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Preface

Introduction

This Habilitationsschrift consists of my recent research papers [LROT],
[Rai09d], [Rai09f], [Rai09], [KMRO09al, [KMRO09b], [KMRO09d], and
IKMRO9c|. The first five articles are published, resp. accepted for publication,
in refereed journals. The last three very recent papers are submitted. They rep-
resent a continuation and (in some sense) a completion of the work initiated and
performed in the first five articles, and should therefore be included in this collec-
tion.

The work presented here centers on two main themes which are intertwined:
first the perturbation theory for polynomials and linear operators, and secondly
the convenient setting for Denjoy—Carleman differentiable mappings. Indeed, in
order to extend (in appropriate form) the perturbation results, obtained first for
polynomials and matrices, also to unbounded linear operators on an infinitely di-
mensional Hilbert space, it was necessary to develop calculus for ultradifferentiable
(Denjoy—Carleman) mappings beyond Banach spaces.

My research papers [KLMRO5], [KLMRO06|, [HRO06], |[KLMROS8b],
[Rai09Db], [Rai09¢|, |[Rai09a], [KLMRO08a|, and [LMRO9] are not included in
the Habilitationsschrift, but they are related and at least some are implicitly incor-
porated, especially in [LRO7] and [Rai09d].

The treatise is structured into three parts. comprises the papers [LROT],
[Rai09d], [Rai09f], and [Rai09¢] which contribute to the perturbation theory
for polynomials and matrices. consists of [KMR09a| and [KMRO09Db]
in which we develop the convenient setting for Denjoy—Carleman classes. In
i.e. [KMRO09d] and [KMRO09c], we are thus able to prove the counterparts
in the perturbation theory for unbounded operators of the results found in
the first part. Evidently, this division is not to be understood in the most stringent
sense; for instance, [Rai09d] might as well belong to the third part.

The following sections in this preface are related to the three parts and pro-
vide an overview of the contained articles. The bibliographies are independently
attached for each paper and also for the preface. If the cited paper can be found
in this collection, the citation is supplemented with a page reference. All other
references are confined to the preface.

1. Perturbation theory for polynomials and matrices

By perturbation theory for polynomials we understand the study of the regu-
larity of the roots of a polynomial depending on parameters. This is an old topic
with important applications, foremost in the perturbation theory for linear oper-
ators and in PDEs. In the last decade several new contributions to this subject
appeared. Some of them are based on a recent deeper understanding of resolution
of singularities, which opens new ways to study perturbation of polynomials.

iii



iv PREFACE

In full generality the problem reads as follows: Consider a family of univariate
monic polynomials

(1.1) P(z)(z) = 2" + Z(—l)jaj(ﬂf)zn’j,

where the coefficients a; : U — C are complex valued functions defined in an
open subset U C R?. Given that the coefficients a; are regular (of some kind), is it
possible to find n regular functions A; : U — C such that A; (), ..., A, () represent
the roots of P(z)(z) =0 for all z € U?E|

For a long time the problem was only studied under the additional assumption
of hyperbolicity: P is called hyperbolic if all roots \; are real. [LROT], p.
and [Rai09f], p. contribute to the hyperbolic perturbation problem. Until
recently only sparse results in very special situations were known in the general
case. A systematic study of the perturbation theory for complez polynomials (and
its applications to the perturbation theory for normal operators) was initiated in
[Rai09d], p. [23] and continued in [Rai09€], p. (with some contributions in
[Rai09f], p.

For the greater part the contributions by the author to this topic are guided
by geometrical ideas.

1.1. Hyperbolic polynomials. The notion of hyperbolic polynomials origi-
nates from the theory of partial differential equations. It probably appeared for the
first time in the fundamental paper [Gar51]. This (more general than our) notion
of hyperbolicity reflects an algebraic condition necessary for the well-posedness of a
Cauchy problenﬂ (see also [Gar59], [Hor63, Hor83b)], and [ABGT70, [ABGT73]).
Hyperbolic polynomials have also recently found important applications in convex
optimization and semi-definite programming.

Let us assume that P in is hyperbolic (i.e. has all roots real). The study
of the smoothness of the roots of hyperbolic polynomials depending on a parameter
started with Rellich’s seminal contributions to the perturbation theory for linear
operators (see [Rel37al, [Rel37h, [Rel39, Rel40, Rel42, [Rel69]). In [Rel37a]
he showed that real analytic curves of hyperbolic polynomials admit real analytic
roots. However, if the coefficients of P are just C°, then we cannot hope for C'*°
roots: Glaeser [Gla63] gave an example of a non-negative C'*° function defined
in R not admitting a C? square root. Actually, the roots can in general not be
parameterized by CH“ functions for any a > 0, see [BBCP06]. In [AKLM98] it
was shown that, if the coefficients are C*° and no two of the increasingly ordered
(thus continuous) roots meet of infinite order of flatness, then C* roots exist.

In general (without nonflatness conditions) we have the following: If the coeffi-
cients a; are C™ (resp. C*"), then the roots admit parameterizations by C' (resp.
twice differentiable) functions, and this statement is best possible in both assump-
tion and conclusion. This result comprises the contributions of [Bro79], [Man85],
[IKLMO03], and [COPO08|]. The main portion is Bronshtein’s theorem proved in
[Bro79]: The roots of a C™ curve of hyperbolic polynomials P can be chosen dif-
ferentiable with locally bounded derivative, thus locally Lipschitz. This theorem is

L Given that, for some zog € U, all roots of P(xg) are distinct, locally near zo the roots
have the regularity of the coefficients, by the implicit function theorem. However, at points where
different roots come together the problem is highly nontrivial.

2A polynomial P of degree m in n variables £ = (£1,...,&n) and with principal part Pn,
is said to be hyperbolic with respect to a real vector N, if Pp,(N) # 0 and there is 79 such that
P(+7N) #0,if £ € R™ and Im(7) < 19. The Cauchy problem for the differential operator P(D)
(where D; = —id;) with data on a non-characteristic hyperplane (z | N) = 0 (i.e., P (N) # 0)
cannot be solved in general, unless P is hyperbolic with respect to V.



1. PERTURBATION THEORY FOR POLYNOMIALS AND MATRICES v

very delicate and only poorly understood in the literature so far, although it has im-
portant consequences in PDE theoryﬂ See |Rai| for a detailed presentation. Since
local Lipschitzness can be tested along C*° curves (cf. [Bom67] and [KM97]),
we immediately get a multiparameter version: The increasingly ordered roots of a
C™ (multiparameter) family of hyperbolic polynomials P are locally Lipschitz. In
[Wak86] a completely different proof of this result is giverﬁ In the multiparam-
eter case we cannot expect the roots to be C!, even when the coefficients are real
analyti(ﬂ However, due to [KPOS§], if P is real analytic, there exists a modification
® : W — U, namely a locally finite composition of blow-ups with smooth centers,
such that the roots of P o ® can be parameterized locally by real analytic func-
tions. Moreover, [KPO8| contains a new proof for the multiparameter version of
Bronshtein’s theorem for real analytic coefficients using resolution of singularities.

Further results on the perturbation problem for hyperbolic polynomials ap-
peared in [Die70], [CC04], [BCPO06], [STO064, [ST06b], [Tar06].

Contributions by the author. The paper [LROT], p.[3] investigates the smooth-
ness of the roots of curves of hyperbolic polynomials having certain symmetries.
By this we mean that the roots Aq,...,\, of P fulfill some linear relations, i.e.,
there is a (proper) linear subspace U of R™ such that (A1(t),..., A, (t)) € U, for all
t € R. Then the curve P lies in the semialgebraic subset E(U) of E(R™) C R",
where £ = (Ey,...,E,) : R* — R"™ and E; denotes the i-th elementary sym-
metric functionﬁ The symmetries of the roots of P are represented by the ac-
tion of the group W on U which is inherited from the action of the symmetric
group S, on R™ by permuting the coordinates: W = W(U) := N(U)/Z(U), where
NU):={reS,:7.U=U}and Z(U) :={r €S, :rx =z forall z € U}.

If the restrictions E;|y, 1 < i < n, generate the algebra R[U]" of W-invariant
polynomials on U, we gave in [LRO7], p. |3} refined conditions for the existence of a
C*° parameterization of the roots of P. These conditions were formulated in terms
of the two natural stratifications carried by U and E(U) = U/W: the orbit type
stratification with respect to W and the restriction of the orbit type stratification
with respect to S,, (also called ambient stratification). We proved that in general the
orbit type stratification is coarser. Now we could apply previous work: By a result
in [AKLMO0], a C* curve P in U/W = E|y(U) C R™ admits a C* lift A to U
(i.e. P = Eo) if P is normally nonflat with respect to the orbit type stratification,
i.e., (roughly speaking) P does not meet lower dimensional orbit type strata with
infinite order of flatness. Evidently, the lift A provides a parameterization of the
roots of P. The condition that no two roots of P meet of infinite order is equivalent
to normal nonflatness with respect to the ambient stratification. The orbit type
stratification being coarser than the ambient stratification, we obtained weaker
conditions guaranteeing the existence of C*° roots. It might happen that roots of
P meet of infinite order, while P is not normally nonflat with respect to the orbit

3 Tt enabled Bronshtein [Bro80] to prove well-posedness of the hyperbolic Cauchy problem
P(z, D)u(x) = f(x) with non-constant coefficients in Gevrey space G* with s = r/(r — 1), where
the multiplicity of the characteristic roots of P(z, D) does not exceed r. It is in general not
possible to go beyond the limits of Gevrey spaces of order s.

4 Actually in [Wak86| a more general version is shown: If all a; are in C** where 0 < o < 1,
then on any open relatively compact set the increasingly ordered roots of P satisfy a Holder
condition with exponent min{1, (k + a)/n}.

5 For example P(z1,x2)(z) = 22 — (22 4+ 22), 71,22 €R.

6 The space of monic hyperbolic polynomials of degree n can be identified with the orbit
space R™/S;, of the standard representation of the symmetric group S, in R™ by permuting the
coordinates (the roots). By Vieta’s formulas, for the coefficients a; and the roots A; of P we
have aj = E;j(A1,...,An). Thus R™/S; may in turn be identified with the semialgebraic subset
E(R™) C R".
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type stratification. Along the same lines we obtained improved conditions also for
C! (resp. twice differentiable) roots: instead of P being C™ (resp. C*") required
by the general theoryﬂ we need less derivatives of the coefficients, if P has certain
symmetries. Here we used results previously proven in our papers [KLMROS5]|,
[KLMRO6], and [KLMRO8a) [

The paper [Rai09f], p. answers questions posed by K. Kurdyka and E. Bier-
stone: Does a non-negative C*° function definable in some o-minimal expansion of
the real field’] admit C*° admissibld™| square roots? What are sufficient conditions
for the existence of C? (for p € N) arrangements of the roots?

The first question is motivated by the observation that all counter-examples
(e.g. in [Gla63], [AKLM98|, [BBCPO06]), which show that C°° coefficients do
in general not imply the existence of C'™ roots, are oscillating in nature. This
means that some iterated derivative switches sign infinitely often near some point,
where the multiplicity of the roots changes. Definability excludes oscillation, but an
infinitely flat function may be definable in some o-minimal expansion of the reals.
Indeed, we proved that definability of the coefficients guarantees C°° solvability
of C'*° curves of hyperbolic polynomials. Thus oscillatory behaviour, rather than
flat contact alone, is responsible for the loss of smoothness. An essential building
block of the proof was the following lemma: If R 5 ¢ +— f(t) € R is definable and
continuous, then t — t? f(t) belongs to C? near 0 (for all p € N).

As for the second question, we provided sufficient conditions for the existence of
CP parameterizations of the roots, in terms of the differentiability of the coefficients
and the maximal order of contact of the roots, in both the definable and the non-
definable case. In particular, we gave a simple proof of Bronshtein’s theorem in
the special case of definable coefficients: C™ curves P admit C' roots. These
conditions are sharp in the definable case and under certain circumstances also in
the non-definable case.

The proofs are quite technical, but the principles behind are simple: If not
all roots of P(tg) coincide, then, near to, P factors into polynomials of the initial
regularity each of which has the property that its roots coincide at tOH So (by
treating each factor separately) we may assume that all roots of P(tg) coincide. By
a change of variables we can assume that a; =0 identically@ Then all coefficients
a;j (2 < j < n) must vanish at to, and hyperbolicity forces a; to vanish at least of

7 At the time we wrote [LRO7] it was only known that C2™ (resp. C3™) coefficients imply the
existence of C! (resp. twice differentiable) roots. The sharp conditions were recently established
by [COPO0S].

8 [AKLMO00] and [KLMRO5, [KLMRO06), [KLMRO8a] study a lifting problem which gen-
eralizes the perturbation problem for (curves of) hyperbolic polynomials: Can a smooth curve in
the orbit space V/G of an orthogonal finite dimensional representation of a compact Lie group G
be lifted smoothly to the representation space V? Here V/G is identified with the semialgebraic
subset o(V) C R™, where 0 = (01,...,0n) : V — R™ and o1,...,0n constitute a system of
homogeneous generators of the algebra R[V]G of G-invariant polynomials on V.

9 See [wdDM96] for a concise exposition of o-minimality, and also [vdD98|. Let M =
Un6N>0 M, where each M, is a family of subsets of R™. Then M is said to be an o-minimal
structure on (or expansion of) (R, +,-) if the following conditions are satisfied:

(1) Each M,, is closed under finite set-theoretical operations.
(2) If Ae My, and B € My, then A X B € Muym.
(3) If A € Mptm and 7 : R*T™ — R" is the natural projection, then 7(A) € My,.
(4) It f,91,...,91 € R[X1,...,Xn], then {z: f(z) =0,g1(z) > 0,...,g/(x) >0} € My,.
(5) M consists of all finite unions of open intervals and points.
For a fixed o-minimal structure M, A is M-definable if A € M,, for some n. A mapping
f:R™ DA — R™ is M-definable if its graph is M-definable.

10 g is an admissible square root of f if f = g2.

L1 This follows from the inverse function theorem and is a kind of Hensel’s lemma.

12 Replace z by  — a1 /n. This is sometimes called a Tschirnhausen transformation.
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order jr where r is a positive integer. So we can consider the polynomial P, with
coefficients a;(t)/(t —to)’", thereby loosing up to nr derivatives. If \; parameterize
the roots of P, then t — (t —19)"\;(t) parameterize the root of PH Thus we
have reduced the problem to P,). If not all roots of P(,(to) coincide, we can factor
Py (which lowers the degree) and proceed by induction. Otherwise it turns out
that the roots of P,y must vanish of infinite order at ¢y. Then, by the observation
above, the roots are as differentiable as we like near ty in the definable case. In
general we have to exclude those points.

1.2. Complex polynomials. If the hyperbolicity assumption is dropped,
much less regularity of the roots of P (given in ) can be expected. They
can in general not satisfy a local Lipschitz condition (even if the coefficients are
real analytic)El, but they may have weaker regularity properties.

The roots of a continuous family P are continuous as a wholﬂ and satisfy a
Hélder condition of order 1/n, due to [Ost40]. But the single roots do in general
not allow continuous parameterizations, if P is non-hyperbolic and depends on
more than just one parameterE Continuous curves of polynomials P still admit
continuous parameterizations of its roots (e.g. [Kat76l II 5.2]).

[Len75] studied a-th roots, & € R>1, of a non-negative C? function in R? which
is p-flat at all its zeros and satisfies a weak Lojasiewicz type inequality. Also some
results for functions in one real variable are included. But in many examples the
roots are actually of much higher differentiability than predicted by those resultsﬂ
This phenomenon was described by [MacT78|, who determined the actual class of
differentiability of f1/7 if f is an exactly i-flat C™*% function of one real variable,
for special values of r,m,i. In [Rei80] the results were shown (in a much shorter
way) for all possible values of r, m, .

[Spa99| proved that the roots of C*° curves of polynomials P either with degree
n = 2,3 (the case n = 4 is announced) or of the form P(t)(z) = 2™ — f(t) can be
parameterized by locally absolutely continuous functionsﬁ Absolute continuity
is optimal in some sense (see below). Here essential use of the explicit solution
formulas available in those cases was made.

In several variables the following was known: Due to [CJS83], for each non-
negative C* function f : U — R, U C RY open, k > 2, the gradient V(f/*) belongs
to L} .. It was shown in [CLO3]| that V(f'/*) even belongs to Lﬁ/k2 This result
is optimal among LP spaces and it generalizes Glaeser’s classical theorem on the
square root of a non-negative function [Gla63}m

13 Hereby we gain back r derivatives in the definable case and in very few situations also in
the non-definable case.
14 For example P(z)(z) = 22 — z, € R.
15 The roots A;j of P form an unordered n-tuple of complex numbers A = [A1,..., An]. They
are continuous with respect to the distance d(\, p) = minges, maxi<j<n |[Aj — to(j)l-
16 oy example P(x1,x2)(2) = 22 — (z1 +iz2), 1,22 € R, i = /—1.
17 In [Len75] (#)'/2 is only C3.
18 Actually, only C®, C25, and C?"*t1 is needed in the three cases, respectively.
19 For 1 <p< oo and K C U compact, f € L%, (K) means that
sup MPA({z € K : |f(z)| > M}) < oo,
M>0
where )\ is the Lebesgue measure. For 1 < 7 < p < oo one has LP(K) C L%,(K) C L"(K).
20 A C* function f : R — Rsq with f € L°(R) satisfies f/ ()% < 2f (NS [l oo (r) (Glaeser’s
inequality). This inequality implies immediately that, if f € CQ(U,RZO), U C RY open, then
V(fY/?) € L2 (U).

loc
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Contributions by the author. In [Rai09d], p. we proved that any continuous
arrangement A; of the roots of a C* curve P (which always exists) is actually
locally absolutely continuous, if no two A; have infinite order of contact. The proof
consists of first showing that the roots of P admit a desingularization by means
of local power substitutions, and secondly ascertaining that absolute continuity is
preserved by pullback with the inverses of local power substitutions. More precisely:
If hyperbolicity is lacking, the coefficients a; may well all vanish at some point ¢y,
but not of the required order jr, for some integer TE The idea was to modify
P such that its coefficients do vanish of the required order. We proved that, for
each t there exists an N € Nyg such that t — P(tg = (¢t — to)") admits C*
parameterizations of its roots near to@ Both signs are necessary if IV is even;
otherwise a loss of information occurs. Now in order to establish local absolute
continuity for the roots of P itself, we only had to show that absolute continuity is
preserved by pullback with the inverses of local power substitutions@

This conclusion is optimal in the sense that the roots cannot be chosen with
first order derivatives in LY for any 1 < p < ooﬁ On the other hand, finding the
optimal assumptions on P for admitting locally absolutely continuous roots is an
open problem. In particular, it is unclear whether we may drop the condition on
the roots not meeting of infinite orderﬁ We settled this question in a special case:
In [Rai09f], p. we found the weakest possible assumptions for locally absolutely
continuous roots, if the coefficients of P are definable in an o-minimal expansion
of the real field. Remarkably, it suffices that the coefficients be just continuousm
Moreover, the roots of definable C'>° curves P can be desingularized by means of
local power substitutions (even when roots meet of infinite order).

Another topic addressed in [Rai09d], p. is finding the conditions for the ex-
istence of differentiable parameterizations of the roots of P. Evidently, a necessary
condition is that there exists a continuous choice of the roots such that whenever
two of them meet they meet of order > 1@ We showed that this condition is also
sufficient, provided that the coefficients a; of P belong to C™.

Furthermore, we discussed a reformulation of the problem of finding smooth
roots of P in terms of a lifting problem which had been treated in [AKLMO0] and
[KLMRO05, KLMRO06, KLMRO8a| (see B). Based on the results for the lifting
problem we could formulate implicit sufficient conditions on a curve of polynomi-
als P for allowing C>°, C!, or twice differentiable parameterizations of its roots,
respectively.

In [Rai09¢], p. 57| we investigated the general case when P depends on several
real parameters. Then the single roots will not admit continuous parameterizations
(see ) and power substitutions alone will not suffice to desingularize the roots
of P (also see by ) A further construction is required, namely blow-ups with
smooth centerslﬂ familiar from resolution of singularities. Our goal was to pursue
perturbation theory for polynomials P with coefficients a; as general as possible.

21 In that case the roots cannot be smooth at to.

22 This is a Puiseux type result.

23 1f f € AC([0,7]) (vesp. f € AC([-r,0])), then t — f(Nt) € AC([0,7N]) (resp. t —
(= /) € AC([=r,0))).

4 For example P(z)(z) = 2" —z,x € R, if n > p?%l’ for 1 < p < oo, and if n > 2, for p = co.

25 Spagnolo’s results [Spa99| indicate that it might be true. This problem, which is in some
sense the analogue of Bronshtein’s theorem for complex polynomials, is of particular interest for
PDE theory. It requires new methods.

26 Actually, any definable continuous function f : R — C is even locally absolutely continuous.

27 This condition is automatically satisfied if P is hyperbolic.

28 Note that blow-ups are invisible in dimension one; they reduce to the identity mapping.
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So we worked within the framework of the largest function classes admitting reso-
lution of singularities. Due to [BM97] (see also [BMO04] and [RSW03]) it had to
be a subring C of C*° that includes polynomial but excludes flat functions (in other
words, is quasianalytic), and is closed under composition, differentiation, division
by a coordinate, and taking the inverse. For instance, C can be any quasiana-
Iytic Denjoy—Carleman class C, where the weight sequence M satisfies some mild
conditions (see , in particular, C can be the class of real analytic functions C*.

The first main theorem in [Rai09¢]|, p. is the following: If the coefficients
of P are C functions on a C-manifold M, then for each compact subset K C M
there exist a neighborhood W of K and a finite covering {7y : Uy — W} of W by
C mappings, where each 7y is a composite of finitely many mappings each of which
is either a local blow-upf” with smooth center or a local power substitution"} such
that, for all &k, the family of polynomials P o m; admits a C parameterization of its
rootsﬂ If P is hyperbolic, local blow-ups sufﬁceﬂ

At the core of the proof lies the following line of arguments: The assertion
is local. So we may assume that the parameters vary in an open neighborhood
of 0 € RZ. We can reduce to the case that all roots of P(0) coincide and equal
0 Set Aj(z) = aj(x)%. Using resolution of singularities in C, we find a finite
covering {m, : Up — U} of a neighborhood U of 0 by finite composites of local blow-
ups, such that, for each k, the non-zero A; om;, and its pairwise non-zero differences
Ajom, — Ajomy, have simultaneously only normal crossingﬂ Let g € Uy. Then in
suitable local coordinates rg = 0 and either A; oy, = 0 or (A4, om)(x) = 2% Aé‘?(x),
where A?(O) # 0. It turns out that the multi-indices d; are totally ordereﬂ
Set @ := mind;. If & = 0, not all roots of (P o m)(xo) coincide, and we may
use induction. If o # 0, we have (A; o m)(z) = xaflf(x) for all j, where some
121;“(0) # 0. For all 4, write a;/n! = B;/v; where ;,7v; € N are relatively prime (and
~i > 0). Then after a local power substitution 1., with exponent v = (v1,...,7q),
each a; o mj, o ¢, is divisible by z77 (where 8 = (1,...,0;)). Now consider the
polynomial P* with coefficients z +— (a; o m o ¥,)(x)/2P. If P¥ admits a C
parameterization /\? of its roots, then the functions z +— 2 )\;C(x) form a choice of
C roots of the family = ~— (P o 7y, 01, )(z). By construction not all roots of P*(0)
coincide, and we may proceed by induction.

In the second part of [Rai09¢], p. we used the aforementioned desingular-
ization result in order to investigate the regularity of the roots of the original family

29 A local blow-up ® over an open subset U of M means the composition ® = 1o ¢ of a
blow-up ¢ : U’ — U with smooth center and of the inclusion ¢ : U — M.

30 A local power substitution is a mapping of C-manifolds ¥ : V — M of the form ¥ = 101,
where ¢ : W — M is the inclusion of a coordinate chart W of M and ¢ : V — W is given by

(ylv e 7yq) = w715(x11 ey x(]) = ((_1)611‘1/1 IR (_l)sqxgq)ﬂ

for some v = (71,...,7¢) € (N>0)? and all € = (e1,...,¢q) € {0,1}7, where y1,...,yq denote the
coordinates of W (and ¢ = dim M). Since the involved manifolds are real, we have to consider all
possible sign combinations.

3Lifc=cvitis enough to substitute powers at the last step after all local blow-ups (see
[Rai09¢], p. which follows from the Abhyankar—Jung theorem [Abh55|, [Jun08]. It seems
that one can produce a proof of a C version of the Abhyankar—Jung theorem along the lines of
Luengo’s approach [Lue83]. However, the proof in [Lue83| contains a gap as pointed out by
Kiyek and Vicente [KV04].

32 For hyperbolic P with real analytic coefficients this was proved in [KPO8].

By means of the inverse function theorem in C and Tschirnhausen’s transformation (see

@0 ;nqg T2,

34 A function has only normal crossings if locally it is just a monomial times a unit.

35 Here we need that also the pairwise non-zero differences A; omy, — A; oy, have only normal
crossings.
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of polynomials P. The idea was to apply the same strategy as in [Rai09d], p.
Find regularity properties shared by C functions and preserved by pulling back with
the inverses (where they exist) of local power substitutions and local blow-ups. In
one dimension the absolutely continuous functions coincide with the Sobolev space
W1 (possibly after modifying the function on a set of measure zero). So the first
guess might be that the roots admit parameterizations in I/Vlf)cl
trast to the 1-parameter case, multiparameter families P do not allow roots in VV&)C1
(and VM O)ﬁ Instead we proved that the roots of P admit a parameterization
by “piecewise Sobolev VVlicl ” functions. More precisely: Let us denote by WC€ the
class of all functions f defined, bounded, and of class C on the complement of a
closed nullset with finite 1-codimensional Hausdorff measure such that its classical
gradient belongs to le A WC function on an open bounded subset U of RY is
also a special function of bounded variation (SBV)@ As it turned out, W¢ was
suitable for the aforementioned strategy. So we showed that the roots of a C family
of polynomials P admit a parameterization by cho . functions, and hence by SBVig.
functions. As a corollary we obtained that the mapping o : C* — C" from roots
to coefﬁcientsiﬂ has local WC (resp. SBV) sections.

The conclusion is best possible in the following sense: We cannot expect that
the roots admit arrangements having gradients in LP = for any 1 < p < ooﬂ
Then again it is an open question, whether the roots can be parameterized by
SBV functions, if the coefficients just belong to a wider function class. But this
requires a new approach, since quasianalyticity is a crucial ingredient for resolution
of singularities.

We also obtained some new results for subanalytic functions[] Since any con-
tinuous subanalytic function admits a rectilinearization (see [BM90] and [Par94]),
the method developed in [Rai09€], p. yielded that: Any continuous subana-
lytic function belongs to WSZ (resp. SBVioc). Moreover, the roots of continuous

subanalytic families P admit arrangements in WS, (resp. SBVioc).

. However, in con-

1.3. Normal matrices. Perturbation theory for linear operators is a classical
topic with numerous applications in the natural sciences. At the heart of this theory
stands the problem of choosing the eigenvalues and the eigenvectors of a family
of operators as smoothly as possible. Obviously, regularity properties possessed
by the roots of polynomials immediately translate to the same properties for the
eigenvalues of matrices. It is remarkable that in many cases the eigenvectors reflect
strong regularity properties as well.

The systematic study of the problem started in the 1930s with Rellich’s work
[Rel37al, [Rel37Dbl, [Rel39, [Rel40, Rel42), [Rel69] and it culminated with Kato’s

36 For example P(z)(z) = 22 — , & € C. The roots £/ must have a jump along some ray.
Hence the distributional derivative of y/x with respect to angle contains a delta distribution which
is not in Llloc' Moreover, one can show that v/z has not vanishing mean oscillation (VMO).

37 For example, the Heaviside function belongs to WC((—1,1)), but the function f(z) :=
sin1/|z| does not.

38 An L! function has bounded variation if its distributional derivative is a finite Radon mea-
sure. It is called special if the Cantor part of its derivative vanishes. This notion was introduced
in [DGAS8S], see also [AFP00].

39 6 = (o1,...,0n) where o;(z) = D<oy B R

40 For example P(z)(z) = 2" —x1---2q, ¢ = (21,...,2¢q) € RY, if n > p}%l’ for 1 < p < oo,
and if n > 2, for p = oco.

41 Let M be a real analytic manifold. A subset X C M is called subanalytic if each point of
M admits a neighborhood V' such that X NV is a projection of a relatively compact semianalytic
set. Let U be an open subanalytic subset of R4. A function f : U — R is called subanalytic if the
closure in R? x RP! of the graph of f is a subanalytic subset of R? x RPL.
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celebrated monograph [Kat76]. See also [Bau72| for an account of finite dimen-
sional analytic perturbation theory.

Given that the literature on perturbation theory is huge, we will mention here
only a small number of known result which are directly related to the contributions
by the author.

Let A = (Aij)i<ij<n be a family of complex matrices. If C 3 z — A(z) is
holomorphic, then all eigenvalues, all eigenprojections, and all eigennilpotents are
holomorphic with at most algebraic singularities at discrete points (cf. [Kat76l
I1.1.8])). If R 5 ¢ — A(t) is a real analytic curve of Hermitian complex matrices,
then, due to [Rel37al, the eigenvalues and the eigenvectors of A can be chosen real
analytically in ¢. This no longer true if A is not Hermitian. Due to [AKLM98],
the eigenvalues and the eigenvectors of a C*° curve of Hermitian complex matrices
admit C°° parameterizations, if no two unequal continuour@ eigenvalues meet of
infinite order. The nonflatness condition in this statement is essential %] Sometimes
the eigenvalues show a greater regularity than predicted by the corresponding per-
turbation problem for polynomials: Due to [Rel69], the eigenvalues of a C! curve of
symmetric matrices A can be chosen C' IE In general there do not exist C1'® eigen-
values for a > 0, even if the curve of symmetric matrices is C* (see [AKLMO98,
7.4] and [KMO3|).

If A depends on several variables, we cannot hope for differentiable eigenval-
uesﬁ However, [KPO8| proved that, given a real analytic family R? D U 3 z
A(z) of symmetric matrices, there exists a modification 7 : W — U, namely a
locally finite composite of blow-ups with smooth center, such that A o 7 admits a
real analytic diagonalization, locallyﬁ

Contributions by the author. In [Rai09d], p. and [Rai09€], p. [57, we used
our results on the regularity of the roots of complex polynomials in order to study
the perturbation problem for normal matrices.

We considered the 1-parameter case in [Rai09d], p. Let R> ¢ — A(t) be a
C® (resp. C¥) curve of normal complex n X 1 matrices such that no two unequal
continuously chosen eigenvalues meet of infinite order. We showed that for each
to there exists a N € Ny such that ¢t — A(tg & (t — to)") admits a C> (resp.
C¥) parameterization of its eigenvalues and its eigenvectors. Consequently, the
eigenvalues and the eigenvectors of A itself can be parameterized locally absolutely
continuously.

In [Rai09€], p. the multiparameter case was investigated. Recall that C
stands for a quasianalytic subring of C'°° that includes polynomial functions and
is closed under composition, differentiation, division by a coordinate, and taking
the inverse. We proved that the eigenvalues and the eigenvectors of a C family
M > z — A(xz), M a C-manifold, of normal complex n x n matrices A allow a
desingularization by means of local blow-ups and local power substitutions: For
each compact subset K C M there exist a neighborhood W of K and a finite
covering {m : Uy — W} of W by C mappings, where each 7 is a composite of
finitely many mappings each of which is either a local blow-up with smooth center
or a local power substitution, such that, for all k, the family A o m; admits a C

42 por instance, by ordering them increasingly.
cos 2 sin 2
4 t2), t € R\ {0}, A(0) = 0, cannot be

i —COS?

chosen continuously near 0. The eigenvalues however are C°.

_1
43 The eigenvectors of A(t) = e 2 (sin

44 For (hyperbolic) polynomials, one needs in general at least C™ coefficients in order to have
C' roots.
45 For example A(z1,z2) = (xl *2 ), r1, T2 € R.
r2 —T1

46 [KPO8]| contains also a corresponding result for antisymmetric matrices.
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parameterization of its eigenvalues and its eigenvectors. For Hermitian A, local
blow-ups suffice (if C = C¥ this is due to [KP08]). We could conclude that the
eigenvalues and the eigenvectors of a C family of normal complex matrices A admit
parameterizations by Wﬁc functions, and, thus, by SBV},. functions.

Note that these desingularization results for the eigenvectors are no longer
true, if we do not demand normalityﬂ of A, or if we do not insist on a condition
preventing flat contact of the eigenvalues® (such as quasianalyticity).

More contributions to the perturbation theory for matrices are presented in
below, where they are stated in greater generality.

2. The convenient setting for Denjoy—Carleman classes

One motivation for developing the convenient setting for Denjoy—Carleman dif-
ferentiable mappings was the intension to extend (in appropriate form) our quasian-
alytic perturbation results for matrices to unbounded linear operators with compact
resolvents and common domain of definition. A thorough execution of that project
requires a differential calculus (a convenient setting, see(2.1)) for quasianalytic classes
of mappings beyond Banach spaces.

We decided to work within the framework of Denjoy—Carleman classes which
are described by growth conditions on the iterated derivatives. A different approach
to ultradifferentiable functions based on decay properties of the Fourier transform
was proposed by [Beu61] and modified by [BMT90]; here we shall not expand on
that.

As it turned out, in order to be able to treat quasianalytic Denjoy—Carleman
classes we had first to understand the non-quasianalytic classes. For the latter
we developed the convenient setting in [KIMRO09al, p. Utilizing that we suc-
ceeded to establish the convenient setting for some quasianalytic Denjoy—Carleman
classes in [KMRO9b], p. Apart from perturbation theory (see we gave
applications to manifolds of ultradifferentiable mappings.

2.1. Convenient setting. Let S be a class of mappings (like C*°, real ana-
lytic C*, holomorphic H,...). That S admits a convenient setting means essentially
that we can extend the class S to mappings between admissible locally convex vec-
tor spaces E, F,... so that S(E, F) is again admissible and we have S(E x F,G)
canonically S-diffeomorphic to S(E,S(F,G)) (the exponential law). Note that this
is the starting point of the classical calculus of variations, where a smooth curve
in a space of functions was assumed to be just a smooth function in one variable
more. It is also the source of the name convenient calculus. The exponential law
and some other obvious properties already determine the convenient calculus. Usu-
ally it comes hand in hand with (partly nonlinear) uniform boundedness theorems
which are easy S-detection principles.

In the following let S stand for C*°, H, or C. The convenient setting for
these function classes was established by [Fr680, [Fro81), Kri82), [Kri83], [KIN85],
and [KM90]|, respectively. For the classes Lip" (i.e. all derivatives up to order
k exist and are locally Lipschitz) and C*® (i.e. C* and the highest derivative is
locally Holder) it was developed by [FGK83| and [Fau91], but only in a weaker
sense. For a comprehensive exposition see [KM97] (and also [FK88]), for a concise
overview without proofs the appendix in [KMRO09a], p.

47 Any choice of eigenvectors for A(x) = <2 (1)) , ¢ € R, has a pole at 0. The two parameter

. 0 2 . o
family A(z1,22) = (:1:2 l;]l) , x1,T2 € R, has the eigenvalues +x1x2. But its eigenvectors cannot
2

be chosen continuously near 0, even after applying blow-ups or power substitutions.
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Let E be a locally convex vector space. We consider the final topology with
respect to the set C°(R, Eﬁ (a curve in FE is called C° if all derivatives exist
and are continuous — this is a concept without problems). This topology is called
the ¢*-topology on E. It coincides with the usual Mackey closure topologyiﬂ In
generaﬂ it is finer than the given locally convex topology, and it is not a vector
space topology, since addition is no longer jointly continuous. On Fréchet spaces it
coincides with the given locally convex topology.

The class of locally convex vector spaces admissible to convenient S calculus
is the class of convenient vector spaces, which satisfy some mild completeness con-
ditions. A locally convex vector space FE is said to be convenient if it is Mackey
completﬂ equivalently, if a curve ¢ : R — E is C*° if and only if it is scalarwise
C‘X’E A complex locally convex vector space is called convenient if the underlying
real space is convenient.

The main properties of the convenient calculus for S mappings (where S €
{C*>,H,C¥}) are the following:

(1) For c¢™-open subsets U C E, V C F, ... in convenient vector spaces we
can define S mappings, and the space S(U, F) is again convenient in a
suitable locally convex structure. Any S mapping is continuous for the
c“—topologiesm If E, F are Banach spaces, S(U, F') coincides with the
classically defined space@

(2) A mapping f: U — Fis S if and only if £o f is S for all £ in a subset of E’
(the dual consisting of all bounded linear functionals) which describes the
bornology. Multilinear S mappings are exactly the bounded ones. The
inclusion L(E, F') C S(E, F) gives a bornological embedding (where the
first space carries the topology of uniform convergence on bounded sets).

(3) The category of S mappings is cartesian closed, i.e., the exponential law
holds: We have a linear § diffeomorphism S(U x V,G) = S(U,S(V, G)).

(4) Uniform boundedness principles: (i) A mapping f : U — L(F,G) is §
if and only if evyof : U — G is S for all x € F. (ii) A linear mapping
f:E— S(V,G)is S (equivalently, bounded) if and only ifev, of : E — G
isSforallz e F.

