-quasianalytic Denjoy–Carleman classes of Roumieu (Theo-
rem 2.2) and Beurling type (Theorem 2.5),

• E [ω], non-quasianalytic Braun–Meise–Taylor classes of Roumieu and Beurl-
ing type (Theorem 3.2),

• E{M}, non-quasianalytic ultradifferentiable classes defined by weight ma-
trices of Roumieu type (Theorem 4.3).

For quasianalytic Denjoy–Carleman classes of Roumieu type E{M} in one di-
mension the implication (2) follows from the stronger result, due to Thilliez [29],
that C∞-solutions of a polynomial equation

zn + a1z
n−1 + · · ·+ an−1z + an = 0, (3)

where the coefficients aj are germs at 0 ∈ R of E{M}-functions, are of class E{M}
(under weak assumptions on M). This is false for non-quasianalytic classes. But
it seems to be unknown whether, in the presence of quasianalyticity, it holds in
higher dimensions. In fact, quasianalytic ultradifferentiability cannot be tested on
quasianalytic curves (or lower dimensional plots) even if the function in question is
known to be smooth ([10, 20]).

Hence we think that it is interesting that, combining our proof with a description
of certain quasianalytic classes E{M} as an intersection of suitable non-quasianalytic
ones (due to [16]), we obtain that these quasianalytic classes have property (D) in
all dimensions (see Theorem 2.7 and also Remarks 3.3 and 4.4).

1In an earlier version of the paper we considered the division property
(
j ∈ N≥1, g, q, fg ∈

S, fj = qg
)

=⇒ f ∈ S which resulted from our wish to prove an ultradifferentiable version of

the division theorem [13, Theorem 1]. But this property is equivalent to (2).
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Since all considered regularity classes are local, the results for germs immediately
give corresponding results for functions on open sets.

1.2. Summary of the results. We list in Table 1 the ultradifferentiable rings of
germs known to have property (D), together with the needed assumptions on the
weights and the respective references. All germs are function germs at 0 in Rd for

some dimension d. The dimension is added as a left subscript, e.g., E [M ]
d denotes

the ring of germs at 0 ∈ Rd of E [M ]-functions. All notions will be defined below.
The Roumieu parts of the results in the first and the fifth row are due to Thilliez

[30]; see Sections 2.4 and 2.5.

Table 1. Ultradifferentiable rings of germs having property (D)

Quasianalytic ring of germs Reference

E [M ]
1

derivation closed

m log-convex

m
1/k
k →∞ (Beurling)

Theorems 2.3 and 2.6

E [ω]
1 ω concave Theorem 3.1

E [M]
1

[regular]

[moderate growth]
Theorem 4.2

E{M}d

intersectable

moderate growth
Theorem 2.7

Non-quasianalytic ring of germs Reference

E [M ]
d

moderate growth

m log-convex
Theorems 2.2 and 2.5

E [ω]
d ω concave Theorem 3.2

E [M]
1

[regular]

[moderate growth]
Theorem 4.2

E{M}d

{regular}
{moderate growth} Theorem 4.3

We remark that non-quasianalytic Denjoy–Carleman classes E{M}, where the
weight sequence M lacks moderate growth, do not have property (D) in general;
see [30, Remark 2.2.3]. The moderate growth condition is rather restrictive (e.g.,
it implies that the class E{M} is contained in a Gevrey class). The consideration of
the classes E [ω] and E [M] allows to overcome this restriction in the sense that the
implication (2) holds under weaker moderate growth conditions.

1.3. Strategy of the proof. Thilliez’s proof of Joris’s theorem for E{M} consists
of the following two steps:

(i) The class E{M} admits a description by holomorphic approximation which
is based on a result of Dynkin [8] on almost analytic extensions and a related
∂-problem.
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(ii) If f j , f j+1 are of class E{M} and gε, hε are respective holomorphic ap-
proximations, the quotient hε/gε is a naive candidate for a holomorphic
approximation of f . In order to avoid small divisors one considers

uε = ϕε
gεhε

max{|gε|, rε}2
,

where ϕε is a suitable cutoff function and rε > 0. For good choices of rε
the function uε has uniform bounds and is close to f . The solution of a
∂-problem is used to modify uε in order to obtain a holomorphic approxi-
mation of f . By step (i) we may conclude that f belongs to E{M}.

Following the same strategy, we will work with weight matrices M, since they pro-
vide a framework for ultradifferentiability (Section 4) which encompasses Denjoy–
Carleman classes (Section 2) and Braun–Meise–Taylor classes (Section 3). In Sec-
tion 5 we prove a general characterization result by holomorphic approximation for
E [M] (Theorem 5.3) which extends step (i); it builds on the description by almost
analytic extension presented in our recent paper [9]. Then we execute a version of
step (ii) under a quite minimal set of assumptions, see Lemma 6.1. It enables us
to easily deduce the main results in Section 6.

2. Denjoy–Carleman classes have property (D)

2.1. Weight sequences and Denjoy–Carleman classes. Let µ = (µk) be a
positive increasing (i.e. µk ≤ µk+1) sequence with µ0 = 1. We define a sequence M
by setting Mk := µ1 · · ·µk, M0 := 1, and a sequence m by mk := Mk

k! . Clearly, µ
uniquely determines M and m, and vice versa. In analogy we shall use sequences
N ↔ n↔ ν, L↔ `↔ λ, etc.

That µ is increasing means that M is log-convex, i.e., logM is convex or, equiv-

alently, M2
k ≤ Mk−1Mk+1 for all k. If in addition M

1/k
k →∞, we say that M is a

weight sequence.
Sometimes we will make the stronger assumption that m is log-convex.
For σ > 0 and open U ⊆ Rd, one defines the Banach space

BMσ (U) :=
{
f ∈ C∞(U) : ‖f‖Mσ,U := sup

x∈U,α∈Nd

|∂αf(x)|
σ|α|M|α|

<∞
}

and the (local) Denjoy–Carleman classes of Roumieu type

E{M}(U) := projVbU indσ>0 BMσ (V ).