(5) If f : U — F is S then the derivative df : U x E — F is S, and also
df :U — L(E,F) is S. The chain rule holds.

(6) The following canonical mappings are S.

ev:S(E,F)x E—F, (f,x)— f(x)

ins: E—-S(F,ExXF), zw— (y~— (z,v))

( )" :S(E,S(F.G) = S(ExFG), fzy)=/[f(=))
() :S(ExF.G)=SESEFQ) f'(2))=f(zy)
comp : S(F,G) x S(E,F) — S(E,G), (f,g)— fog

48 The set C*>° (R, E) does not depend on the locally convex topology of E, only on its
associated bornology (the system of bounded sets).

49 The final topology w.r.t. all Mackey convergent sequences z, — x (i.e., there exists a
sequence A\, — oo in R with Ay (2, — ) bounded).

50 On the space of test functions for example.

51 Mackey Cauchy sequences (i.e., Apm(Zn — Tm) is bounded for some Apm — oo in R)
converge in E.

52 0o ¢ is C* for all continuous (equivalently, bounded) linear functionals £ on E.

53 There are S mappings which are not continuous w.r.t. the given locally convex topologies.
This is unavoidable. For example the evaluation £ x E* — R is jointly continuous if and only if
E is normable, but it is always of class S.

54 Actually, the notion of C'*° coincides with all other reasonable classical definitions on
Fréchet spaces.



xiv PREFACE

S( ) ):S(F,Fl)XS(El,E)—>S(8(E,F),S(E1,F1)),
(f,9) = (h+ fohog)
I1:1I8EF) = S BT F), [T (@) = (filea)

Usually the hardest part is to prove that the notion of S mapping used on
convenient vector spaces coincides with the classical definition on Banach spaces.
For § = C* a mapping f : U — F is C* if and only if f o c is C* for each
¢ € C°(R,U). In finite dimensions (U C R™ and F' = R) this is due to [Bom67];
it is turned into a definition in infinite dimensions. For S = H let D C C be the
open unit disk and let H(D, FE) be the space of all mappings ¢ : D — E such that
loc:D — C is holomorphic for each continuous (equivalently, bounded) complex-
linear functional ¢ on E. A mapping f : E — F between complex convenient
vector spaces (or ¢™-open sets therein) is called H if f o ¢ is in H(D, F)) for each
c € H(D, E) (cf. [Fan30, [Fan33]). One can show that a mapping is H if and only
if it is separately H (generalized Hartog’s theorem), so by the classical Hartog’s
theorem we have recovered the usual definition in finite dimensions. For § = C¥
acurve ¢ : R — E is called C¥ if £ o ¢ is C¥ for every continuous (equivalently,
bounded) linear functional ¢ on Eﬂ A mapping f : U — F is called C¥ if it
is C* (i.e., maps C*° curves to C° curves) and maps C% curves to C* curves.
Actually, it suffices that a C°° mapping f be C*¥ along all affine lines in E. Thus,
by [Boc70, [Sic70, [BST71], we have recovered the classical definition on Banach
spaces. For S € {Lipk, Ck*}, a mapping f : U — F is S if and only if it is S along
C®° curves; but the exponential law, for instance, does not hold in these cases.

2.2. Denjoy—Carleman classes. Denjoy—Carleman differentiable functions
form spaces of functions intermediate between real analytic and C'*°. They are
described by growth conditions on the Taylor expansions. Under appropriate con-
ditions the fundamental results of calculus still hold: stability under differentia-
tion, composition, solving ODEs, taking the inverse. See the survey [Thi08] (also
IKMRO09a], p. and references therein. Denjoy—Carleman classes, more gener-
ally ultradifferentiable function classes (and ultradistributions), play an important
role in harmonic analysis and PDEs.

Let M = (M) be an increasing sequence of positive real numbers with My = 1.
Let U C R™ be open. A Denjoy—Carleman class CM(U) is the set of functions
f € C>(U) such that, for all compact K C U, there exist positive constants C' and
p such thaﬁ

(2.1) 0% f(x)| < Cpl*l|a|!M), for all a € N",z € K.

For the constant sequence My = 1 we get the real analytic functions. The following
table relates properties of the weight sequence M with properties of C™. Note that,
for the sake of brevity, the conditions for M therein are not always minimal; e.g.,
for CM(U) to be a ring it is enough that M is weakly log-convez (i.e., (k!My)y is
log-convex). (The mapping T, : CM(U) — FM is the Taylor series homomorphism
at a € U, where FM denotes the ring of formal power series F' = Yoo Foar® inn
variables such that, for some C,p > 0, |F,| < Cpl®l M, for all a.)

55 Surprisingly enough one has to deviate from the most obvious notion of real analytic
curves (i.e., locally given by power series which converge in the topology of E) in order to get a
meaningful theory.

56 This definition yields Denjoy—Carleman differentiable functions of Roumieu type. If we
require that for every compact K C U and every p > 0 there exists C' > 0 such that (2.1) holds,
then we obtain Denjoy—Carleman differentiable functions of Beurling type.
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Properties of M

Properties of CM

(always assumed below this line)

M increasing, My =1, = | C¥(U) CCM(U) CC>=()

(always assumed below this line)

M is log-convex = | CM(U) is a ring.

(always assumed below this line), CM is closed under composition.

ie., MZ < My_1 My, for all k. CM is closed under applying the

Then: (My)'/* is increasing, inverse function theorem.
My My, < M4y, for all [, k, CM is closed under solving ODEs.
and M My, > M; M,, o M,
for a; €N>0,a1—|—---—|—aj = k.

supk€N>0(Mk/Nk)1/k < o0 s | cMU) coNW)

SUPgen., (Mk)l/k < o0 & | C¥(U) =CcM(U)

supgen. o (Mi1/Mi)'/* < o0 & | CM is closed under derivation.

oo M, _
> k=0 (k+1)1)\c/1k+1 =
or, equivalently,

> e () =00

|
[ &

CM is quasianalytic,
ie., T, : CM(U) — FM is injective
(not surjective if C¥(U) € CM(U)).

Then M is strongly regular.

Yoo Mij’\j[m < 0 & | CM is non-quasianalytic.

Then C™ partitions of unity exist.
limy, o0 (M) /¥ = 00 and & | C¥(U) C CM(U) and

M, . C

dohe; (k+f\)41’f/[k+1 < O3 T, : CM(U) — FM is surjective, i.e.,
for all j € N and some C' CM is strongly non-quasianalytic.
M has moderate growth, i.e., = | CM is cartesian closed
Stu,keNm(z\]/\[/?Uk YR < 0o (see below)
M is strongly regular, i.e., = | Whitney’s extension theorem
it is strongly non-quasianalytic holds in CM.
and has moderate growth.
§ >0 and My = (k!)? for k € N. & | CM is the Gevrey class G119,

Note that, if M is log-convex, closed under derivation, and quasianalytic, then

C = CM admits resolution of singularities.

Let M be log-convex. For any p > 0 and K C U compact with smooth

boundary,
CYH(EK) = {f € C®(K) : | fllo.xc < o0}
with 0% ()]
“f(x
= _— n
£l 5 SuP{plal M aeN' x€ K}

57 This is a version of the famous Denjoy—Carleman theorem [Car26]|. For contem-

porary proofs see for instance [Hor83al or [Rud87].
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is a Banach space. The space CM (U) carries the projective limit topology over
compact K C U of the inductive limit over p € N5 g:
M o : M
(2:2) CY(U) = lim ( lim C.'(K)),
KCU p€Nsg

. M . .
where hi)np C) (K) is a Silva spacﬁ

Contributions by the author. In [KMRO09a], p. we proved that non-
quasianalytic Denjoy—Carleman differentiable functions admit a convenient setting
with the properties (1)—(6) as explained in More precisely: Let L be non-
quasianalytic and log-convex. We soon noticed that the most naive notion of C'*
mappings in infinite dimensions (by simply requiring the growth conditions on the
derivatives in the obvious way) did not work out: the exponential law and scalar-
wise testing would fail. This led us to the following definitions. A curve c: R — F
in a convenient vector space E is called C* if £ o ¢ is C¥ for all continuous linear
functionals ¢ € E* (equivalently E’). It turned out to be actually sufficient to test
with bounded linear functionals which together detect bounded sets@ A mapping
f : U — F between convenient vector spaces, U c®-open in E, is called C if f
is C> and it maps CF curves to C* curves. Then CF is obviously stable under
composition. We proved that this notion coincides on Banach spaces with the clas-
sical definition of C'* given by growth conditions on the derivatives. Moreover, we
showed that f is CF if and only if it is C* along all C* curves (so in the definition
‘C*’ is superfluous). The reason for this is the fac@ that, thanks to C'* partitions
of unity for non-quasianalytic L, for any sufficiently fast converging sequences of
points x, and directions v,, we can construct a C* curve through the points z,,
having the v,, as its tangent vectors.

We equipped the space C(U, F) with the initial locally convex structure with
respect to the family of mappings

(2.3)  CL,F) X, GLR,R), frslofoc, (€E*ceCLR,U),

where CF(R, R) carries the locally convex structure described in . This struc-
ture is weaker than the structure in , but the bornology is the same. The space
CI(U, F) is convenient.

The uniform boundedness principles for C* were derived using the closed graph
theorem for the webbed space li_rr>1p€N>0 Cl(K) (where K C R compact). As corol-

laries we obtained (among others) a multitude of different description of the bornol-
ogy of CE(U, F).

Not surprisingly, the derivative of a C* mapping f : U — F is again CL,
provided that L is closed under derivation.

For cartesian closedness, i.e., CX(U x V,G) = CL(U,CE(V,G)), we have to
impose an additional condition which is required for the direction ‘from left to right’
(without that condition the implication is wrong): L must be of moderate growth,

ie., sup; pen., ( LL]’E’Z YW GHR) < oo Thus we proved that, if L is non-quasianalytic,

log-convex, and of moderate growth, then there is a linear C* diffeomorphism
CL{UxV,G) = CE(U,CH(V,Q)). The proof is first carried out for U =V = G =R
and then obtained for the general situation via the structure (2.3)).

58 An inductive limit of Banach spaces such that the canonical mappings are compact.
59 T C E’ such that B C E is bounded if and only if £(B) is bounded for all £ € 7.
60 1t already appeared in [Bom67].

0] 9% £ (2,y)|
JIkIM; My, p] ok
is bounded. Note that moderate growth implies closedness under derivation.

(n)
61 Moderate growth essentially means that is bounded if and only if %
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Finally, we gave applications to the theory of manifolds of mappings. Let L be
non-quasianalytic, log-convex, and of moderate growth. A C-manifold is a C*
manifold modelled on a ¢*°-open subset of a convenient vector space such that all
chart changings are C' mappings; likewise for C“-bundles and C* Lie groupsﬂ
We proved the following: If A and B are finite dimensional C*-manifolds with A
compact, then the space C*(4, B) of all C mappings A — B is a C-manifold
modelled on convenient vector spaces CL(A « f*TB) of CF sections of pullback
bundles along f : A — B. Moreover, a curve ¢ : R — CT(A, B) is CF if and only
if & :Rx A— Bis CF. As a corollary, composition CL(Ay, B) x CL (A, Ay) —
CL(A1,B), (f,g9) — fog,is CL but not bette@ (here A;, B are finite dimensional
C’-manifolds with A; compact). For a compact C“-manifold A, the group Diff ¥ (4)
of all C* diffeomorphisms of A is an open subset of the C'-manifold C*(A, A).
Moreover, it is a C’L—regularﬁ CT Lie group (not better): Inversion and composition
are CL. Tts Lie algebra consists of all C-vector fields on A, with the negative of the
usual bracket as Lie bracket. The exponential mapping is C*. It is not surjective
onto any neighborhood of Id 4.

In [KMRO9b], p.[121] we developed the convenient setting (with the properties
(1)—(6) as explained in for some quasianalytic Denjoy—Carleman classes. Let Q
be a quasianalytic log-convex weight sequence. The lack of C? partitions of unity
prevented that we just used the approach that had worked in the non-quasianalytic
case. Indeed, a mapping which sends C? curves to C% curves need not be C? (even
in R? and for C% = C“)ﬁ In the real analytic case we get a characterization of C*
if we additionally require that C'*° curves are sent to C'* curves. This is what the
C“ convenient setting is based on. There is also a subtlety in the proof of the C*
exponential law which was resolved by using that on Banach spaces real analytic
mappings extend locally as holomorphic mappings on the complexification. So, in
order to follow the strategy for C*, one first would have to show that a mapping
is C9 if and only if it is C°> and maps C© curves to C? curves. That is a difficult
open problem. And even if that were accomplished there is still the mentioned
subtlety, and now the Taylor series will not converge. Consequently, we had to
come up with a completely different method.

The idea was to describe quasianalytic classes C9 as intersections of non-
quasianalytic classes. In fact, due to [Bom65], for each quasianalytic log-convex
weight sequence @, we have C% = nLeﬁw(Q) CL, where L,,(Q) denotes the set of all
non-quasianalytic, weakly log-convex L > Q (weakly log-convex means that (k!Ly)g
is log-convex). But we had to improve on this result: convenient calculus is based
on composition, and stability of C* under composition necessitates log-convexity
(instead of just weak log-convexity). Indeed we proved that, under a technical
condition on @, we have C%¢ = ﬂLeL‘(Q) CL, where £(Q) denotes the set of all non-

quasianalytic, log-convex L > Q. If C? is representable in this manner, we say that
Q is L-intersectable. However we did not get all quasianalytic Denjoy—Carleman
classes that way, in particular, the real analytic class: The smallest L-intersection,

62 Note that any finite dimensional (always assumed paracompact) C'°°-manifold admits a
C*°-diffeomorphic real analytic structure, thus also a C'L-structure. We do not know whether any
finite dimensional CL-manifold admits a CL-diffeomorphic real analytic structure.

63 If N is another non-quasianalytic log-convex weight sequence of moderate growth with
(Ni /L)Y, 0 then composition is not CV.

64 A CL Lie group G with Lie algebra g = T.G is called CL-regular if the following holds: For
each CT-curve X € CT(R, g) there exists a CL-curve g € CF(R,G) (uniquely determined by its
initial value g(0)) whose right logarithmic derivative is X, and the mapping evolf, : CM(R, g) — G,
evoll,(X) = g(1), is CT.

65 The mapping (z,y) — % is not differentiable but arc-analytic, i.e., analytic along

analytic arcs. Arc-analytic functions need not even be continuous, cf. [BMP91].
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obtained by taking the intersection of all C* with non-quasianalytic log-convex
L, turns out to be the Denjoy—Carleman class C? with Qx = (klog(k + €))*/k!,
and is strictly larger than C* (cf. [Rud62])m We constructed countably many
L-intersectable quasianalytic log-convex weight sequences @@ which also satisfy all
other conditions necessary for convenient calculus (like moderate growth).

So we were led to the following definition: For @ quasianalytic log-convex L-
intersectable, a mapping f : E 2 U — F between convenient vector spaces (U
c®-open in E) is called C? if it is C* (i.e., it maps C¥ curves to CF curves) for all
L € £(Q). The space C?(U, F) is equipped with the initial convenient structure
induced by the family of mappings

COU,F)— CHU,F), LeLQ),

where CL(U, F) carries the structure described in (2.3).

With this definition we succeeded to develop the convenient setting for C?
mappings with the properties (1)-(6) as described in[2.1} In order to do so we had to
prove stronger versions of many results of [KIMRO09al, p. for non-quasianalytic
L which are not derivation closed, and sometimes even not log-convex. For the C?
exponential law C?(U x V,G) = C9(U,C9(V,G)), for instance, we could not just
use the CT exponential law, since for an L-intersectable @ of moderate growth,
there is no guarantee that each L € £(Q) has moderate growth (needed for the
exponential law). Instead we used that, (i) for each L', L? € L, (Q) there is a
L € L,(Q) such that L < L', L% and (ii) for each L € £, (Q) there exists a
L' € L£,(Q) such that L}, < CITRL; Ly, for some C > 0 and all j,k. We were
not able to show (i) for £(Q) instead of £,,(Q), and therefore we could not reduce
the exponential law to the case U = V = G = R (as in [KMRO09a), p. 1.
Nevertheless, we successfully reduced to the Banach space situation, where the C%
structure can equivalently be described by boundedness conditions (in the spirit of
£2).

Among other applications we have the following canonical bornological isomor-
phisms (induced by a flip of variables): Let M be non-quasianalytic log-convex
or quasianalytic log-convex L-intersectable; likewise M’. Let E, F' be convenient
vector spaces and let W; be ¢*°-open subsets in such. Thenﬂ

(W]_,CM (W27 )) gCM/(W270A/I(Wl7F))

(W17COO(W27 )) gCOO(WQaCM(leF))

(Wl,C‘”(Wz, ))%C“(W%CM(WMF))

CM (W, 6 ( ))N€°°(X CM(Wl, F))
CM (W, Lip* (X, F)) = Lip" (X, CM (W, F))

Again we gave applications to manifolds of mappings: Let @@ be quasianalytic
log-convex L-intersectable of moderate growth. The space C?(A, B) of all C?
mappings between finite dimensional C%-manifolds (with A compact for simplicity)
is again a C'@-manifold, composition is C%, and the group Difo(A) of all C®

diffeomorphisms of A is a C%-regular C? Lie group (not better). In the proofs we
used the fact that a mapping between C'®-manifolds is C? if and only if it maps

66 [Band6] showed that C* is the intersection of all CZ, where L runs through all non-
quasianalytic sequences with (k!Lj)/* increasing. Weakly log-convex L fulfill the latter condition.
67 For a definition of the spaces £°°(X, F) and Lip* (W, F) see [FK88] 3.6.1 and 4.4.1].



3. PERTURBATION THEORY FOR UNBOUNDED OPERATORS xix

C@ Banach plots to C? Banach plots@ A C° Banach plot in a C9-manifold X
is a C? mapping £ O D — X from an open unit ball D in a Banach space E.

3. Perturbation theory for unbounded operators

Let us resume the discussion of the contributions to the perturbation theory
for linear operators started in The theory developed in [KMRO9al, p. and
in [KMRO9D], p. enabled us to generalize our results for matrices to infinite
dimensional unbounded operators and to prove several new results.

The analytic perturbation problem for unbounded self-adjoint operators is
treated extensively in [Kat76]. However, it involves a lengthy struggle with several
different notions of analyticity in infinite dimension, which is easily resolved by the
convenient approach discussed in

3.1. Unbounded normal operators. Let ¢t — A(t) for t € T be a param-
eterized family of unbounded self-adjoint (or normal) operators in a Hilbert space
H with common domain of definition and with compact resolvent.

Let L = (Ly) and @ = (Q) be increasing sequences of positive real numbers
with Lo = Qg = 1. Let us assume that L is non-quasianalytic log-convex and that
@ is quasianalytic log-convex L-intersectable.

That A(t) isa Cv, CF, C9, C>, or C¥ family of unbounded operators means
the following: There is a dense subspace V' of the Hilbert space H such that V is
the domain of definition of each A(t), and such that A(t)* = A(¢) in the self-
adjoint case, or A(t) has closed graph and A(t)A(t)* = A(t)* A(t) wherever defined
in the normal case. Moreover, we require that ¢t — (A(t)u,v) is of the respective
differentiability class for each v € V and v € H.

If t € T =R and all A(t) are self-adjoint then the following holds:

(A) If A(¢) is real analytic in ¢ € R, then the eigenvalues and the eigenvectors
of A(t) may be parameterized real analytically in ¢.

(B) If A(t) is C* in t € R and if no two unequal continuously parameterized
eigenvalues meet of infinite order at any ¢ € R, then the eigenvalues and
the eigenvectors of A(t) can be parameterized C* in t.

(C) If A(t) is C* in t € R, then the eigenvalues of A(t) may be parameterized
twice differentiably in ¢ (not bette@.

(D) If A(t) is C1® in t € R for some a > 0, then the eigenvalues of A(t) may
be parameterized in a C! way in ¢.

Part (A) is due to [Rel42| (see also [Bau72] and [Kat76l, VII.3.9]). Part (B)
was proved in [AKLM98]; the nonflatness condition is essential (see &), (C) and
(D) were proved in [KMO03].

Contributions by the author. If t € T = R and all A(t) are self-adjoint we have
furthermore:

(E) If A(t) is C? in t € R, then the eigenvalues and the eigenvectors of A(t)
may be parameterized C? in ¢.

(F) If A(t) is C* in ¢t € R and if no two unequal continuously parameterized
eigenvalues meet of infinite order at any ¢ € R, then the eigenvalues and
the eigenvectors of A(t) can be parameterized C in t.

If t € T =R and all A(t) are normal then the following holds:

68 We have to test along CL curves for all L in £(Q), but for those L we do not have cartesian
closedness in general. Testing along Banach plots is a workable replacement.
69 See the example in [KMO03].
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If A(t) is real analytic in ¢ € R, then for each ¢y € R and for each eigenvalue
A of A(tp) there exists N € Nsg such that the eigenvalues near A\ of
A(to £ s) and their eigenvectors can be parameterized real analytically
in s near s = 0.

If A(t) is C? in t € R, then for each to € R and for each eigenvalue A of
A(to) there exists N € N5 such that the eigenvalues near X of A(tg=+s")
and their eigenvectors can be parameterized C? in s near s = 0.

If A(t) is CF in t € R, then for each t; € R and for each eigenvalue A
of A(ty) at which no two unequal continuously arranged eigenvalues meet
of infinite order, there exists N € N5 such that the eigenvalues near A
of A(tp + sV) and their eigenvectors can be parameterized C* in s near
s =0.

If A(t) is C* in t € R, then for each tg € R and for each eigenvalue A
of A(tg) at which no two unequal continuously arranged eigenvalues meet
of infinite order, there exists N € N5 such that the eigenvalues near A
of Aty £ s™) and their eigenvectors can be parameterized C*° in s near
s =0.

If A(t) is C*° in ¢t € R and no two unequal continuously parameterized
eigenvalues meet of infinite order at any ¢t € R, then the eigenvalues and
the eigenvectors of A(t) can be parameterized by absolutely continuous
functions, locally in .

If t € T =R"™ and all A(t) are normal then the following holds:

(L)

(M)

If A(t) is C* (resp. C@) in t € R™, then for each to € R” and for each
eigenvalue A of A(tg), there exists a finite covering {m; : Uy, — W} of
a neighborhood W of ty, where each 7 is a composite of finitely many
mappings each of which is either a local blow-up with smooth center or
a local power substitution, such that the eigenvalues and the eigenvectors
of A(my(s)) can be chosen C¥ (resp. C®) in s. If A is self-adjoint, then
we do not need power substitutions.

If A(t) is C* (resp. C?) in t € R™, then the eigenvalues and their eigen-
vectors of A(t) can be parameterized by SBV functions, locally in .

Ift e T C E, a c™-open subset in an infinite dimensional convenient vector space
then the following holds:

(N)

(0)

For 0 < a < 1, if A(t) is C% in t € T and all A(t) are self-adjoint, then
the eigenvalues of A(t) may be parameterized in a C%® way in t.

For 0 < a < 1, if A(t) is C% in t € T and all A(t) are normal, then we
have: For each ty € T and each eigenvalue zy of A(ty) consider a simple
closed C'-curve v in the resolvent set of A(ty) enclosing only zy among
all eigenvalues of A(tp). Then for ¢ near ¢y in the ¢*>-topology on T, no
eigenvalue of A(t) lies on . Let A(t) = (A1(¢),...,An(t)) be the N-tuple
of all eigenvalues (repeated according to their multiplicity) of A(t) inside
7. Then t +— A(t) is C%® for t near ¢, with respect to the non-separating
metric

d(A, p) = min max [Ai — po)]

on the space of N-tuples.

(G), (J), and (K) were proved in [Rai09d], p. Part (N) was shown in
[KMRO09d], p.[153] The remaining parts (E), (F), (H), (I), (L), (M), and (O) were
established in [KMRO09c], p. Except for (O), they became possible only after
the convenient settings of C' and C% mappings were developed; in particular, the
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uniform boundedness principles. The condition that no two unequal continuously
parameterized eigenvalues have infinite order of contact cannot be droppedm

The proofs follow a general scheme: Let C* denote one of the classes C*, C'T,
C?, C>, or C**. Thanks to the corresponding uniform boundedness principles,
the assumption that ¢ — (A(t)u,v) is C*, for each v € V and v € H, implies that
t — A(t)u is C* (as a mapping into H), for each u € V. We proved (again using
uniform boundedness principles) that: If A(¢) is normal (resp. self-adjoint) and C*
in ¢, then the resolvenﬁ (t,2) — (A(t) — 2)~! € L(H,H) is C* on its natural
domain, the global resolvent set {(t,2) € T x C: (A(t) — z) : V — H is invertible}
which is open (and even connected).

Let z be an N-fold eigenvalue of A(tp). Choose a simple closed C! curve
in the resolvent set of A(tg) for fixed to enclosing only z among all eigenvalues of
A(tg). Since the global resolvent set is open, no eigenvalue of A(¢) lies on ~, for ¢
near tg. It turns out that

t— —L, /(A(t) —2)"tdz=: P(t,v) = P(t)

is a C* mapping. Each P(t) is a projection, namely onto the direct sum of all
eigenspaces corresponding to eigenvalues of A(t) in the interior of 7, with finite
constant rank. So for ¢ in a neighborhood U of ¢, there are equally many eigenvalues
in the interior of .

The family of N-dimensional complex vector spaces t — P(t)(H) C H, for
t € U, form a C* Hermitian vector subbundle over U of U x H — U. Now A(t)
maps P(t)(H) to itself; in a C* local frame it is given by a normal (resp. Hermitian)
N x N matrix parameterized C* by ¢t € U. Thus the (local) assertions follow from
the corresponding results for matrices (cf. [I.3). For (M) and (O) we used results
due to [Wey12] and [BDMSS]H

Let us conclude with two applications: Let X be a compact C? manifold and
let t — g; be a C9 curve of C? Riemannian metrics on X. Then we get the
corresponding C% curve ¢ — A(g;) of Laplace-Beltrami operators on L2(X). By
(E) the eigenvalues and eigenvectors can be arranged C%.

Let © be a bounded region in R™ with C? boundary, and let H(t) = —A+V(t)
be a C? curve of Schrédinger operators with varying C? potential and Dirichlet
boundary conditions. Then the eigenvalues and eigenvectors can be arranged C'%.
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70 See the example in [KMRO09d], p.

71 Note that the resolvent (A(t) —2z)~1 : H — H is a compact operator for some (equivalently
any) (,z2) if and only if the inclusion ¢ : V — H is compact, since ¢ = (A(t) — z) ! o (A(t) — 2) :
V-H—H.

72 Tt A, B be Hermitian N x N matrices with increasingly ordered eigenvalues \;(A) and
Xi(B), for 1 <4 < N. Then (due to [Wey12], see also [Bha97], II1.2.6])

max |A;(A4) = A;(B)| < |4 — Bl
Here || || is the operator norm. If A, B are just normal matrices with eigenvalues \;(A) and \;(B),
then (due to [BDMB83], see also [Bha97, VII.4.1])
min max [ (4) = Aoy (B)] < €A - B

g€S

for a universal constant C with 1 < C < 3.
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CHOOSING ROOTS OF POLYNOMIALS WITH SYMMETRIES
SMOOTHLY

MARK LOSIK AND ARMIN RAINER

ABSTRACT. The roots of a smooth curve of hyperbolic polynomials may not
in general be parameterized smoothly, even not C1¢ for any o > 0. A suffi-
cient condition for the existence of a smooth parameterization is that no two
of the increasingly ordered continuous roots meet of infinite order. We give
refined sufficient conditions for smooth solvability if the polynomials have cer-
tain symmetries. In general a C3" curve of hyperbolic polynomials of degree
n admits twice differentiable parameterizations of its roots. If the polynomi-
als have certain symmetries we are able to weaken the assumptions in that
statement.

1. INTRODUCTION

Consider a smooth curve of monic hyperbolic (i.e. all roots real) polynomials
with fixed degree n:

Pt)(x) = 2" — a1 ()2 +az(t)z" "2 — -+ (=1)"a, (1) (t € R).

Is it possible to find n smooth functions z1(t),..., 2z, (¢t) which parameterize the
roots of P(t) for each t? It has been shown in [Rel37] that real analytic curves
P(t) allow real analytic parameterizations of its roots, and in [AKLM98]| that the
roots of smooth curves P(¢) may be chosen smoothly if no two of the increasingly
ordered continuous roots meet of infinite order. In general, as shown in [KLMO04],
the roots of a C3" curve P(t) of hyperbolic polynomials can be parameterized
twice differentiable. That regularity of the roots is best possible: In general no
C1* parameterizations of the roots for any « > 0 exist which is shown by examples
in [AKLMO98], [BBCP06], and [Gla63]. Further references related to that topic are
[Bro79], [Man85], and [Wak86].

The space Hyp™ of monic hyperbolic polynomials P of fixed degree n may be
identified with a semialgebraic subset in R", the coefficients of P being the coor-
dinates. Then P(t) is a smooth curve in Hyp™ C R™. If the curve P(t) lies in
some semialgebraic subset of Hyp™, then it is evident that in general the conditions
which guarantee smooth parameterizations of the roots of P(t) are weaker than
those mentioned in the previous paragraph. In the present paper we are going to
study that phenomenon.

In section 3 we present a class of semialgebraic subsets in spaces of hyperbolic
polynomials for which we are able to apply the described strategy. The construction
of that class is based on results due to [SS87].

Our main goal is to investigate the problem of finding smooth roots of P under
the assumption that the polynomials P(t) satisfy certain symmetries. More pre-
cisely, we shall assume that the roots z1(t), ..., x,(t) of P(¢) fulfill some linear rela-
tions, i.e., there is a linear subspace U of R™ such that (z1(t),...,2,(t)) € U for all
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t. Then the curve P(t) lies in the semialgebraic subset E(U) of the space of hyper-
bolic polynomials Hyp" = E(R"™) = R"/S,, of degree n, where F = (Ey,...,E,)
and FE; denotes the i-th elementary symmetric function. The symmetries of the
roots of P(t) are represented by the action of the group W on U which is inherited
from the action of the symmetric group S,, on R™ by permuting the coordinates:

W =Ww({U):=N(U)/Z(U),

where N(U):={r€S,:7.U=U}and Z(U) :={r €S, :rx =z for all z € U}.

Under the additional assumption that the restrictions F;|y, 1 < i < n, gener-
ate the algebra R[U]" of W-invariant polynomials on U, we will show that the
conditions imposed on P(t) in order to guarantee the existence of a smooth param-
eterization of its roots may be weakened. These conditions will be formulated in
terms of the two natural stratifications carried by U and E(U) = U/W: the orbit
type stratification with respect to W and the restriction of the orbit type stratifica-
tion with respect to S,. The latter will be called ambient stratification. See section
4. It will turn out (section 5) that we may find global smooth parameterizations of
the roots of P(t), provided that P(t) is normally nonflat with respect to the orbit
type stratification of E(U) = U/W at any ¢. This condition is in general weaker
than the condition found in [AKLM98], since we prove in section 4 that normal
nonflatness with respect to the ambient stratification implies normal nonflatness
with respect to the orbit type stratification. For a definition of ‘normally nonflat’
see 2.5.

These improvements are essentially applications of the lifting problem tackled in
[AKLMOO0]. See also [KLMRO5] and [KLMRO6]. This generalization of the above
problem studies the question whether it is possible to lift smoothly a smooth curve
in the orbit space V/G of an orthogonal finite dimensional representation of a
compact Lie group G into the representation space V. Here the orbit space V/G
is identified with the semialgebraic subset o(V) in R™ given by the image of the
orbit map o = (o1,...,0,) : V. — R", where oy,...,0, constitute a system of
homogeneous generators of the algebra R[V]Y of G-invariant polynomials on V.
See section 2 for details.

As mentioned before a C3" curve P(t) of hyperbolic polynomials of degree n
allows twice differentiable parameterizations of its roots. Using results found for
the general lifting problem in [KLMRO6], we are able to lower the degree of regu-
larity in the assumption of that statement, if the polynomials P(t) satisfy certain
symmetries. See section 6.

A class of examples for which the described refinements apply will be constructed
in section 7. For illustration we consider the case when W is a finite reflection group
in section 8. Moreover, explicit examples will be treated.

The problem of finding regular roots of families of hyperbolic polynomials has
relevance in the perturbation theory of selfadjoint operators (e.g. [Kat76], [KMO03],
[Rel37]) and in the theory of partial differential equations for the well-posedness of
hyperbolic Cauchy problems (e.g. [Bro80], [H6r83)).

2. PRELIMINARIES

2.1. Representations of compact Lie groups. Let G be a compact Lie group
and let p : G — O(V) be an orthogonal representation in a real finite dimensional
Euclidean vector space V' with inner product {( | ). By a classical theorem of
Hilbert and Nagata, the algebra R[V]% of invariant polynomials on V is finitely
generated. So let o1,...,0, be a system of homogeneous generators of R[V]¢ of
positive degrees di,...,d,. Consider the orbit map o = (01,...,0,) : V. — R™.
The image o(V) is a semialgebraic set in Z := {y € R" : P(y) =0 for all P € I}
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where I is the ideal of relations between o4,...,0,. Since G is compact, o is
proper and separates orbits of G, it thus induces a homeomorphism between V/G
and o(V), by the following lemma.

Lemma. Suppose that X and Y are locally compact, Hausdorff spaces and that
f: X =Y is bijective, continuous, and proper. Then f is a homeomorphism.

Proof. (E.g. [Bre93]) By defining f(oo) = 00, f extends to a continuous map
f: XU{oc} — Y U{oo} between the one point compactifications, since it is
proper. If A C X is closed in X, then A U {oo} is closed in X U {oo} and hence
compact. Then, f(AU{oo}) is compact and hence closed in YU{oo}. Consequently,
f(A) = f(AU{o0}) NY is closed in Y. O

2.2. Description of 0(V). Let ( | ) denote also the G-invariant dual inner prod-
uct on V*. The differentials do; : V' — V* are G-equivariant, and the polynomials
v {(do;(v) | doj(v)) are in R[V]% and are entries of an n x n symmetric matrix
valued polynomial

{dos(v) | doi(v)) -~ (do1(v) | dow(v))
B(v) := : :
{dow(v) [ dov(v)) - (don(v) | dow(v))

There is a unique matrix valued polynomial B on Z such that B = Boo. The
following theorem is due to Procesi and Schwarz [PS85].

Theorem. o(V) = {z € Z : B(z) positive semidefinite}.

This theorem provides finitely many equations and inequalities describing o (V).
Changing the choice of generators may change the equations and inequalities, but
not the set they describe.

Foreach 1 <i; < - <ig<nand 1< j; < -+ <js <n (s <n) consider
the matrix with entries (do;, | doj,) for 1 < p,q < s. Denote its determinant by

A7ole. Then, A7) is a G-invariant polynomial on V, and thus there is a

unique polynomial A7'*/* on Z such that A]! 7" = Al o g,

s TL1see0yls

2.3. The problem of lifting curves. Let ¢: R — V/G = o(V) C R” be a smooth
curve in the orbit space; smooth as curve in R™. A curve ¢ : R — V is called lift
of cto V, if ¢ =0 oc holds. The problem of lifting smooth curves over invariants
is independent of the choice of a system of homogeneous generators of R[V]¢ in
the following sense: Suppose o7, ...,0, and 71, ..., T, both generate R[V]%. Then
for all 4 and j we have o; = p;(71,...,Tn) and 7; = ¢;(01,...,0,) for polynomials
pi and g;. If ¢ = (c1,...,¢p,) is a curve in o(V), then ¢ = (q1(c?), ..., ¢m(c7))
defines a curve in 7(V') of the same regularity. Any lift ¢ to V of the curve ¢, i.e.,
¢ =00¢, is alift of ¢ as well (and conversely):

" =(q1(c?), ..., qm(c”)) = (q1(0(T))y ..., gm(0(2)) = (11(€), ..., Tm(C)) =T 0 C.

2.4. Stratification of the orbit space. Let H = G, be the isotropy group of
v € V and (H) the conjugacy class of H in G which is called the type of an orbit
G.v. The union V(g of orbits of type (H) is called an orbit type submanifold of
the representation p and V(z)/G is called an orbit type submanifold of the orbit
space V/G. The collection of connected components of the manifolds {V(z)/G}
forms a stratification of V/G called orbit type stratification, see [Pfl01], [Sch80].
The semialgebraic subset o(V) C R™ is naturally Whitney stratified ([Loj65]). The
homeomorphism of V/G and ¢(V') induced by o provides an isomorphism between
the orbit type stratification of V/G and the primary Whitney stratification of o(V),



6 M. LOSIK, A. RAINER

see [Bie75]. These facts are essentially consequences of the slice theorem, see e.g.
[Sch80].

The inclusion relation on the set of subgroups of G induces a partial ordering on
the family of conjugacy classes. There is a unique minimum orbit type, the principal
orbit type, corresponding to the open and dense submanifold V,e; (respectively
Vieg/G) consisting of regular points, i.e., points where the isotropy representation
is trivial. The points in the complement Vg, (respectively Viing/G) are called
singular.

Theorem ([PS85]). Let B be as in 2.2. The k-dimensional primary strata of o(V')
are the connected components of the set {z € o(V') : rank B(z) = k}.