For later reference we also consider the global class B{M}(V ) := indσ>0 BMσ (V ).
Replacing the existential quantifier for σ by a universal quantifier, we find the
Denjoy–Carleman classes of Beurling type

E(M)(U) := projVbU projσ>0 BMσ (V )

and B(M)(V ) := projσ>0 BMσ (V ). We use the notation E [M ] for both E{M} and

E(M), similarly for B[M ], etc.

For positive sequences M,N , we write M 4 N if supk∈N
(
Mk

Nk

)1/k
< ∞ and

M �N if limk→∞
(
Mk

Nk

)1/k
= 0. We have (cf. [23, Proposition 2.12])

M 4 N ⇔ E [M ](U) ⊆ E [N ](U),

M �N ⇔ E{M}(U) ⊆ E(N)(U),
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where for “⇐” one has to assume that M is a weight sequence. Note that E{(k!)}(U)
coincides with Cω(U) and so the class of real analytic functions is contained in

E(M)(⊆ E{M}) if and only if m
1/k
k →∞.

Log-convexity of M implies that E [M ](U) is closed under pointwise multiplication
of functions. Additional regularity properties for M endow E [M ](U) with additional
structure, e.g., log-convexity ofm implies closedness under composition of functions.
A crucial assumption in [30] is moderate growth of M , which reads as follows

∃C > 0 ∀k, j ∈ N : Mk+j ≤ Ck+jMkMj . (4)

It implies derivation closedness

∃C > 0 ∀k ∈ N : Mk+1 ≤ Ck+1Mk. (5)

The last property we need to mention is non-quasianalyticity of M , that is

∞∑
k=1

1

µk
<∞, or equivalently

∞∑
k=1

1

M
1/k
k

<∞. (6)

By the Denjoy–Carleman theorem, this condition is equivalent to the existence
of non-trivial functions with compact support in E [M ](U). It is well-known that

non-quasianalyticity implies m
1/k
k →∞.

Let E [M ]
d denote the ring of germs at 0 ∈ Rd of complex valued E [M ]-functions;

here we assume that M is a weight sequence in order to have a ring.

Remark 2.1. There is a slight mismatch between our notation (also used in [9])
and that of [30] (and [22]). We write Mj = mjj! for weight sequences, so our m
corresponds to M in [30].

2.2. Associated functions. Let m = (mk) be a positive sequence with m0 = 1

and m
1/k
k →∞. We define the function

hm(t) := inf
k∈N

mkt
k, for t > 0, and hm(0) := 0, (7)

which is is increasing, continuous on [0,∞), and positive for t > 0. For large t we
have hm(t) = 1. Furthermore, we need

Γm(t) := min{k : hm(t) = mkt
k}, t > 0, (8)

and, provided that mk+1/mk →∞,

Γm(t) := min
{
k :

mk+1

mk
≥ 1

t

}
, t > 0. (9)

We trivially have Γm ≤ Γm. If m is log-convex, then Γm = Γm.
We shall use these functions for mk = Mk/k!, where M is a weight sequence

satisfying m
1/k
k →∞. Then mk+1/mk →∞ (since M

1/k
k ≤ µk for all k).

2.3. Regular weight sequences. A weight sequence M is said to be regular if

m
1/k
k → ∞, M is derivation closed, and there exists a constant C ≥ 1 such that

Γm(Ct) ≤ Γm(t) for all t > 0.
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2.4. Denjoy–Carleman classes of Roumieu type have property (D).

Theorem 2.2 (Non-quasianalytic E{M}d ). Let M be a non-quasianalytic regular

weight sequence of moderate growth. Then E{M}d has property (D).

This is a special case of Theorem 4.3 below (cf. Section 4.5). It implies Thilliez’s
result [30, Corollary 2.2.5].

A quasianalytic one-dimensional version follows from a stronger result in [29]:

Theorem 2.3 (Quasianalytic E{M}1 ). Let M be a quasianalytic derivation closed

weight sequence such that m is log-convex. Then E{M}1 has property (D).

2.5. Denjoy–Carleman classes of Beurling type have property (D). Let us
deduce Beurling versions of Theorems 2.2 and 2.3. We use the following lemma
based on [14, Lemma 6] and [9, Lemma 7.5].

Lemma 2.4. Let L,M be positive sequences satisfying L�M . Suppose that m is

log-convex and satisfies m
1/k
k → ∞. Then there exists a weight sequence S such

that s is log-convex, s
1/k
k →∞, and L ≤ S �M . Additionally, we may assume:

(i) S has moderate growth, if M has moderate growth.
(ii) S is derivation closed, if M is derivation closed.
(iii) S is non-quasianalytic, if M is non-quasianalytic.

Proof. Only the supplements (ii) and (iii) were not already proved in [9, Lemma
7.5].

(ii) follows from the fact that a weight sequence M is derivation closed if and

only if there is a constant C ≥ 1 such that Mk ≤ Ck
2

for all k, see [17, 18]. Since
S is a weight sequence and S �M , also S is derivation closed, by this criterion.

(iii) It suffices to show that there exists a non-quasianalytic weight sequence N
such that L ≤ N �M . Then we apply the lemma to N �M and obtain a weight
sequence S with N ≤ S �M having all desired properties.

Let us show the existence of N . By L�M , we have βk := supp≥k
( Lp

Mp

)1/p ↘ 0.

Applying [6, Lemme 16] (see also [28, Lemma 4.1]) to βk and αk = γk := 1
µk

, yields

an increasing sequence δ = (δk) such that

δk →∞, (10)

δkβk → 0, (11)
µk
δk

is increasing, (12)

∞∑
k=1

δk
µk
≤ 8δ1

∞∑
k=1

1

µk
<∞. (13)

Then Nk := µ1···µk

δ1···δk defines a non-quasianalytic weight sequence, by (12) and (13).

(Note that νk = µk

δk
→∞ is equivalent to N

1/k
k →∞.) It satisfies N �M by (10).

By (11), there is a constant C > 0 such that δk
(
Lk

Mk

)1/k ≤ C for all k. By the

monotonicity of δ, this leads to Lk ≤ Ck Mk

δkk
≤ Ck Mk

δ1···δk = CkNk. After replacing

(Nk) by (CkNk) we have L ≤ N �M . �
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Theorem 2.5 (Non-quasianalytic E (M)
d ). Let M be a non-quasianalytic weight

sequence of moderate growth such that m is log-convex. Then E (M)
d has property

(D).