2.5. Smooth lifts. Let us recall some results from [AKLMOO].

Let s € Nyg. Denote by Ay the union of all strata X of the orbit space V/G
with dim X < s, and by I, the ideal of R[Z] = R[V]% consisting of all polynomials
vanishing on As_1. Let ¢: R — V/G = (V) C R™ be a smooth curve, t € R, and
s = s(c,t) a minimal integer such that, for a neighborhood J of ¢ in R, we have
¢(J) C As. The curve c is called normally nonflat at t if there is f € I, such that
f ocis nonflat at t, i.e., the Taylor series of f o ¢ at ¢ is not identically zero. A
smooth curve ¢: R — o(V) C R" is called generic, if ¢ is normally nonflat at ¢ for
each t € R.

It is easy to see, that c¢ is normally nonflat at ¢ € R if there is some integer
1 < r < n such that:

(1) The functions Afllf: o ¢ vanish in a neighborhood of ¢ whenever k > 7.

(2) There exists a minor Aﬁfr such that Afllfr o ¢ is nonflat at t.
Theorem. Let c: R — o(V) C R"™ be a smooth curve which is normally nonflat

att € R. Then there exists a smooth lift ¢ in V of c, locally near t. If c is generic
then there exists a global smooth lift ¢ of c.

2.6. Smooth roots. In the special case that the symmetric group S,, is acting
on R™ by permuting the coordinates there is the following interpretation of the
described lifting problem. As generators of R[R"]S» we may take the elementary
symmetric functions

Bj(w)= Y wyeewm,  (1<j<n),
1<in < <i;<n
which constitute the coefficients a; of a monic polynomial
P(z)=2" —a1z" ' 4+ (=1)ay,

with roots 21, ..., 2, via Vieta’s formulas. Then a curve in the orbit space R"/S,, =
E(R™) corresponds to a curve P(t) of monic polynomials of degree n with only real
roots (such polynomials are called hyperbolic), and a lift of P(t) may be interpreted
as a parameterization of the roots of P(t).

The first n Newton polynomials

Ni(x1,...,2n) = Zx;

which are related to the elementary symmetric functions by

(21) N — Np_1E1 + Ny _oFEy+ -+ + (*l)kilNlEk_l + (*l)kkEk =0 (k > 1)

constitute a different system of generators of R[R"]5». For convenience we shall

switch from elementary symmetric functions to Newton polynomials and conversely,
if it seems appropriate.
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Let us choose %Nj, 1 < j < n, as generators of R[R"]5» and put Ay := A}:
and Ay, == A} Then ([AKLMOYS])

(22) Ak(x) = Z (‘ril —1'1'2)2-'-(%11 _xik)Q"'<xik—1 _xik)Q'
i < <ip
Theorem ([AKLM98]). Consider a smooth curve P(t), t € R, of monic hyperbolic
polynomials of fixed degree n. Let one of the following two equivalent conditions be
satisfied:
(1) If two of the increasingly ordered continuous Toots meet of infinite order at
to then their germs at ty are equal. ~
(2) Let k be mazimal with the property that the germ at to of Ax(P) is not 0.
Then Ak (P) is not infinitely flat at tg.
Then P(t) is smoothly solvable neart = to. If (1) or (2) are satisfied for any ty € R,
then the roots of P may be chosen smoothly globally, and any two choices differ by
a permutation.

Lemma. Condition (1) (and thus condition (2)) in the above theorem is satisfied
if and only if P is normally nonflat at ty as curve in E(R™) =R"/S,,.

Proof. Let P be normally nonflat at ¢y. Let s be a minimal integer such that P(t)
lies in Ay for t near tg and let f € Iy be such that f o P is not infinitely flat at ¢g.
Denote by I, the ideal in R[R"] defining the closed subset 77 1(A,_1) C R", where
m: R" — R"/S, is the quotient projection. It is easy to see that the polynomials

filu.is - (xil - Ii2) e (xil - xis) e (xi571 - '/I:is)’
where 1 < 43 < --- < iy < n, generate I,. So there exist polynomials Q;, ;. €
R[R"™] such that
fom= Z Qiy.i fir.ie-
11<<ig
Denote by P(t) the lift of P(t) given by the increasingly ordered continuous roots
21(t), ..., x,(t) of the polynomial P(t). Then we have

foP(t)y= > Qi..i,oP(t)- fi. i oP(t)
1< <
Since f o P is not infinitely flat at tg, at least one of the summands in this sum is
not infinitely flat at tp and thus there is a polynomial f;, ;. such that f;, ;. o Pis
not infinitely flat at t,. By assumption, among the roots x1(t), ..., 2, (t) there are
precisely s distinct for ¢ near tg. Hence the germs at g of the roots x;, (¢),...,z;_(t)
are distinct, and no two of them meet of infinite order at t3. Therefore, condition
(1) in the above theorem is satisfied.
The other direction is evident by (2.2). O

3. LIFTING SMOOTH CURVES IN SPACES OF HYPERBOLIC POLYNOMIALS

3.1. The problem. Let us denote by Hyp™ the space of hyperbolic polynomials

of degree n
n

P(z)=2a"+ Z(—l)jajxnfj.

We may naturally view Hyp™ as a semialgebraic subset of R by identifying P with
(a1,y...,ay,). We have Hyp™ = E(R™) = R"/S,,, and, by means of 2.2, we may
calculate explicitly a set of inequalities defining Hyp™ (no equalities since the ring
R[R"]3» is polynomial).
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Suppose X is a semialgebraic subset of Hyp”™. Let ¢ : R — X be a smooth curve
in X; smooth as curve in R”. We may view c as a curve in Hyp", i.e., as a smooth
curve of monic hyperbolic polynomials of degree n. In 2.6 sufficient conditions for
the existence of a smooth lift ¢ to R", i.e., a smooth parameterization of its roots,
are presented. It is evident that a smooth curve ¢ in X in order to be liftable
smoothly over E to E~'(X) must in general fulfill weaker genericity conditions.
Our purpose is to investigate that phenomenon.

3.2. Orbit spaces embedded in spaces of hyperbolic polynomials. We recall
a construction due to L. Smith and R.E. Stong [SS87] (see also [BR83]) related to
E. Noether’s [Noel6] proof of Hilbert’s finiteness theorem as recounted by H. Weyl
[Wey39].

Let p : G — GL(V) be a representation of a finite group G in a finite dimensional
vector space V. Consider its induced representation in the dual V*. For an orbit
B CV* set

op(X) = H(X+b)
beB
which we regard as an element of the ring R[V][X], with X a new variable. The
polynomial ¢p(X) is called the orbit polynomial of B. Evidently, ¢5 € R[V]¢[X].
If | B| denotes the cardinality of the orbit B, we may expand ¢p(X) to a polynomial
of degree |B| in X,
¢p(X)= > Ci(B)X7,

i+j=|B|

defining classes C;(B) € R[V]% called the orbit Chern classes of B.

Theorem (L. Smith and R.E. Stong [SS87]). Let p : G — GL(V) be a faithful
representation of a finite group G. Then there exist orbits By,...,B; C V* such
that the associated orbit Chern classes C;(Bj), 1 < i < |B;|, 1 < j <, generate
R[V]E.

The field of real numbers may be replaced by any field of either characteristic
zero or characteristic larger than the order of G. For our purpose the reals will
suffice.

The Chern classes of the orbit are exactly the elementary symmetric functions
in the elements of the orbit. If B C V* is an orbit and V} is a vector space with
basis identified with the elements of B, then there is a natural map V; — V* given
by the identification. This map induces a map R[V3]%151 — R[V]¢ which sends the
k-th elementary symmetric function to the k-th orbit Chern class of B.

In this notation the above theorem says that there exist orbits By,...,B; C V*
such that the induced map

1
QR 121 — RV
i=1
is surjective.

The orbit Chern classes C;(B) of an orbit B, viewed as invariant polynomials on

V', define a G-invariant map

C(B) = (C1(B),...,C5|(B)): V — RIZI
whose image C(B)(V) is a semialgebraic subset of the space Hyp!?!
polynomials of degree |B|.

According to 2.1 and the above theorem, for any faithful representation p : G —
GL(V) of a finite group G there exist orbits By,...,B; C V* such that the map

C(p) = (C(By),...,C(By)) : V. — Hyp!"tl x ... x Hypl %1l C RIPiI+ 1B

of hyperbolic
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induces a homeomorphism between the orbit space V/G and the image C(p)(V)
which is a semialgebraic subset of Hyp‘B i ox HyplB i, By increasing the num-
ber of orbits B; if necessary, we may assume that each irreducible subspace of V'
contributes at least one orbit B;. Then, the linear forms b € By U - - - U B; induce
an injective inclusion V < RIBi++IBil

Let ¢ : R — C(p)(V) be a smooth curve. Then ¢ = (¢p,...,¢) where each
¢i : R — C(By)(V) is smooth. Since C(B;)(V) C Hyp®!l we may view ¢; as a
curve in Hyp‘Bi‘. If there exist smooth lifts ¢ : R — RIBil with respect to the
representations Sp,| : RIBil then ¢ = (¢1,...,¢) : R — RIFi++IBl i5 a smooth
lift with respect to S;p,| X -+ x S|, : RIPil*+Bil " Consequently, it suffices to
study the case when there is given a smooth curve in a semialgebraic subset of some
Hyp"™. That is exactly the problem introduced in 3.1.

Suppose ¢ : R — V is a smooth lift of ¢ with respect to p. Then, there exists
a smooth lift ¢ : R — RIB++IBil of ¢ with respect to the representation of
S|By| X+ X S|p, on RIBilIF+IBil ‘namely

Ve—————— RIBil++IB]

Rél(m(v)c—> Hyp'B'l x ... x HyplPl

It follows, by 2.5, that conditions which guarantee that c is generic as curve in the
orbit space V/G suffice to imply the existence of a smooth lift of ¢ with respect to
S|Bl| X e X S\Bl\ . R|B1|+“'+‘Bl‘.

We have seen that the above construction provides a class of semialgebraic sub-
sets of spaces of hyperbolic polynomials, namely orbit spaces of faithful finite group
representations, for which we are able to apply the strategy described in 3.1, thanks
to the results of 2.5.

In the remaining sections we shall change the point of view. Assume we are given
a curve of hyperbolic polynomials with certain symmetries. We will investigate
whether we can weaken the conditions in 2.6 which guarantee the existence of
smooth parameterizations of the roots. This will be performed in section 5. The
following section provides the necessary preparation.

4. ORBIT TYPE AND AMBIENT STRATIFICATION

Suppose U is a linear subspace of R™. Let the symmetric group S,, act on R™ by
permuting the coordinates and endow U with the induced effective action of

W =W(U):= NU)/Z(U),

where N(U) :={r €8S, :7.U=U}and Z(U) :={r €8S, : 7o =z forall x € U}.
Then U carries two natural stratifications: the orbit type stratification with respect
to the W-action and the restriction to U of the orbit type stratification of R™ with
respect to the S,,-action. It is easily seen that the latter indeed provides a Whitney
stratification of U. Let us denote it as the ambient stratification of U.

4.1. Proposition. Let U be a linear subspace in R"™ endowed with the induced
action by W = W(U). Then for the ambient and orbit type stratification of U we
have:

(1) Each ambient stratum is contained in a unique orbit type stratum.
(2) Each orbit type stratum contains at least one ambient stratum of the same
dimension and is the union of all contained ambient strata.
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Proof. To (1): Let S be an ambient stratum, i.e., S is a component of S,, R} NU,
where H = (S,,); for az € U and R}, = {y € R" : (S,,), = H}. Since S, is finite
and the manifolds 7.R% for 7 € S,, either coincide or are pairwise disjoint, the
components of S, .RY}, are open subsets of 7.R}, for 7 € S,,. Thus, we may assume
that S is a component of R N U.

Denote by 7 the quotient projection N(U) — N(U)/Z(U) = W. For any u € U
we have W, = 7(N(U) N (S,),) and thus R, NU C {u € U : W, = W,}. By
definition and a similar argument as above, the components of the subset {u € U :
W, = W, } are orbit type strata of U. So the ambient stratum S is contained in a
unique isotropy type stratum Rg.

To (2): Let R be an orbit type stratum and let & be the set of all ambient strata
S such that Rg = R, where Rg is the unique orbit type stratum from (1). Clearly,
R =|J6 and for each S € & we have dim S < dim R. Since the set & is finite,
there is a stratum S € & such that dim S = dim R. (|

4.2. Remarks. (1) It is easy to see that proposition 4.1 is true if one replaces the
S,-module R™ by any finite dimensional G-module V', where G is a finite group.

(2) Proposition 4.1 implies that the orbit type stratification of U is coarser than
its ambient stratification. That means, following [Pl01], that for each ambient
stratum S there exists an orbit type stratum Rg such that S C Rg, id|s: S — Rg
is smooth, and for all S C S’ we have Rg C Rg/. It remains to check the last
condition: Assume that S C S’. Since S € Rg and S C 8’ C Ry, we obtain
Rs N Rg # 0, and, by the frontier condition, Rg C Rg.

Assume that the restrictions Fj|r7, 1 < i < n, generate the algebra R[U]W. It
follows that E|y = (E1|y, ..., Fnlu) induces a homeomorphism between U/W and
the semialgebraic subset E(U) of R"/S,, = E(R™) = Hyp"”, by 2.1. It is well-
known that Ugy — Uggy/W, where H = W, for some u € U, is a Riemannian
submersion. Since W is finite, it is even a local diffeomorphism. By proposition
4.1, this implies that for any ambient stratum S in U the image F(S) is a smooth
manifold. The collection 7 = {E(S) : S ambient stratum in U} obviously coincides
with the collection obtained by restricting to E(U) the orbit type stratification of
R"/S,, = E(R™) = Hyp". It is easily verified that the frontier condition for the
orbit type stratification of R"/S,, = E(R™) = Hyp™ implies the frontier condition
for 7. Consequently, 7 provides a stratification of E(U). Let us denote this
stratification as the ambient stratification of E(U).

Consider a smooth curve ¢ : R — E(U) = U/W in the sense of 2.3. It may then
be also viewed as a smooth curve in R"/S,, = F(R"™) = Hyp"”. Thus it makes sense
to speak about the normal nonflatness of ¢ at some point ¢y with respect to the
orbit type stratification of U/W on the one hand and with respect to the orbit type
stratification of R™/S,, on the other hand. To shorten notation we shall say that ¢
is normally nonflat at ¢ty with respect to the ambient stratification of U/W iff it is
normally nonflat at ¢y, with respect to the orbit type stratification of R™/S,,.

4.3. Proposition. Let U be a linear subspace in R™ endowed with the induced
action by W = W(U) and assume that the restrictions E;|y, 1 < i < n, generate
R[UIW. Consider a smooth curve ¢ : R — E(U) = U/W. If c is normally nonflat
at to with respect to the ambient stratification of U/W, then it is normally nonflat
at to with respect to the orbit type stratification of U/W.

Proof. The set of reflection hyperplanes H of the reflection group S, is in bijective
correspondence with the set of linear functionals wg on R™ of the form z; — x; for
1 <i < j < n, namely H is the kernel of wy. Let us consider the restrictions
wg |y to U. If ¢ is normally nonflat at ¢y with respect to the ambient stratification,
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then, by lemma 2.6, any two of the increasingly ordered continuous roots of the
polynomial ¢(t) € E(U) C Hyp" either coincide identically near ¢y or do not meet
at tg of infinite order. Then for the continuous lift ¢ of ¢ defined by such a choice
of roots any function wg o ¢ either vanishes identically near ¢y, or does not vanish
at to of infinite order.

Let s be a minimal integer such that ¢(t) lies in A, orp for ¢ near to, where A b
is the union of all orbit type strata of U/W of dimension < s.

Denote by mpy the projection U — U/W. Let R be an orbit type stratum
contained in wgl(As_lmb) and let Sq,...,S; be the ambient strata of the same
dimension as R contained in R (see proposition 4.1). For each 1 < j < k denote
by H; the set of reflection hyperplanes for reflections in S,, fixing S; pointwise.
Let ©; be the set of linear functionals wy |y for H € H;. Put fr; = Zweszj w?.
By definition the equation fr; = 0 defines a linear subspace of U in which S; is
an open subset. Let fr = Hle fr,;. Consider the natural action of W on R[U]
and let W.fr = {fk,..., f} be the orbit through fr with respect to this action.
Define Fp = ff--- fll2 By construction Fr € R[U]" and the set Zr of zeros of Fr
viewed as a function on U/W is contained in As_1 or. Moreover, As_1 o is the
union of the Zg, where R ranges over all orbit type strata (of maximal dimension)
contained in 7r[71(AS_170rb). Thus F' =[], Fr, where the product is taken over all
orbit type strata (of maximal dimension) R contained in 7'('51 (As—1,0rb), is a regular
function on U/W whose set of zeros equals As_1 orb. By construction, the function
F o cis nonflat at tg.

This proves the statement. O

We define Fmp(c) (resp. Forp(c)) to be the set of all ¢ € R such that ¢ is normally
flat at ¢ with respect to the ambient (resp. orbit type) stratification of E(U). It
follows that in the situation of proposition 4.3 we have Fop,(¢) C Famp(€).

5. CHOOSING ROOTS OF POLYNOMIALS WITH SYMMETRIES SMOOTHLY

Consider a smooth curve of hyperbolic polynomials
Pt)(z) = 2™ —ar()z" "t +ag()a™ % — -+ (=1)"a,(t) (t € R).

We are interested in conditions that guarantee the existence of a smooth param-
eterization of the roots of P. Such conditions have been found in [AKLM98], see
2.6. There no additional assumptions on the polynomials P(t) have been made.

In this section we are going to improve those results if the set of roots
x1(t), ..., zy(t) of P(t) has symmetries additional to its invariance under permuta-
tions.

Let as assume that the additional symmetries of P(t) are given by linear relations
between the roots of P(t). Otherwise put, there is a linear subspace U of R”
such that (x1(¢),...,2,(t)) € U for all t € R. Then, the curve P(¢) lies in the
semialgebraic subset E(U) of Hyp™ = E(R"™) = R"/S,,, the space of hyperbolic
polynomials of degree n.

The linear subspace U C R inherits an effective action by the group W = W (U).

Let us suppose that the restrictions E;|i7, 1 < i < n, generate the algebra R[U]"W .
Then E|ly = (Eilu, ..., En|v) induces a homeomorphism between U/W and the
semialgebraic subset E(U) of Hyp”, by 2.1.

5.1. Lemma. Consider a continuous curve of hyperbolic polynomials
P(t)(z) = 2" — a1 ()"t + ag(t)z" 2 — -+ (=) "an(t)  (t €R).

Let U be some linear subspace of R™ and assume that the restrictions E;|y, 1 <i <
n, generate the algebra R[U]W(U). Then the following two conditions are equivalent:



12 M. LOSIK, A. RAINER

(1) There exists a continuous parameterization z(t) of the roots x1(t), ...,z (t)
of P(t) such that x(t) € U for all t € R.
(2) P(t) € E(U) for allt € R.

Proof. The implication (1) = (2) is trivial. Suppose that P(t) is a continuous
curve in E(U). By assumption, we may view P(t) as a curve in the orbit space
U/W(U) =2 E(U). Tt allows a continuous lift 2(¢) into U, by [KLMRO05] or [MY57],
which constitutes a parameterization of the roots of P(t). O

The smooth curve of polynomials P(t) which lies in E(U) may be viewed as a
smooth curve in the orbit space U/W in the sense of 2.3. A smooth lift of P(t) over
the orbit map E|y to the W-module U provides a smooth parameterization of the
roots of the polynomials P(t).

By theorem 2.5, we may conclude: If P(t) is normally nonflat at ¢t = t; with
respect to the orbit type stratification of E(U), then P(t) is smoothly solvable near
t=1p.

Consider the closed sets Fonp, (P) and Fy,,(P), as defined in section 4. By propo-
sition 4.3, the set Fop(P) is contained in Fapyp(P). We have found that that P(t)
is smoothly solvable locally near any ¢y € R\F,,(P). Any two smooth parame-
terizations of the roots of P(t) near such a ¢y differ by a constant permutation,
see theorem 2.6. Thus the local solutions may be glued to a smooth solution on
R\ Forn (P).

It follows from a result in [KLMO04] (see also [KLMRO6]) that any smooth curve
of monic hyperbolic polynomials of fixed degree allows a global twice differentiable
parameterization of its roots. By the methods used in [KLMO04], it is easy to
combine this with the result above in order to get the following theorem.

5.2. Theorem. Consider a smooth curve of hyperbolic polynomials
Pt)(z) = 2™ —ay()z"F +ag()a™ % — -+ (=1)"a,(t) (t € R).
Let U be some linear subspace of R™ such that:
(1) The restrictions E;|yy, 1 < i <n, generate the algebra R[U]W V).
(2) P(t) € E(U) for allt € R.
Then: There exists a global twice differentiable parameterization of the roots of P(t)
on R which is smooth on R\ Fy,(P). O

5.3. Remark. The orbit type stratification and the ambient stratification of E(U)
do in general not coincide, whence theorem 5.2 provides an actual improvement
of the statement of theorem 2.6. In other words, in general we have F,,(P) €
Famb(P). It may, for instance, happen that P(0) is regular in E(U) = U/W but
singular in Hyp” = R™/S,, and P(t) is normally flat at ¢ = 0 with respect to the

ambient stratification. See examples in section 8.

Let us suppose that a linear subspace U of R" is given. It is then a purely
computational problem to check whether the assumptions we have made in the
forgoing discussion are satisfied. There are algorithms in computational invariant
theory (e.g. [DKO02], [Stu93]) which allow to decide whether the restrictions E;|y,
1 < i < n, generate the algebra R[U]W(U). If the answer is yes, theorem 2.2
provides an explicit way to describe the semialgebraic subset E(U) C Hyp" by a
finite set of polynomial equations and inequalities. So the condition that the curve
P lies in E(U) may again be check computationally. The orbit type stratification
and the ambient stratification of E(U) can be determined explicitly using theorem
2.4. Then all ingredients are supplied in order to decide whether the curve P(t) is
normally nonflat at some t = ty with respect to the one or the other stratification
of E(U).
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Note that there are refined approaches and algorithms for computing the orbit
space V/G and its orbit type stratification of a G-module V' (when identified with
the image of its orbit map). In [SV03] rational parameterizations of the strata
are obtained, while [Bay04] provides an algorithm yielding a description of each
stratum in terms of a minimal number of polynomial equations and inequalities, if
G is finite.

We shall carry out that procedure explicitly in example 8.8.

6. CHOOSING ROOTS OF POLYNOMIALS WITH SYMMETRIES DIFFERENTIABLY

Consider a curve of hyperbolic polynomials
P(t)(z) = 2" — a1 ()2t + ag(t)z" 2 — -+ (=D)"an(t)  (t €R).
Then the following results are known:

6.1. Result. We have:*

(1) If all a; are of class C™, then there exists a differentiable parameterization
of the roots of P(t) with locally bounded derivative, [Bro79], [Wak86].

(2) If all a; are of class C*", then any differentiable parameterization of the
roots of P(t) is actually C', [KLMO04], [Man85].

(3) If all a; are of class C3", then there exists a twice differentiable parameter-
ization of the roots of P(t), [KLMO04].

In [KLMROG6] we have proved the following generalizations:

6.2. Result. Let p: G — O(V) be a finite dimensional representation of a finite
group G. Let d = d(p) be the mazimum of the degrees of a minimal system of
homogeneous generators oy, . .., o, of R[V]%. Write V = Vi @---®V] as orthogonal
direct sum of irreducible subspaces V;. Define k; := min{|G.v| : v € V;\{0}},
1<i<l, and k := max{d(p),k1,...,ki}. Let ¢c: R - V/G =c(V) CR™ be a
curve in the orbit space. Then:

(1) If c is of class C*, then there exists a differentiable lift of c to V with locally
bounded derivative.

(2) If c is of class C**1, then any differentiable lift of ¢ is actually of class C*.

(3) If c is of class C*+2%, then there exists a twice differentiable lift of ¢ to V.

Again we may use these facts in order to improve the results for curves P(t) of
hyperbolic polynomials with symmetries.

Let U be some linear subspace of R™ such that the restrictions F;|y, 1 < i < n,
generate the algebra R[U]W(Y), and P(t) € E(U) for all t € R. Tt follows that we
may view P(t) as a curve in the orbit space U/W (U) = E(U), and any lift of P(t)
over the orbit map E|y to U gives a parameterization of the roots of P(t) of the
same regularity.

Provided that the integer k, associated to the W (U)-module U as above, is less
than the degree n of the polynomials in P(t), we are able, using 6.2, to lower the
degree of regularity in the assumptions of the statements in 6.1. We shall give
examples in section 8.

* Due to [COPO08], for the existence of C'! (resp. twice differentiable) roots it actually suffices
that the coefficients a; are C™ (resp. C2").

f Due to [KLMROS], for the existence of a C! (resp. twice differentiable) lift it actually suffices
that c is C* (resp. CFT9).
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7. CONSTRUCTION OF A CLASS OF EXAMPLES

We will present a class of examples which our considerations apply to.

Let G C O(V) be a finite group whose action on the vector space V is irreducible
and effective. Choose some non-zero orbit G.v. Introducing some numbering we
can write G.v = {q1.v,...,g,.v}, where |G.v| = n and g; € G. We define a mapping
Fg)v :V —R" by

Fou(z)={qv|z),....(gnv|x)).

Since the linear span of G.v spans V/, the mapping Fg , is a linear isomorphism
onto its image Fg (V) =: Ug,. The linear space Ug, C R™ carries the action
of Wg ., := W(Ug,») and a natural G-action given by transformations from Weg ,.
Since the G-action is irreducible, so is the Wg ,-action. Hence Ug, C {y € R :
y1+- - -+yn = 0}. Irreducibility and effectiveness of the G-action induce an injection
G — Wg,,. Thus we may consider G as a subgroup of Wg ,, and in this picture
F¢ v is G-equivariant.

7.1. Remark. The linear space Ug , always intersects the submanifold of regular
points in the S,-module R™. Namely: For 1 < i < j < n we define U;; =
{Fg () : {(giv | ) = (gj.v | ), € V}. By definition, U, ; is a linear subspace
of Ug,, and UKJ- Ui ; is the set of singular points of the S,-module R" contained
in Ug,v. Since, by definition, g;.v # g;.v for any ¢ < j, we have dimU; ; = n — 1.

Thus, UKJ- Ui,; # Ug,, which gives the assertion.

Put Pg, := EFo Fg,. Then Pg, is proper, since E and Fg , are proper.
7.2. Lemma. Suppose that Pg, separates G-orbits. Then we have G = Wg,.

Proof. The groups G and Wg,,, have the same orbits in Ug,,,. For: Suppose that
7 € Wg,» and z,y € V such that Fg ,(y) = 7.Fg(x). Since Pg,, separates orbits,
it follows that there exists some g € G such that y = g.z, whence ¢g.Fg (z) =
T.Fa ().

Now choose x € V such that Fg ,(x) is a regular point of the W ,-module Ug,,, .
The regular points of any effective linear finite group representation are precisely
those with trivial isotropy groups. We may conclude that z is a regular point of the
G-module V. So [Wg 4| = |Waw.-Feo(z)| = |G.2| = |G|, and thus G = Wg,. O

If Pg., separates G-orbits, then, by lemma 7.2, the G = Wg ,-modules V' and
Ug,» are equivalent. In particular, it follows that the restriction E|y, , separates
Wa w-orbits, Fg , induces a homeomorphism between V/G and Ug /W, ., and
Fe o, R[Ug )& — R[V]% is an algebra isomorphism.

7.3. Proposition. The following conditions are equivalent:
(1) Pg, separates G-orbits.
(2) For all x € V we have Fg (G.x) =S, .Fgu(z) NUgyp.
(3) Pg., induces a homeomorphism between V/G and Pg (V).

Proof. Since FE separates S,-orbits, for each x € V there exists a z € R" such that
E~Y(2) =S,, .Fg»(x). Then the equivalence of (1) and (2) follows from

Pg 3 (2) = Fg o (S Fow(x)) = Fg o (S Fau(x) NUg.).
The equivalence of (1) and (3) follows easily from lemma 2.1. O
Note that the introduced construction of F¢ , and Pg , essentially coincides with
the construction of orbit Chern classes as described in 3.2.
Let us discuss uniqueness of the above construction. Suppose G C O(V) is a

finite group. Denote by Aut(G) the group of automorphisms of G. Let S be the set
of all reflections belonging to G. Denote by Aut(G, S) the group of automorphisms
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of G preserving the set S. Let a € Aut(G,S). A diffeomorphism 7' : V — V is
called a-equivariant, if T'o g = a(g) o T for any g € G (cf. [Los01]).

7.4. Lemma. Suppose G C O(V) is a finite group. Let a € Aut(G,S) and let
T:V —V be an a-equivariant diffeomorphism. Then the isotropy groups of x and
T(z) are isomorphic, for all x € V, T maps orbits onto orbits, and T induces an
automorphism of the orbit type stratification of V.

Proof. It is easily seen that Gr(,) = a(G;) and T(G.z) = G.T(z) for all z € V.
Further, it is evident that G, = gHg~! if and only if Gr@) = a(g)a(H)a(g)~*.
The statement follows. O

Let ¢ : R — V/G = o(V) € R™ be a smooth curve and ¢ : R — V a
smooth lift of ¢. The orbit space V/G has a smooth structure given by the sheaf
C>(V/G) = C=(V)¥ of smooth G-invariant functions on V. Then ¢ induces a
continuous algebra morphism ¢* : C*°(V/G) — C*°(R) and ¢ induces a continuous
algebra morphism ¢* : C*°(V) — C°°(R) such that ¢* = ¢ oo™*. This algebraic lift-
ing problem is equivalent to the geometrical one. It is evident that to determine ¢*
it suffices to know the images under ¢* of some system of global coordinate functions
T1,...,Tm, where m = dim V. The same is true for ¢*, and in this case we may take
the basic invariants o1, ..., 0, as global coordinates functions, by Schwarz’s theo-
rem [Sch75]. If f: V/G — V/G is a smooth diffeomorphism one can take instead
of the o; the functions f*(o;) with the same result. Thus, the problem of smooth
lifting is invariant with respect to the group of diffeomorphisms of V/G. Each
such diffeomorphism has a smooth lift to V' which is an a-equivariant diffeomor-
phism, for some a € Aut(G,S), see [Los01]. Conversely, any smooth a-equivariant
diffeomorphism of V' induces a smooth diffeomorphism of V/G, by lemma 7.4.

Therefore, we may regard two constructions as described above, carried out for
distinct points v and w in V, as equivalent with respect to our lifting problem, if
there exists a smooth a-equivariant diffeomorphism 7': V' — V with v = T'(w), for
some a € Aut(G, S).

If T is of a particular form, we can even say more.

7.5. Proposition. Suppose G C O(V) is a finite group. Let v,w € V\{0}. If there
exists a homothety or an a-equivariant linear orthogonal map T :' V. — V| for some
a € Aut(G, S), such that v = T(w), then Pg (V) and Pg.,(V) are homeomorphic,
and R[Ey 0 Fg .y, ..., Epo Fgy) and R[Ey 0 Fg, ..., Ey 0 Fg | are isomorphic.

Moreover, in both cases, the ambient stratifications of Ug , and Ug,, are iso-
morphic, i.e., there exists a linear isomorphism Ug,,, — Ug, mapping strata onto
strata.

Proof. If T is a homothety, then it is equivariant (e = id) and Ug, = Ugw.
If T is a-equivariant linear orthogonal, then, by lemma 7.4, the linear subspaces
Ug,» and Ug,,, of R™ differ only by a permutation from S,,. In both cases Pg (V)
and Pg (V) are homeomorphic, and T : R[E; 0 Fg,...,Ey 0 Fg,] — R[E; 0

Faw,. .., EnoFg,| is an algebra isomorphism.
The supplement in the lemma follows immediately from the fact that Ug , and
Ug,w differ only by a permutation of S,,. O

If P(t) is a smooth curve of hyperbolic polynomials lying in Pg (V) and provided
that the polynomials E;0Fg ,, 1 < ¢ < n, generate R[V]¥, we may apply the results
of sections 5 and 6.

We will investigate the case of finite reflection groups in the next section.
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8. FINITE REFLECTION GROUPS

Suppose U is a linear subspace of R”. Let the symmetric group S,, act on R™ by
permuting the coordinates and endow U with the induced action of W = W(U).
We shall assume in this section that W is a finite reflection group.

8.1. Remark. If W is a finite reflection group, proposition 4.1 reduces to the
following statement: Any reflection hyperplane of W in U is the intersection with
U of some reflection hyperplane of S,, in R™. For: Let H be a reflection hyperplane
of W in U. By proposition 4.1, there exists a ambient stratum S of U such that
S C H and dim S = dim H. Obviously, S C (R")gne NU, and so there are reflection
hyperplanes Py, ..., P, of S, in R™ which contain S. Since dim S = dim U — 1, there
isa 1 <i<nsuch that P,NU is a hyperplane in U. Since S is contained in both
H and P,NU, we have H = P,NU.

For any finite reflection group W C O(U) we may write U as the orthogonal di-
rect sum of W-invariant subspaces Uy = UW, Uy, ..., U, such that W is isomorphic
to Wo x Wy x --- x W;, where W; = {7y, : 7 € W}. Each W; (i > 1) is one of the
groups (e.g. [Hum90])

Ay, m > 1;B,m > 2;Dp,m > 415", m > 5,m # 6;
Go; H3; Hy; Fas Eg; E7; Eg

It follows that R[U]W = R[U;|"' @---@R[U))W and U/W =2 Uy /Wy x --- x U /W
A smooth curve ¢ = (eq,...,¢) in the orbit space U/W is then smoothly liftable
to U if and only if, for all 1 < ¢ < [, ¢; is smoothly liftable to U;. Note that
the orbit type stratification of U/W coincides with the product stratification of
the orbit type stratifications Z; of the factors U;/W;, i.e., the strata of U/W are
S1 X --+ xSy, where S; € Z;. Consequently, in order to apply the results of section
5 and section 6 we may consider each factor U;/W; separately. So let us assume
that U is an irreducible W-module.

To this end we have to check whether the restrictions F;|y, 1 < i < n, generate
the algebra R[U]". In practice this is easily accomplishable: The unique degrees
di,...,dp, where m = dim U, of the elements in a minimal system of homogeneous
generators of R[U]" are well known. It suffices to compute the Jacobian J of the
polynomials Ey, |7, 1 <i < m. If J # 0 € R[U] then they generate R[U]". Note
that a necessary condition for the E;|y7, 1 < i < n, to generate R[U]" is that the
degrees dy, ..., d,, must be pairwise distinct, see remark 8.4.

Let us carry out the construction presented in section 7 for finite irreducible
reflection groups G C O(V). Let v € V\{0}. If the polynomials E; o F , generate
the algebra R[V]Y, then Wg v is a finite irreducible reflection group as well, by
lemma 7.2.

Fix a system II of simple roots of G. For any v in the fundamental domain
C={zeV:{(x|r)>0forall r € II}, the isotropy group G, is generated by the
simple reflections it contains (e.g. [Hum90]).

8.2. Lemma. Let G C O(V) be a finite reflection group. Each automorphism
of the corresponding Cozxeter diagram I'(G) induces an a-equivariant orthogonal
automorphism of V. for some a € Aut(G, S).

Proof. ([Los01]) Since the vertices in the Coxeter diagram T'(G) represent the
simple roots of G, an automorphism ¢ of I'(G), defines uniquely an automorphism
a, € Aut(G,S). Suppose the simple roots have unit length. Since they form a
basis for V' the automorphism ¢ defines naturally an orthogonal automorphism 7,
of V. It is easily checked that T, is a,-equivariant. O
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8.3. Theorem. Suppose G C O(V) is a finite irreducible reflection group. Let
v € V\{0} such that the cardinality of G, is mazimal. Then: The polynomials
E;o0Fg,, 1 <i<n, generate R[V]G and Pg ., induces a homeomorphism between
V/G and Pg (V) if and only if G # D,,, m > 4.

Proof. By proposition 7.5 and lemma 8.2 it suffices to check the statement for one
single v # 0 with maximal G,. Choosing e; +- - -+ €, —mem 41, €1, and e; for A,,,
B, and 1", respectively, one obtains the usual systems of basic invariants. The
choice e; for Dy, yields Fp,, e, = FB,, e, Whence the polynomials F; o Fp |, ¢,, 1 <
i < n = 2m, cannot separate D,,-orbits. For the remaining irreducible reflection
groups the necessary computations have been carried out by Mehta [Meh88]. O

8.4. Remark. If for D,, with m odd one chooses v = e; + --- + e,,, then the
polynomials E; o Fp, ,, 1 <i <mn =2m"1 generate R[R™|P~_ since the Jacobian
of the polynomials N; o Fp, ., ¢ = 2,4,---,2n — 2,n, is up to a constant factor

given by [[,_; (z7 — x3). If m(> 4) is even, this cannot be true since there have to
be two basic invariants of degree m/2.

The following theorem is a corollary of theorem 8.3 and theorem 5.2.