Proof. Suppose that g := f j , h := f j+1 ∈ E (M)
d for some positive integer j. Assume

that representatives of these germs are defined in the neighborhood of the closure
of some bounded 0-neighborhood U ; we denote the representatives by the same
symbols. Then the sequence

Lk := max
{

sup
|α|=k, x∈U

|g(α)(x)|, sup
|α|=k, x∈U

|h(α)(x)|
}

(14)

satisfies L �M . By Lemma 2.4, there exists a weight sequence S satisfying the

assumptions of Theorem 2.2 and L ≤ S �M . Thus, f ∈ E{S}d ⊆ E (M)
d . �

Theorem 2.6 (Quasianalytic E (M)
1 ). Let M be a quasianalytic derivation closed

weight sequence such that m is log-convex and m
1/k
k →∞. Then E (M)

1 has property
(D).

Proof. This follows from the proof of Theorem 2.3 in [29] (which also works in the
Beurling case). Alternatively, we may infer it from Theorem 2.3 by a reduction
argument based on Lemma 2.4 as in the proof of Theorem 2.5. �

2.6. A multidimensional quasianalytic result. Let M be a weight sequence
and consider the sequence space

Λ{M} :=
{

(ck) ∈ CN : ∃ρ > 0 : sup
k∈N

|ck|
ρkMk

<∞
}
.

We call a quasianalytic weight sequence M intersectable if

Λ{M} =
⋂

N∈L(M)

Λ{N}, (15)

where L(M) is the collection of all non-quasianalytic weight sequences N ≥ M
such that n is log-convex. The identity (15) carries over to respective function
spaces, since B{M}(U) =

{
f ∈ C∞(U) : (supx∈U ‖f (k)(x)‖Lk

sym
) ∈ Λ{M}

}
, where

f (k) denotes the k-th order Fréchet derivative and ‖ · ‖Lk
sym

the operator norm.

Note that a quasianalytic intersectable weight sequence M always satisfies

m
1/k
k →∞; an argument is given in Remark 2.8 below.

Theorem 2.7 (Quasianalytic E{M}d ). Let M be a quasianalytic intersectable

weight sequence of moderate growth. Then E{M}d has property (D).

The proof of this result is given in Section 6.

Remark 2.8. In [16, Theorem 1.6] (inspired by [2]) a sufficient condition for inter-
sectability was given. Let M be a quasianalytic weight sequence with 1 ≤M0 < M1.
Consider the sequence M̌ defined by

M̌k := Mk

k∏
j=1

(
1− 1

M
1/j
j

)k
, M̌0 := 1.

If m̌ is log-convex, then M is intersectable.
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Not every quasianalytic weight sequence is intersectable, for instance,

Λ{(k!)} 6=
⋂

N∈L((k!))

Λ{N} = Λ{Q}, where Qk = (k log(k + e))k;

see [16, Theorem 1.8] and [26]. Every quasianalytic intersectable weight sequence

M must satisfy Λ{Q} ⊆ Λ{M}, and so m
1/k
k tends to ∞ since clearly q

1/k
k does.

A countable family Q = {Qn}n∈N≥1
of quasianalytic intersectable weight se-

quences of moderate growth was constructed in [16, Theorem 1.9]:

Qnk =
(
k log(k) log(log(k)) · · · log[n](k)

)k
, for k ≥ exp[n](1),

where log[n] denotes the n-fold composition of log; analogously for exp[n].
See also [27, Section 11] for a generalization of this concept.

3. Braun–Meise–Taylor classes have property (D)

3.1. Weight functions and Braun–Meise–Taylor classes. A weight function
is, by definition, a continuous increasing function ω : [0,∞)→ [0,∞) such that

(ω1) ω(2t) = O(ω(t)) as t→∞,
(ω2) ω(t) = o(t) as t→∞,
(ω3) log(t) = o(ω(t)) as t→∞,
(ω4) t 7→ ω(et) =: ϕω(t) is convex on [0,∞).

One may assume that ω|[0,1] ≡ 0 (without changing the associated classes E [ω])
which we shall tacitly do if convenient.

Let U ⊆ Rd be open and ρ > 0. We associate the Banach space

Bωρ (U) :=
{
f ∈ C∞(U) : ‖f‖ωρ,U := sup

x∈U,α∈Nd

|∂αf(x)|
eϕ

∗
ω(ρ|α|)/ρ <∞

}
,

where ϕ∗ω(s) := supt≥0{st−ϕω(t)} is the Young conjugate of ϕω (which is finite by
(ω3)). Then the (local) Braun–Meise–Taylor class of Roumieu type is

E{ω}(U) := projVbU indn∈N Bωn(V ),

and that of Beurling type is

E(ω)(U) := projVbU projn∈N Bω1
n

(V ).

Again we use E [ω] for E{ω} and E(ω), similarly for B[ω] etc.
For two weight functions ω, σ we have (cf. [23, Corollary 5.17])

σ(t) = O(ω(t)) as t→∞ ⇔ E [ω](U) ⊆ E [σ](U),

σ(t) = o(ω(t)) as t→∞ ⇔ E{ω}(U) ⊆ E(σ)(U).

We say that ω and σ are equivalent if they generate the same classes, i.e., σ(t) =
O(ω(t)) and ω(t) = O(σ(t)) as t→∞.

A weight function is said to be non-quasianalytic if∫ ∞
1

ω(t)

t2
dt <∞. (16)

This is the case if and only if E [ω](U) contains non-trivial functions of compact
support (cf. [5] or [22]).
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Let us emphasize that in this paper we treat condition (ω2) as a general assump-
tion for weight functions; it means that the Beurling class E(ω) contains the real
analytic class. It is automatically satisfied if ω is non-quasianalytic.

Let E [ω]
d denote the ring of germs at 0 ∈ Rd of complex valued E [ω]-functions;

note that E [ω] is stable by multiplication of functions for any weight function ω.

3.2. The associated weight matrix. Let ω be a weight function. Setting Ωxk :=

eϕ
∗
ω(xk)/x defines a weight sequence Ωx for every x > 0, where Ωx ≤ Ωy if x ≤ y.

Thus the collection Ω := {Ωx}x>0 is a weight matrix (in the sense of Section 4).
Note that Ω satisfies a mixed moderate growth property, namely

∀x > 0 ∀j, k ∈ N : Ωxj+k ≤ Ω2x
j Ω2x

k . (17)

The importance of the associated weight matrix Ω is that it encodes an equivalent
topological description of the spaces E [ω](U) as unions or intersections of Denjoy–
Carleman classes; see Section 4.5. All this can be found in [22].

3.3. Braun–Meise–Taylor classes have property (D).

Theorem 3.1 ( E [ω]
1 ). Let ω be a concave weight function. Then E [ω]

1 has property
(D).

Evidently, it suffices to assume that ω is equivalent to a concave weight function.
For the multidimensional analogue we additionally assume non-quasianalyticity.

Theorem 3.2 (Non-quasianalytic E [ω]
d ). Let ω be a non-quasianalytic concave

weight function. Then E [ω]
d has property (D).

Theorems 3.1 and 3.2 are corollaries of Theorems 4.2 and 4.3 below; for the
proofs see Section 6.

Remark 3.3. Every weight sequence M in the family Q mentioned at the end of
Remark 2.8 satisfies

lim inf
k→∞

µak
µk

> 1

for some positive integer a. Hence there is a quasianalytic weight function ωM
(take, e.g., ωM (t) := − log hM (1/t)) such that E [ωM ]

d = E [M ]
d , by [4, Theorem 14].

So for all M ∈ Q, the quasianalytic ring E{ωM}
d has property (D).

4. The most general version of the theorem

Let us formulate the main theorems in the most general setting available. The
conditions we put on abstract weight matrices are tailored in such a way that weight
matrices associated with weight functions are contained as special cases.

4.1. Weight matrices and ultradifferentiable classes. A weight matrix M is,
by definition, a family of weight sequences which is totally ordered with respect to
the pointwise order relation on sequences, i.e.,

• M ⊆ RN,
• each M ∈M is a weight sequence in the sense of Section 2.1,
• for all M,N ∈M we have M ≤ N or M ≥ N .
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Let U ⊆ Rd be open. Given a weight matrix M, we define global classes

B{M}(U) := indM∈M B{M}(U), (18)

B(M)(U) := projM∈M B(M)(U). (19)

The limits in (18) and (19) can always be assumed countable, as is shown in [9,
Lemma 2.5]. Writing [·] for {·} and (·), the local classes are defined by

E [M](U) := projVbU B[M](V ).

Let E [M]
d denote the ring of germs at 0 ∈ Rd of complex valued E [M]-functions;

notice that E [M] is stable by multiplication of functions, since each M ∈ M is a
weight sequence.

4.2. Regular weight matrices. A weight matrix M satisfying

• m1/k
k →∞ for all M ∈M

is called {regular} or R-regular (for Roumieu) if

• ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀j ∈ N : Mj+1 ≤ Cj+1Nj ,

• ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀t > 0 : Γn(Ct) ≤ Γm(t),

and (regular) or B-regular (for Beurling) if

• ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀j ∈ N : Nj+1 ≤ CjMj ,

• ∀M ∈M ∃N ∈M ∃C ≥ 1 ∀t > 0 : Γm(Ct) ≤ Γn(t).

Moreover, M is called regular if it is both R- and B-regular. By our convention,
[regular] stands for {regular} (i.e. R-regular) in the Roumieu case and (regular)
(i.e. B-regular) in the Beurling case.

4.3. Almost analytic extensions. Let h : (0,∞) → (0, 1] be an increasing con-
tinuous function which tends to 0 as t→ 0. Let ρ > 0 and let U ⊆ Rd be a bounded
open set. We say that a function f : U → C admits an (h, ρ)-almost analytic ex-
tension if there is a function F ∈ C1

c (Cd) and a constant C ≥ 1 such that F |U = f
and

|∂F (z)| ≤ C h(ρd(z, U)), for z ∈ Cd,

where ∂F (z) :=
∑d
j=1

∂F (z)
∂zj

dzj and d(z, U) := infx∈U |z − x| denotes the distance

of z to U .
Let us apply this definition to the functions hm from (7), where mk = Mk/k!

and M belongs to a given weight matrix M. Let f : U → C be a function.

• f is called {M}-almost analytically extendable if it has an (hm, ρ)-almost
analytic extension for some M ∈M and some ρ > 0.

• f is called (M)-almost analytically extendable if, for all M ∈ M and all
ρ > 0, there is an (hm, ρ)-almost analytic extension of f .

Theorem 4.1 ([9, Corollaries 3.3, 3.5]). Let M be a [regular] weight matrix. Let
U ⊆ Rd be open. Then f ∈ E [M](U) if and only if f |V is [M]-almost analytically
extendable for each quasiconvex domain V relatively compact in U .

In Section 5 we shall use [9, Proposition 3.12], which is a key ingredient of the
proof of Theorem 4.1.



NONLINEAR CONDITIONS FOR ULTRADIFFERENTIABILITY 11

4.4. Weight matrices of moderate growth. For positive sequences M , N set

mg(M,N) := sup
j,k≥0, j+k≥1

(
Mj+k

NjNk

)1/(j+k)

∈ (0,∞]. (20)

We say that a weight matrix M has R-moderate growth or {moderate growth} if

∀M ∈M ∃N ∈M : mg(M,N) <∞, (21)

and B-moderate growth or (moderate growth) if

∀M ∈M ∃N ∈M : mg(N,M) <∞. (22)

Again we say that M has moderate growth if it has R- and B-moderate growth, and
[moderate growth] stands for {moderate growth} and (moderate growth), respec-
tively.

4.5. Denjoy–Carleman and Braun–Meise–Taylor classes in this frame-
work. By definition, Denjoy–Carleman classes are described by weight matrices
M = {M} consisting of a single weight sequence M . Observe that the weight ma-
trix M = {M} is regular if and only if the weight sequence M is regular, and it has
moderate growth if and only if M has moderate growth.

Let ω be a weight function and let Ω be the associated weight matrix (cf. Sec-
tion 3.2). Then, by [22, Corollaries 5.8 and 5.15], as locally convex spaces

E [ω](U) = E [Ω](U),

and E [ω](U) = E [Ω](U) for all Ω ∈ Ω if and only if

∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H,

which is in turn equivalent to the fact that some (equivalently each) Ω ∈ Ω has
moderate growth; see also [4].