8.5. Theorem. Suppose G C O(V) is a finite irreducible reflection group and G #
Dy, m > 4. Let v € V\{0} such that the cardinality of G, is mazimal. Let

Pt)(x) = 2" — a1()a" " + as(t)z" 2 — -+ + (=1)"an(t)  (t€R)

be a smooth curve of hyperbolic polynomials of degree n = |G.v| lying in Pg (V)
for allt € R. Then there exists a global twice differentiable parameterization of the
roots of P(t) on R which is smooth on R\ Foy,. O

8.6. Remark. It is easy to see that, under the assumption that the cardinality of
G, is maximal, the orbit type stratification and the ambient stratification of Ug ,
coincide only for G = A,,, B, I5'. In general, if |G, | is not maximal, the orbit type
stratification of Ug,,, will be strictly coarser than its ambient stratification.

It is easy to compute the integer k, associated to orthogonal representations of
finite groups G in 6.2, if G is a finite irreducible reflection group. See figure 1.

G A, |By | D |13 | Ge |Hs | Hy | Fy | Eg | Er | Eg
kilm+1|2m | 2m | m | 6 | 12 | 120 | 24 | 27 | 56 | 240

F1GURE 1. Irreducible Coxeter groups with associated integer k.

In the situation of theorem 8.5 the strategy discussed in section 6 will lead to no
improvement, since k = n by definition. But, if we choose v € V\{0} such that |G, |
is not maximal, then k < n and the methods of section 6 will yield refinements.

In many cases the following theorem provides an improvement of 6.1.

8.7. Theorem. Suppose G C O(V) is a finite irreducible reflection group. Choose
some v € V\{0}. Putn = |G.v| and let k be as in figure 1. Suppose that the
restrictions Ei|u, ,, 1 <i < n, generate R[Ug "¢ >. Let

P(t)(z) = 2" —ar(t)a" " +az()2" 7 — -+ (1) "an(t)  (tER)
be a curve of hyperbolic polynomials lying in Pg (V') for all t € R. Then:*

* Cf. footnotes on page 13.
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(1) If all a; are of class C*, then there exists a differentiable parameterization
of the roots of P(t) with locally bounded derivative.

(2) If all a; are of class C*+4, then any differentiable parameterization of the
roots of P(t) is actually C*.

(3) If all a; are of class C*T24 then there exists a twice differentiable parame-
terization of the roots of P(t). O

8.8. Example. Consider the Coxeter group Bs and choose v = e; + e + e3. We
find
Fg,o(x) = (x1 + 22 + 23, —21 + 22 + 23,21 — T2 + 73,21 + 2 — T3,
— 1 — Ta+ X3, —T1 + Tg — T3,T1 — Tg — T3, —T1 — T2 — T3)

and Up,, = {y €R® :y; +y; =0fori+j=9,y1 =y +ys+ ya}. It is easy to
check that No; o Fg, 4, 1 <4 < 3, generate R[R3]B2, by computing their Jacobian.
It is readily verified that the set of all reflection hyperplanes of Wg, ,, is given by
intersecting the following hyperplanes in R® with Ug, ,, (compare with remark 8.1):

{yl =Y2,Y1 = Y3, Y1 = Y4, Y1 = Y5, Y1 = Y6, Y1 = Y7,Y2 = Y3, Y2 = Y4,Y3 = y4}.

Furthermore, the intersections with Ug, . of the following hyperplanes in RS,

{1 =ys,¥2 = Y7, Y3 = Y6, Ya = Ys },

are not among the set of reflection hyperplanes of Wg, ,,. Therefore, the orbit type
stratification of U, . is strictly coarser than its ambient stratification.

We follow the recipe for computing orbit type and ambient stratification of
E(Ug,.v) = N(Up,,y) given at the end of section 5. We will present only the
outcome of the calculations. Using Na; o Fp, ., 1 < i < 3, as basic invariants of
R[R?]B3, we find that the symmetric matrix B = (b;;) from 2.2 has entries

511 = 32227 512 = 6424, 613 = 962’6, 622 = *32’3 + 362’22’4 + 3226,
- 1

bys = g(5z;} — 1082224 + 19222 + 544202),

- 1

b3z = a(mg — 3002524 — 11402927 + 114025 2 + 76802426).

Put A;; = det ( g;’l g;] ) where i < j. Then N (Usg, ) is the subset in R® defined
by the following relations
29 >0,A15>0,det B> 0
21 =23=25 =27=0,
3842 = 52y — 722324 + 4822 + 25622 26.
The 3-dimensional principal orbit type stratum is given by
R®) = N(Ug,.,) N {z2 > 0,A15 > 0,det B > 0}.
Put
f1 = 5325 — 8402324 + 16802222 + 614425 + 275223 26 — 16128202426 + 921622,
fg = zg’ — 122924 + 322¢.
There are three 2-dimensional orbit type strata
R = N(Ug,.) N {22 > 0,A15 >0, f; =0}
RY) = N(Ug, ) N {22 > 0,A15 = 0,Ag5 >0, f; = 0}

RY) = N(Us, ) N {z2 > 0,A13 > 0, f = 0},
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the three 1-dimensional orbit type strata Rgl), Rél), Rél) are the connected com-
ponents of

N(Ugy o) N{z2 > 0,A12 = Ayz = Ay = 0},

and R(®) = {0} is the only O-dimensional stratum.
The ambient stratification of N(Ug,,,) is obtained by cutting with the surface
{22 — 424 = 0}. There are two 3-dimensional ambient strata

S§3) = R® N {22 -4z, >0} and 553) = R® N {22 — 424 < 0},
five 2-dimensional ambient strata
S = RO 0 {23 — 424 = 0}, S = R N {22 — 4z, > 0},
S =R N {22 — 4z <0}, S =R, 8 = RY,

four 1-dimensional ambient strata S:El) = Rgl), Sél) = Rél), Sél) = Rél), S’il) =

R§2) N {23 — 424 = 0}, and S = R = {0} is the only O-dimensional ambient
stratum. See figure 2.

FI1GURE 2. The projection of N (Ug, ) to the {22, 24, 26 }-subspace
and intersection with the surface {22 — 424 = 0}.

Let f, g, h be functions defined in some neighborhood of 0 € R. Suppose that
f and g are infinitely flat at 0 and h(0) = 0. For ¢ near 0 consider the curve of
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polynomials P(t)(x) = 28 + Z?Zl(—l)jaj(t)xS_j where
ap =a3=as =a7 =0,
as = =56+ f, ag =784+ g, ag = —2304 + h,
1024ag = 16a3 — 128a3a4 + 256a3.

Then, for t near 0, P(t) is a curve in N(Ug,,) with P(0) € Siz). Att=01itis
normally flat with respect to the ambient stratification but normally nonflat with
respect to the orbit type stratification.

If f, g and h are smooth, then P(t) is smoothly solvable near ¢ = 0, by theorem
5.2. Note that in this example we have d = k = 6 < 8 = n and thus theorem 8.7
provides an actual improvement, too.

The following example shows that W (U) must not necessarily be a finite reflec-
tion group, even though the F;|y generate R[U]W (),

8.9. Example. Let U be the subspace of RS defined by the following equations
T1+To+23=0, x4+ 25+ 26 =0.

The subgroup N(U) of Sg is generated by all permutations of x1,x2,x3, all per-
mutations of x4, x5, x¢, and the simultaneous transpositions of x; and z4, o and
x5, x3 and xg. The subgroup Z(U) is trivial. Thus W(U) is isomorphic to the
semidirect product of Sz x S3 and Ss.

One can get the subspace U above as follows. Consider the point v =
(v,2,2,9,9,y) € RS, where x,y # 0 and & # y. The isotropy group H = (S¢)s
of v is evidently isomorphic to Sz x S3. Then U = ((R%)#)L. The group H is the
normal subgroup of W(U) generated by reflections.

First consider the action of H on U. It is clear that the algebra R[U]¥ is a
polynomial algebra generated by the basic generators

2 2

y1 =27 + 25 + 1122, 21 = 2102(71 + X2),
2 2

Yo = x5 + x5 + 2475, 22 = T425(T4 + X5).

Consider the space R* with the coordinates y1, 21,2, z2 and the action of the group
So on it induced by the action of So = W (U)/(S3 x S3) on the above basic gen-
erators. It is easy to check that this action coincides with the diagonal action of
Sy on (R?)? for the standard action of Sy on R?. Since the algebra of Se-invariant
polynomials on (R?)? is generated by the polarizations of basic invariants for the
standard action of Sy ob R? we get the following system of generators of R[U]W (V).
fi=yi+ys, =242, fs=yi+45, fa=wiz+ 2, fs =2+
Simple calculations for the restrictions of the Newton polynomials N; on R® to U
gives the following result:
Nily =0, Naoly =2f1, N3luv = =32,
Nilu =2fs, Nslu = =5fs, Nelu =3f5+3f1fs — f}.

This proves that the morphism R[RS]S — R[U]W () defined by restriction is sur-
jective.
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PERTURBATION OF COMPLEX POLYNOMIALS AND NORMAL
OPERATORS

ARMIN RAINER

ABSTRACT. We study the regularity of the roots of complex monic polynomi-
als P(t) of fixed degree depending smoothly on a real parameter t. We prove
that each continuous parameterization of the roots of a generic C*° curve P(t)
(which always exists) is locally absolutely continuous. Generic means that no
two of the continuously chosen roots meet of infinite order of flatness. Sim-
ple examples show that one cannot expect a better regularity than absolute
continuity. This result will follow from the proposition that for any tg there
exists a positive integer N such that t — P(to £ (t — to)?V) admits smooth
parameterizations of its roots near tg. We show that C™ curves P(t) (where
n = deg P) admit differentiable roots if and only if the order of contact of the
roots is > 1. We give applications to the perturbation theory of normal ma-
trices and unbounded normal operators with compact resolvents and common
domain of definition: The eigenvalues and eigenvectors of a generic C°° curve
of such operators can be arranged locally in an absolutely continuous way.

1. INTRODUCTION

Let us consider a curve of polynomials
P(t)(z) = 2" + Y _(~1)a;(t)z" 7,
j=1

where the coefficients a; : I — C, 1 < j < n, are complex valued functions defined
on an interval I C R. Given that the coefficients a; possess some regularity, it is
natural to ask whether the roots of P can be arranged in a regular way as well, i.e.,
whether it is possible to find n regular functions A; : I — C, 1 < j < n, such that
A1(t), ..., An(t) represent the roots of P(t) for each t € I.

This problem has been extensively studied under the additional assumption that
the polynomials P(t) are hyperbolic, i.e., all roots of P(t) are real. By a classical
theorem due to Rellich [Rel37a], there exist real analytic parameterizations of the
roots of P if its coefficients are real analytic. Bronshtein [Bro79] proved that if all
a; are of class C", then there exists a differentiable parameterization of the roots
of P with locally bounded derivative (see also Wakabayashi [Wak86] for a different
proof). It has been shown in [AKLMO98] that if all a; are smooth (C°°) and no two
of the increasingly ordered (thus continuous) roots meet of infinite order of flatness,
then there exist smooth parameterizations of the roots. Moreover, by [KLMO04], the
roots may always be chosen twice differentiable provided that the a; are C3". The
conclusion in this statement is best possible as shown by an example in [BBCP06].
Recently, also the best possible assumptions have been found by [COPO0S8]: If the
coefficients a; are C™ (resp. C*"), the roots allow C' (resp. twice differentiable)
parameterizations. For further results on this problem see also [Gla63], [Die70],
[Man85], [CC04], [LRO7], [KP0S].

2000 Mathematics Subject Classification. 26C10, 30C15, 47A55, 47TA56.
Key words and phrases. regular roots of polynomials, perturbation of normal operators.
The author was supported by the Austrian Science Fund (FWF), Grants P 17108-N04 & J2771.
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If the hyperbolicity assumption is dropped, then there is the following general
result (e.g. [Kat76, II §5 5.2]): There exist continuous functions \; : I — C, 1 <
7 < n, which parameterize the roots of a curve of polynomials P with continuous
coefficients a; : I — C, 1 < j < n. Note that, in contrast to the hyperbolic
case, there is no hope that the roots of a polynomial P which depends regularly
on more than one parameter might be parameterized even continuously; just take
P(t,s)(z) = 22 — (t +1is), where t,5 € R and i = /—1. Of course, in that example
the roots are given as 2-valued analytic function with branching point 0 in terms
of a Puiseux series, e.g. [Bau72, Appendix], but we do not go into that in this
note. Here we restrict our attention to the one parameter case. In the absence of
hyperbolicity the roots of a Lipschitz curve ¢t — P(t) of polynomials of degree n
may still be parameterized in a C%'/" way, locally, which follows from a result of
Ostrowski [Ost40], but we cannot expect that the roots of P are locally Lipschitz
continuous even when the coefficients a; are real analytic; for instance, consider
P(t)(z) = 22 — t, t € R. However the roots of P may possess a weaker regularity:
They may be parameterized by locally absolutely continuous functions. In fact,
Spagnolo [Spa99] proved that there exist absolutely continuous parameterizations
of the roots of P on compact intervals I if one of the following conditions holds:

(1) n =2 and the coefficients a; belong to C%,
(2) n =3 and the coefficients a; belong to C*® (the case n = 4 is announced),
(3) P(t)(z) = 2™ — f(t) and f belongs to C?"*1,

The proof makes essential use of the explicit formulas for the roots of P available
in those cases.

In this paper we extend this result to generic smooth curves of polynomials P of
arbitrary degree n. We say that P is generic if no two of the continuously arranged
roots of P meet of infinite order of flatness. We show in section 3 that, if the a; are
smooth, then there exists an absolutely continuous parameterization of the roots
of P on each compact interval I; actually, any continuous parameterization of the
roots is locally absolutely continuous. In particular, these conditions are satisfied
if the coefficients a; are real analytic or, more generally, belong to a quasianalytic
class of C"*° functions. The main ingredient in the proof is the proposition 3.2 that
for any to € I there exists a positive integer N such that t — P(to £ (t — to)™V)
admits smooth parameterizations of its roots near tg. It is not known whether
the roots of P may be arranged in a locally absolutely continuous way if P is not
generic. That problem requires different methods.

In section 4 we find conditions for the existence of differentiable parameteri-
zations of the roots of P. Evidently, a necessary condition is that there exists a
continuous choice of the roots such that whenever two of them meet they meet
of order > 1. We show that this condition is also sufficient, provided that the
coefficients a; of P belong to C™.

In section 5 we discuss a reformulation of the problem in terms of a lifting problem
which has been discussed in [AKLMO00] and [KLMRO05, KLMR06, KLMR08a]. This
yields implicit sufficient conditions for a curve of polynomials P to allow smooth,
C*', or twice differentiable parameterizations of its roots. As application we discuss
the quadratic case.

Applications to the perturbation theory of normal matrices are given in section
6. The eigenvalues and eigenvectors of a generic smooth curve ¢ — A(t) of normal
complex matrices may be parameterized locally in an absolutely continuous way.
The curve t — A(t) is called generic if the associated characteristic polynomial
t +— Xa( is generic. Examples show that without genericity or normality of A(t)
the eigenvectors need not admit continuous arrangements. We also prove that, for
each t( there exists a positive integer N such that t +— A(tg + (t — to)V) allows a
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smooth parameterization of its eigenvalues and eigenvectors near ty. If A is real
analytic, then the eigenvalues and eigenvectors of ¢ — A(tyg & (t — o)) may be
arranged real analytic as well.

In section 7 we obtain analogous results for curves ¢ — A(t) of unbounded normal
operators in a Hilbert space with common domain of definition and with compact
resolvents.

For more on the perturbation theory of linear operators consider Rellich [Rel37a,
Rel37b, Rel39, Reld0, Rel42, Rel69], Kato [Kat76], Baumgértel [Bau72], and also
[AKLM98], [KMO03], and [KMRO09].

2. PRELIMINARIES

2.1. Let
n n
P(z) =2"+ Z(—l)jajz”_] = H(z - )

j=1 j=1
be a monic polynomial with coefficients aq,...,a, € C and roots Ay,..., A\, €
C. By Vieta’s formulas, a; = 0;(A1,...,A,), where o1,...,0, are the elementary
symmetric functions in n variables:
(2.1.1) oA, = Y N A

1<j1<-<ji<n

Denote by s;, © € N, the Newton polynomials Z?:1 /\3- which are related to the
elementary symmetric functions by

(2.1.2) s — Sp_101 + sp_002 — -+ (=D sjop_1 + (=1)*kor =0, (k> 1).
Let us consider the so-called Bezoutiant
S0 S1 e Sn—1
S1 S92 . Sn
B := : c. : = (5i+j—2)1§i,j§n :
Sn—1 Sn ... S2pn—2
Since the entries of B are symmetric polynomials in A1, ..., An, we find a unique
symmetric n X n matrix B with B = B o o, where 0 = (01,...,0p,)-

Let By denote the minor formed by the first k£ rows and columns of B. Then we
find
(2.1.3)

Ak(A) := det Bk(A) = Z (>‘11 - >‘i2)2 U ()‘11 - )\'lk)2 e ()‘ik71 - )\'lk)Q

i <ip<---<ip

Since the polynomials Ay are symmetric, we have Ay = Ay oo for unique polyno-
mials Ak.

From (2.1.3) follows that the number of distinct roots of P equals the maximal
k such that Ay (P) # 0.

2.2. Multiplicity. For a continuous real or complex valued function f defined near
0 in R let the multiplicity (or order of flatness) m(f) at 0 be the supremum of all
integers p such that f(t) = t?g(¢) near 0 for a continuous function g. We define in
the obvious way the multiplicity mq,(f) of f at any to € R (if f is defined near ty).
Note that, if f is of class C™ and m(f) < n, then f(t) = t™)g(t) near 0, where
now g is C*~™) and ¢(0) # 0.

If f is a continuous function on the space of polynomials, then for a fixed con-
tinuous curve P of polynomials we will denote by m(f) the multiplicity at 0 of

t— f(P(1))-
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We shall say that two functions f and g meet of order > p at 0 or have order of
contact > p at 0 iff m(f —g) > p.

Lemma. Let I CR be an interval containing 0. Consider a curve of polynomials
P(t)(z) = 2" + Y _(~1)a;(t)=",
j=2

with a; : I — C, 2 < j < n, smooth. Then, for integers r, the following conditions
are equivalent:

(1) m(ag) > kr, for all 2 < k < n;

(2) m(Ay) > k(k —1)r, for all 2 < k < n.

Proof. Without loss of generality we can assume r > 0.

(1) = (2): From (2.1.2) we deduce m(3y) > kr for all k, where s = §;, 0 0. By
the definition of A;, = det(B;) we obtain (2).

(2) = (1): Tt is easy to see that A(0) = 0 for all 2 < k < n implies 5;,(0) = 0 for
all 2 < k < n. Then by (2.1.2) we have a;(0) = 0 for all 2 < k < n. So near 0 we
have as(t) = t*"as 2,(t) and ay(t) = t™ ay m, (t) for 3 < k < n, where the my, are
positive integers and a2 2y, a3,ms, - - -, Gn,m, are smooth functions. Let us suppose
for contradiction that for some k > 2 we have my = m(ay) < kr. We put

. ms3 Mn
(2.2.1) m:= mln{r,?7...77} <,
and consider the following continuous curve of polynomials for (small) ¢ > 0:
Py () (2) := 2" + g2 (P22 72— (= 1) gy, (E)ET T

We have Ak(P(m)(t)) = ¢~k=DmA(P(t)). By (2.2.1), r —m > 0, whence ¢ —
Ak(P(m)(t)), 2 < k < n, vanish at t = 0. We may conclude as before that all
coefficients of ¢ — P(,,,)(t) vanish for ¢ = 0. But this is a contradiction for those k
with m(ag) = my = km. O

Remark. If the coefficients a; of P in lemma 2.2 are just of class C", the conclusion
remains true for » = 1. The proof is the same with the slight modification that we
define my, := min{k, m(ay)} for all k.

2.3. Genericity condition. Let I C R be an interval. We call a curve of monic
polynomials

PH)() = =" + Y (~1Va; (12"

with continuous coefficients a; : I — C, 1 < j < n, generic if the following
equivalent conditions are satisfied at any o € I:

(1) If two of the continuously parameterized roots of P meet of infinite order
of flatness at ¢, then their germs at ¢y are equal.
(2) Let k be maximal with the property that the germ at to of t — Ag(P(t))
is not 0. Then t — Ay (P(t)) is not infinitely flat at to.
The equivalence of (1) and (2) follows easily from (2.1.3). For instance, P is generic,
if its coeflicients are real analytic, or more generally, belong to a quasianalytic class
of C* functions.

2.4. Lemma (Splitting lemma [AKLM98, 3.4]). Let Py = 2" + Y7, (—1)7a;2"~7
be a polynomial satisfying Py = Py - Py, where Py and Py are polynomials without
common root. Then for P near Py we have P = Py(P) - Po(P) for real analytic
mappings of monic polynomials P +— Pi(P) and P — Py(P), defined for P near
Py, with the given initial values.
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2.5. Absolutely continuous functions. Let I C R be an interval. A function
f I — C is called absolutely continuous, or f € AC(I), if for all € > 0 there
exists a § > 0 such that SN (b; — a;) < & implies S0 |f(bi) — f(ai)| < e, for
all sequences of pairwise disjoint subintervals (a;,b;) € I, 1 < ¢ < N. By the
fundamental theorem of calculus for the Lebesgue integral, f € AC([a,b]) if and
only if there is a function g € L'([a,b]) such that

f@®) = fla) +/ g(s)ds for all t € [a,b].

Then f’ = g almost everywhere. Every Lipschitz function is absolutely continuous.
Gluing finitely many absolutely continuous functions provides an absolutely con-
tinuous function: Let f; € AC([a,b]), f2 € AC([b,¢]), and f1(b) = f2(b). Then
f i a,c] — C, defined by f(t) = fi(t) if t € [a,b] and f(t) = fa(t) if t € [b,¢],
belongs to AC([a, ¢]). Similarly for more than two functions.
Let ¢ : I — I be bijective, strictly increasing, and Lipschitz continuous. If
f € AC(I) then also f oy € AC(I). Furthermore:
Lemma. Let r > 0 and n € Nsg. Let f € AC([0,r]) (resp. f € AC(]-r,0]))
and set h(t) = f(¥/t) (resp. h(t) = f(=%/|t])). Then h € AC([0,r™]) (resp.
h e AC([-r™,0])).

Proof. There exists a function g € L*([0,r]) such that

+/g
0

for all t € [0,7]. The function (0,7"] — (0,7],¢ — /%, is smooth and bijective, so

(V/3)ds = / l9(5)ds

/Or 19(¥/5)

and t — g(/t)(¥/t)" belongs to L' ([0,7"]). Thus h(t) = f(/t) is in AC([0,7r™]).
For the second statement consider the absolutely continuous function f o S|,

where S : R — R, ¢ +— —t. By the above, hg(t) = (f o S|j,)(¥/t) is in AC([0,r"]),

and so h(t) = hg(S7H_mm g (t) = f(=/=t) = f(—={/|t]) is in AC([-r™,0]). O

3. ABSOLUTELY CONTINUOUS PARAMETERIZATION OF THE ROOTS

3.1. Lemma. Let I C R be an interval. Consider a curve of monic polynomials

Pt —z+z

such that the coefficients a; : I — C, 1 § j <mn, are continuous. If there is a Lip-
schitz parameterization of the roots of P(t), then any continuous parameterization
is Lipschitz.

Proof. Let u1,...,u, be a Lipschitz parameterization of the roots of P on I with
common Lipschitz constant C. Assume that ¢ — A(t) is any continuous root of
t+— P(t) for t € I. Let ¢ < s be in I. Then there is an i such that A\(t) = p, (¢).
Now let t; be the maximum of all € [t, s] such that A(r) = p;, (7). If t1 < s then
Wio(t1) = i, (t1) for some iy # ip. Let to be the maximum of all r € [t1,s] such
that A(r) = pi, (r). If to < s then p;, (t2) = w4, (t2) for some is € {ig,41}. And so
on until s = t; for some k < n. Then we have (where ¢ty = t)

[A(s) = A@)| Z |ﬂzj 1) — i, (t5)] bt —t <c. O
sft tiv1 — 1t s—t
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3.2. Proposition. Let I C R be an interval. Consider a generic curve of monic
polynomials

P(t)(z) = 2" + Z(—njaj(t)z"*j,

with smooth coefficients a; : I — C, 1 < j < n. For any ty € I, there exists a
positive integer N such that the roots of t — P(to £ (t —to)YN) can be parameterized
smoothly near ty. If the coefficients a; are real analytic, then the roots of t —
P(to £ (t— to)N) can be parameterized real analytically near tg.

Proof. It is no restriction to assume that 0 € I and to = 0.
We use the following:

Algorithm. (1) If all roots of P(0) are pairwise different, the roots of t — P(&+t)
may be parameterized smoothly near 0, by the implicit function theorem. Then
N =1.

(2) If there are distinct roots of P(0), we put them into two subsets which
factors P(t) = Py(t)Pa(t) by the splitting lemma 2.4. Suppose that ¢ — P;(£t™)
and t — Py(t2) are smoothly solvable near 0, then t — P(£tV1V2) is smoothly
solvable near 0 as well.

(3) If all roots of P(0) are equal, we reduce to the case a; = 0, by replacing z
with 2z — a1 (t)/n. Then all roots of P(0) are equal to 0, hence, a;(0) = 0 for all
k. Let m := min{m(ay)/k : 2 < k < n} which exists since P is generic (by lemma
2.2). Let d be a minimal integer such that dm > 1. Then for the multiplicity of
t— ak(:lztd), 2 <k <n, we find

m(ax(£t?)) = dm(ag) > dmk > k.

Hence we may write ax(+t%) = t*a; (t) near 0 with @ smooth, for all k. Consider

Jj=2

If t — P%(t) is smoothly solvable and ¢ — )\;t (t) are its smooth roots, then ¢ —
t)\]j.E (t) are smooth parameterizations of the roots of t s P(&t%).
Note that m(a;) = dm(ay) — k, for 2 < k < n, and thus

(3.2.1) e min )

=dm—1<m,

by the minimality of d. )
If 72 = 0 there exists some k such that @ (0) # 0, and not all roots of P¥(0) are
equal. We feed P into step (2). Otherwise we feed P into step (3).

Step (1) and (2) either provide a required parameterization or reduce the problem
to a lower degree n. Since m is of the form p/k where 2 < k <n and p € N and by
(3.2.1), also step (3) is visited only finitely many times. So the algorithm stops after
finitely many steps and it provides an integer N and a smooth parameterization of
the roots of ¢ — P(#t"V) near 0. The real analytic case is analogous. O

3.3. Theorem. Let I C R be an interval. Consider a generic curve of monic
polynomials

P(t)(z) = 2" + Z(*l)jaj(t)zn’j,

with smooth coefficients a; : I — C, 1 < j < n. Any continuous parameterization
A= (A1,...,A\n) : I — C™ of the roots of P is locally absolutely continuous.
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Proof. It suffices to show that each ty € I has a neighborhood on which X is abso-
lutely continuous. Without restriction we assume that 0 € I and ¢ty = 0. By propo-
sition 3.2, there is an integer N and a neighborhood Jx of 0 such that t — P(£tV)
allows a smooth parameterization p* = (uli, ..., i) of its roots on Jy. Another
continuous parameterization is provided by t +— A(£tV) = (A1 (£tV), ..., A (£V)).
By lemma 3.1, the parameterization ¢ — A(&t") is actually Lipschitz (by shrinking
Jn if necessary), in particular, absolutely continuous. Let J = {t € I : £ W €
In}, Jso={t€ J:t>0}, and J<o = {t € J : t < 0}. By lemma 2.5, we find that
A is absolutely continuous on J>g. In order to see that X is absolutely continuous
on J<g we apply lemma 2.5 to t — A(—tY), if N is even, and to t — A(tV), if N is
odd. Hence A is absolutely continuous on J. This completes the proof. (]

3.4. Corollary. Any continuous parameterization of the roots of a real analytic, or
more generally quasianalytic, curve I > t — P(t) of monic polynomials is locally
absolutely continuous. O

3.5. Remark. The conclusion in theorem 3.3 is best possible. In general the roots
cannot be chosen with first derivative in L for any 1 < p < co. A counter example
is given by
Pt)(z)=2"—1t, teR,
ifnzp%l,for1<p<oo, and if n > 2, for p = co.
On the other hand, finding the optimal assumptions on P for admitting locally
absolutely continuous roots is an open problem.

4. DIFFERENTIABLE PARAMETERIZATION OF THE ROOTS

4.1. Lemma ([KLMRO5, 4.3]). Consider a continuous curve ¢ : (a,b) — X in a
compact metric space X. Then the set of all accumulation points of c(t) ast \, a
is connected.

4.2. Proposition. Let I C R be an interval containing 0. Consider a curve of
monic polynomials

P(t)(z) = 2" + Z(—l)jaj(t)Z"_j,

such that the coefficients aj : I — C, 1 < j < n, are of class C™. Then the following
conditions are equivalent:

(1) There exists a local continuous parameterization of the roots of P near 0
which is differentiable at 0.

(2) There exists a local continuous parameterization A; of the roots of P near
0 such that \;(0) = X;(0) implies m(X\; — Xj) > 1, for all i # j.

(3) Split P(t) = Py(t)--- Pi(t) according to lemma 2.4, where l is the number
of distinct roots of P(0). Then m(Ap(P;)) > k(k—1), forall1 <i <1 and
2<k<degh.

Proof. (1) = (2) is obvious and (2) = (3) follows immediately from (2.1.3).

(3) = (1): Using the splitting P(t) = Pi(t)--- P/(t), we may suppose that all
roots of P(0) coincide. We can reduce to the case a; = 0 by replacing the variable z
with z — a1 (¢)/n. Then all roots of P(0) are equal to 0. By assumption and remark
2.2, we find m(ay) > k, for all 2 < k < n. So, for ¢t near 0, we can write ax(t) =
tkak,k(t) for continuous ax,; and 2 < k < n. The continuous curve of polynomials
Py (t)(2) := 2"+ 37 _5(—=1)7a;,;(t)z"~7 admits a continuous parameterization A=
(A1, An) of its roots near 0. Then A(t) := tA(t) parameterizes the roots of P,
locally near 0, and is differentiable at 0. (]
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4.3. Theorem. Let I C R be an open interval. Consider a curve of monic polyno-
mials

P(t)(z) = 2" + Z(—l)jaj(t)zn’j,

such that the coefficients aj : I — C, 1 < j < n, are of class C™. Then the following
conditions are equivalent:

(1) There exists a global differentiable parameterization of the roots of P.

(2) There exists a global continuous parameterization of the roots of P with
order of contact > 1 (i.e. if any two roots meet they meet of order > 1).

(3) Let to € I. Split P(t) = Pyi(t)--- P(t) near ty according to lemma 2.4,
where 1 is the number of distinct roots of P(tg). Then my, (Ap(Pi)) >
k(k—1), forall1 <i <l and 2 <k <degP,.

Proof. By proposition 4.2, it just remains to check (3) = (1).

We use induction on n. There is nothing to prove if n = 1. So let us assume
that (3) = (1) holds for degrees strictly less than n.

We may suppose that a; = 0 by replacing z with z — a;(t)/n. Consider the
set F' of all ¢ € I such that all roots of P(t) coincide. Then F is closed and its
complement I\ F' is a countable union of open subintervals whose boundary points
lie in F'.

Let J denote one such interval. For each ¢, € J, the polynomial P(t) has
distinct roots which may be put into distinct subsets, and, by lemma 2.4, we obtain
a local splitting P(t) = Py(t)P(t) near tg, where both P; and P, have degree less
than n. Clearly, P; and P; satisfy (3) as well. By induction hypothesis, we find
differentiable parameterizations of the roots of P, locally near any tq € J.

Let A be a differentiable parameterization of the roots of P defined on a maximal
subinterval J' C J. Suppose that the right (say) endpoint ¢; of J’ belongs to J.
Then there exists a differentiable parameterization A of the roots of P, locally
near t1, and there is a to < t; such that both X\ and X\ are defined near ty. Let
(tm) be a sequence with ¢,, — to. For each m there exists a permutation 7,
such that A(t,) = 7m.A(t,,). By passing to a subsequence, again denoted by
(tm), we have A(t,,) = T.A(t,,) for a fixed permutation 7 and for all m. Then
Ato) = limy, 4y Mtm) = 7.(limg,, —¢o AM(tm)) = T.A(to) and

N(to) = tim 2m)=Alo) o TAlm) = TMM) ey

tm—to tm — to tm—to tm — to

Hence, the differentiable parameterization A of the roots of P was not maximal: we
can extend it differentiably by defining A(t) := A(t) for ¢ < to and A(t) := T.\(t)
for t > tg. This shows that there exists a differentiable parameterization A of the
roots of P defined on J.

Let us extend A to the closure of J, by setting it 0 at the endpoints of J.
Since a; = 0, then A still parameterizes the roots of P on the closure of J. Let
to denote the right (say) endpoint of J. By proposition 4.2, there exists a local
continuous parameterization A of the roots of P near ¢, which is differentiable
at to. Let (t,,) be a sequence with ¢,, /" to. By passing to a subsequence, we
may assume that A(t,,) = 7.\(t,,) for a fixed permutation 7 and for all m. Then

limtm/to A(tm) =T. (limtm/to )\(tm)) =7.0=0 and
A )

im 7(tm) = lim TAEm) Altm)

tm  to ty — to tm  to tm — to

It follows that the set of accumulation points of A(t)/(t — o), as t /" to, lies in the
Sp-orbit through X (tg) of the symmetric group S,. Since this orbit is finite, we

= T.S\I(to).
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may conclude from lemma 4.1 that the limit lim; ~, A(¢)/(t — to) exits. Thus the
one-sided derivative of A at tq exists.

For isolated points in F', it follows from the discussion in the previous paragraph
that we can apply a fixed permutation to one of the neighboring differentiable
parameterizations of the roots in order to glue them differentiably. Therefore, we
have found a differentiable parameterization A of the roots of P defined on I\F”,
where F’ denotes the set of accumulation points of F.

Let us extend A by 0 on F’. Then it provides a global differentiable parameteriza-
tion of the roots of P, since any parameterization is differentiable at points ¢’ € F”.
For: It is clear that the derivative at ¢’ of any differentiable parameterization has
to be 0. Let A be the local parameterization near t', provided by proposition 4.2.
As above we may conclude that the set of accumulation points of A(t)/(t — t'), as
t — t/, lies in the S,-orbit through \'(¢') = 0. O

5. REFORMULATION OF THE PROBLEM

5.1. Lifting curves over invariants. Let G be a compact Lie group and let
p: G — O(V) be an orthogonal representation in a real finite dimensional Euclidean
vector space V. By a classical theorem of Hilbert and Nagata, the algebra R[V]%
of invariant polynomials on V' is finitely generated. So let o1,...,0, be a system
of homogeneous generators of R[V]¢ of positive degrees di,...,d,. Consider the
orbit map o = (01,...,0,) : V. — R"™. The image o(V) is a semialgebraic subset
of {y e R" : P(y) = 0 for all P € I}, where I is the ideal of relations between
01,...,0,. Since G is compact, o is proper and separates orbits of G, it thus
induces a homeomorphism between V/G and o (V).

Let H = G, be the isotropy group of v € V and (H) the conjugacy class of H in
G which is called the type of the orbit G.v. The union V(4 of orbits of type (H)
is called an orbit type submanifold of the representation p, and Vg /G is called
an orbit type submanifold of the orbit space V/G. The collection of connected
components of the manifolds {V{)/G} forms a stratification of V/G' called orbit
type stratification, see e.g. [Pfl01, 4.3].

Let ¢ : R — V/G = o(V) C R" be a smooth curve in the orbit space; smooth
as curve in R™. A curve ¢ : R — V is called lift of ¢ to V, if ¢ = 0 o ¢ holds. The
problem of lifting smooth curves over invariants is independent of the choice of a
system of homogeneous generators of R[V]¢, see [KLMRO05, 2.2].

Let s € N. Denote by A, the union of all strata X of the orbit space V/G with
dim X < s, and by I, the ideal of R[V]¢ consisting of all polynomials vanishing on
As—1. Let ¢ : R = V/G = o(V) C R™ be a smooth curve, t € R, and s = s(c, t)
a minimal integer such that, for a neighborhood J of ¢ in R, we have ¢(J) C A,.
The curve c is called normally nonflat at t if there is f € I, such that f o ¢ is not
infinitely flat at t. A smooth curve ¢ : R — o(V) C R”™ is called generic, if ¢ is
normally nonflat at ¢ for each ¢t € R.

Let G = S,,, the symmetric group, and let p be the standard representation of
S, in R™ by permuting the coordinates. The elementary symmetric functions o; in
(2.1.1) generate the algebra of symmetric polynomials R[R"]5». Hence the image
o(R™) may be identified with the space of monic hyperbolic polynomials of degree
n. Recall that a polynomial is called hyperbolic if all its roots are real. A lift to R™
of a curve P in o(R") represents a parameterization of the roots of P. A curve P
of hyperbolic polynomials is generic in the sense of the last paragraph if and only
if it is generic in the sense of 2.3, see e.g. [LR07, 2.6].

The following theorem generalizes the main results on the one dimensional
perturbation theory of hyperbolic polynomials. It collects the main results of
[AKLMO0] and [KLMRO05, KLMR06, KLMRO08a].
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Theorem. Let ¢ : R — V/G = o(V) C R™ be a curve in the orbit space and let
d = max{dy,...,d,}. Then:
(1) If c is real analytic, then it allows a real analytic lift, locally.

(2) If ¢ is smooth and generic, then there exists a global smooth lift.
(3) If c is C%, then there exists a global differentiable lift.

If G is finite, write V. = V1 ®- - -®V] as orthogonal direct sum of irreducible subspaces
Vi and define k = max{d, k1, ..., k;}, where k; = min{|G.v| : v € V;\{0}}. Then:
(4) If c is C*, then each differentiable lift is C*.
(5) If c is CUF | then there ewists a global twice differentiable lift.

5.2. Let us consider the standard action of the symmetric group S,, on C™ by
permuting the coordinates and the diagonal action of S,, on R™ x R™ by permuting
the coordinates in each factor. Write z = (z1,...,2,) € C™ where z;, = zy + iys,
1<k<n,z=(x1,...,2,) €ER", and y = (y1,...,yn) € R™. The mapping

T:C" —R"xXR":z+—— (x,y)
is an equivariant R-linear homeomorphism. Consequently, it descends to a homeo-
morphism T such that the following diagram commutes

(5.2.1) cn A R" x R"

| |

C"/S, — (R™ x R™)/ S,

Consider the respective orbit type stratifications of the S,,-modules C* and R™ x R"
and of its orbit spaces. It is evident that 7', and thus also T, maps strata onto
strata. Note that, while the orbit type stratification of C"/S,, & C" is finer than
its stratification as affine variety, the orbit type stratification of (R™ x R™)/S,, is
its coarsest stratification, e.g. [Pfl01, 4.4.6].

Let P: R — C"/S,, = C" be a curve of monic polynomials of degree n. Then
T o P is a curve in (R” x R")/S,, C RN. It follows that P allows a regular lift to
C™, i.e., a regular parameterization of its roots, if and only if T o P allows a lift
of the same regularity to R™ x R™. Theorem 5.1 provides sufficient conditions for
T o P to be liftable regularly, and hence for P to admit regular parameterizations
of its roots.

As generators for the algebra C[C"]®» we may choose the Newton polynomials
si(z) = 25, 25, for 1 < i < n. By the first fundamental theorem of invariant
theory for S, (e.g. [Smi95, 3.4.1]), the algebra R[R™ x R"|5» is generated by the
polarizations of the s;:

n
Tij(y) =Y iyl (,j €N 1<i+j<n).
k=1

We may then identify the orbit projections

cC"—C"/S, and R"xR" — (R" xR™)/S,
with the mappings
s=(8):C" — s(C")=C" and 7= (1;;):R" xR" — 7(R" x R") CRY,
respectively. Here N = (":2) —1=3n(n+3). The image 7(R™ x R") is a semial-
gebraic subset of RY. Since it is homeomorphic with s(C") = C", its dimension is

2n. It follows that there are at least %n(n — 1) independent non-trivial polynomial
relations between the 7; ;.
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The homeomorphism 7" from the diagram (5.2.1) is then determined by:

71 RN D T(R" xR") — C" : (13,;) — (Z (7;) ikka’k>

k=0 1<m<n

5.3. The quadratic case. Without loss it suffices to consider P(t)(z) = 22 — f(t)
with f : I — C. Let us consider the curve T'o P in (R? x R?)/ S, whose coordinates
7;,;(P) have to satisfy:
m1,0(P) = 70,1(P) = 0, 720(P) — 70,2(P) = 2Re(f), 71,1(P) = Im(f),
72,0(P)10,2(P) = 71 ;.
It is easy to compute

(5.3.1) To P =(0,0,|f] +Re(f), |f| = Re(f), Im(f)).

In the following a square root of f is any function g satisfying ¢g> = f. Applying
5.1 and 5.2, we obtain:
(1) If f is smooth and nowhere infinitely flat and |f| is smooth, then there exist
smooth square Toots of f.
(2) If f and |f| are of class C*, then there exist twice differentiable square roots
of f.
Theorem 3.3 and theorem 4.3 give:
(3) If f is smooth and nowhere infinitely flat, then any continuous choice of
the square roots of f is locally absolutely continuous.
(4) Assume that f is C?. Then there exist differentiable square roots of f if
and only if f vanishes of order > 2 at all its zeros.
Let us assume that f is real valued. Then (5.3.1) reduces to:

2 [ (0,0,2f(t),0,0) if f(t) >0,
(Lo P)E) = { (0,0,0,—2f(t),0) if f(t) <0.

Suppose further that f is C? and that f(ty) = 0 implies f’(to) = f"(to) = 0. It
follows that 7" o P is of class C2. By 5.1 and 5.2, there exist C'! parameterizations
of the square root of f. So:
(5) If f is real valued, C2, and f(ty) = 0 implies f'(to) = f"(to) = 0, then
there exist C' square roots of f.
Combining (3) and (5) we obtain:
(6) If f is real valued and smooth, then each continuous choice of square roots
of f is locally absolutely continuous.

6. REGULAR DIAGONALIZATION OF NORMAL MATRICES

6.1. Let I C R be an interval. A smooth curve of normal complex n X n matrices
I>t— A(t) = (Aij(t))1<ij<n is called generic, if I >t +— x4 is generic, where
Xa(t)(A) = det(A(t) — M) is the characteristic polynomial of A(t).

6.2. Theorem. Let I C R be an interval. Let I 3t — A(t) = (Ai;j(t))1<ij<n be a
generic smooth curve of normal complex matrices acting on a complex vector space
V =C". Then:

(1) For each ty € I there exists an integer N such that t — A(tog £ (t — to)V)
allows a smooth parameterization of its eigenvalues and eigenvectors near
to. If A is real analytic, then the eigenvalues and eigenvectors of t +—
A(to £ (t — to)N) may be parameterized real analytically near to.

(2) There exist locally absolutely continuous parameterizations of the eigenval-
ues and the eigenvectors of A.
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Proof. We adapt the proof of [AKLM98, 7.6].
By theorem 3.3, the characteristic polynomial
n
(6.2.1) X (A) = det(A(t) — AI) = Z(—m"—j Trace(AJ A(t))A" ™7

(A”+Z o)

admits a continuous, locally absolutely continuous parameterization Aq,..., A, of
its roots. This shows the first part of (2).

Let us show (1). Without loss we may assume that tg = 0. By proposition 3.2,
there is an integer Ny such that the eigenvalues of t — A(£t"N0) can be parameter-
ized by smooth functions ¢ — ,uf (t) near 0. Consider the following algorithm:

(a) Not all eigenvalues of A(0) agree. Let vy, ..., denote the pairwise distinct
eigenvalues of A(0) with respective multiplicities my,...,m;. Assume without loss
that

b= () = - = i, 0),
V2 = /u"r:‘r:zlJrl(O) == um1+m2(0)’

+ +
v = :unfml(o) ==y (0)
This defines a partition into subsets of smooth eigenvalues such that, for ¢ near

0, they do not meet each other if they belong to different subsets. For 1 < j <[
consider

vIO% = @ ker(AEY) - p (1)
{i : vy=nf(0)}
= ker ( 0{7,' : Vj:,u,?:(o)} (A(:l:tNO) - u’;t (t)))
Note that the order of the compositions in the above expression is not relevant. So
Vt(J )% is the kernel of a smooth vector bundle homomorphism B (t) of constant
rank, and thus is a smooth vector subbundle of the trivial bundle (—¢,€) x V' —
(—€, €). This can be seen as follows: Choose a basis of V' such that A(0) is diagonal.
By the elimination procedure one can construct a basis for the kernel of B*(0). For
t near 0, the elimination procedure (with the same choices) gives then a basis of
the kernel of B%(t). The elements of this basis are then smooth in ¢ near 0.

It follows that it suffices to find smooth eigenvectors in each subbundle V()-+
separately, expanded in the constructed smooth frame field. But in this frame field
the vector subbundle looks again like a constant vector space. So feed each of these
parts (t — A(£t™0) restricted to V@) as matrix with respect to the frame field)
into step (b) below.

(b) All eigenvalues of A(0) coincide and are equal to a1 (0)/n, according to (6.2.1).
Eigenvectors of A(t) are also eigenvectors of A(t) — (a1 (¢)/n)I, thus we may replace
A(t) by A(t) — (a1(t)/n)I and assume that the first coefficient of the characteristic
polynomial (6.2.1) vanishes identically. Then A(0) = 0

If A(t) =0 for ¢ near 0 we choose the eigenvectors constant.

Otherwise write A;;(t) = thE;n)(t), where m := min{m(4;;) : 1 < 4,5 < n}
which exists by assumption. It follows from (6.2.1) that the characteristic polyno-
mial of AU (¢) is

Xaom (1) (A) = (/\n + Z )t a( )/\n_j)7
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Hence m(ax) > mk for all k. By proposition 3.2, there exists an integer N such
that ¢ — X 4(m) (1¢v:) admits smooth parameterizations of its roots (eigenvalues of
t > A (£tM)) for t near 0. Eigenvectors of A(™)(£tN1) are also eigenvectors
of A(£tM). There exist 1 < 4,5 < n such that Agn) (0) # 0 and thus not all
eigenvalues of A(™(0) are equal. Feed t — A™ (£tV1) into (a).

By assumption, this algorithm stops after finitely many steps and shows (1).
The real analytic case is analogous.

Now we finish the proof of (2). By (1), we find an integer N such that ¢ —
A(£tN) allows smooth parameterizations t +— ,u?c (t) and t — vji (t) of its eigenvalues
and eigenvectors near 0. In a similar way as in the proof of theorem 3.3, we can
compose t — ,uj[ (t) and ¢ — vj[ (t) with ¢ — ¥/t and t — — ¥/[t] in order to obtain
absolutely continuous parameterizations of the eigenvalues and eigenvectors of A
near 0. O

Remark. The condition that A(t) is normal cannot be omitted. Any choice of
eigenvectors of the following real analytic curve A of 2 x 2 matrices has a pole at
0. Hence there does not exist an integer N such that ¢t — A(£t") allows regular

eigenvectors near 0.
0 1
a0=(° 1),

The following smooth curve A of symmetric real matrices allows smooth eigenvalues,
but the eigenvectors cannot be chosen continuously. This example (due to [Rel37a,
§2]) shows that the assumption that A is generic is essential in theorem 6.2.

2 2

_ & [cosT sin; _
Alt) = e 2(smf Cos?), A(0) = 0.

7. PERTURBATION OF UNBOUNDED NORMAL OPERATORS

7.1. Theorem. Let I C R be an interval. Let I >t — A(t) be a generic smooth
curve of unbounded normal operators in a Hilbert space with common domain of
definition and with compact resolvents. Let to € I and let zg be an eigenvalue of
A(to). Let n be the multiplicity of zo. Then:

(1) There exists an integer N such that the n eigenvalues of t — A(to%(t—to)Y)
passing through zg and the corresponding eigenvectors allow smooth param-
eterizations, locally near tg. If A is real analytic, then the n eigenvalues
of t — A(to £ (t — to)) passing through zy and its eigenvectors may be
arranged real analytically, locally near tg.

(2) There exist locally absolutely continuous parameterizations of the n eigen-
values of A passing through zy and its eigenvectors, locally near tg.

That A(t) is a smooth (resp. real analytic) curve of unbounded operators means
the following: There is a dense subspace V' of the Hilbert space H such that V'
is the domain of definition of each A(t), and such that each A(t) is closed and
A(t)*A(t) = A(t)A(t)*, where the adjoint operator A(t)* is defined as usual by
(A(t)u,v) = (u, A(t)*v) for all v for which the left-hand side is bounded as function
in u € H. Note that the domain of definition of A(t)* is V. Moreover, we require
that ¢t — (A(t)u,v) is smooth (resp. real analytic) for each u € V and v € H. This
implies that ¢t — A(¢)u is of the same class R — H for each u € V, by [KM97, 2.3]
or [FK88, 2.6.2].

We call the curve I 5t — A(t) generic, if no two unequal continuously parame-
terized eigenvalues meet of infinite order at any t € I.
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Proof. We use the resolvent lemma in [KMO03] (see also [AKLM98]): If A(t) is
smooth (resp. real analytic), then also the resolvent (A(t) — z)~! is smooth (resp.
real analytic) into L(H, H) in t and z jointly.

Let z be an eigenvalue of A(s) of multiplicity n for s fixed. Choose a simple closed
curve 7y in the resolvent set of A(s) enclosing only z among all eigenvalues of A(s).
Since the global resolvent set {(¢,z) € R x C: (A(t) — z) : V — H is invertible} is
open, no eigenvalue of A(t) lies on v, for ¢ near s. Consider

oo /(A(t) — ) lde = P(),

a smooth (resp. real analytic) curve of projections (on the direct sum of all
eigenspaces corresponding to eigenvalues in the interior of ) with finite dimen-
sional ranges and constant ranks (see [AKLM98] or [KMO03]). So for ¢ near s, there
are equally many eigenvalues in the interior of . Let us call them \;(¢), 1 <1i < n,
(repeated with multiplicity) and let us denote by e;(t), 1 <i < n, a corresponding
system of eigenvectors of A(t). Then by the residue theorem we have

Z/\i(t)pei(t)@i(t), )= L / PA() — 2)"1dz

which is smooth (resp. real analytic) in ¢ near s, as a curve of operators in L(H, H)
of rank n.

Recall claim 2 in [AKLMO98, 7.8]: Lett — T(t) € L(H, H) be a smooth (resp. real
analytic) curve of operators of rank n in Hilbert space such that T'(0)T'(0)(H) =
T(0)(H). Then t — Trace(T'(t)) is smooth (resp. real analytic) near 0.

We conclude that the Newton polynomials

E”: AP = —L_ Trace/ P(A(L) — 2) "z,
i=1 gl

211

are smooth (resp. real analytic) for ¢ near s, and thus also the elementary symmetric

functions
> X () A, (1)
i1 < <ip

It follows that {A\;(t) : 1 < i < n} represents the set of roots of a polynomial
of degree n with smooth (resp. real analytic) coefficients. The statement of the
theorem follows then from proposition 3.2, theorem 3.3, and theorem 6.2, since the
image of t — P(t), for t near s describes a finite dimensional smooth (resp. real
analytic) vector subbundle of R x H — R and the X;(t), 1 <4 < n, form the set of
eigenvalues of P(t)A(t)|pw)(a)- O
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SMOOTH ROOTS OF HYPERBOLIC POLYNOMIALS WITH
DEFINABLE COEFFICIENTS

ARMIN RAINER

Dedicated to Peter W. Michor on the occasion of his 60th birthday

ABSTRACT. We prove that the roots of a definable C*° curve of monic hyper-
bolic polynomials admit a definable C°° parameterization, where ‘definable’
refers to any fixed o-minimal structure on (R, +,-). Moreover, we provide suf-
ficient conditions, in terms of the differentiability of the coefficients and the
order of contact of the roots, for the existence of C? (for p € N) arrangements
of the roots in both the definable and the non-definable case. These condi-
tions are sharp in the definable and under an additional assumption also in
the non-definable case. In particular, we obtain a simple proof of Bronshtein’s
theorem in the definable setting. We prove that the roots of definable C*°
curves of complex polynomials can be desingularized by means of local power
substitutions ¢ — =+t~ . For a definable continuous curve of complex polyno-
mials we show that any continuous choice of roots is actually locally absolutely
continuous.

1. INTRODUCTION

A monic polynomial P(z) = " + 37, (~1)a;z" 7 is called hyperbolic if all its
roots are real. The study of the regularity of its roots, when P depends smoothly
on a real parameter, is a classical topic with important applications in PDE and
perturbation theory. Rellich [Rel37] showed that a real analytic curve of hyperbolic
polynomials P admits real analytic roots. However, the roots of a C'*° curve P do
in general not allow C>° (more precisely, C1'* for any o > 0) parameterizations.
All counter-examples (e.g. in [Gla63], [AKLM98], [BBCP06]) are oscillating, mean-
ing that some derivative switches sign infinitely often near some point, where the
multiplicity of the roots changes. By [AKLM98|, P allows C*° roots, if no two
roots meet of infinite order.

We show in this note that definability of the coefficients guarantees C*° solvabil-
ity of C'* curves of hyperbolic polynomials. By ‘definable’ we mean definable in
some fixed, but arbitrary, o-minimal structure M on (R, +, -). Definability excludes
oscillation, however, infinitely flat functions may be definable in some M. We also
provide sufficient conditions, in terms of the differentiability of the coefficients and
the order of contact of the roots, for the existence of C? (for p € N) arrangements
of the roots in both the definable and the non-definable case. These conditions are
sharp in the definable and under an additional assumption (automatically satisfied
if n < 4) also in the non-definable case. In particular, we give a simple proof of
Bronshtein’s theorem in the special case of definable coefficients: C™ curves P ad-
mit C! roots (see [Bro79], [Wak86], and [COP08]). As a consequence C*" curves P
admit twice differentiable roots (see [KLMO04] and [COP08]). Bronshtein’s theorem
is quite delicate and only poorly understood.

Our results complete the perturbation theory of hyperbolic polynomials. Anal-
ogous questions for several parameters require additional assumptions and are not

2000 Mathematics Subject Classification. 26C10, 30C15, 03C64.
Key words and phrases. hyperbolic polynomials, smooth roots, o-minimality.
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treated in this paper: The roots of P(t1,t2)(z) = 2% — (13 + t3), for t1,t2 € R,
cannot be differentiable at t; = t5 = 0.

If the hyperbolicity assumption is dropped, we cannot hope for parameterizations
of the roots satisfying a local Lipschitz condition, even if the coefficients are real
analytic. We prove that the roots of definable C'*° curves of complex polynomials
can be desingularized by means of local power substitutions ¢ — +t~. For definable
continuous curves of complex polynomials, we show that any continuous choice of
roots is actually locally absolutely continuous (not better!). This extends results in
[Rai09].

I am happy to thank E. Bierstone and K. Kurdyka for the discussions which led
to the writing of this paper.

2. DEFINABLE FUNCTIONS AND SMOOTHNESS

2.1. Multiplicity. For a continuous real or complex valued function f defined near
0 in R, let the multiplicity mo(f) at 0 be the supremum of all integers p such that
f(t) = tPg(t) near 0 for a continuous function g. Note that, if f is of class C™ and
mo(f) < n, then f(t) = t™g(t) near 0, where now g is C*~™0(f) and g(0) # 0.
Similarly, one can define the multiplicity m:(f) of a function f at any ¢t € R.

2.2. Lemma. Let I C R be an open interval containing 0. Let f € C°(I,R) and
p € N such that:

(1) mo(f) = p

(2) flroy € CPHH(I\{0})

(3) 0 is not an accumulation point of O{t € I\ {0} : f®P*D(t) = 0} (where
OA := A\ A° denotes the boundary of A) .

Then f € CP(I).

Proof. We use induction on p. Let us assume that the assertion is proved for
non-negative integers < p. Note that (3) implies:

(3") 01is not an accumulation point of 9{t € I\ {0} : £(9)(t) = 0}, for any integer

0<g<p+1l

So we may suppose that f € CP~(I), and, by (1), f@(0) =0 for 0 < ¢ < p — 1.
We will show that f € CP(I).

Let t > 0. By (3'), either f®) = 0 identically, or f»~1) is strictly monotonic for
small ¢, say, t < 6. In the first case fP) extends continuously to 0. Consider the
second case. Without loss we may suppose that

(2.2.1) fP V) > fe @) if0<s<t<d

(otherwise consider —f®=1). Then fP~1(s)/s > fP-D(t)/tif0<s <t <d. So
) f(p—l)(t) f(p—l)(t)
lim ——= = —_—t = RU .
ot os<lil<)a t “c oo}

By Taylor’s formula, for each ¢ > 0 there is a 0 < £(¢) < t such that
0]

By (2.2.1), we have fP=V(£(t)) > f®=1(¢t), and, thus,
(r—1)
S ; ®) <(p-1 %

By (1), the right-hand side is convergent as ¢t \, 0. So a < +o0.
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By (3), f® is strictly monotonic for small ¢, say, ¢ < e. We may conclude that
limg o f®)(t) is given by either SUPg<t<e f®1(t) or infoeiee fP)(t). By Taylor’s
formula, for each n € Ny, there is a 0 < v(n) < 1/n such that

)
FOwon) =9 1,
where g(t) := f(t)/t? is continuous by (1). Hence, lim o f®)(¢) = p!- g(0). By the
mean value theorem, we obtain

N e €
a= lim ———2> = lim f®(¢(n)) =p!-9(0),

n—oo - n—o0o
n

where 0 < ¢(n) < 1/n. (Note that, if fP) = 0 identically, then g(0) = 0.)
In a similar way one proves that lim; - f~1(¢)/t = lim; - f®)(t) = p! - g(0).
So f e CP(I). O

=p!-g(;;) = pl-g0) asn— oo,

n

2.3. Example. Note that condition (3) in lemma 2.2 is necessary: The function
F(t) = e~ sin?(e/1"), f(0) := 0, satisfies mo(f) = 0o and is C*° off 0, but it is
not C! in any neighborhood of 0.

2.4. Definable functions. Cf. [vdD98]. Let M = {J, cy_, Mn, where each M,
is a family of subsets of R™. We say that M is an o-minimal structure on (R, +,")
if the following conditions are satisfied:

(1) Each M,, is closed under finite set-theoretical operations.
(2) If Ae M,, and B € M,,,, then A X B € My 4m.
(3) If A € Myyp, and 7 : R — R™ is the projection on the first n coordi-
nates, then 7(A4) € M,,.
@4 If f,g1,...,q0 € R[Xq,...,X,], then {x € R™ : f(z) = 0,91(z) >
0,...,q91(z) > 0} € M,,.
(5) M, consists of all finite unions of open intervals and points.
For a fixed o-minimal structure M on (R, +, '), we say that A is M-definable if
A € M, for some n. A mapping f: A — R™, where A C R", is called M-definable
if its graph is M-definable.
From now on let M be some fixed, but arbitrary, o-minimal structure
on (R, +,-). If we write definable we will always mean M-definable.

2.5. Lemma. Let I C R be an open interval containing 0, let f : I — R be definable,
and p,m € N.

(1) If f € C°(1) and mo(f) > p, then f is CP near 0.

(2) If f € CP(I), then h(t) :=t™f(t) is CPT™ near 0.

Proof. (1) follows from lemma 2.2 and the Monotonicity theorem (e.g. [vdD98]).

(2) We use induction on m. The statement for m = 0 is trivial. Suppose that
m > 0. By induction hypothesis, g(t) := t™~1f(t) belongs to CP*™~1(I) and
RPFm=1) (1) = tgP+m=1 (1) 4 (p +m — 1)gPT™=2)(¢). Thus

hotm=1) )y _ p(p+m—1)((
fmy o D~ o+ myg 0 0),
Let t > 0. By definability, h(P+tm) (t) exists and is either a constant a or strictly
monotonic for small ¢, say, t < e. Hence, limy o h(P+™) (1) is given by either a,
SUpg< i KPT™(t), or infooiec RPT™)(1). By the mean value theorem, for each
n € Ny, there is a 0 < v(n) < 1/n such that
pp+m—1)(1y _ p(p+m—=1)((
RO () = ) O ot mygm10)  asn— o,

n
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So limy o RPT™) () = (p +m)g®P*+™=1)(0). Similarly for ¢ < 0. O

2.6. Examples. The conditions in lemma 2.5 are sharp: Let

{tpﬂ fort >0

(2.6.1) fo(t) = 0 fort<O”

Then mo(f,) = p, and f, is CP"* but not CPTL. Moreover, fpim(t) = t" f,(t) is
CP+tm1 but not CPTm+L,

3. SMOOTH SQUARE ROOTS

3.1. Let I C R be an open interval. If f : I — R>( is definable and continuous,
then {t € I:0 < m(f) < oo} CO{tel: f(t)=0}. So

2m(f) == sup{m(f) < oo :t e I}

is a well-defined integer. If f is C™ and n > 2m(f), then m(f) is the maximal finite
order of vanishing of the square roots of f.

3.2. Theorem. Let I C R be an open interval, f : I — R>o a non-negative definable
function, and p € Nsg. Consider P(t)(z) = x? — f(t). Then we have:

(1) If f is O, then the roots of P admit definable C™ parameterizations.
(2) If f is CPT27(F)  then the roots of P admit definable CPT™(F) parameteri-
zations.

Proof. We prove (1) and (2) simultaneously and indicate differences arising.
Note that any continuous choice of roots is definable (cf. lemma 4.4).
Let tg € I. If 0 < my,(f) < oo, then my (f) = 2m for some m € N, since
p+2m(f) —me,(f) > Land f > 0. So f(t) = (t — t0)*™ f(m)(t), where

)= [ O pem g 4~ topar
= T @m = 1) 0 0

is C (resp. CPT2m(1)=2m) " definable, and f(,,)(to) > 0. . Then the functions

gi(t) = £t — to)™\/fm)(t) are C*° (resp. CPH?™ =" hy lemma 2.5(2)) and

represent the roots of P near tg.

Now assume that my, (f) = co. In a neighborhood of ¢, consider the continuous
functions g4 (t) := £+/f(t). Then my,(g+) = co. By lemma 2.5(1), for each p,
there is a neighborhood I, of ¢ty such that the roots g+ are C? on I,. Now tg
belongs to d(f~1(0)) which is finite, by definability. Thus, in case (1), g4 is C*
off tg, and, hence, near tg.

So for each to € I we have found local C* (resp. CP+7(/)) parameterizations of

the roots of P near to. One can glue these to a global parameterization, see 4.12(4)
below. O

3.3. Examples. The condition in theorem 3.2(2) is sharp: The non-negative func-
tion f(t) = t*"(1 + f,(t)), where f, is defined in (2.6.1), is CP*?"™! but not
CPT2m ¥l Tts square roots gy () := £t™+/1 + f,(t) are CPT™ but not CPT™ 1,

4. SMOOTH ROOTS OF HYPERBOLIC POLYNOMIALS

4.1. Let

n n

:Zn—f—z ]CL] B :H

Jj=1 J=1
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be a monic polynomial with complex coefficients a1, ...,a, and roots A1,..., A,.
By Vieta’s formulas, a; = o;(A1, ..., Ay ), where o1, ..., 0, are the elementary sym-
metric functions in n variables:

(411) 0'7;()\1,...,)\”) = Z )‘jl"')‘ji'

1<j1<-<ji<n

Denote by s;, ¢+ € N, the Newton polynomials Z?:l )\;- which are related to the
elementary symmetric functions by

(4.1.2) s — Sp_101 + Sp_209 — -+ (=D Lsyop 1 + (=1)*koy, =0, (k>1).

Let us consider the so-called Bezoutiant

S0 S1 Sn—1
S1 52 Sn
B = : = (Si+i-2)1<ij<n-
Sp—1 Sn ... S2pn—2
Since the entries of B are symmetric polynomials in Aq,...,\,, we find a unique
symmetric n X n matrix B with B = B o o, where 0 = (01,...,0p)-

Let By, denote the minor formed by the first & rows and columns of B. Then we
have

(4.1.3) Ap(N) =det Be(A) = D> (A, =Ai,)% (i, = Xi)? (Ni, — A
11 < <ig

Since the polynomials Ay are symmetric, we have Ay, = Ay o o for unique polyno-
mials Ay,

By (4.1.3), the number of distinct roots of P equals the maximal k& such that
A(P) # 0. (Abusing notation we identify P with the n-tupel (a,...,a,) of its
coefficients when convenient.)

If all roots A; (and thus all coefficients a;) of P are real, we say that P is
hyperbolic.

Theorem (Sylvester’s version of Sturm’s theorem, see e.g. [Pro78] for a modern
proof). Suppose that all coefficients of P are real. Then P is hyperbolic if and only
if B(P) is positive semidefinite. The rank of B(P) equals the number of distinct
roots of P and its signature equals the number of distinct real roots.

4.2. Lemma (Splitting lemma [AKLM9S, 3.4]). Let Py = 2™ + Z?Zl(—l)jajz”_j
be a polynomial satisfying Py = Py - Py, where Py and Py are polynomials without
common root. Then for P near Py we have P = Py(P)-Py(P) for analytic mappings
of monic polynomials P +— Py (P) and P+ Py(P), defined for P near Py, with the
giwen initial values.

4.3. For the rest of the section, let I C R be an open interval and consider a
(continuous) curve of hyperbolic polynomials

n

P(t)(x) =a"+ Y (-1 a;(t)a"7, (tel).

Jj=1

Then the roots of P admit a continuous parameterization, e.g., ordering them by
size, )\1 S )\2 S S )\n-

4.4. Lemma. If the coefficients a; of P are definable, then every continuous pa-
rameterization \; of the roots of P is definable.
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Proof. Ordering the roots of P by size, u; < puo < -++ < g, gives a continuous
parameterization which is evidently definable. Since all Aj, o P are definable, the
set F of t € I where the multiplicity of the roots changes is finite. The complement
of E consists of finitely many intervals, on each of which the parameterizations A;
and p; differ only by a constant permutation. Thus each A; is definable. O

4.5. Lemma (Multiplicity lemma [AKLM98, 3.7]). Suppose that 0 € I and that
a1 = 0 identically. Let r € N. If each a; € C""(I), then the following conditions
are equivalent:

(1) mo(ax) > kr, for all2 <k <n.
(2) mo(Ag) > k(k —1)r, for all 2 < k < n.
(3) mo(a2 > 2r.

Proof. Obvious modification of the proof of [AKLM98, 3.7]. O

4.6. Let E)(P) denote the set of all t € I which satisfy following condition:
(#) Let s = s(t, P) be maximal with the property that the germ at ¢t of A; o P

is not 0. Then m;(A; o P) = 0.
Consider the condition:
(#’) There exists a continuous parameterization A; of the roots of P such that
distinct A; meet of infinite order at ¢, i.e., there exist ¢ # j such that the
germs of \; and A; at ¢ do not coincide and my(A; — \;) = oo.
By (4.1.3), (#) implies (#).
If the coefficients of P (and thus the Aj o P) are definable, then E(°°)(P) is finite
and the family of continuous parameterizations of the roots of P is finite. Then
(#) and (#’) are equivalent.

4.7. Let ty € I. Choose a continuous parameterization \; of the roots of P. We
denote by 7, (P, A) the maximal finite order of contact of the A; at ¢, i.e.,

Mg, (P, A) = max{my, (A — \j) <oo:1<i<j<n}

The integer 7, (P, ) depends on the choice of the ;.
If to ¢ E(>)(P) and s = s(to, P) is the integer defined in (#), then, by (4.1.3),
AgoP
i (PA) < el 8o 2 P)
If the coefficients of P are definable, then the family of continuous parameteri-
zations of the roots of P is finite.
Hence,
my, (P) == Sl)l\pmto(P, A),

where X is any continuous arrangement of the roots of P, is a well-defined integer,
if either tg & E(>)(P) or the coefficients of P are definable. It is the mazimal finite
order of contact of the roots of P.

4.8. Lemma. Suppose that either ty & E(OO)(P) or the coefficients of P are defin-
able. We have:
(1) If P = Py - P, as provided by the splitting lemma 4.2, then My, (P) =
max{m, (P1), M, (Pa)}.
Assume that all roots of P(ty) coincide. Then:

(2) Replacing the variable x with x — a1(t)/n, leaves My, (P) unchanged.
(3) If a; = 0, then my,(a2) < 2y, (P) + 1.
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(4) Suppose that a; = 0 and ax(t) = (t — to)*" aeyk(t) for continuous ayy,
2 <k <n, and some r € Nyg. Consider

P(r)( ="+ Z a(r) k n—j.

Then mto (P(r)) S mto (P) —T.

Proof. (1) and (2) are immediate from the definition. (3) is a consequence of
—2naz =3, (N — A;)? and the fact that, for a continuous function f, we have

my, (f2) < 2my, (f) + 1. (4) follows from the observation that, if ¢t — X;(¢) pa-
rameterize the roots of ¢ +— Py(t), then t — (t — £9)"A;(t) represent the roots of
t— P(t). O

4.9. Example. Note that in 4.8(3) equality can occur: Let f(t) := t3+1/3 for t > 0
and f(t) := 0 for t < 0, and consider P(t)(z) = 22 — f(t). Then mqo(f) = 3 and
mo(P) = 1.

4.10. If the coefficients a; of P (and thus the Ay o P) are definable, then the set
{t € I : 7 (P) > 0} is finite and

m(P) =m(P) :=sup{m,(P) : t € I'}
is a well-defined integer.
4.11. Lemma. For n € Nsg let R(n) denote the family of all rooted trees T with
vertices labeled in the following way: the root is labeled n, the labels of the successors

of a vertex labeled m form a partition of m, the leaves (vertices with no successors)
are all labeled 1. Define d(n) := maxpern){sum over all labels > 2 in T'}. Then

(4.11.1) d(n) = %n(n +1)—1.

Proof. Observe that d(1) = 0. Then (4.11.1) is equivalent to d(n+1) = n+1+d(n)
for n > 1. We use induction on n. It suffices to show d(n) > d(n1) + -+ + d(nyp)
for ny +---+n, =n+1, where p > 2 and n; € N5o. By induction hypothesis, this
inequality is equivalent to

1 1 1
in(n—i—l)—l2inl(n1+1)+-~-+§np(np+l)—

1
= Slmtetn)? =i+ dng) Zm o+t —ptl
= (m+-+np1)np>ni+---+ny,—1

The last inequality has the form ab > a + b — 1 for a,b € Nsg, which is easily
verified. O

Note that d(n) + n computes the maximal sum of all degrees occurring in a
repeated splitting of a polynomial of degree n into a product of polynomials of
strictly smaller degree until each factor has degree one.

4.12. Theorem. Let I C R be an open interval. Consider a curve of hyperbolic
polynomials

P)@) ="+ (~Va, (", (n22),

with definable coefficients a;. Let p € N5g and d(n) = n(n+1)/2 — 1. Then:

(1) If the aj are C*°, then the roots of P can be parameterized by definable C>
functions, globally.
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(2) If the a; are CPH1+AT(E) “ihen the roots of P can be parameterized by
definable CP functions, globally.

The condition in 4.12(2) is not best possible. However, it is convenient to prove
this preliminary result parallel to the C'*° case and strengthen it in theorem 5.2
below.

Proof. We prove (1) and (2) simultaneously and indicate differences arising. Any
continuous parameterization of the roots of P is definable, by lemma 4.4.

We proceed by induction on n. The case n = 2 is covered by theorem 3.2 (since
we may always assume a1 = 0, see (II) below). Suppose the assertion is proved for
degrees < n.

Claim (3). There exists local C* (resp. CP) parameterization \; of the roots of P
near each tg € I. The local C'*° choices \; of the roots are unique in the following
sense:

(x) On the set {\i,...,\,} consider the equivalence relation \; ~ X; iff
My, (Ai — Aj) = oo. If w; is a different local C™ parameterization of the
roots of P near to, then {A1,..., An}/~ = {p1,..., pn}/~.

Note that (x) is trivially satisfied if n = 2. Without loss we may assume that
0 € I and typ = 0. We distinguish different cases:

(I) If there are distinct roots at 0, we may factor P(t) = P;(t) - P»(t) in an open
subinterval Iy 3 0 such that P; and P, have no common roots, by the splitting
lemma 4.2. The coefficients of each P; are definable, since its roots are. By lemma
4.8(1), we have

i, (P) = max{my, (P1), m,(P,)}-
By the induction hypothesis, P; and P, (and hence P) admit C*° (resp. CP) pa-
rameterizations of its roots on Iy which are unique in the sense of (x) in case (1).

(IT) If all roots of P(0) coincide, then we first reduce P to the case a; = 0, by
replacing x with  — a1(¢)/n (which leaves m(P) and (%) unchanged, by lemma
4.8(2)). Then all roots of P(0) are equal to 0. So a2(0) = 0. Clearly, the new
coeflicients are still definable.

(ITa) If mg(az) is finite, then p + 1 + d(n)m(P) — mg(az) > 1, by lemma 4.8(3).
So mo(az) = 2r for some r € Ny, since 0 < Ay = —2nasy. Let

q:=p+1+dn)m(P)—nr.

By the multiplicity lemma 4.5, we obtain a(t) = tkra(r)7k(t) for definable C*°
(resp. C?) functions a(); and 2 < k < n. Consider the C°° (resp. C9) curve of
hyperbolic polynomials

(4.12.1) Poy(t)(z) == 2" + Z(—wa(,),k(t)x”—j .

Since a(y,2(0) # 0, not all roots of P;(0) coincide. We have d(n) —n = d(n — 1)
and, by lemma 4.8, m(P;)) < m(P) — r. Thus, the splitting lemma 4.2 and the
induction hypothesis provide C* (resp. CP) parameterizations \; of the roots of
Py near 0 which are unique in the sense of (x). But then the C° (resp. C?)
functions t — t"\;(t) represent the roots of ¢t — P(t) near 0 and they are unique
in the sense of (x) in case (1).

(ITb) If mg(az) = oo and az = 0, then all roots of P are identically 0.

(Ilc) Finally, if mo(az) = oo and ag # 0, then, since —az = 377, A3, for any
continuous choice of the roots A; we find mg(A;) = oo (for all j). By lemma 2.5(1),
for each p, there is a neighborhood I, of 0 such that the roots A; are C*? on I,,. Since
as is definable, for small ¢ # 0 either not all A;(t) coincide or all \; are identically
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0 (to the left or the right of 0). So, in case (1), all \; are C* off 0, by the splitting
lemma 4.2 and the induction hypothesis, and hence also near 0.

Claim (4). We may glue the local C* (resp. CP) parameterizations of the roots to
form a global parameterization.