The associated weight matrix Ω always has moderate growth, by (17). It is
equivalent to a regular weight matrix S (that means E [ω] = E [S]) if and only if
ω is equivalent to a concave weight function. In fact, a E [ω]-version of the almost
analytic extension theorem 4.1 holds if and only if ω is equivalent to a concave weight
function; see [9, Theorem 4.8]. The weight matrix S = {Sx}x>0 has the property
that for each x > 0 the sequence sx is log-convex and satisfies mg(sx, s2x) =: H <∞
and thus hsx(t) ≤ hs2x(Ht)2 for all x, t > 0; see [25, Proposition 3].

4.6. General ultradifferentiable classes have property (D).

Theorem 4.2 ( E [M]
1 ). Let M be a [regular] weight matrix of [moderate growth].

Then E [M]
1 has property (D).

The proof is given in Section 6. It builds upon a characterization of the class
E [M] by holomorphic approximation; see Section 5.

We may infer a multidimensional result, since non-quasianalytic E{M}-regularity
can be tested along curves; this useful tool is available in a satisfactory manner only
in the non-quasianalytic Roumieu setting. We need two additional properties of the
weight matrix:

∃M ∈M :

∞∑
k=0

1

µk
<∞. (23)
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which means that E{M} admits non-trivial functions of compact support, and

∀M ∈M ∃N ∈M : m◦ 4 n, (24)

where m◦k := max{mjmα1
· · ·mαj

: αi ∈ N>0, α1 + · · · + αj = k}. Condition (24)

is equivalent to composition closedness of E{M} (which follows from the arguments
in [22, Theorem 4.9]) and is satisfied by every R-regular weight matrix. Indeed,
if M is R-regular, then E{M} has a description by almost analytic extension, by
Theorem 4.1. It is easy to see (cf. [9, Proposition 1.1]) that the latter condition is
preserved by composition of functions.

Under these assumptions, a function f defined on an open set U ⊆ Rd is of class
E{M} if and only if f ◦ c is of class E{M} for all E{M}-curves in U ; see [15, 16] and
[27, Theorem 10.7.1].

Theorem 4.3 (Non-quasianalytic E{M}d ). Let M be an R-regular weight matrix

of R-moderate growth satisfying (23). Then E{M}d has property (D).

Proof. This follows immediately from Theorem 4.2 and the above observations. �

Note that Theorem 4.3 implies Theorem 2.2 as a special case.

Remark 4.4. The family Q = {Qn}n∈N≥1
of quasianalytic intersectable weight

sequences referred to at the end of Remark 2.8 actually is a regular weight matrix of
moderate growth. The Roumieu class E{Q} is quasianalytic and, since Theorem 2.7

applies to every M ∈ Q, we conclude that E{Q}d has property (D).

Note that there is no weight sequence M with E{M} = E{Q} and no weight
function ω with E{ω} = E{Q}. This follows from the fact that Qn ≤ Qn+1 64 Qn,
in analogy to the proof given in [22, Theorem 5.22]; see also Remark 5.25 there.

5. Holomorphic Approximation of functions in E [M]

In this section we prove a characterization of the class E [M] (in dimension one)
by holomorphic approximation. It generalizes [30, Proposition 3.3.2].

For notational convenience, we set ‖f‖A := supz∈A |f(z)| for any complex valued
function f , where A is any set in the domain of f .

5.1. Some preparatory observations.

Lemma 5.1. Let M,N be weight sequences satisfying m
1/k
k →∞, n

1/k
k →∞, and

C := mg(M,N) <∞. Then

hm(t) ≤ Cjnjtjhn(Ct), t > 0, j ∈ N, (25)

hm(t) ≤ hn
(eC

2
t
)2

, t > 0. (26)

Proof. Note that mg(m,n) ≤ mg(M,N). Thus, for all j ∈ N and t > 0,

hm(t) ≤ inf
k≥0

mk+jt
k+j ≤ inf

k≥0
njnk(Ct)k+j = Cjnjt

jhn(Ct).

For (26) we refer to [24, Lemma 3.13]. �

For ε > 0 let Ωε denote the interior of the ellipse in C with vertices ± cosh(ε)
and co-vertices ±i sinh(ε). By H(Ωε) we denote the space of holomorphic functions
on Ωε. The following lemma is a simple modification of [30, Lemma 3.2.4].
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Lemma 5.2. Let M,N be two weight sequences satisfying m
1/k
k →∞, n

1/k
k →∞,

and C := mg(M,N) < ∞. Let ε > 0. Let g ∈ H(Ωε) ∩ C0(Ωε) and assume that
there are constants L, a1, a2 > 0 such that

‖g‖Ωε
≤ L, ‖g‖[−1,1] ≤ a1hm(a2ε).

Then with a3 := max{a1, L} and a4 := eCa2 we have

‖g‖Ωε/2
≤ a3hn(a4ε).

Proof. Let f(z) := 1
a1
g(sin(εz)). Since z 7→ sin(εz) maps the horizontal strip

S := {z ∈ C : | Im(z)| < 1} to Ωε, we get that f ∈ H(S) ∩ C0(S) is bounded by
K := max{1, La1 } on the whole of S and by hm(a2ε) on R. Thus an application of
Hadamard’s three lines theorem gives

|f(z)| ≤ hm(a2ε)
1−| Im(z)|K | Im(z)|, z ∈ S.

Since hm ≤ 1 and every w ∈ Ωε/2 can be written as w = sin(εz) for some w ∈ S
with | Im(w)| ≤ 1/2, we obtain

|g(w)| ≤ a1(Khm(a2ε))
1/2.

The statement follows from (26). �

5.2. Condition (P[M]). Let M be a weight matrix.

(P{M}) We say that a function f : [−1, 1] → C satisfies (P{M}) if there exist
M ∈ M, constants K, c1, c2 > 0, and a family (fε)0<ε≤ε0 of functions

fε ∈ H(Ωε) ∩ C0(Ωε) such that for all 0 < ε ≤ ε0,

‖fε‖Ωε ≤ K, (27)

‖f − fε‖[−1,1] ≤ c1hm(c2ε). (28)

(P(M)) We say that a function f : [−1, 1] → C satisfies (P(M)) if for all M ∈ M
and all c2 > 0 there exist constants K, c1 > 0 and a family (fε)0<ε≤ε0
of functions fε ∈ H(Ωε) ∩ C0(Ωε) such that (27) and (28) hold for all
0 < ε ≤ ε0.