In case (1) the local C'*° choices of the roots of P can be glued by their uniqueness
in the sense of (x). If C*° roots meet of infinite order at ¢y, any permutation on
one side of ¢y preserves smoothness.

For (2): Let A = (A1,...,A,) be a CP parameterization of the roots of P defined
on a maximal open interval I; C I. For contradiction, assume that the right (say)
endpoint t; of I; belongs to I. By claim (3), there exists a local C? parameterization

= (p1...,pn) of the roots of P near t;. Let ¢y be in the common domain of A
and p. Consider a sequence ti \, to. For each k, there is a permutation 75 of
{1,...,n} such that A\(t;) = 7.u(tx). By passing to a subsequence, we can assume

that A(tx) = T.pu(te) for all k and a fixed permutation 7. Thus, A(t) = .u(t) for
all t > to, by definability. So A(t) := A(t) for t < to and A(t) := 7.u(t) for t > to
defines a CP parameterization on a larger interval, a contradiction. U

4.13. Remark. Suppose that m(P) = 0. Then the roots of P do not meet or they
meet slowly, i.e., (X\i(t) — A;(¢))/t is not continuous at t = 0. In the latter case
as & C%, by 4.8(3), and so 4.12(2) is empty.

5. SHARP SUFFICIENT CONDITIONS FOR CP ROOTS

The conditions in theorem 4.12(2) are not sharp. We shall obtain sharp suf-
ficient conditions for CP roots, given that the coefficients are definable. In the
non-definable case we still get sharp sufficient conditions, if P is of a special type.
The proof of 4.12(2) was not for nothing, since it is needed in the definition of T’
and v below.

5.1. The definable case. Let P(t), t € I, be a curve of monic hyperbolic polyno-
mials of degree n with definable C* ™7™ (P)+2 coefficients aj. For each tg € I, let us
define two integers I'y, (P) and ¢, (P) inductively:

(I) If P(t) = Py(t) - Py(t) near to, and P;(tg), ¢ = 1,2, have distinct roots,

(5.1.1) Ty, (P) := max{T¢, (P1), T, (P2)},
(512) Vo (P) = Fto (P) - max{rto (Pl) - 'yto(Pl)’ Fto (PQ) — Mo (PQ)}
(IT) If deg(P) > 1 and all roots of P(ty) coincide, reduce to the case a3 = 0

without changing I'y,(P) and 7, (P)). If my,(az2) = 2r < oo, consider P, as in
4.12.1) (for t¢ instead of 0), and set

5.1.3) Ty, (P) := T4y (Pyy) + deg(P)r,

5.1.4) Yeo (P) := Yeo (Prry) + 7

If my, (ag) = oo, set Ty, (P) := 0 and ~,(P) := 0.

(III) If deg(P) = 1, set ', (P) := 0 and ~, (P) := 0.

Note that, (by the proof of 4.12(2)) the coefficients of P being in C4™m(F)+2
guarantees that 'y (P) and v, (P) are well-defined. With hindsight it suffices to
assume that the coefficients of P belong to CT*(P)+1 near ¢.

Since the coefficients of P are definable, the set of ¢y € I such that I'y,(P) > 0
or v, (P) > 0 is finite and
(5.1.5) [(P) :=sup{l'y,(P) : to € I},

(5.1.6) ¥(P) :=T(P) — sup{Ts, (P) — 11, (P) : tg € I}

(
(
(
(
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are well-defined integers. By construction, we have
v(P) <T'(P) <d(n)m(P) + 1.
If P(t)(x) =2 — f(t) (where f > 0), then T'(P) = 2m(f) and v(P) = m(f).

5.2. Theorem. Let I C R be an open interval. Consider a curve of hyperbolic
polynomials
P(t)(x) = 2" + ) (=1 a ()",

j=1
with definable coefficients a;. For each p € N, we have:

(1) If the a; are CPtE(P) then the roots of P can be parameterized by definable
CPH(P) functions, globally.

Proof. By 4.12(4) it suffices to show the local assertion. Let g € I be fixed.

Claim (2). If the a; are CP*1% (") then the roots of P can be chosen in CP+7t0(F)
locally near tg.

We use induction on n and follow the steps in 4.12. The case n = 1 is trivial and
n = 2 is treated in theorem 3.2(2). Without loss assume that 0 € I and ¢, = 0.

(I) If P(0) has distinct roots, we have a factorization P(t) = Py(t) - P»(t) near 0,
by the splitting lemma 4.2. The coefficients of each factor P; belong to CP+To(P),
Let p; :== p+ To(P) — To(P;). Then p; > p, by (5.1.1). By induction hypothesis,
the roots of P; admit a local parameterization in CP:t7 (") By (5.1.2), we obtain
pi +v0(Ps) > p+ Y0(P), hence claim (2).

(IT) If all roots of P(0) coincide, we reduce to the case a; = 0. So ay(0) = 0.

(ITa) If mg(az) = 2r < oo, consider P,y as in (4.12.1). The coefficients of P,
are in CPHTo)=n and q(,),(0) # 0. By (5.1.3) and (I), there are CP+70(Fm)
functions \; which represent the roots of Py near 0. Then t +— t");(t) form a
local parameterization of the roots of P which is CP*%(P) by lemma 2.5(2) and
(5.1.4).

(IIb/c) If mo(az) = oo, then mg(A;) = oo for each continuous choice of roots Aj,
and we are done, by lemma 2.5(1).

Claim (3). If the a; are CP*T(P) then the roots of P can be chosen in CP+7(F)
locally near ty.

By claim (2), the roots of P can be chosen in CP+T(P) =Tt (P)+7:0(P) "ocally near
to. By (5.1.6), we have p + I'(P) — 'y, (P) + v, (P) > p + ~v(P). O

5.3. Examples. The condition in theorem 5.2 is sharp: Let p € N5 3 and let f, be
the function defined in (2.6.1). Consider the C?'! curve of polynomials

Py(t)(x) = 2% = fo()2® + (2f,(t) — *)a = £ (D).

For the discriminant of P, we find Az(P,(t)) = t5(4 + o(1)) if t > 0 (as p > 3)
and Az(Py(t)) = 4t% if t < 0. Thus, for small ¢, P,(t) is hyperbolic. Tt is easy to
compute I'(P,) = 3(< p) and y(P,) = 1. By theorem 5.2, P, admits C?~2 roots.
Suppose, for contradiction, that P, has CP~! roots Aj. Since mo(A;j) > 1, we have
A;j(t) = tu;(t) for CP~2 functions pj. But then f,(t) = t3uq (t)pa(t)us(t) is CPH,
by lemma 2.5(2), a contradiction.
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5.4. The non-definable case. Let P(t), t € I, be a curve of monic hyperbolic
polynomials of degree n (not necessarily definable). Assume E(*)(P) = (. We
will prove analogs of theorem 4.12(2) and, if P is of a special type, of theorem
5.2. Without the assumption E(°)(P) = ), we cannot hope for C1 roots (for any
a > 0), even if the coefficients are C*> (e.g. [Gla63], [AKLM98], [BBCP06]).

Let J C I be a compact subinterval of I. Define

my(P) :=sup{m(P) : t € J} € NU {+c0}.

The interesting case is T ;(P) < oo, but what follows is also true for m ;(P) = cc.

Assume that P has C4W™(P)+2 coefficients a;. For each ty € I, we can define
the two integers I'y, (P) and 7y, (P) in the same way as in 5.1. Again it is enough to
assume that the a; belong to CTto (") near ty. Define T';(P),~,(P) € NU {+o00}
by
(5.4.1) Ty(P) :=sup{ly, (P) : to € J},
(5.4.2) 77 (P) :=T7(P) —sup{ly, (P) — v, (P) : to € J}.
By construction,

v (P) <Ty(P) < d(n)m,;(P) + 1.

The interesting case is when I' ;(P) and v, (P) are finite, but what follows is true
in any case.

5.5. Theorem. If the coefficients a; of P are CPtTs(P) then the roots of P can be
parameterized by CP functions, globally near J.

Proof. By the definition of ' ; (P), the coefficients a; have the right differentiability
for the proof of 4.12(2) to work. Definability was used in the proof of 4.12(2) only
n (Ilc) and in claim 4.12(4). The case (Ilc) does not occur, since E(*)(P) = (). In
claim 4.12(4), the use of definability can be replaced by the following argument: If
a real valued C? function f vanishes on t; \, to, then f(9)(tq) = 0 for all 0 < ¢ < p.
This follows from a repeated application of Rolle’s theorem. (|

5.6. Lemma. Let I CR be an open interval containing 0. Let p,r € Nsg. Suppose
that ay(t) = t*"a( ,(t) € CPT(I), for 2 < k < n, ag)2(0) #0, and consider

P( y(t =z" + Z a(r n_k.

Factorize P,y = H 1 Pr),; near 0, according to the splitting lemma 4.2, such that

Py, (8)( —”3"7+Z ae ke, 1<) <,

and the Py ; have mutually distinct roots. Then, for all1 < j <1l and 1 <k < ny,
a; i (t) == t""a( jx(t) belongs to CPTE" near 0.

Proof. By assumption, t"a ) (t) € crtn=krtm forall 2 <k <nand 0 <m <
kr. We assert that

(5.6.1) t"a E:’;)k( ) € C’er("*k)T, forall2<k<mnand 0 <m < kr,
(m)

(where Alry ke is understood as distributional derivative). This follows from
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and from induction on m. From (5.6.1) we can deduce in a similar way that
(5.6.2) tqagzg’k(t) eC?, forall2<k<nand0<g<nr.

Let agy == (a@)2,--+,0(),n). By assumption, there exist C“ functions ®;
defined in a neighborhood of a,(0) € R™ ! such that a@ry gk = Pjk 0 agy, for all
1<j<land 1<k <n;. Then

kr
kr kr (kr)' m
“;,k)(t) = Z (m> - AT (1),

m=0

where (by Faa di Bruno, [FdB55] for the 1-dimensional version)

o (a1) oy (cu)
o m! t*ag,) (t) ta (t)
Bn=3 X rdsan®) (T ),

120 aEN;O
ar+-ta=m

So, by (5.6.2), we find a;f“]:) € C? and, thus, aj ) € CPTH", 0

5.7. Lemma. Adopt the setting of lemma 5.6. However, assume that ay(t) =
t*"a( x(t) € CPYR(I), for 2 < k < n, and that all roots of P)(0) are distinct. If
Aj are CP functions representing the roots of Py, then Aj(t) := t"\;(t) are CP*"
functions representing the roots of P.

Proof. Instead of (5.6.1) we obtain

(5.7.1) tmagf;)k(t) eCP, forall2<k<mnand0<m<kr.
The second part of the proof is the same as in 5.6, where now [ = n and n; =1 for

all j. In the end we use (5.7.1) instead of (5.6.2). O

5.8. Let P(t), t € I, be a curve of monic hyperbolic polynomials of degree n (not
necessarily definable). Assume E(*)(P) = (. Let t, € I and suppose that the
coefficients of P belong to CTt (7)1 near to. The gradual splitting of, firstly, P
near to into factors P; with mutually distinct roots such that all roots of P;(to)
coincide, then, secondly, of each (P;)(,,) (defined in (4.12.1)) and so on, determines
a well-defined mapping (P, tg) — T'(P,tg), where T'(P,ty) is a rooted tree in R(n)
(cf. 4.11).

By the height h(T) of a tree T' we mean the maximal length (number of edges)
of paths connecting the root with a leaf in T. The k-level of T is the set of all
vertices whose distance (length of the connecting path) from the root is k.

3 (6)

€ ©) ©)

@ o o O O

FIGURE 1. The first rooted tree is of type (A), the second is not.



SMOOTH ROOTS OF HYPERBOLIC POLYNOMIALS 51

5.9. Theorem. Let I C R be an open interval and let J C I be a compact subin-
terval. Consider a curve of hyperbolic polynomials

P(t)(x) =" + ) (~1Va;(t)a", (tel)
j=1

such that E(>)(P) = (). Assume that the following condition is satisfied for all
ted:
(A) For allk < h(T(P,t))—2, the k-level of T(P,t) contains at most one vertex
with label > 2.

For each p € N5 g we have:

(1) Ifthea; are CPtTs(P) then the roots of P can be parameterized by CP+77(P)
functions, globally near J.

Proof. By 4.12(4) and the argument in the proof of 5.5, it suffices to show the
local assertion. Let tg € J be fixed.

Claim (2). If the a; are CPtT0(P) then the roots of P can be chosen in CP+7t0(F),
locally near ty.

Without loss assume that 0 € J and ¢y = 0. We proceed by induction on n. If
n =1 then I'g(P) = v(P) = 0 and we are done. Suppose n > 1 and the claim is
proved for degrees < n — 1.

(I) If P(0) has distinct roots, we have a factorization P(t) = P;(t) - Pa(t) near 0,
by the splitting lemma 4.2. The coefficients of each factor P; belong to C?+To(P),
Let p; :=p+To(P) —To(F;). Then p; > p, by (5.1.1). Clearly, each T(P;,0) is of
type (A). By induction hypothesis, the roots of P; admit a local parameterization
in CPi+t0(P) | By (5.1.2), p; +v0(P;) > p + Y0 (P), hence claim (2).

(IT) If all roots of P(0) coincide, we reduce to the case a3 = 0. So az(0) = 0. If
as = 0 identically, then all roots are 0 identically, and claim (2) is satisfied. Suppose
that ay # 0. Since E(°)(P) = () and since To(P) > mo(az) by definition, we have
mg(az) = 2r < oco. Consider P,y as in (4.12.1). The coefficients of P, are in
CPHIP) =T and ayy,2(0) # 0. By (5.1.3) and (I), there are CPT70(F») functions
A; which represent the roots of P,y near 0. Then the functions A;(t) = t"\;(¢)
form a local parameterization of the roots of P. The proof of claim (2) is complete
once claim (3) below is shown.

Claim (3). Each A; belongs to CPT70(P)

We treat the following cases separately:

(3a) Suppose that h(T'(P,0)) <2

If all X\;(0) are distinct, then claim (3) follows from (5.1.4) and lemma 5.7.

Otherwise, we can assume (after possibly reordering the ;) that

AL0) =+ =X, (0) <Ay 41(0) =+ =Xy 1y (0) <+ < Aoy 11 (0) =+ - - = A (0).
Set N(1) := 0 and N(j) :=ny +---+mn;_; for 2 < j <. By the splitting lemma
4.2, for each 1 < j <[,

Py ()(x) = 2™ + Z Vag ()2 ™" =[] = Ang4i(t)
i=1
has CPTT0(Pm) coefficients a(r),j, near 0. By replacing the variable z with z —
aey,;1(t)/n;, we obtain
n;

n; ni— ot
Py (D) = 2™ + Z Vrae ke ™ =[] @ = () — 22228)),

i=1
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where the @) ; are still CPtTo(Pm) near 0. All roots of P(T),j(O) are equal to
0. As above we may conclude that there is a ¢; € Nyg such that d(r)yj,k(t) =
tkai a(hq]‘),j,k(t)7 for2<k< nj, a(r,qj)’j,Q(O) 7é 0, and

nj
P(T”7q]')7j(t)(m) =™+ Z(*l)kd(,«,qj)7j,k(t)x”3'*k
k=2

has CP Yo (Fra) ) coefficients U(r,q;),5,(t) and CP 0 Frap.i) 1oots ji- Then

. .51 () ;
(5.9.1) %3 (t) = Ang)4i(t) — “”le, for 1 <i <nj.
Thus,
5.9.2 Aneivai(t) = 779 s () + 17202 ® g < <y
(])"l‘ M’]a 5 J
By lemma 5.6,

7 gy i (t) € CPTTOPOIERT = for all 1 < j <l and 1 < k < nj.

In particular, t"a(,) ;1(t) € CPTTo(P)*r So, in order to show claim (3), it re-
mains to prove that the first summand on the right-hand side of (5.9.2) belongs to
CP+70(P)

The mapping () j,1,- > a(r),jn,;) 7 (@(r),j,25 - - -5 A(r),jn; ) 18 Polynomial. Thus,
there exist C functions @, j, defined in a neighborhood of ay(0) € R"~! such that
a(ry,je = Pjkoagy, forall 1 < j <l and 2 <k < nj. Hence, by (the proof of)
lemma 5.6, we also obtain

7 agy g k(t) € CPTTOPOIFRT = for all 1 < j <l and 2 < k < nj,

and thus

th(r+a;) ¢ oPtho(Pr)+kr CIDJrFf)(P<r,<1_7~),J')+/<(T+qj)7

A(r,q;),5.k(t)
forall1 <j<land 2 <k <n;.

By the assumption h(T'(P,0)) < 2, all y;;(0) are distinct. Then claim (3) follows
from (5.1.4) and lemma 5.7.

(3b) Suppose that h(T'(P,0)) > 2. Let us use the notation of (3a). Since T'(P,0)
is of type (A), we may assume ny = ng = --- = n; = 1, and the roots A;, for
n1 + 1 < j < n, belong to CPHTo(Fm),

Consider the Newt01} polynomials s,y 1, = Z?:l )\f and 5(y.4,),1,6 = Z;il ,u’f_’j,
associated to P,y and P, 4,1, respectively. (In the following argument it is conve-
nient to work with the Newton polynomials of the roots instead of the elementary
symmetric functions (coefficients). They are related to each other by the poly-
nomial diffeomorphism defined in (4.1.2).) Note that s()1 = 5(.4,),1,1 = 0 and
S(r,q1),1,0 = 1. We have, by (5.9.1),

n

(5.9.3) 0=501=amit)+ > N(t),
1=ni1+1
(5.9.4)
k n
k i1 — a(, t)\k—1i
S(r),k(t) = Z (Z)t qlS(T’ql)’Li(t)(%l’l()) ‘4 Z )\i(t)k7 2<k<mn.
=0 i=ni+1

By lemma 5.6 and (5.1.3), A;(t) = t"\;(t) € CPHTo(P) for ny +1 < i < n. Thus,
by (5.9.3), t"a(y,1,1(t) € CPHOP) By (4.1.2), we have t*s(, ,(t) € CPFT0(P) for
2 < k < n (since the same is true when the s, ;, are replaced by the a(,) ). Hence,
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(5.9.4) implies inductively that ti(’"'*‘“)é(wl)’l,i(t) e CPtTo(P) for 2 < < nyq, and
equivalently,

ti(”ql)&(r,ql)’l,i(t) € Cp+F°(P), for 2 < i< n;.

Let us repeat this procedure with

ni ni

P(t)(x) =™ + ) (=) P a0 502" = T [@ =7 p(t)

j=2 i=1

instead of P. Evidently, T(P,0) is of type (A). After finitely many steps the
situation is reduced to case (3a). This completes the proof of claim (3).

Claim (4). If the a; are CPT17(P) | then the roots of P can be chosen in CP+77(P)
locally near tg.

By claim (2), the roots of P can be chosen in CP+T7(P)=Te(P)+71(P) ocally
near tg. By definition, p + I'j(P) — Ty, (P) 4+ Y, (P) = p + v (P). O

5.10. Remark. We do not know whether or not theorem 5.9 holds, if T'(P,t) is not
of type (A). Note that each T € Uizl R(n) is automatically of type (A). Thus,
theorem 5.9 is true for all P with degree at most 4.

6. DEFINABLE VERSION OF BRONSHTEIN’S THEOREM

6.1. Theorem. Let I C R be an open interval. Consider a curve of hyperbolic
polynomials

P(t)(z) = 2" + Z(—l)jaj(t)w"_j

with definable C™ coefficients a;. Then the roots of P can be parameterized by
definable C' functions, globally.

If ‘definable’ is omitted in the formulation of theorem 6.1, then we obtain Bron-
shtein’s theorem [Bro79] (see also [Wak86]). Actually we obtain the refinement of
Bronshtein’s theorem due to [COP08]. The proof of Bronshtein’s theorem is very
delicate and only poorly understood. In the definable case it becomes remarkably
simple.

Proof. By 4.12(4), it suffices to show the local statement. We follow the proof
of theorem 4.12(3) and indicate the necessary modifications. Let us begin the
induction on n with the case n = 1, which is trivial. (I) and (II) can be adopted
with obvious minor changes. So assume that a; = 0 identically and a2(0) = 0.
Since 0 < Ay o P = —2nay, we have my (a2) > 2. By the multiplicity lemma 4.5
(for r = 1), mo(ar) > k for 2 < k < n, and Py (defined in (4.12.1)) is a continuous
curve of hyperbolic polynomials. Let p; be a continuous parameterization of the
roots of Py near 0. Then the functions \;(t) := tu;(t) form a definable continuous
parameterization of the roots of P near 0 such that mg();) > 1 for each j. By
lemma 2.5(1), each \; is C'! near 0. O

6.2. Examples. (1) The function f(t) = t3|t| is in C*! (but not three times
differentiable). The square roots of f may be chosen C! but not C1:1.

(2) Let g(t) = 1/3 for t > 0 and g(t) = 0 otherwise. Consider the following C?!
curve of cubic polynomials (cf. [COP08, Example 4.6]):

P(t)(z) = 2% — t3g(t)a® + (2t%g(t) — t*)x — t3g(¢).
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Its discriminant is Ag(P(t)) = t5(1 4 o(1)) if t > 0 and As(P(t)) = 410 if t < 0.
Thus, for small ¢, P(t) is hyperbolic. The roots of P cannot be chosen differentiable
at 0: Note that 0 is a triple root of P(0). Consider, for ¢ # 0,

Qt)(y) =t P(t)(ty) = y* — tg(t)y” + (2tg(t) — 1)y — g(t).
Then limy o Q(¢)(y) = y* —y — 1/3 and lim;_~ Q(¢)(y) = y* — y. Thus, the roots
of P cannot be differentiable at 0.

7. COMPLEX POLYNOMIALS

7.1. In this section let I C R be an open interval and consider a curve of complex
polynomials

P(t)(z) =" + 3 (~1a ()",

i.e., each coefficient a; : I — C is a continuous complex valued function. Then the
roots of P admit a continuous parameterization (e.g. [Kat76, IT 5.2]).

A complex valued function f : I — C is called definable if (Re f,Im f) : I — R?
is definable. We will assume that the coefficients a; of P are definable.

The set F(°°) (P) can be defined and has the same properties as in the hyperbolic
case (cf. 4.6).

7.2. Lemma. If the coefficients a; of P are definable, then every continuous pa-
rameterization A; of the roots of P is definable.

Proof. The real and imaginary parts ReA;, Im A;, 1 < j < n, parameterize the
solutions of the 2n algebraic equations with definable coefficients Re P(t)(\;(t)) =
0, Im P(t)(A\;(t)) =0, 1 < j < n. The family of continuous parameterizations of
the solutions of these equations is finite. O

7.3. Theorem. Let I C R be an open interval. Consider a curve of polynomials
P(t)(x) =a" + ) (=1 a;(t)a" 7,
j=1

with definable C*° coefficients a;. Then, for each ty € I, there is an N € Nyq
such that t — P(to £ (t —to)") admits definable C*° parameterizations of its roots,
locally near tg.

Proof. Since the coefficients of t — P(ty £ (t — to)") are definable, we need not
care about the definability of its roots, by lemma 7.2. Without loss assume that
0 € I and ty = 0. We proceed by induction on n. The case n =1 is trivial.

(I) If P(0) has distinct roots, we are done, by the splitting lemma 4.2 and the
induction hypothesis. (Here we use that, if t — P;(&t"¢), i = 1,2, admit C™ roots
then so does t — Py (£tN1V2) Py (£¢N1V2) )

(IT) If all roots of P(0) coincide, we reduce to the case a; = 0. Then all roots of
P(0) are equal to 0.

(ITa) If mo(ar) < oo for some 2 < k < n, there exist N,r € Ns5o such that
(t — P(+tN))(, (the reduced curve of polynomials defined in (4.12.1) associated
to t — P(£t")) has distinct roots at t = 0 (see [Rai09]). By the splitting lemma
4.2 and the induction hypothesis, we are done.

(IIb) If all aj = 0 identically, then all roots of P are identically 0.

(ILc) If mo(ag) = oo for all 2 < k < n, then for any continuous choice A; of the
roots of P we find mg(A;) = oo (for all j). For: Let A(t) be any continuous root of
P(t) and 7 € No. Then, for ¢t # 0, u(t) = t~"A(t) is a root of P (t) (defined in
(4.12.1)), hence bounded in t. So A(t) = ¢"~1 - tu(t), and t ~— tu(t) is continuous.
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Thus mg(A) = oo, since r was arbitrary. By lemma 2.5(1) (applied to Re \; and
Im )\;), for each p, there is a neighborhood I, of 0 such that each \; is C? on I,,.
Since the coefficients a; (and hence the Ay o P) are definable, for small t # 0 the
multiplicity of the \;(¢) is constant. So all A; are C* off 0 (by the splitting lemma
4.2) and hence also near 0. O

7.4. In [Rai09] we have deduced from the analog of theorem 7.3 that any contin-
uous parameterizations of the roots of a C*° curve P of complex polynomials with
E>(P) = ) is locally actually absolutely continuous (not better!, see 7.7 below).
The optimal conditions for absolutely continuous roots are unknown.

However, in the definable case we have the following best possible result:

7.5. Theorem. Any continuous choice of the roots of a curve of monic complex
polynomials with definable continuous coefficients is locally absolutely continuous.

Proof. This follows from lemma 7.2 and lemma 7.6 below. O

7.6. Lemma. Let I C R be an interval. A definable continuous function f: I — C
is locally absolutely continuous.

Proof. We show that a continuous definable function f: I — R, where I C R is a
compact interval, is absolutely continuous. By the Monotonicity theorem [vdD98],
fis C! on the complement of finitely many points J = I \ {a1,...,a,}. Let J; be
some connected component of J. By definability, we can partition J; into finitely
many subintervals J;; on each of which either f* > 0 or f/ < 0. Then it is easy
to see that f’|;,, belongs to L' for every J;;, thus f’[;, belongs to L' (here we

use that f is continuous). Let [a,b] := J; denote the closure of J;. Then we have
f(@) = fla)+ [T f'(t)dt for z € [a,b]. So fl7, is absolutely continuous. Since J;
was arbitrary, the proof is complete. O

7.7. Examples. Absolute continuity is the best we can hope for: In general the
roots cannot be chosen with first derivative in L{ = for any 1 < p < oo. This is
demonstrated by

Pit)(z)=2"—t, teR,

for1<p<ooifn2p’%landforp:ooifnZQ.
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QUASIANALYTIC MULTIPARAMETER PERTURBATION OF
POLYNOMIALS AND NORMAL MATRICES

ARMIN RAINER

ABSTRACT. We study the regularity of the roots of multiparameter families of
complex univariate monic polynomials P(x)(z) = 2" + Zyzl(fl)jaj (x)2"—d
with fixed degree n whose coefficients belong to a certain subring C of C'*°-
functions. We require that C includes polynomial but excludes flat functions
(quasianalyticity) and is closed under composition, derivation, division by
a coordinate, and taking the inverse. Examples are quasianalytic Denjoy—
Carleman classes, in particular, the class of real analytic functions C*.

We show that there exists a locally finite covering {mj} of the parameter
space, where each 7y is a composite of finitely many C-mappings each of which
is either a local blow-up with smooth center or a local power substitution (in
coordinates given by x — (£z]*,..., +279), i € N>g), such that, for each k,
the family of polynomials P o m; admits a C-parameterization of its roots. If
P is hyperbolic (all roots real), then local blow-ups suffice.

Using this desingularization result, we prove that the roots of P can be
parameterized by SBVj,.-functions whose classical gradients exist almost ev-
erywhere and belong to Llloc. In general the roots cannot have gradients in
LP for any 1 < p < co. Neither can the roots be in Wli’cl or VMO.

We obtain the same regularity properties for the eigenvalues and the eigen-
vectors of C-families of normal matrices. A further consequence is that every
continuous subanalytic function belongs to SBV|yc.

1. INTRODUCTION

Let us consider a family of univariate monic polynomials
n
P(x)(z) = 2" + ) _(=1)a;(w)z""
j=1

where the coefficients a; : U — C (for 1 < j < n) are complex valued functions
defined in an open subset U C RY. If the coefficients a; are regular (of some kind)
it is natural to ask whether the roots of P can be arranged regularly as well, i.e.,
whether it is possible to find n regular functions A; : U — C (for 1 < j < n) such
that Ai(z),..., Ap(z) represent the roots of P(x)(z) =0 for each z € U.
This perturbation problem has been intensively studied under the following ad-

ditional assumptions:

(1) The parameter space is one dimensional: ¢ = 1.

(2) The polynomials P(z) are hyperbolic, i.e., all roots of P(z) are real.

If both of these conditions are satisfied, there exist real analytic parameteriza-
tions of the roots of P if its coefficients a; are real analytic, by a classical theorem
due to Rellich [Rel37a). If all a; are smooth (C*°) and no two of the increasingly
ordered (hence) continuous roots meet of infinite order of flatness, then there exist
smooth parameterizations of the roots, by [AKLM98]. Without additional con-
dition we cannot hope for smooth roots. By [Rai09b], smooth roots exist if the
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theory, smooth roots of polynomials, desingularization, bounded variation, subanalytic.
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coefficients are smooth and definable in some o-minimal expansion of the real field,
which implies that not flat contact but oscillatory behavior is responsible for the
loss of smoothness. The roots may always be chosen C! (resp. twice differentiable)
provided that the a; are in C?" (resp. C®"), see [Man85] and [KLMO04]. Recently,
the assumptions in this statement have been refined to C™ (resp. C?") by [COP08].
It is then best possible in both hypothesis and conclusion as shown by examples
(e.g. in [COPO8] and [BBCP06]). Sharp sufficient conditions, in terms of the differ-
entiability of the coefficients and the order of contact of the roots, for the existence
of CP-roots (p € N) are found in [Rai09b].

If the polynomials P(z) are hyperbolic and all a; are in C™, but the parameter
space is multidimensional (¢ > 1), then the roots of P may still be parameterized by
locally Lipschitz functions (by ordering them increasingly for instance). This follows
from the fundamental results of Bronshtein [Bro79] and (alternatively) Wakabayashi
[Wak86] (which also constitute the main part in the proof of all but the last of the
finite differentiability statements above). For a detailed presentation of those see
[Rai]. A different and easier proof for the partial case that the coefficients a; are
real analytic was recently given by Kurdyka and Paunescu [KP08]. In that paper
the real analytic multiparameter perturbation theory of hyperbolic polynomials P
and symmetric matrices A is studied. It is shown that there exists a modification
® : W — U, namely a locally finite composition of blow-ups with smooth centers,
such that the roots of Po® can be locally parameterized by real analytic functions,
and Ao ® is real analytically diagonalizable. For further results on the perturbation
problem of hyperbolic polynomials see (among others) [Gla63], [Die70], [CC04], and
[LROT7].

The one parameter case ¢ = 1, but with the hyperbolicity assumption dropped,
was treated in [Rai09a]. In that case continuous parameterizations of the roots still
exist given that the coefficients a; are continuous (e.g. Kato [Kat76, IT 5.2]). If all
a; are smooth and no two of the continuously chosen roots meet of infinite order
of flatness, then any continuous parameterization of the roots is locally absolutely
continuous. Absolute continuity is the best one can expect, see 7.13. This theorem
follows from the (Puiseux type) proposition that for any z( there exists an integer
N such that z +— P(zo £ (x — 19)") admits smooth parameterizations of its roots
near xg. It seems unknown whether the roots still can be arrange locally absolutely
continuously if the condition on the order of contact is omitted. Spagnolo [Spa99]
gave an affirmative answer for degree 2 and 3 polynomials (degree 4 is announced).

In the present paper we study smooth multiparameter perturbations of complex
polynomials, i.e., without the restrictions (1) and (2). It is easy to see that every
choice of the roots of a bounded family P of polynomials is bounded as well (propo-
sition 2.4). By a theorem due to Ostrowski [Ost40], for a continuous family P of
polynomials, the set of all roots still is continuous and satisfies a Holder condition
of order 1/n. But in general there may not exist continuous parameterizations
of the single roots as in the one dimensional or hyperbolic case. For instance,
P(z1,22)(2) = 2% — (z1 + ixa), with 21,79 € R and i = v/—1. Nevertheless, the
roots of P may have some other regularity properties.

We show the following (theorem 6.7): Let C be a certain class of C*°-functions
(specified below). If the coefficients a; of P are C-functions on a C-manifold M,
then for each compact subset K C M there exist:

(a) a neighborhood W of K, and

(b) a finite covering {7y : Uy — W} of W by C-mappings, where each 7y is a
composite of finitely many mappings each of which is either a local blow-up
with smooth center or a local power substitution,
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such that, for all k, the family of polynomials P o 7; allows a C-parameterization
of its roots on Uy. If P is hyperbolic, then local blow-ups suffice (theorem 6.10). A
local blow-up over an open subset U C M is a blow-up over U composed with the
inclusion of U in M. A local power substitution is the composite of the inclusion of
a coordinate chart W in M and a mapping V — W given in local coordinates by

(1,0 2q) = (1) 2], (=) aa]e)

for some v € (N5¢)? and all € € {0,1}7. (See 6.1 for a precise explanation of these
notions.)

The proof uses resolution of singularities. Accordingly, C is a class of C*°-
functions admitting resolution of singularities. Due to Bierstone and Milman
[BM04] (and [BM97]), it suffices that C is a subring of C*° that includes polyno-
mial but excludes flat functions (quasianalyticity) and is closed under composition,
differentiation, division by a coordinate, and taking the inverse (see section 3). For
instance, C may be any quasianalytic Denjoy—Carleman class C™, where the weight
sequence M satisfies some mild conditions (see section 4). In particular, C can be
the class of real analytic functions C*. Hence, in the hyperbolic case, we recover a
version of the aforementioned theorem due to Kurdyka and Paunescu [KP08].

The above result (theorem 6.7) enables us to investigate the regularity of the
roots of C-families of polynomials P. We show:

(i) The roots of P allow a parameterization by “piecewise Sobolev I/Vli)’c1 ” func-
tions. More precisely, the roots of P can locally be chosen of class C outside
of a closed nullset of finite (¢ — 1)-dimensional Hausdorff measure such that
its classical gradient belongs to L{,. (theorem 7.11).

(ii) The roots of P allow a parameterization in SBVi,c (theorem 8.4).
Note that (i) implies (ii) (see section 8). Simple examples show that the conclusion
in (i) is best possible: In general we cannot expect that the roots of P admit ar-
rangements having gradients in L¥ for any 1 < p < oo (see 7.13). In contrast to
the one parameter case (see [Rai09] and 7.15), multiparameter families of polyno-
mials do in general not allow roots in Wli)cl (see the polynomial counter-example in
7.17) or in VMO (see 7.18).

The question for optimal assumptions is open. For instance, it is unknown
whether (ii) still holds when the coefficients of P are just C'*°-functions. That
problem requires different methods.

Table 1 on page 61 provides a summary of the most important results on the
perturbation theory of polynomials.

In section 9 we deduce consequences for the perturbation theory of normal ma-
trices. There will be applications to the perturbation theory of unbounded normal
operators with compact resolvents and common domain of definition as well. It
requires a differential calculus for quasianalytic classes beyond Banach spaces (see
[KMRO09a] for the case of non-quasianalytic Denjoy—Carleman classes). This will
be taken up elsewhere (see [KMRO09b] and [KMRO09c]). Our results generalize the-
orems obtained in [KP08] and [Rai09a]. For more on the perturbation theory of
linear operators consider Rellich [Rel37a, Rel37b, Rel39, Reld0, Reld2, Rel69], Kato
[Kat76], Baumgértel [Bau72], and also [AKLM98], [KMO03], and [KMR09d].

We prove the following (theorem 9.1): Let A = (A;;)1<s,j<n be a family of normal
complex matrices, where the entries A;; are C-functions on a C-manifold M. Then,
for each compact subset K C M, there exist a neighborhood W of K and a finite
covering {m : Uy — W} of W of the type described in (b), such that, for all &,
the family of normal matrices A o 7y, allows C-parameterizations of its eigenvalues
and its eigenvectors. If A is a family of Hermitian matrices, then local blow-ups
suffice. Both a nonflatness condition (such as quasianalyticity) and normality of
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the matrices A(x) are necessary for the desingularization of the eigenvectors (see
9.4 and 9.5).

We conclude that the eigenvalues and the eigenvectors of a C-family of normal
complex matrices A locally admit parameterizations by “piecewise Sobolev I/Vli)’cl”
functions (in the sense of (i)) and, thus, by SBV.-functions (theorem 9.6).

A further application of the method developed in this paper is given in section
10: Any continuous subanalytic function belongs to SBVic.

Notation. We use N = Nyq U {0}. Let a = (a1,...,04) € N? and z =
(z1,...,74) € R We write al = a1l !, [a] = a1 + -+ +ay, 2% = 20" -+ 2g7,
and 9% = 911 /9x$ - - dxg®. We shall also use 9; = 9/dx;. If a,3 € N9, then
a < f means «o; < 3; for all 1 <i <gq.

Let U C R? be an open subset. For a function f € C°°(U) we denote by fa € Fy
its Taylor series at a € U, i.e.,

fula) = 30 20" Flaye,
aeNg
where F, denotes the ring of power series in ¢ variables.

Sy, denotes the symmetric group on {1,2,...,n}.