Note that (P{M}) generalizes condition (PM ) of [30].

5.3. Description by holomorphic approximation.

Theorem 5.3. (i) Let M (i), 1 ≤ i ≤ 3, be weight sequences with (m
(i)
k )1/k → ∞

and

∃B1 ≥ 1 ∀t > 0 : Γm(2)(B1t) ≤ Γm(1)(t), (29)

∃B2 ≥ 1 ∀j ∈ N : m
(2)
j+1 ≤ B

j+1
2 m

(3)
j . (30)

Then for each f ∈ BM(1)

B0
((−1, 1)) there exist positive constants K, c1, c2 and func-

tions fε ∈ H(Ωε) ∩ C0(Ωε) such that for all small ε > 0

‖fε‖Ωε
≤ K, ‖f − fε‖[−1,1] ≤ c1hm(3)(c2ε). (31)

The constants K, c1, c2 only depend on Bi, in particular, c2 = CB0B1, where C is
an absolute constant.

(ii) Let N (i), 1 ≤ i ≤ 3, be weight sequences with (n
(i)
k )1/k → ∞ and

mg(N (i), N (i+1)) = D(i) < ∞. Let f : [−1, 1] → C be a function. Assume that
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there exist positive constants K, c1, c2 and functions fε ∈ H(Ωε)∩C0(Ωε) such that
for all small ε > 0

‖fε‖Ωε
≤ K, ‖f − fε‖[−1,1] ≤ c1hn(1)(c2ε). (32)

Then f ∈ BN(3)

σ ((−b, b)) for every b < 1, where σ := 2eD(1)D(2)c2
E(1−b) and E is an

absolute constant.
(iii) If M is a [regular] weight matrix of [moderate growth], then

f ∈ B[M]((−1, 1))⇒ f satisfies (P[M])⇒ f ∈ E [M]((−1, 1)). (33)

Note that [regularity] of M is needed for the first implication in (iii), [moderate
growth] for the second. Item (iii) generalizes [30, Proposition 3.3.2].

Proof. We follow closely the proof of [30, Proposition 3.3.2].

(i) Let f ∈ BM(1)

B0
((−1, 1)). By [9, Proposition 3.12], there are constants c1, c2 > 0

and a function F ∈ C1
c (C) extending f such that

|∂F (z)| ≤ c1hm(3)(c2d(z, [−1, 1])), z ∈ C. (34)

Note that c1 = c1(‖f‖M(1)

B0
, B0, B1, B2) and c2 = 12B0B1. Then wε := ∂F 1Ωε

satisfies

‖wε‖C ≤ c1hm(3)(Cc2ε),

where C > 0 is an absolute constant such that d(z, [−1, 1]) ≤ Cε for z ∈ Ωε.
Moreover, the bounded continuous function

vε(z) :=
1

2πi

∫
C

wε(ζ)

ζ − z
dζ ∧ dζ

satisfies ∂vε = wε in the distributional sense, and we have

‖vε‖C ≤ c1hm(3)(Cc2ε). (35)

So fε := F − vε is holomorphic on Ωε and continuous on Ωε. The estimates (34)
and (35) easily imply (31).

(ii) Let f : [−1, 1]→ C satisfy (32). Consider gε := fε − f2ε ∈ H(Ωε) ∩ C0(Ωε).
Then ‖gε‖Ωε

≤ 2K and ‖gε‖[−1,1] ≤ 2c1hn(1)(2c2ε). By Lemma 5.2,

‖gε‖Ωε/2
≤ max{c1, 2K}hn(2)(2eD(1)c2ε).

There exists a (universal) constant E > 0 such that for any b < 1 the closed disk
with radius E(1 − b)ε around any x ∈ [−b, b] is contained in Ωε/2. The Cauchy
estimates and (25) yield

‖g(j)
ε ‖[−b,b] ≤

max{c1, 2K}
(E(1− b)ε)j

j!hn(2)(2eD(1)c2ε)

≤ max{c1, 2K}
(2eD(1)D(2)c2

E(1− b)

)j
N

(3)
j hn(3)(2eD(1)D(2)c2ε),

which means ‖gε‖N
(3)

σ,[−b,b] ≤ max{c1, 2K}hn(3)(2eD(1)D(2)c2ε) for σ = 2eD(1)D(2)c2
E(1−b) .

Thus, if ε0 > 0 is such that (32) holds for all 0 < ε ≤ ε0, then

g := fε0 +

∞∑
j=1

gε02−j = fε0 +

∞∑
j=1

(fε02−j − fε02−j+1)
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converges absolutely in the Banach space BN(3)

σ ([−b, b]). Clearly, for every k ∈ N,

g = fε02−k +

∞∑
j=k+1

(fε02−j − fε02−j+1),

and f = g on [−b, b], since for x ∈ [−b, b],

|f(x)− g(x)| ≤ |f(x)− fε02−k(x)|+
∣∣∣ ∞∑
j=k+1

(fε02−j (x)− fε02−j+1(x))
∣∣∣

which tends to 0 as k →∞, by (32) and absolute convergence of the sum.
(iii) For the first implication in (33) in the Roumieu case, observe that for f ∈

B{M}((−1, 1)) we have f ∈ BM(1)

B0
((−1, 1)) for some B0 > 0 and M (1) ∈ M. Then

R-regularity of M implies the existence of M (2),M (3) ∈M such that (29) and (30)
are satisfied. Thus (i) yields the desired holomorphic approximation.

In the Beurling case take any weight sequence M (3) ∈ M. By B-regularity,
we find M (1), M (2) such that (29) and (30) are satisfied. If f ∈ B(M)((−1, 1)),

then f ∈ BM(1)

B0
((−1, 1)) for any B0 > 0. Again (i) yields the desired holomorphic

approximation (since c2 = CB0B1).
The second implication in (33) follows from (ii), since [moderate growth] of M

yields weight sequences N (i) fulfilling the assumptions of (ii). �

6. Proofs

We are now ready to prove the main results. We begin with a technical lemma
in which we extract and slightly modify the essential arguments of [30, Section 4].
Its general formulation allows us to readily complete the pending proofs.