We denote by H? (resp. £?) the g-dimensional Hausdorff (resp. Lebesgue) mea-
sure. We also use |X| = £9(X) and [ f(z)dx = [, f(x)dL(x). We write 1x for
the indicator function of a set X. For x € RY, B,.(z) = {y € RY: |z —y| < r} is the
open ball with center x and radius r with respect to the Euclidean metric.

All manifolds in this paper are assumed to be Hausdorff, paracompact, and finite
dimensional.

2. PRELIMINARIES ON POLYNOMIALS

2.1. Coefficients and roots. Let

P(z)=2"+ Z(—l)jajz”*j = H(z —A)

j=1
be a univariate monic complex polynomial with coefficients aq,...,a, € C and
roots A1,..., A\, € C. By Vieta’s formulas, a; = 0;(A1,...,\,), where o1,...,0,
denote the elementary symmetric functions in n variables:
(2.1.1) oA A = Y A A

1<ji<<ji<n
It is well-known that each symmetric polynomial in n variables can be written as
a polynomial in oy, ...,0,, i.e., C[A1,...,A\,]%" = Cloy,...,0,], where S,, denotes
the symmetric group on {1,2,...,n}.
Denote by s; (for i € N) the Newton polynomials

(2.1.2) $i(AL o An) = ) NS
j=1

which are related to the elementary symmetric functions by
(2.1.3) sp — 85101 + 8p_009 — -+ (=1)*Lsyop 1 + (=1) ko, =0, (k> 1).
These relations define a polynomial diffeomorphism ¥ such that:

o" =(01,...,0,): C" = C",

s =(81,...,8,): C" = C",

s"=0"oo".
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It is easy to compute the Jacobian determinants det(ds"(\)) = n![[,_;(A; — ),
det(d¥™(o™)) = (=1)"(»=1/2p! and, hence,
(2.1.4) det(do™(N) = [ [\ = M)

i<j

Let us consider the so-called Bezoutiant

50 51 Sn—1
S1 S9 e Sn
B=1 . Do : = (i+i—2)1<ij<n
Sp—1 Sn ... S2p—2
Since the entries of B are symmetric polynomials in Ay, ..., A, there exists a unique

symmetric n X n matrix B with B = Bog”.

Let By denote the minor formed by the first k& rows and columns of B. Then it
is easy to see that
(2.1.5)

AV s=det Be(A) = D> (A = X)) (i, = )% (i, — i)
1y <ip <o <ip
In particular, A;(\) = sp = n. Since the polynomials Ay are symmetric, we have
Ay, = Ay 0™ for unique polynomials Aj. By (2.1.5), the number of distinct roots
of P equals the maximal k such that Aj(P) # 0. (Abusing notation we identify P
with the n-tuple (aq,...,a,) of its coeflicients when convenient.)

2.2. Theorem (Sylvester’s version of Sturm’s theorem, e.g. [Pro78]). Suppose that
all coefficients of P are real. Then all roots of P are real if and only if the symmetric
n X n matrix B(P) is positive semidefinite. The rank of B(P) equals the number
of distinct roots of P and its signature equals the number of distinct real roots.

2.3. Hyperbolic polynomials. If all roots A; (and thus all coefficients a;) of P
are real, we say that P is hyperbolic.

The space of all hyperbolic polynomials P of fixed degree n can be identified
with the semialgebraic subset 0" (R™) C R™. Its structure is described in theorem
2.2. If the roots are ordered increasingly, i.e.,

AM(P) < Ao(P) < -+ < \(P),  for all P € o™(R™),

then each root A; : 0™(R") — R (for 1 < i < n) is continuous (e.g. [AKLM98, 4.1]).
Note that all roots of a hyperbolic polynomial P with a; = as = 0 are equal to
0, since
D A =s(N) = 01(A)? = 202(\) = af — 2a.
Replacing the variable z by z—a;(P)/n transforms any polynomial P to another
polynomial P with a;(P) = 0. If all roots of P coincide, they have to be equal to
0. We use that fact repeatedly.

2.4. Proposition (Bounded roots). Let (P,,) be a sequence of univariate monic
polynomials over C with fized degree n and bounded coefficients. If (A\y,) C C such
that Pp,(Ap) = 0 for all m, then (\,,) is bounded.

Proof. If a,, ; denote the coefficients of P,,, we find

(2.4.1) A" <3 lam jl[Am|" 7.

j=1
Suppose that (A,,) is unbounded. Without loss we may assume that 0 < |A,| / oo.
Dividing (2.4.1) by |A\;,|" ! yields a contradiction. O
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3. C'°° CLASSES THAT ADMIT RESOLUTION OF SINGULARITIES

Following [BMO04, Section 3] we discuss classes of smooth functions that admit
resolution of singularities.

3.1. Classes C of C*°-functions. Let us assume that for every open U C RY, ¢q €
N, we have a subalgebra C(U) of C*°(U) = C*°(U,R). Resolution of singularities
in C (see 5.3) requires only the following assumptions (3.1.1)—(3.1.6) on C(U), for
any open U C RY.

(3.1.1) P(U) C C(U), where P(U) denotes the algebra of restrictions to U of
polynomial functions on RY.

(3.1.2) C is closed under composition. If V. C RP is open and ¢ = (¢1,...,9p) :
U — V is a mapping with each ¢; € C(U), then fo¢ € C(U), for all
fecyv).

A mapping ¢ : U — V is called a C-mapping if f o € C(U), for every f € C(V).
It follows from (3.1.1) and (3.1.2) that ¢ = (¢1,. .., ¢p) is a C-mapping if and only
if p; e C(U), forall 1 <i<np.

(3.1.3) C is closed under derivation. If f € C(U) and 1 < i < g, then 9;f € C(U).
(3.1.4) C is quasianalytic. If f € C(U) and f, =0, for a € U, then f vanishes in a
neighborhood of a.

Since {z : fo= 0} is closed in U, (3.1.4) is equivalent to the following property: If
U is connected, then, for each a € U, the Taylor series homomorphism C(U) — Fy,
f — fa, is injective.

(38.1.5) C is closed under division by a coordinate. If f € C(U) is identically 0 along
a hyperplane {z : z; = a;}, i.e., f(z1,...,%i-1,0;,Tix1,...,24) = 0, then
f(z) = (x; — a;)h(x), where h € C(U).

(3.1.6) C is closed under taking the inverse. Let ¢ : U — V be a C-mapping be-
tween open subsets U and V in RY. Let a € U, ¢(a) = b, and suppose that
the Jacobian matrix (9p/dx)(a) is invertible. Then there exist neighbor-
hoods U’ of a, V' of b, and a C-mapping 1 : V' — U’ such that ¢(b) = a
and p ot = idy-.

Property (3.1.6) is equivalent to the implicit function theorem in C: Let U C RIxRP
be open. Suppose that fi,..., f, € C(U), (a,b) € U, f(a,b) =0, and (0f/9y)(a,b)
is invertible, where f = (fi,..., fp). Then there is a neighborhood V' x W of (a, b)
in U and a C-mapping g : V' — W such that g(a) = b and f(z,g(x)) =0, forz € V.

It follows from (3.1.6) that C is closed under taking the reciprocal: If f € C(U)
vanishes nowhere in U, then 1/f € C(U).

A complex valued function f : U — C is said to be a C-function, or to belong
to C(U,C), if (Ref,Imf) : U — R? is a C-mapping. It is immediately verified that
(3.1.3)—(3.1.5) hold for complex valued functions f € C(U,C) as well.

From now on, unless otherwise stated, C will denote a fixed, but arbi-
trary, class of C°-functions satisfying the conditions (3.1.1)—(3.1.6).

3.2. Lemma (Splitting lemma in C, cf. [AKLM98, 34]|). Let P, = z" +
Z?:l(fl)jajz"_j be a compler polynomial satisfying Py = P; - P, where P,
and Py are monic polynomials without common root. Then for P near Py we
have P = Py(P) - Po(P) for C-mappings of monic polynomials P — Py(P) and
P — Py(P), defined for P near Py, with the given initial values. (Here P — P;(P)
is understood as a mapping R?" — R2des i)
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Proof. Let the polynomial Py be represented as the product
P q
PO = P1 . P2 = (Zp + Z(—l)jbjzp_j) . (Zq + Z(—l)jCqu_]),
j=1 j=1

where p 4+ ¢ = n. Let A1,..., A, be the roots of Py, ordered in such a way that the
first p are the roots of P, and the last ¢q are those of P,. There is a polynomial map-
ping ®79 such that (a1,...,a,) = ®P9(by1,...,bp,c1,...,¢q). Let b= (by,...,bp)
and ¢ = (c1,...,¢q). Then
o = oo (o x 09),
det(do™) = det(d®?9(b, c)) det(do?) det(do?),
and, by (2.1.4),
det(d®™(b,c) = [ (i—=x)#0,
1<i<p<j<n

since P; and P, do not have common roots.

If we view ®”9 as a mapping R?” — R?", then its Jacobian determinant at
(b, ¢) is still not 0, by lemma 3.3 below. So, by (3.1.1) and (3.1.6), ®?7 is a C-
diffeomorphism near (b, ¢). O

3.3. Lemma. Let A = (A;;) € C**". Consider the block matrizc B = (B;;) €
R27%2"  where

o ReAij —ImAij ..
Bi] o (ImAij ReAij ) ’ (1 = "l = n)

Then detg B = | detc AJ2. O

3.4. C-manifolds. One can use the open subsets U C R? and the algebras of func-
tions C(U) as local models to define a category C of C-manifolds and C-mappings.
The dimension theory of C follows from that of C'*>-manifolds.

The implicit function property (3.1.6) implies that a smooth (not singular) subset
of a C-manifold is a C-submanifold:

3.5. Proposition. Let M be a C-manifold. Suppose that U is open in M,
g1s---,9p € C(U), and the gradients Vg; are linearly independent at every point of
the zero set X :={x € U : g;(x) =0 for all i}. Then X is a closed C-submanifold
of U of codimension p. O

4. QUASIANALYTIC DENJOY—CARLEMAN CLASSES

4.1. Denjoy—Carleman classes. See [Thi08] and references therein. Let U C R?
be open. Let M = (My)ren be a non-decreasing sequence of real numbers with
My = 1. We denote by CM(U) the set of all f € C°(U) such that for every
compact K C U there are constants C, p > 0 with

(4.1.1) |0 f ()] < Cpl|al! M, forall o € N?and r € K.

We call CM(U) a Denjoy—Carleman class of functions on U. If M; = 1, for all

k, then CM(U) coincides with the ring C*(U) of real analytic functions on U. In

general, C*(U) C CM(U) C C*®(U). Hence C = CM satisfies property (3.1.1).
We assume that M = (My,) is logarithmically conve, i.e.,

(4.1.2) M? < My_y My, for all k,

or, equivalently, Mj, 1 /Mj, is increasing. Using My = 1, we obtain that also (M},)'/*

is increasing and

(4.1.3) M; M, < Ml+k for all I,k eN.
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Hypothesis (4.1.2) implies that C™ (U) is a ring, for all open subsets U C RY,
which can easily be derived from (4.1.3) by means of Leibniz’ rule. Note that
definition (4.1.1) makes sense also for mappings U — RP. For CM_mappings,
(4.1.2) guarantees stability under composition ([Rou63], [BM04, 4.7]). So C = CM
satisfies property (3.1.2).

A further consequence of (4.1.2) is the inverse function theorem for CM
([Kom79], [BM04, 4.10]). Thus C = CM satisfies property (3.1.6).

Suppose that M = (My) and N = (Ng) satisfy

(4.1.4) sup (%) ' < o0
keNso Nk
Then, evidently CM(U) C CN(U). The converse is true as well: There exists
f € CM(R) such that |f*)(0)| > k! M, for all k (see [Thi08, Theorem 1]). So the
inclusion CM (U) € CN(U) implies (4.1.4).
Setting Ny, = 1 in (4.1.4) yields that C¥(U) = CM(U) if and only if
k

sup (M)
keNso

As (M;,)'/* is increasing (by (4.1.2)), the strict inclusion C¥(U) € CM(U) is equiv-
alent to

< 0oQ.

lim (M;c)% = o0.
k— o0

The class C = CM is stable under derivation (property (3.1.3)) if and only if

M 1
(4.1.5) sup ( k+1) f < o0
keNso My

The first order partial derivatives of elements in C™ (U) belong to CM " (U), where
M1 denotes the shifted sequence M1 = (M4 1)kren. So the equivalence follows
from (4.1.4), by replacing M with M*+! and N with M.

By the standard integral formula, stability under derivation implies that C = C™
fulfills property (3.1.5).

4.2. Quasianalyticity. Suppose that M is logarithmically convex (actually, log-
arithmic convexity of k!M; suffices). Then, by the Denjoy—Carleman theorem
([Den21], [Car26]), C = CM is quasianalytic (satisfies (3.1.4)) if and only if

= 1 - M,
(4.2.1) ————— =00 or, equivalently, —_— =
> Gk O

For contemporary proofs see for instance [H6r83, 1.3.8] or [Rud87, 19.11].

4.3. Proposition. If M is a non-decreasing sequence of real numbers with My = 1
satisfying (4.1.2), (4.1.5), and (4.2.1), then the Denjoy—Carleman class C = CM
has the properties (3.1.1)~(3.1.6). If CM is not closed under derivation (i.e., (4.1.5)

fails), then C = J; ey CM™ has the properties (3.1.1)~(3.1.6). O

5. RESOLUTION OF SINGULARITIES IN C

5.1. Blow-ups. Let M be a smooth manifold and let C' be a smooth closed subset
of M. The blow-up of M with center C is a proper smooth mapping ¢ : M’ — M
from a smooth manifold M’ that can be described in local coordinates as follows.

Let U C R? be an open neighborhood of 0 and let C' = {x; = 0 for ¢ € I} be
a coordinate subspace, where I is a subset of {1,...,¢}. The blow-up ¢ : U — U
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with center C'is a mapping where U’ can be covered by coordinate charts U], for

i € I, and each U/ has a coordinate system y1, ..., ¥y, in which ¢ is given by
yi, forj=i
zj=1q iy, forjel\{i}
Y forj &1

Assuming (without loss) I = {1,...,p} and z = (Z,Z) € R? x R?"P, we have
U'={(z,6) eU xRPP™: & € £},
and, if we use homogeneous coordinates & = [{1, ..., &),
U'={(z,£) €U x RPP: x;i&; = x;& for 1 < 4,5 < p}.

We can cover U’ by coordinate charts U/ = {(z,§) € U’ : §; # 0}, for i € I, with
coordinates y1,. ..,y Where

i, forj=1i

yj =1 &, forjel\{i}
xzj, forjégl

The blow-up of a smooth manifold M with center a smooth closed subset C' is a
smooth mapping ¢ : M’ — M, where M’ is a smooth manifold, such that:

(1) Every point of C' admits a coordinate neighborhood U in which C' is a
coordinate subspace and over U the mapping ¢ : M’ — M identifies with
the mapping U’ — U from above.

(2) ¢ restricts to a diffeomorphism over M \ C.

These conditions determine ¢ : M’ — M uniquely up to a diffeomorphism of M’
commuting with ¢. If codim C' = 1 then the blow-up ¢ is the identity.

If M is a C-manifold and ¢ : M’ — M is the blow-up with center a closed C-
submanifold C' of M, then M’ is a C-manifold and ¢ is a C-mapping (cf. [BM04,
3.9)):

5.2. Proposition. The category C of C-manifolds and C-mappings is closed under
blowing up with center a closed C-submanifold. O

5.3. Resolution of singularities. We shall use a simple version of the desingu-
larization theorem of Hironaka [Hir64] for C-function classes due to Bierstone and
Milman [BM04]. We use the terminology therein.

Let us regard a C-manifold M as local-ringed space (|M|,0,) with |M]| the
underlying topological space of M and OY; the sheaf of germs of C-functions at
points of M. Let Z C O, be a sheaf of ideals of finite type, i.e., for each a €
M, there is an open neighborhood U of a and finitely many sections fi,..., f, €
0%,;(U) = C(U) such that, for all b € U, the stalk 7, is generated by the germs of
the f; at b. Put |X| := supp O%,/Z and O% := (0%,/I)| x| Then X = (|X|,0%)
is called a closed C-subspace of M, and we write Z = Tx. It is a hypersurface if Tx
is a sheaf of principal ideals. A closed C-subspace X is smooth at a € X if Tx 4
is generated by elements with linearly independent gradients at a. By proposition
3.4, a smooth C-subspace is a C-submanifold.

Let ¢ : N — M be a C-mapping of C-manifolds. If Z C O, is a sheaf of ideals
of finite type, we denote by = (Z) C O, the ideal sheaf ¢*(Z) - O, whose stalk
at each b € N is generated by the ring of pullbacks ¢*(Z) of all elements in Z,,).
If X is a closed C-subspace of M, let ¢~ !(X) denote the closed C-subspace of N
determined by ¢~ }(Zx).

Let M be a C-manifold, C' a C-submanifold of M, and let ¢ : M’ — M be the
blow-up of M with center C. Then ¢~!(C) is a smooth closed subspace in M’. We
denote by yexc a generator of Z,-1(¢y 4/, at any a’ € M.
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Let X C M be a hypersurface. The strict transform X' of X by ¢ is the
hypersurface of M’ determined by Zy-, where Ty, C O, is defined as follows: If
a € M', a=p(a’), and g is a generator of Ty ,, then Tx o is the ideal generated
by ¢' := y5%g o ¢, where d is the largest power of yexc that factors from go ¢. (If
a' & ¢~ 1(C), then we may take yexc = 1.) See [BMO04, 5.6] and [BM97, Section 3]
for the difference between weak and strict transform (and the problems with the
latter in C) if X is not a hypersurface.

We say that a hypersurface X has only normal crossings, if locally there exist
suitable coordinates in which Zx is generated by a monomial.

5.4. Theorem ([BM04, 5.12]). Let M be a C-manifold, X a closed C-hypersurface
in M, and K a compact subset of M. Then, there is a neighborhood W of K and
a surjective mapping o : W' — W of class C, such that:

(1) ¢ is a composite of finitely many C-mappings, each of which is either a
blow-up with smooth center (that is nowhere dense in the smooth points
of the strict transform of X ) or a surjection of the form |_|j U; — Uj Uj,
where the latter is a finite covering of the target space by coordinate charts.

(2) The final strict transform X' of X is smooth, and o~*(X) has only normal
crossings. (In fact ¢=%(X) and detdyp simultaneously have only normal
crossings, where dp is the Jacobian matrix of ¢ with respect to any local
coordinate system.)

See [BMO04, 5.9 & 5.10] and [BM97] for stronger desingularization theorems in C.

6. QUASIANALYTIC PERTURBATION OF POLYNOMIALS

We prove in this section that the roots of a C-family of polynomials P can be
parameterized locally by C-functions after modifying P in a precise way.

6.1. Local blow-ups and local power substitutions. We introduce notation
following [BM88, Section 4].

Let M be a C-manifold. A family of C-mappings {m; : U; — M} is called a
locally finite covering of M if the images m;(U;) are subordinate to a locally finite
open covering {W;} of M (i.e. m;(U;) C W; for all j) and if, for each compact
K C M, there are compact K; C U; such that K = J; 7;(K;) (the union is finite).

Locally finite coverings can be composed in the following way (see [BM88, 4.5]):
Let {m; : U; — M} be a locally finite covering of M, and let {W;} be as above.
For each j, suppose that {mj; : Uj; — Uj} is a locally finite covering of U;. We
may assume without loss that the W; are relatively compact. (Otherwise, choose
a locally finite covering {V;} of M by relatively compact open subsets. Then the
mappings ; ‘ﬂ_j—l(vi) : w;l(‘/}) — M, for all ¢ and 7, form a locally finite covering of
M) Then, for each j, there is a finite subset I(j) of {i} such that the C-mappings
mjomy : Uy — M, for all j and all 4 € I(j), form a locally finite covering of M.

We shall say that {m;} is a finite covering, if j varies in a finite index set.

A local blow-up ® over an open subset U of M means the composition & = 10 ¢
of a blow-up ¢ : U’ — U with smooth center and of the inclusion ¢ : U — M.

We denote by local power substitution a mapping of C-manifolds ¥ : V — M of
the form ¥ = ¢ o, where ¢ : W — M is the inclusion of a coordinate chart W of
M and 9 : V — W is given by

(6.1.1) Y1, 3Yq) = (@1, ..o xq) = (1) 2], ..., (=1)x]7),

for some v = (71,...,7) € (Nsg)? and all € = (e1,...,¢) € {0,1}?, where
Y1, .., Yy denote the coordinates of W (and g = dim M).
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6.2. We consider the natural partial ordering of multi-indices: If o, 3 € N9, then
a < G means «; < 3; for all 1 <i<gq.

6.3. Lemma ([BMO04, 7.7] or [BMS88, 4.7]). Let «, 3,7 € N? and let a(z),b(z), c(z)
be non-vanishing germs of real or complex valued functions of class C at the origin
of RY. If

z%a(z) — 2Pb(z) = 27 c(x),

then either a < 8 or 8 < a.

Proof. Let 6 = (01,...,04) where §;, = min{ay, B }. If 6 = a then a < 8. Other-
wise, 0 # ay, for some k. On {z) = 0} we have 247 =0 and 0 # —2°~%(z) =
77 %(z). Since b and ¢ are non-vanishing, we obtain § = =, by (3.1.5). So
z%a(z) = 2°(b(x) + c(z)) and hence a > 3, again by (3.1.5). O

6.4. Let M be a C-manifold and let f be a real or complex valued C-function on
M. We say that f has only normal crossings if each point in M admits a coordinate
neighborhood U with coordinates « = (z1,...,%,4) such that

f(x) =a%g(x), wel,

where g is a non-vanishing C-function on U, and o € N9. Observe that, if a product
of functions has only normal crossings, then each factor has only normal crossings.
For: Let f1, f2, g be C-functions defined near 0 € R? such that fi(x)fa(z) = 2%g(x)
and g is non-vanishing. By quasianalyticity (3.1.4), fifa|{z,—0y = 0 implies
fil{z;=0y = 0 or fo[(z;—0y = 0. So the assertion follows from (3.1.5).

6.5. Let M be a C-manifold, K C M be compact, and f € C(M,C). Then the
exists a neighborhood W of K and a finite covering {my : Uy — W} of W by
C-mappings 7, each of which is a composite of finitely many local blow-ups with
smooth center, such that, for each k, the function f o, has only normal crossings.
This follows from theorem 5.4 applied to the real valued C-function |f|> = ff and
the observation in 6.4.

6.6. Reduction to smaller permutation groups. In the proof of theorem 6.7
we shall reduce our perturbation problem in virtue of the splitting lemma 3.2:

The space Pol” of polynomials P(z) = z™ + 37 (=1)7a;2" "7 of fixed degree
n naturally identifies with C" (by mapping P to (a1,...,a,)). Moreover, Pol”
may be viewed as the orbit space C"/S,, with respect to the standard action of
the symmetric group S,, on C" by permuting the coordinates (the roots of P).
In this picture the mapping ¢” : C" — C" identifies with the orbit projection
C™ — C"/S,, since the elementary symmetric functions o; in (2.1.1) generate the
algebra of symmetric polynomials on C", i.e., C[C"]S» = Cloy, ..., 0]

Consider a family of polynomials

n

P(@)(z) = 2"+ 3 (<1 (@),

where the coeflicients a; are complex valued C-functions defined in a C-manifold
M. Let oy € M. If P(zg) has distinct roots vy, ...,v;, the splitting lemma 3.2
provides a C-factorization P(z) = P;(z)--- P,(x) near xy such that no two factors
have common roots and all roots of Py(zg) are equal to vp, for 1 < h < [. This
factorization amounts to a reduction of the S,-action on C" to the S,,, x -+ x S,-
action on C™ @ --- @ C™, where ny, is the multiplicity of vy,.

We shall use the following notation:

S(P(CUO)) = Snl X X STL[7

iff P(xo) has [ pairwise distinct roots with respective multiplicities ny, ..., n;.
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Further, we will remove fixzed points of the Sn1 - X Sm-action onC"@p---aC™
or, equivalently, reduce each factor Py (z)(2) = 2™ + 37" (=1)ap j()2"" 77 to
the case ap,1 = 0 by replacing z by z — ap 1(x)/ny. The effect on the roots of Pj, is
a shift by a C-function.

If P is hyperbolic, we consider the S,-module R" instead of C". In that case the
orbit space R™/S,, identifies with the semialgebraic subset o¢™(R™) C R™, whose
structure is described in theorem 2.1. Evidently, the splitting lemma 3.2 produces
a C-factorization P = Pj - - - P;, where each factor P, is hyperbolic again.

6.7. Theorem (C-perturbation of polynomials). Let M be a C-manifold. Consider
a family of polynomials

P(z)(z) = 2"+ Z aj(z)2"7,
j=1

with coefficients a; (for 1 < j < n) in C(M,C). Let K C M be compact. Then
there exist:

(1) a neighborhood W of K, and

(2) a finite covering {my : Uy — W} of W, where each 7y is a composite of
finitely many mappings each of which is either a local blow-up with smooth
center or a local power substitution (in the sense of 6.1),

such that, for all k, the family of polynomials P o 7y, allows a C-parameterization
of its roots on Uy, i.e., there exist \F € C(Uy,C) (for 1 <i < n) such that

P(mp(2))(2) = 2" +Z Yaj(m(x))z nJ—H(Z—)\k(x

=1

Proof. Since the statement is local, we may assume without loss that M is an
open neighborhood of 0 € R9. In view of 6.6, we use induction on | S(P(0))|, the
order of the permutation group acting on the roots of P(0).

If |S(P(0))] = 1, all roots of P(0) are pairwise different. Then the roots of P
may be parameterized in a C-way near 0, by the implicit function theorem (property
(3.1.6)) or by the splitting lemma 3.2.

Suppose that | S(P(0))| > 1. Let vq,...,1; denote the distinct roots of P(0);
some of them are multiple (I = 1 is allowed). The splitting lemma 3.2 provides a
C-factorization P(z) = P;(z)--- P(x) near 0, where, for 1 < h </,

MNh
Pp(z)(2) = 2" + Y (1) an j(z)z" 7,
j=1
such that no two factors have common roots and all roots of Py, (0) are equal to vp,.
As indicated in 6.6, we reduce to the S,,, x --- x Sy,-action on C"* @ --- ® C™ and
we remove fixed points. So we may assume that ap,; = 0 for all A.
Then all roots of P,(0) are equal to 0, and so ap, j(0) =0, for all 1 < h <1 and
1 < j <y (by Vieta’s formulas). If all coefficients ay, ; (for 1 < j < mny) of P, are
identically 0, we choose its roots Ay ; = 0 for all 1 < j < ny, and remove the factor
P, from the product P; --- P;. So we can assume that for each 1 < h <[ there is a
2 < j < ny such that ap; # 0.
Let us define the C-functions

(6.7.1) Apj(z) = ah,j(x)%‘!, (for 1 <h<land 2 <j<ny).

By theorem 5.4 (and 6.5), we find a finite covering {ry, : Uy — U} of a neighborhood
U of 0 by C-mappings 7, each of which is a composite of finitely many local blow-
ups with smooth center, such that, for each k, the non-zero A, jomy, (for 1 < h <1
and 2 < j < ny) and its pairwise non-zero differences Ay ; o m, — Ay, 0w (for
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1<h<m<Il,1<i<n and 1< j < ny,) simultaneously have only normal
crossings.

Let k be fixed and let xg € Ug. Then xy admits a neighborhood W}, with suitable
coordinates in which zp = 0 and such that (for 1 < h <[ and 2 < j < ny) either
Apjomp=0or

(An,j o i) (@) = 23 A} (),

where AZ, ; is a non-vanishing C-function on Wy, and «ay,; € N9. The collection of
the multi-indices {ap, ;@ Apjom, #0,1 < h <1,2 <j <mny}is totally ordered, by
lemma 6.3. Let a denote its minimum.

If o =0, then (Ap,; o mg)(xo) = Alfm(wo) #0forsome 1l <h<land2<j<
np. So, by (6.7.1), not all roots of (P, o m)(zg) coincide (since ap,1 o, = 0).
Thus, |S((Pom)(x0))| < |S(P(0))|, and, by the induction hypothesis, there exists
a finite covering {mg; : Wiy — Wi} of W} (possibly shrinking Wy) of the type
described in (2) such that, for all [, the family of polynomials P o 7y, o 7 allows a
C-parameterization of its roots on Wy;.

Let us assume that o # 0. Then there exist C-functions flﬁ ; (some of them 0)
such that, for all 1 < h <[ and 2 < j < ny,

(6.7.2) (Ap,jom)(z) = xaAﬁ,j(ﬂf),

and fl’,j’j(xo) = Aﬁyj(xo) # 0 for some 1 < h <!l and 2 <j < ny. Let us write

o (@ %) - (ﬂl ﬁq)

nl \nl” 7l A\ )
where (3;,7; € N are relatively prime (and 7; > 0), for all 1 < i < ¢q. Put 8 =
(B1,...,0) and v = (71,...,7)- Then (by (6.7.1) and (6.7.2)), for each 1 < h <,
2 <j < ny,and € € {0,1}9, the C-function ay, j 0T 01 . is divisible by 278 (where
1.e is defined by (6.1.1)). By (3.1.5), there exist C-functions a’;’)}"e such that

(an,j o T 0y o)(x) = xjﬁa];g’e(x), (for 1 <h<land2<j<ny).

By construction, for some 1 < h < [ and 2 < j < ny, we have aZ’}’e(O) #+ 0,
independently of €. So there exist a local power substitution ¥y : Vi — Wy given
in local coordinates by %, . (for e € {0,1}9) and functions afw- given in local

coordinates by aﬁ:;’é (for € € {0,1}7) such that

(ap,j om0 y)(x) = :rjﬁaﬁ’j(:v), (for 1 <h <land2<j<ny).

Let us consider the C-family of polynomials P* := Pf ... PF  where
nh
PF(z)(z) :== 2" + Z(fl)Jalﬁ)j(x)z"h_J.
j=2

Let yo := wk_l(aco) € Vik. There exist 1 < h < [ and 2 < j < ny such that
a’,§7j(y0) # 0, and, thus (as aﬁ’l = 0), not all roots of Pf(yo) coincide. Therefore,
|S(P*(y0))| < |S(P(0))|, and, by the induction hypothesis, there exists a finite
covering {7 : Viy — Vi.} of Vi, (possibly shrinking Vj,) of the type described in (2)
such that, for all [, the family of polynomials P* o m,; admits a C-parameterization
)\?l (for 1 < j < n) of its roots on Vj;. Since the roots of P* and P o m, o ¢y, differ
by the monomial factor m(zx) := 27, the C-functions = +— m(mx(z)) - )\?l(x) form a
choice of the roots of the family z +— (P o g 0 ¢ o 7)) () for z € V.

Since k and x¢ were arbitrary, the assertion of the theorem follows (by 6.1). O
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6.8. Hyperbolic version. If P is hyperbolic, no local power substitutions are
needed, see theorem 6.10.

6.9. Lemma. Let U C RY be an open neighborhood of 0. Consider a family of
hyperbolic polynomials

n

P(x)( z)—z"—i—Z Waj(z)2"7,

with coefficients a; (for 2 < j <n) in C(U, R). Assume that as # 0 and that, for
all j, aj # 0 implies aj(x) = *bj(x), where by € C(U,R) is non-vanishing, and
aj € N1, Then there exists a § € N? such that ag = 26 and o > 3o, for those j
with a; # 0.

Proof. Since 0 < Ay(P) = —2nay (by theorem 2.2), we have ag = 2§ for some
0 € N4, If § = 0, the assertion is trivial. Let as assume that § # 0.
Set = (p1,...,Hq), where

(6.9.1) Wi = min{(aTj,‘)i taj # 0}.

For contradiction, assume that there is an i such that p,;, < 6;,. Consider
_ n
P(z)(2) = 2"+ Y _(-1)z 7 a;(x)2" .
j=2

If all z; > 0, then P is continuous (by (6.9.1)), and if all 2; > 0, then P is hyperbolic
(its roots differ from those of P by the factor 27#). Since the space of hyperbolic
polynomials of fixed degree is closed (by theorem 2.2), P is hyperbolic, if all z; > 0.
Since ()i, — 2Mi, = 20, — 2ui, > 0, all roots (and thus all coefficients) of P(x)
vanish on {x;, = 0} (as the first and second coefficient vanish, see 2.3). This is a
contradiction for those j with (o), = jti,- O

6.10. Theorem (C-perturbation of hyperbolic polynomials). Let M be a C-mani-
fold. Consider a family of hyperbolic polynomials

P(x)(z) = 2" —|—Z 1 a;(x)z"7,
j=1
with coefficients a; (for 1 < j < n)in C(M,R). Let K C M be compact. Then
there exist:

(1) a neighborhood W of K, and
(2) a finite covering {my, : Uy, — W} of W, where each m, is a composite of
finitely many local blow-ups with smooth center,
such that, for all k, the family of polynomials P o 7y, allows a C-parameterization
of its roots on Uy.

Proof. It suffices to modify the proof in 6.7 such that no local power substitution
is needed. Suppose we have reduced the problem in virtue of 6.6.

So ap;(0) =0forall 1 <h <land 1< j<ny. Since ap; =0, we can assume
that apo # 0 for all h (otherwise all roots of P, are identically 0, see 2.3). By
theorem 5.4, we find a finite covering {m : Uy — U} of a neighborhood U of 0 by
C-mappings 7y, each of which is a composite of finitely many local blow-ups with
smooth center, such that, for each k, the non-zero ap ; o mp (for 1 < h <1 and
2 < j < ny) simultaneously have only normal crossings.
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Let k be fixed and let xg € Ug. Then xy admits a neighborhood W}, with suitable
coordinates in which zp = 0 and such that (for 1 < h <[ and 2 < j < ny) either
ap,jom =0 or

(6.10.1) (an,j om)(x) = x‘*”’jaﬁ,j(w),

where af ; 18 a non-vanishing C-function on Wy, and ay,; € N7. By lemma 6.9, for

each h, there exists a d;, € N? such that ay, 2 = 26,

If some dp, = 0, then (ap2 o m)(zo) = aﬁg(wo) # 0 and so not all roots of
(Py, o 7 )(xo) coincide. Thus, | S((P o mx)(zo))| < | S(P(0))], and, by the induction
hypothesis, there exists a finite covering {mg; : Wy, — Wi} of Wy, (possibly shrink-
ing W) of the type described in (2) such that, for all I, the family of polynomials
P o m, o my; allows a C-parameterization of its roots on Wy;.

Let us assume that d;, # 0 for all 1 < h <[. By lemma 6.9, we have ay, ; > jop,
for all 1 < h <1 and those 2 < j < ny, with ap j o m; # 0. Then

nhp

P,’f(:r)(z) = 2" 4 Z(—l)jx_ﬁ"ah,j(Wk(ZE))Z"”_j

is a C-family of hyperbolic polynomials. Since a2 = 2d5, and aﬁ’Q(wo) # 0, not
all roots of PF(xg) coincide. Put P*¥ := PF ... PF. Then, | S(P*(z0))| < | S(P(0))],
and, by the induction hypothesis, there exists a finite covering {mg; : Wiy — Wi}
of W, (possibly shrinking W},) of the type described in (2) such that, for all I, the
family of polynomials P* o my,; admits a C-parameterization /\’,il j (for 1 < h <land
1 < j < np) of its roots on Wy,;. Since the roots of P}’f and Py, o 7, differ by the
monomial factor my(x) := x, the C-functions x — my, (7 (z)) - )lej(a:) form a
choice of the roots of the family z — (P oy o mg)(x) for x € Wiy.

Since k and x( were arbitrary, the assertion of the theorem follows (by 6.1). O

If the parameter space is one dimensional, we obtain a C-version of Rellich’s
classical theorem [Rel37a, Hilfssatz 2] (see also [AKLM98, 5.1]):

6.11. Corollary. Let I C R be an open interval. Consider a curve of hyperbolic

polynomials
n

P(@)(z) = 2" + 3 (~1Vay(a)=",

with coefficients a; (for 1 < j <n) in C(I,R). Then there exists a global parame-
terization A; € C(I,R) (for 1 < j < n) of the roots of P.

Proof. The local statement follows immediately from theorem 6.10. (Each local
blow-up is the identity map, and, in fact, each non-zero a; automatically has only
normal crossings.) We claim that a local choice of C-roots is unique up to permuta-
tions. In view of this uniqueness property we may glue the local parameterizations
of the roots of P to a global one.

For the proof of the claim let \' = (A\¢,... L) : J — R™ (for i = 1,2) be
two local C-parameterizations of the roots of P. Let xp — o € J be a sequence
converging in J. For each k there exists a permutation 7, € S,, such that A\!(zz) =
T(A%(z)). Passing to a subsequence, we may assume that A\!(z) = 7(\2(zy)) for
all k and a fixed 7 € S,,. By Rolle’s theorem (applied repeatedly), the Taylor series
at Too of A and 70?2 coincide. Quasianalyticity (3.1.4) implies that A! = 7oA2. O

6.12. Real analytic perturbation of polynomials. If C = C%, theorem 6.7 can
be strengthened.
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6.13. Theorem (C“-perturbation of polynomials). Let M be a real analytic man-
ifold. Consider a family of polynomials

P(z)(z) = 2"+ 4

J

with coefficients a; (for 1 < j < n) in C“(M,C). Let K C M be compact. Then
there exist:

(1) a neighborhood W of K,

(2) a finite covering {my : Uy — W} of W, where each m, is a composite of
finitely many local blow-ups with smooth center,

(3) a finite covering {my; : Uy — Uk} of each Uy, where each wy; is a single
local power substitution.