6.1. A technical lemma.

Lemma 6.1. Let j be a positive integer. Let M (i), 1 ≤ i ≤ dlog2(j(j+1))e+7 =: k,

be weight sequences satisfying (m
(i)
` )1/` →∞ and

∃B ≥ 1 ∀t > 0 : Γm(2)(Bt) ≤ Γm(1)(t),

mg(M (i),M (i+1)) <∞, for 2 ≤ i ≤ k − 1.

If f : [−1, 1]→ C is such that f j , f j+1 ∈ B[M(1)]((−1, 1)), then f ∈ E [M(k)]((−1, 1)).

Proof. Set g := f j and h := f j+1.
Let us begin with the Roumieu case. By Theorem 5.3(i), there exist families of

holomorphic functions (gε), (hε) approximating g, h, respectively. More precisely,
there exist positive constants K, c1, c2 and functions gε, hε ∈ H(Ωε) ∩ C0(Ωε) such
that, for all small ε > 0,

max{‖gε‖Ωε , ‖hε‖Ωε} ≤ K, (36)

max{‖g − gε‖[−1,1], ‖h− hε‖[−1,1]} ≤ c1hm(3)(c2ε). (37)

Then gj+1
ε − hjε ∈ H(Ωε) ∩ C0(Ωε) satisfies

|gj+1
ε − hjε| ≤ |gj+1

ε − f j(j+1)|+ |f j(j+1) − hjε|
≤ (j + 1) max{|gε|, |g|}j |gε − g|+ jmax{|hε|, |h|}j−1|hε − h|
≤ c3hm(3)(c2ε), on [−1, 1].
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Thus Lemma 5.2 implies

‖hjε − gj+1
ε ‖Ωε/2

≤ c4hm(4)(Cec2ε) =: δε, (38)

where C is chosen such that C ≥ mg(M (i),M (i+1)) for all 2 ≤ i ≤ k−1. (Here and
below all constants ci are independent of ε.)

Consider the continuous function

uε := ϕε
gεhε

max{|gε|, rε}2
, with rε := δ

1
j+1
ε ,

where ϕε is a smooth function compactly supported in Ωε and 1 on Ωε/2. It
coincides with hε/gε in Ωε/2 ∩ {|gε| > rε}, but is not holomorphic everywhere near
[−1, 1]. By taking ε > 0 sufficiently small, we may assume that δε ≤ rε ≤ 1.

Lemmas 4.2.1 to 4.2.4 in [30] (which apply without change to our situation)
lead to a holomorphic approximation (fε) of f by solving a suitable ∂-problem.
Indeed, they show (using (36), (37), (38) and hm(3)(t) ≤ hm(4)(eCt/2), by (26)
since hm(4) ≤ 1) that

‖uε‖Ωε/2
≤ (2K)1/j , (39)

‖f − uε‖[−1,1] ≤ c5r1/j
ε , (40)

and that the bounded continuous function

vε(z) :=
1

2πi

∫
Ωε/2

∂uε(ζ)

ζ − z
dζ ∧ dζ,

which satisfies ∂vε = ∂uε1Ωε/2
in the distributional sense in C, fulfills

‖vε‖Ωε/2
≤ c6δ1/s

ε (41)

where s is any real number with s > j(j + 1) (with c6 depending on s).
Then fε := u2ε − v2ε is holomorphic in Ωε and continuous on C. By (39) and

(41), ‖fε‖Ωε
is uniformly bounded for all small ε, and by (40) and (41),

‖f − fε‖[−1,1] ≤ c7δ
1/s
2ε .

Put s := 2k−6 =: 2`. A repeated application of (26) gives

hm(4)(t)1/s ≤ hm(k−2)((Ce)`t), t > 0.

Thus, for all small ε,

‖f − fε‖[−1,1] ≤ c7δ
1/s
2ε = c7

(
c4hm(4)(2eCc2ε)

)1/s
≤ c7c1/s4 hm(k−2)(2c2(eC)`+1ε). (42)

So Theorem 5.3(ii) implies that f ∈ E{M(k)}((−1, 1)). This ends the proof in the
Roumieu case.

For the Beurling we observe that, by assumption, we find for any (small) c2 > 0
approximating sequences (gε), (hε) such that (36) and (37) are satisfied. Then
follow the above proof until the end and notice that thus also in the final approxi-
mation (42) the constant 2c2(eC)`+1 gets arbitrarily small as c2 gets small. Again
an application of Theorem 5.3 completes the proof. �
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6.2. Proof of Theorem 4.2 – E [M]
1 . We may assume that there is a positive

integer j such that g = f j , h = f j+1 are elements of the ring E [M]
1 . By compos-

ing with suitable linear reparameterizations, we may further assume that they are
represented by elements of B[M]((−1, 1)) which we denote by the same symbols.

In the Roumieu case, there exists M (1) ∈ M such that g, h are contained in

B{M(1)}((−1, 1)) (by the linear order of M). By R-regularity and R-moderate
growth of M, we find sequences M (i) ∈M satisfying the assumptions of Lemma 6.1

which implies that f ∈ E{M(k)}((−1, 1)).
In the Beurling case, we fix an arbitrary M ∈ M and we show that f ∈

E(M)((−1, 1)). By B-regularity and B-moderate growth of M, we now get sequences
M (i) ∈ M as required in Lemma 6.1, where M (k) = M . By assumption, g, h are

elements of B(M(1))((−1, 1)). Thus Lemma 6.1 gives f ∈ E(M)((−1, 1)). �

6.3. Proof of Theorem 3.1 – E [ω]
1 . This is an immediate corollary of Theo-

rem 4.2 and the discussion in Section 4.5. �

6.4. Proof of Theorem 3.2 – non-quasianalytic E [ω]
d . We reduce the multi-

dimensional result to the one-dimensional one.
In the Roumieu case E{ω}d , Theorem 3.2 is a simple corollary of Theorem 4.3; the

weight matrix S from Section 4.5 clearly satisfies (23) (since ω is non-quasianalytic).

The Beurling case E (ω)
d can be reduced to the Roumieu case by means of the

following lemma (which is an adaptation of [21, Lemma 13]).

Lemma 6.2. Let ω be a non-quasianalytic concave weight function. Suppose that
f : [0,∞)→ [0,∞) is any function satisfying ω(t) = o(f(t)) as t→∞. Then there
exists a non-quasianalytic concave weight function ω̃ satisfying ω(t) = o(ω̃(t)) and
ω̃(t) = o(f(t)) as t→∞.

Proof. It suffices to extract some constructions from the proof of [21, Lemma 13]
(to which we refer for details). We may assume that ω is of class C1. The condition
ω(t) = o(t) as t→∞ implies that ω′(t)↘ 0 as t→∞.

Note that log(t) = o(ω(t)) and ω(t) = o(f(t)) imply f(t) → ∞ as t → ∞. We
define inductively three sequences (xn), (yn), and (zn) with x1 = y1 = z1 = 0,
x2 > 0, and the following properties:∫ ∞

xn

ω(t)

1 + t2
dt ≤ 1

n3
, (43)

xn > 2yn−1 + n, (44)

f(t) ≥ n2ω(t), for all t ≥ xn, (45)

ω(xn) ≥ 2n−iω(zi), 1 ≤ i ≤ n− 1, (46)

ω′(yn) =
n− 1

n
ω′(xn), (47)

ω(zn) = nω(yn)− (n− 1)
(
ω(xn) + (yn − xn)ω′(xn)

)
. (48)

Concavity of ω guarantees well-definedness of these conditions. Then

ω̃(t) :=

{
(n− 1)

(
ω(xn) + (t− xn)ω′(xn)

)
−
∑n−2
i=1 ω(zi+1) if xn ≤ t < yn,

nω(t)−
∑n−1
i=1 ω(zi+1) if yn ≤ t < xn+1,
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defines a non-quasianalytic concave weight function of class C1 satisfying

(n− 2)ω(t) ≤ ω̃(t) ≤ nω(t), if t ∈ [xn, xn+1) and n ≥ 2. (49)

(Non-quasianalyticity follows from (43) and the second inequality in (49); cf. [21,
Remark 14].) Together with (45) this implies that ω(t) = o(ω̃(t)) and ω̃(t) = o(f(t))
as t→∞. �

Suppose that g = f j , h = f j+1 are representatives (of the corresponding germs)
belonging to B(ω)(U) on some relatively compact 0-neighborhood U in Rd and
consider the sequence Lk defined in (14). Then for each integer j ≥ 1 there exists
Cj > 1 such that

Lk ≤ Cj exp(jϕ∗ω(k/j)), for all k ∈ N.
Defining the function ` : [0,∞)→ R by

`(t) := log max{Lk, 1}, for k ≤ t < k + 1,

and performing the subsequent steps in [21, Section 5], we find that ` ≤ ϕ∗ω̃+const,
where ω̃ is the weight function provided by Lemma 6.2. This means that g, h belong

to B{ω̃}(U). Invoking Theorem 3.2 in the Roumieu case shows that f ∈ E{ω̃}d . Since

ω(t) = o(ω̃(t)) as t→∞ we may conclude that f ∈ E (ω)
d . �

6.5. Proof of Theorem 2.7 – quasianalytic E{M}d . The following lemma is a
variant of [16, Theorem 1.6(3)].

Lemma 6.3. Let M be a quasianalytic intersectable weight sequence. Then:

(i) n
1/k
k →∞ for all N ∈ L(M).

(ii) If M has moderate growth, then for every N ∈ L(M) there exists N ′ ∈
L(M) such that mg(N ′, N) <∞.

Proof. (i) is obvious, since m
1/k
k →∞ (cf. Remark 2.8).

(ii) If M has moderate growth, then so has m. Set C := mg(m,m) < ∞. For
N ∈ L(M) we define N ′ by n′k := Ck min0≤j≤k njnk−j or equivalently

n′2j := C2jν2
1ν

2
2ν

2
3 · · · ν2

j , n′2j+1 := C2j+1ν2
1ν

2
2ν

2
3 · · · ν2

jνj+1,

where νk := nk/nk−1. Then clearly mg(N ′, N) < ∞. Since νk is increasing, so is
ν′k := n′k/n

′
k−1, thus n′ is log-convex. Moreover,

n′2j = C2jn2
j ≥

m2j

m2
j

n2
j ≥ m2j

and analogously n′2j+1 = C2j+1njnj+1 ≥ m2j+1, so that N ′ ≥ M . It remains to

check that N ′ is non-quasianalytic. Since N ′ is log-convex, the sequence (N ′k)1/k is

increasing and so it suffices to show that
∑
j(N

′
2j)
−1/(2j) <∞. This is clear, since

(N ′2j)
1/(2j) = ((2j)!C2jn2

j )
1/(2j) ≥ 2C

e
jn

1/j
j ≥ 2C

e
N

1/j
j

and N is non-quasianalytic. �

Let M be a quasianalytic intersectable weight sequence of moderate growth.

Suppose that g = f j , h = f j+1 are elements of E{M}d . Since M is intersectable, it

suffices to show that f ∈ E{N}d for every N ∈ L(M). Fix such N . By Lemma 6.3,

there exist N (1), . . . , N (k) ∈ L(M) with N (k) = N such that the requirements of
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Lemma 6.1 are satisfied. (Note that L(M) is not a weight matrix in the sense of
Section 4.1, because it is not totally ordered.)

Let U be an open 0-neighborhood in Rd on which we have g, h ∈ E{M}(U)
for representatives which are denoted by the same symbols. Take any curve c ∈
E{N(1)}(R, U) with compact support. Then, by composition closedness of E{N(1)}

as n(1) is log-convex, we have g ◦ c, h ◦ c ∈ E{N(1)}(R). After a linear change of

variables, we may assume that g ◦ c, h ◦ c ∈ B{N(1)}((−1, 1)). Thus Lemma 6.1
yields that f ◦ c ∈ E{N}((−1, 1)). This implies that f ∈ E{N}(U), by [16, Theorem
2.7]. �
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