(=1)7a;(z)2"~,

n

=

such that, for all k,l, the family of polynomials P o mwy o my; allows a real analytic
parameterization of its roots on Uy.

Proof. Applying resolution of singularities (e.g. Hironaka’s classical theorem
[Hir64], or theorem 5.4 for C = C*), we obtain that A,(P o ) has only normal
crossings, where s is maximal with the property that A (P) # 0 (locally). Note
that A,(P) is up to a constant factor the discriminant of the square-free reduc-
tion of P. Then the assertion follows from the Abhyankar-Jung theorem [Jun08],
[Abh55] (see also [KV04], [Sus90, Section 5], and [Par94b, Lemma 2.8]). Here we
used that the square-free reduction of a real analytic family of polynomials is real
analytic again (see [KPO08, 5.1]). O

6.14. Remarks. (1) Note that the hyperbolic version of this theorem, where no
local power substitutions are needed, is due to Kurdyka and Paunescu [KP08, 5.8].

(2) It is unclear to me how to prove this stronger version of theorem 6.7 for
arbitrary C (satisfying (3.1.1)—(3.1.6)). It seems that one can produce a proof of
a C-version of the Abhyankar—Jung theorem along the lines of Luengo’s approach
[Lue83]. Unfortunately, the proof in [Lue83| contains a gap as pointed out by Kiyek
and Vicente [KV04].

(3) Compare this theorem with Parusinski’s preparation theorem for subanalytic
functions [Par94a, 7.5].

7. ROOTS WITH GRADIENTS IN L!

loc

Let M be a C-manifold of dimension ¢ equipped with a C'* Riemannian metric.
Consider a family of polynomials

P(a)(z) = 2" +)_(~1)a;()z""7,

Jj=1

with coefficients a; (for 1 < j < n) in C(M,C). We show in this section that the
roots of P admit a parameterization by “piecewise Sobolev Wllo’cl” functions \; (for
1 <4 < n). That means, there exists a closed nullset £ C M of finite (¢ — 1)-
dimensional Hausdorff measure such that each \; belongs to Wh1(K \ E) for all
compact subsets K C M. In particular, the classical derivative V\; exists almost
everywhere and belongs to L{ .. The distributional derivatives of the A; may not be
locally integrable. In fact, P does in general not allow roots in Wli)cl (by example

7.17).
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7.1. We denote by H* the k-dimensional Hausdorff measure. It depends on the
metric but not on the ambient space. Recall that for a Lipschitz mapping f : U —
RP U C RY, we have

(7.1.1) HH(f(E)) < (Lip(f))"H*(E), forall ECU,

where Lip(f) denotes the Lipschitz constant of f. The g-dimensional Hausdorff
measure H? and the g-dimensional Lebesgue measure £? coincide in R?. If B is a
subset of a k-plane in R? then H*(B) = £¥(B).

7.2. The class WC. Let M be a C-manifold of dimension ¢ equipped with a C'>
Riemannian metric g. We denote by W¢ (M) the class of all real or complex valued
functions f with the following properties:

(Whr) f is defined and of class C on the complement M \ Ejs s of a closed set
E]Wyf with Hq(E]\47f) =0 and qul(Eijf) < 0.
(W) fis bounded on M \ Ep .
(W3) Vf belongs to L'(M \ Enp¢) = LY (M).
For example, the Heaviside function belongs to WC((—1,1)), but the function
f(z) :=sin1/|z| does not. A WC-function f may or may not be defined on Ejy ;.
Note that, if the volume of M is finite, then

(7.2.1) FEWSM)= fe LM\ Enx ;) N WM\ Epy).

We shall also use the notations WE (M) and W€ (M,C") = (WC (M, C))" with the
obvious meanings.

In general WC(M) depends on the Riemannian metric g. It is easy to see that
WC(U) is independent of g for any relatively compact open subset U C M. Thus
also WE (M) is independent of g. If (U, u) is a relatively compact coordinate chart
and g;; is the coordinate expression of g, then there exists a constant C' such that
(1/C)di; < gi4 < Cdy; as bilinear forms.

From now on, given a C-manifold M, we tacitly choose a C*>° Riemann-
ian metric g on M and consider WC(M) with respect to g.

73. Let p = (p1,---5p9) € (Rs0)?, v = (71,---,7) € (N50)?, and € =
(€1,...,€4) € {0,1}9. Set

Qp) :={x e R?: |z;| < p; for all 5},
Qe(p) ={z eR?:0< (-1)%x; < p; for all j}.
Then Q(p) \{I[, z; = 0} = L{€2(p) : € € {0,1}7}. The power transformation
Yy tRT =R (21, ,20) = (1)), . (=1)“a])

maps €2, (p) onto Q,(p7), where v = (v1,...,v4) such that v; = ¢; + y;u; mod 2
for all j. The range of the j-th coordinate behaves differently depending on whether
75 is even or odd. So let us consider

Ure : Qe(p) = Qe(p) = (1, -y wg) = ((F1) 2|, (1) ag )
and its inverse mapping
Pre s Qe(p?) = Qelp) : (@1, 29) = (1) a7, (=1)0farg |79,

Then we have 9, 095 = idg,_(,n) and 17 0 by = idg,_(,) for all v € (R>0)? and
e € {0,1}4. Note that

(7.3.1) {y,e 1€ € {0,137} C {y ula.(p) : €1 € {0,137}
7.4. Lemma. If f € WE(Qc(p)) then f ot € WE(Q(p?)).
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Proof. The mapping ¢y : Qc(p) — Qe(p?) is a C-diffeomorphism (by (3.1.1) and
(3.1.6)), and it is Lipschitz. Hence, Eq. (1), foisl = Yy,e(Eq,(p),f) is closed, and
we have H1(Eq () jo5-1) = 0 and HI"H(Eq () ro5-1) < 00, by (7.1.1). This
implies (W;) and (Ws). Since f € WC(Q.(p)), we have 9;f € L*(2(p)). Thus

_ _ (-1 -1
o> [ sz = [ sl det i s

=(14) [, Jotre @i =

J#i J#
- p]f%' 4 _ '
> (T1%) [, el
J#i e\p
That shows (Ws). O

7.5. Let us define 1,/_);1 : Q>p7) — Q(p) by setting 1%;1 Qu(pr) = 1/_171, for € €
{0,1}4, and by extending it continuously to (p?). Analogously, define ¢, : Q(p) —
Q(pﬂy) such that IE,Y o 1)&,;1 = ldQ(p'y) and "(Z),;l o 'lZJ7 = ldQ(p)

Lemma 7.4 implies:

7.6. Lemma. If f € WC(Q(p)) then f ot € WE(Q(p?)).

Proof. The set

Egy ot = U oy goisr Uiz € 2007) : [J 25 =0}
ec{0,1}¢ J

obviously has the required properties. O

7.7. Let I be a subset of {1,...,q} with |[I| > 2. For i € I consider the mapping
p; : RY — R?: z+— y given by

T, for j =1
(7.7.1) y; =4 wzj, forjel\{i}
Zj, for j &1

The image ¢;(Q(p) \ {z: = 0}) =: Q;(p) has the form
Qi(p) = {z € RT: 0 < |ai| < pi, |a;| < pyla| for j € I\ {i}, |z;] < pj for j & I}.

If p; > 1foralli € I, then Q(p)\{z; = 0 for alli € I} C .., Qi(p). Let us consider

icl
@i := Qila(p)\{z:=0} and its inverse mapping it Qulp) = Qp) \{z; =0} i x>y
given by

xz;, forj=i

xz, forjgl

7.8. Lemma. If f € WC(Q(p)) then fo@; ' € WE(u(p)).

Proof. We may view f as a function in WC(Q(p) \ {z; = 0}), where
Eo(pn\{zi=0}.y = Fap,r \ {: = 0}. The mapping @; : Qp) \ {z; = 0} —
Qi(p) is a C-diffeomorphism (by (3.1.1) and (3.1.6)), and it is Lipschitz. Hence,
Eﬁl(p)’f@f = @i(Eq(p)\{a,=0},7) is closed, and we have Hq(EQi(p%fo@;l) =0 and

Hq_l(EQi(p)’fo@f) < 00, by (7.1.1). This implies (W;) and (W5).
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The following identities are consequences of the substitution formula (applied

from right to left). The right-hand sides are finite, since 9; f € L'(Q(p)) for all j
and since |I| > 2.

[ ot anlas= [ o)t < o,
Qi (p) Q(p)

/ﬁi(P)
/Qi(ﬂ)

[ jserenae= [ sl e <o G#
Qi(p) Q(p)

Ly

0;f (@7 (2) 25

do= [ 10, f@llal " Plalde < 0o, e T\ (i
Q(p)

1
T

0, (G (@)~ | di = /Q ISl <o e T\
P

It follows that the partial derivatives
azf(¢z_1($)) - Zke]\{i} 8kf(95¢_1($) %, for j =1

0;(fo @i )) = 0;f(@;  (x), for j € I'\ {i}
9; (@7 (), for j & I
belong to L*(€;(r)). Thus (Ws) is shown. O

7.9. Lemma. Let p: M’ — M be a blow-up of a C-manifold M with center a closed
C-submanifold C of M. If f € WE (M) then f o (¢|anp-1(c)) ™" € WE(M).

Proof. Let K C M be compact. Hence K can be covered by finitely many
relatively compact coordinate neighborhoods (U, u) such that over U the mapping
¢ identifies with the mapping U’ — U described in 5.1. Each U’ is covered by
charts (U], uj) such that u o @|y: o (uj)~" = ¢; (where ; is defined in (7.7.1)).

2 K2

M’ R > U] — Q(p) > Q(p) \ {z; = 0}

M <——U<—¢U) —> ¢i(p)) =<—— Q(p)

u‘w(U{)

Since ¢ is proper and U is relatively compact, U’ is relatively compact as well.
Thus f|gr € WC(U'), and WC(U’) is independent of the Riemannian metric. We
may assume that there is a p € (Rs1)? such that «}(U]) = Q(p). By lemma 7.8,
flogo ()™ o gt € WE(Qu(p)). Since uj(Uf \ ¢~ '(C)) = Qp) \ {z; = 0} and
@i = ©ila(p)\{w;=0}, We have
(7.91)  fluyo () oyt = fluro (plune-1e) ou g, € WE(Q(p)).
Let T(p) == U;c; Qi(p). Note that Q(p) \ {z; = 0 for all i € I} C Y(p). Then
(7.9.2) Flor 0 @lungricy) ™ o u ey € WECT(0)),

where Ev ()« = U;er (E(L-(p),** U 8(()1(,0))) and * and xx represent the functions
in (7.9.2) and (7.9.1), respectively. So we find (possibly shrinking U)

Fo(elune-1) Mo = flur o (@lung-1c)) "t € WEU),

where WC(U) is independent of the Riemannian metric. It follows immediately
that

fo(elame-1(c)) Muv e WU,
where the union in finite. This completes the proof. U
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7.10. Lemma. Let K C M be compact, let {(Uj,u;) : 1 < j < N} be a finite
collection of connected relatively compact coordinate charts covering K, and let
fi € WE(U;). Then, after shrinking the U; slightly such that they still cover K,
there exists a function f € WC(Uj U;) satisfying the following condition:

(1) Ifz € U, Uj then either x € By, u; or f(x) = fi(x) foraje{i:zelU}.

Proof. We construct f step-by-step. Suppose that a function f’ € WC(U?;I Uj)
satisfying (1) has been found. If (U;:ll U;) NU,, = 0 then the function

=1y, + falu, € VvC(Uj:1 U;)

has property (1). Otherwise, consider the chart (U,,u,). We may assume that
un(Uyp) = B1(0), the open unit ball in R?. Choose € > 0 small, such that the
collection {U; : 1 < j < N,j # n}UU)}, where U}, := u,, ' (B1_(0)), still covers
K. The set S := 0B1_(0) N, (Uj=} Uj) N Uy) is closed in u,, (/=) Uj) N Uy),
HI(S) = 0, and HI~L(S) < oo. So u,(S) is closed in JI—| U; U U}, and, by
(7.1.1), H9(u,*(S)) =0, and H9*(u,,*(S)) < co. Thus

n—1
f= Yooy, + falog, € WC(U].:1 U uly,)

and satisfies (1). Repeating this procedure finitely many times, produces the re-
quired function. O

7.11. Theorem (WC-roots). Let M be a C-manifold. Consider a family of polyno-
mials

P(z)(z) = 2" + Z(—l)jag‘(ﬂf)Z"’j7

with coefficients a; (for 1 < j < n) in C(M,C). For any compact subset K C M
there exists a relatively compact neighborhood W of K and a parameterization \;
(for 1 < j < n) of the roots of P on W such that \; € WC(W) for all j. In
particular, for each \; we have V\; € L*(W).

Proof. By theorem 6.7, there exists a neighborhood W of K and a finite covering
{mr : Uy — W} of W, where each 7 is a composite of finitely many mappings
each of which is either a local blow-up ® with smooth center or a local power
substitution ¥ (cf. 6.1), such that, for all k, the family of polynomials P o allows
a C-parameterization A (for 1 <4 < n) of its roots on Uy,.

In view of lemma 7.10, the proof of the theorem will be complete once the
following assertions are shown:

(1) Let U =104 : V — W — M be a local power substitution. If the roots of
P oV allow a parameterization in WY _, then so do the roots of P|yy.

(2) Let ® = o : U — U — M be local blow-up with smooth center. If the
roots of P o @ allow a parameterization in WS _, then so do the roots of
Ply.

Assertion (2) is an immediate consequence of lemma 7.9. To prove (1), let
A = )\Z-’b”" (for some v € (N>)? and all € € {0,1}9, cf. 6.1) be functions in WE (V)
which parameterize the roots of P o W. We can assume without loss (possibly
shrinking V') that V' = Q(p), W = Q(p"), and that each )\?” € W(Q(p)), for
some p € (R5¢)9. Let us define A;TbW € WC(Q(p)) by setting (in view of (7.3.1) and
7.5)

AP

(3

A Pe
Qclp) =N

Q(p)s €€ {0,1}q.
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On the set {z € Q(p) : [[;z; = 0} we may define )\;/;” (for 1 < i < n) arbitrarily
such that they form a parameterization of the roots of P ot o4).,. By lemma 7.6,

A= AP 0 i € WE(Q(p7)) = WE().

Clearly, A; (for 1 <14 < n) constitutes a parameterization of the roots of P|y . Thus
the proof of (1) is complete. O

7.12. Corollary (Local WC-sections). The mapping o™ : C* — C" from roots to
coefficients (cf. (2.1.1)) admits local WC-sections, for C any class of C™-functions
satisfying (3.1.1)—(3.1.6).

Proof. Apply theorem 7.11 to the family
Pla)(z) =2"+ Z(fl)jajz7‘7j, a=(ay,...,a,) € C" =R>".
j=1

It is a C-family by (3.1.1). O

In the following we show that the conclusion of theorem 7.11 is best possible.

7.13. Example (The derivatives of the roots are not in L} = for any 1 < p < c0).
In general the roots of a C (even polynomial) family of polynomials P do not allow
parameterizations \; with VA; € LP for any 1 < p < oo. That is shown by the
example

P)(z)=2"—z1-2q, x=(T1,...,24) €RY,

ifnzp%l,forl<p<oo,andifnZZ,forp:oo.

7.14. Remark. Compare theorem 7.11 with the results obtained in [CJS83] and
[CLO3]: For a non-negative real valued function f € C*(U), where U C R? is open
and k > 2, they find in [CJS83] that V(f'/*) € LL (U). Actually, for each compact

loc
k/(k—2)
K C U, one has V(f'/*) € Ly (K), due to [CL03], where L, denotes the weak
LP space. By example 7.13, we can in general not expect that the derivatives of
the roots of P belong to any LP (K) with p > 1, since LP(K) C L2 (K) C LY(K)
for 1 <g<p< 0.

7.15. The one dimensional case. Let P be a curve of polynomials. Then the
proof of lemma 7.4 actually shows that pullback by &;i (z) = (=1)¢z|Y/7, (z € R,
v € N5, and € = 0, 1), preserves absolute continuity. So theorem 7.11 reproduces
(for C-coefficients) the following result proved in [Rai09a] (see also [Spa99)]):

7.16. Theorem. The roots of an everywhere normally nonflat C°°-curve of poly-
nomials P may be parameterized by locally absolutely continuous functions.

A curve of polynomials P with C*-coeflicients a; is normally nonflat at ¢ if
x — A, (P(x)) is not infinitely flat at x, where s is maximal with the property
that the germ at xo of x — A, (P(z)) is not 0. Or, equivalently, no two of the
continuously chosen roots (which is always possible in the one dimensional case, cf.
[Kat76, II 5.2]) meet of infinite order of flatness.

On an interval I C R the space of locally absolutely continuous functions coin-
cides with the Sobolev space W, (I). However:

7.17. Example (The roots are not in W,"'). Multiparameter C (even polynomial)
1,1
oc?

families of polynomials do not allow roots in W,
P(z)(2) =2 —z, x€C=R%.

The roots are A;2 = ++/x which must have a jump along some ray. The distribu-
tional derivative of \/x with respect to angle contains a delta distribution which is

: 1
not in L.

as the following example shows:
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7.18. Example (The roots are not in VMO). Let U C R? be open. We say
that a real or complex valued f € L. (U) has vanishing mean oscillation, or f €
VMO(U), if, for cubes Q C RY with closure Q@ C U, we have

[flBaro == sup{mo(f,Q) : Q} < oo and  limsup{mo(f,Q) : |Q| < s} =0,

where

o= / flajdo and mo(f.Q) = / (@) — folds.

Functions f € LL (U) with || f|| mo < oo are said to have bounded mean oscillation
(or f € BMO(U)). Cf. [Sar75] and [BN95, BN96].

By proposition 2.4, the roots of a family of polynomials P whose coefficients
are bounded functions on U are bounded as well and hence in BMO(U). Thus it
makes sense to ask whether the roots of a C-family P admit parameterizations in
VMO. In general the answer is no: 7.17 provides a counter example.

Namely: Let S = (—o0,0] x {0} € R? be the left z-axis and let f: R?\ S — C
be defined, in polar coordinates (7, ¢) € (0,00) x (—m,m), by

flr, o) = \/F(cos% + i sin %)
For convenience of computation we use
Q(zg,€) :={(r,¢) : |r —mo| <e,—T<p<—TH+eormT—e< d <7},

where 0 < € < zg < 7/2. Since Q(zp,€) is symmetric with respect to the z-axis,
we find Imfg(zg,e) = (IMf)Qzq,c) = 0. It is easy to compute

ot

5
mo(Im , Q(xo, €)) = fsing-(xOJre)Qx(;?(xO*e) 0

J/7o.

Since mo(f, Q(xo,€)) > mo(Imf, Q(xp,€)), we may conclude that f ¢ VMO(U),
for each open U C R? containing the origin.

8. ROOTS WITH LOCALLY BOUNDED VARIATION

The roots of a C-family of polynomials admit a parameterization by functions
having locally bounded variation, actually, even by SBVj,.-functions.

8.1. Functions of bounded variation. Cf. [AFP00]. Let U C RY be open. A
real valued function f € L1(U) is said to have bounded variation, or to belong to
BV (U), if its distributional derivative is representable by a finite Radon measure
in U, i.e.,

/f&qﬁdm:—/qﬁdDif, for all p € C°(U) and 1 < i < g,
U U

for some RY-valued measure Df = (D1 f,-+,Dyf) in U. Then WHH(U) C BV (U):
for any f € WH(U) the distributional derivative is given by (V£)L£2. See [AFP0O0,
Section 3.1] for equivalent definitions and properties of BV -functions.

A complex valued function f : U — C is said to be of bounded variation, or to
be in BV (U,C), if (Ref,Imf) € (BV(U))>.
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8.2. Special functions of bounded variation. This notion is due to [DGAS8S].
For a detailed treatment see [AFP00]. Let U C R? be open and let f € BV (U).
We may write

Df = D"f + D'f,

where D f is the absolutely continuous part of D f and D?f is the singular part of
D f with respect to L£9.
We say that f has an approzimate limit at x € U if there exists a € R such that

lim [7(w) ~ aldy = 0

im ——— y) —aldy = 0.

™0 |BT(‘T) B (x)
The approzimate discontinuity set Sy is the set of points where this property does
not hold. A point z € U is called approzimate jump point of f if there exist a* € R
and v € S9! such that a®™ # a~ and

1

Tim ———— —at|dy =0,
0 |Bri($, I/)| Brr_i(x’l,) |f(y) | y

where B (z,v) := {y € B,.(z) : £(y — 2 | v) > 0}. The set of approximate jump
points is denoted by Jy.
For any f € BV(U) the measures

Dif:=1,D°f and D°f:=1ng D*f

are called the jump part and the Cantor part of the derivative. Since D f vanishes
on the H9 !-negligible set S \ J¢, we obtain the decomposition

Df =Df+ DI f + Df.

We say that f € BV(U) is a special function of bounded variation, and we write
f € SBV(U), if the Cantor part of its derivative D¢ is zero.

8.3. Proposition ([AFP00, 4.4]). Let U C R? be open and bounded, E C R?
closed, and H1"*(ENU) < oo. Then, any function f : U — R that belongs to
LU\ E)NWYYH U\ E) belongs also to SBV (U) and satisfies H1~'(S; \ E) = 0.

A complex valued function f belongs to SBV (U, C) if (Re f,Im f) € (SBV(U))2.

8.4. Theorem (SBV-roots). Let U C RY be open. Consider a family of polynomials
P(x)(z) = 2"+ ) (=1 a;(x)z",
j=1

with coefficients a; (for 1 < j < n)in C(U,C). For any compact subset K C U
there exists a relatively compact neighborhood W of K and a parameterization \;
(for 1 < j <n) of the roots of P on W such that A\; € SBV (W, C) for all j.

Proof. It follows immediately from theorem 7.11, proposition 8.3, and (7.2.1). O

Combining corollary 7.12 with proposition 8.3 or applying theorem 8.4 to the
family P in 7.12 gives:

8.5. Corollary (Local SBV-sections). The mapping c™ : C* — C™ from roots to
coefficients (see (2.1.1)) admits local SBV -sections, for C any class of C*-functions
satisfying (3.1.1)—(3.1.6). d
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9. PERTURBATION OF NORMAL MATRICES

We investigate the consequences of our results in the perturbation theory of
normal matrices. It is evident that the eigenvalues of a C-family of normal matrices
possess the regularity properties of the roots of a C-family of polynomials. We prove
that the same it true for the eigenvectors.

9.1. Theorem (C-perturbation of normal matrices). Let M be a C-manifold. Con-
sider a family of normal complex matrices

A(z) = (Aij(z))1<ij<n

(acting on a complex vector space V= C"), where the entries A;j (for1 <1i,5 <n)
belong to C(M,C). Let K C M be compact. Then there exist:

(1) a neighborhood W of K, and

(2) a finite covering {my : Uy — W} of W, where each my is a composite of
finitely many mappings each of which is either a local blow-up with smooth
center or a local power substitution,

such that, for all k, the family of normal complex matrices A o my allows a C-
parameterization of its eigenvalues and eigenvectors.

If A is a family of Hermitian matrices, then the above statement holds with each
. being a composite of finitely many local blow-ups with smooth center only.

Proof. By theorem 6.7 applied to the characteristic polynomial

(9.1.1) X(A(z))(N) = det(A(z) — AI) = Z(—l)"*j Trace(A? A(x))A" 7
§=0

= (-1 (v + i(—l)jaij),

there exist a neighborhood W of K and a finite covering {my, : Uy, — W} of W of
the type described in (2) such that, for all k, the family of normal matrices A o 7y,
admits a C-parameterization A; (for 1 <7 < n) of its eigenvalues.

Let us prove the statement about the eigenvectors. We shall show that (for each
k) there exists a finite covering {m; : Uy — Ui} of Uy of the type described in
(2) such that Aomy oy admits a C-parameterization of its eigenvectors (for all [).
This assertion follows from the following claim. Composing the finite coverings in
the sense of 6.1, will complete the proof.

Claim. Let A = A(z) be a family of normal complex n X n matrices, where the
entries A;; are C-functions and the eigenvalues of A admit a C-parameterization \;
in a neighborhood of 0 € RY. Then there exists a finite covering {my : Uy — U} of
a neighborhood U of 0 of the type described in (2) such that, for all k, Aomy, admits
a C-parameterization of its eigenvectors.

Proof of the claim. We use induction on | S(x(A(0)))]| (cf. 6.6).
First consider the following reduction: Let v1, ..., denote the pairwise distinct
eigenvalues of A(0) with respective multiplicities my,...,m;. The sets
Ah = {)\l ZAi(O):Vh}, 1 Shgl,

form a partition of the A; such that, for x near 0, A;(z) # A;(z) if A; and A; belong
to different Ajy,. Consider

V" = €P ker(A(z) — M) = ker (oxea, (Ax) — A(@))), 1<h<lL
AEA
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(The order of the compositions is not relevant.) So V" is the kernel of a vector
bundle homomorphism B(z) of class C with constant rank (even of constant dimen-
sion of the kernel), and thus it is a vector subbundle of class C of the trivial bundle
UXxV — U (where U C R? is a neighborhood of 0) which admits a C-framing.
This can be seen as follows: Choose a basis of V' such that A(0) is diagonal. By
the elimination procedure one can construct a basis for the kernel of B(0). For z
near 0, the elimination procedure (with the same choices) gives then a basis of the
kernel of B(x). This clearly involves only operations which preserve the class C.
The elements of this basis are then of class C in = near 0.

Therefore, it suffices to find C-eigenvectors in each subbundle V") separately,
expanded in the constructed frame field of class C. But in this frame field the vector
subbundle looks again like a constant vector space. So we may treat each of these
parts (A restricted to V(") as matrix with respect to the frame field) separately.
For simplicity of notation we suppress the index h.

Let us suppose that all eigenvalues of A(0) coincide and are equal to a;(0)/n,
according to (9.1.1). Eigenvectors of A(z) are also eigenvectors of A(x)—(a1(x)/n)l
(and vice versa), thus we may replace A(z) by A(z)—(a1(x)/n)l and assume that the
first coeflicient of the characteristic polynomial (9.1.1) vanishes identically. Then
A(0) =0.

If A =0 identically, we choose the eigenvectors constant and we are done. Note
that this proves the claim, if | S(x(A4(0)))] = 1.

Assume that A # 0. By theorem 5.4 (and 6.5), there exists a finite covering
{7 : Uy — U} of a neighborhood U of 0 by C-mappings 7, each of which is a
composite of finitely many local blow-ups with smooth center, such that, for each
k, the non-zero entries A;; o m, of A o 7w, and its pairwise non-zero differences
Ajj o — Ay, © T, simultaneously have only normal crossings.

Let k be fixed and let g € Ug. Then xy admits a neighborhood W}, with suitable
coordinates in which x¢ = 0 and such that either A;; o m, = 0 or

(Ajj omy)(x) = ¥ ij(x),

where ij is a non-vanishing C-function on Wy, and a;; € N?. The collection of
multi-indices {a;; : A;j o mp # 0} is totally ordered, by lemma 6.3. Let o denote
its minimum.

If o = 0, then (A o mp)(x0) = Bfj(xo) # 0 for some 1 < i,j < n. Since the
first coeflicient of x(A o 7y) vanishes, we may conclude that not all eigenvalues of
(A omg)(xo) coincide. Thus, |S(x(Aomg)(zo))| < |S(x(A(0)))|, and, by the induc-
tion hypothesis, there exists a finite covering {mg; : Wy — Wi} of Wy (possibly
shrinking W},) of the type described in (2) such that, for all [, the family of normal
matrices A o my o my; allows a C-parameterization of its eigenvectors on Wy;.

Assume that o # 0. Then there exist C-functions Afj (some of them 0) such
that, for all 1 < 4,5 <mn,

(Aij 0 me) () = 2 Afj(2),
and Ai—“j (z) = ij(x) # 0 for some 4, j and all z € Wj,. By (9.1.1), the characteristic

polynomial of the C-family of normal matrices A*(x) = (A};(2))1<ij<n has the
form

XA D) = (1" ()\n + Z(*l)jx_jaaj(ﬂk(x))/\”_j).

By theorem 6.7, there exists a finite covering {mg; : Wi — Wy} of Wy, (possibly
shrinking W) of the type described in (2) such that, for all [, the family of poly-
nomials y(A* o ;) admits a C-parameterization of its roots (the eigenvalues of
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A* o 7). Eigenvectors of (A* o my)(z) are also eigenvectors of (A oy o mx)(x)
(and vice versa).

Let [ be fixed and let yg € Wy;. As there exist indices 1 < 4,5 < n such that
Afj(m) # 0 for all x € Wy, and, thus, (Afj o mr)(yo) # 0, not all eigenvalues

of (A% o m)(yo) coincide. Hence, |S(x(A* o mk1)(v0))| < |S(x(A(0)))], and the
induction hypothesis implies the claim.

The statement for Hermitian families A can be proved in the same way, using
theorem 6.10 instead of theorem 6.7. (I

9.2. Remark. The real analytic diagonalization of real analytic multiparameter
families of symmetric matrices was treated by [KP08, 6.2]. A one parameter version
of theorem 9.1 is proved in [Rai09a] for C*°-curves of normal matrices A such that
x(A4) is everywhere normally nonflat (see 7.15).

If the parameter space is one dimensional, we recover a C-version of Rellich’s
classical perturbation result [Rel37a, Satz 1]:

9.3. Corollary. Let I C R be an open interval. Consider a curve of Hermitian
complex matrices

Alz) = (Agj(2)1<ij<n,
where the entries A;; (for 1 < 4,5 < n) belong to C(I,C). Then there exist global
C-parameterizations of the eigenvalues and the eigenvectors of A on I.

Proof. The global statement for the eigenvectors can be proved by the arguments
in the end of [AKLM98, 7.6]. O

9.4. Example (A nonflatness condition is necessary). The following simple example
(due to Rellich [Rel37al, see also [Kat76, IT 5.3]) shows that the above theorem is
false if no nonflatness condition (such as quasianalyticity or normal nonflatness) is
required: The eigenvectors of the smooth Hermitian family

Al) = e 3= ( ;

cos = sin
cannot be chosen continuously near 0.

2
sin g _ coszi> for x < R\ {O}a and A(O) =0,

x

9.5. Example (Normality of A is necessary). Neither can the condition that A is
normal be omitted: Any choice of eigenvectors of the real analytic family

A(z) := (2 (1)) forz e R

has a pole at 0. The two parameter family
2
Az,y) = (;2 %) for z,y € R
has the eigenvalues +xy. But its eigenvectors cannot be chosen continuously near
0, even after applying blow-ups or power substitutions.

9.6. Theorem (Regularity of the eigenvalues and eigenvectors). Let M be a C-
manifold. Consider a family of normal complex matrices

A(z) = (Aij(2))1<ij<n
(acting on a complex vector space V.= C"), where the entries A;; (for 1 <i,j <
n) belong to C(M,C). For any compact subset K C M there exists a relatively
compact neighborhood W of K and parameterizations of the eigenvalues A\; and the
eigenvectors v; (for 1 <i<mn) of A on W such that for all i:

(1) \i € WE(W,C) and v; € WE(W,C").
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If M is a open subset of RY, then:
(2) \; € SBV(W,C) and v; € SBV(W,C").

Proof. The assertions for the eigenvalues follow immediately from the theorems
7.11 and 8.4. The statements for the eigenvectors can be deduced from theorem 9.1
in an analogous way as theorem 7.11 and theorem 8.4 are deduced from theorem
6.7 (compare with section 7 and section 8). O

9.7. Example. Consider the Hermitian family
x

Tts eigenvalues ++/22 4+ 32 are not differentiable at 0 and its eigenvectors cannot
be arranged continuously near 0. Blowing up the origin, we end up with a family
of Hermitian matrices which admits real analytic eigenvalues and eigenvectors; in

coordinates:
_ 1 1Y
Az, zy) = <2y 1)
has eigenvalues x+/1 + y2? and eigenvectors

(1\/1+y2> and< iy >
o —1—/1+y2)’

iy
—x) for z,y € R.

likewise,

Alry,y) =y (_xl _lx)

has eigenvalues +y+/1 + 2 and eigenvectors

(‘””**2/”7) wd (] )

—z+ V14 a?
Setting
-1 = 1+ Y)2 .
at= (7T wea = () ) o<l

wteay = (VI e = )) i£0 < [z < Jul,

§+
=) i (). 5
vi(z,y) = (1), va(2,y) = G), if £ =0y,

provides a choice of eigenvectors vy, vs of A which, clearly, is not continuous, but
belongs to WE _ (for any C satisfying (3.1.1)(3.1.6)) and, thus, also to SBV,c.

10. APPLICATIONS TO SUBANALYTIC FUNCTIONS

10.1. Subanalytic functions. Cf. [BM88]. Let M be a real analytic manifold. A
subset X C M is called subanalytic if each point of M admits a neighborhood U
such that X NU is a projection of a relatively compact semianalytic set.

Let U be an open subanalytic subset of R?. Following [Par94b] we call a function
f: U — R subanalytic if the closure in R4 x RIP! of the graph of f is a subanalytic
subset of R? x RP!.

Any continuous subanalytic function f : U — R admits rectilinearization: There
exists a locally finite covering {7y : Uy — U} of U, where each 7y, is a composite of
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finitely many mappings each of which is either a local blow-up with smooth center
or a local power substitution, such that, for all k£, the function f oy is real analytic
[BM90, 1.4 & 1.7]. This result was improved in [Par94b, 2.7] to show that in the
composition of the 7 it is enough to substitute powers at the last step after all
local blow-ups.

10.2. Theorem. Let U be an open subanalytic subset of RY. Any continuous sub-
analytic function f: U — R belongs to WC. (U), and, thus, to SBVie(U).

Proof. This follows from rectilinearization and the reasoning in section 7 and
section 8. (I

10.3. Theorem. The roots of a family of polynomials P whose coefficients are
continuous subanalytic functions admit a parameterization in Wﬁz, and, thus, in
SBVioc-

Proof. Apply rectilinearization to the coefficients of P and use theorem 6.13. [

10.4. Remark. We cannot expect that for the rectilinearization of the roots of a
continuous subanalytic hyperbolic family P no local power substitutions are needed.
This is shown by the following example:

P(x)(2) := 2% — |z|, for x € RY.

If we additionally require that all coefficients of a subanalytic hyperbolic family P
are also arc-analytic, then indeed local blow-ups suffice, by [BM90, 1.4] (see also
[Par94b, 3.1]) and theorem 6.10.
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THE CONVENIENT SETTING FOR NON-QUASIANALYTIC
DENJOY-CARLEMAN DIFFERENTIABLE MAPPINGS

ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

ABSTRACT. For Denjoy—Carleman differentiable function classes C™M where
the weight sequence M = (M) is logarithmically convex, stable under deriva-
tions, and non-quasianalytic of moderate growth, we prove the following:
A mapping is CM if it maps CM-curves to CM-curves. The category of
CM_mappings is cartesian closed in the sense that CM(E,CM(F,G)) =
CM(E x F,Q) for convenient vector spaces. Applications to manifolds of
mappings are given: The group of CM-diffeomorphisms is a CM-Lie group
but not better.

1. INTRODUCTION

Denjoy—Carleman differentiable functions form spaces of functions between real
analytic and C*°. They are described by growth conditions on the Taylor expan-
sions, see (2.1). Under appropriate conditions the fundamental results of calculus
still hold: Stability under differentiation, composition, solving ODEs, applying the
implicit function theorem. See section (2) for a review of Denjoy—Carleman differ-
entiable functions, which is summarized in Table 1.

In [Kri82], [Kri83], [FK88], [KN85], [KM90], see [KM97a] for a comprehensive
presentation, convenient calculus was developed for C*°, holomorphic, and real
analytic functions: see appendix (7), (8), (9) for a short overview of the essential
results.

In this paper we develop the convenient calculus for Denjoy—Carleman classes
CM where the weight sequence M = (M) is logarithmically convex, stable under
derivations, and non-quasianalytic of moderate growth (this holds for all Gevrey
differentiable functions G1*° for § > 0). By ‘convenient calculus’ we mean that
the following theorems are proved: A mapping is CM if it maps CM-curves to
CM_curves, see (3.9); this is wrong in the quasianalytic case, see (3.12). The
category of C™-mappings is cartesian closed in the sense that CM (E,CM(F,G)) =
CM(E x F,G) for convenient vector spaces, see (5.3); this is wrong for weight
sequences of non-moderate growth, see (5.4). The uniform boundedness principle
holds for linear mappings into spaces of C™-mappings.

For the quasianalytic case we hope for results similar to the real analytic case,
but the methods have to be different. This will be taken up in another paper.

In chapter (6) some applications to manifolds of mappings are given: The group
of CM_diffeomorphisms is a C™-Lie group but not better.

2. REVIEW OF DENJOY—CARLEMAN DIFFERENTIABLE FUNCTIONS

2.1. Denjoy—Carleman classes CM(R" R) of differentiable functions. We
mainly follow [ThiO8] (see also the references therein). We use N = Ny U {0}.

2000 Mathematics Subject Classification. 26E10, 46A17, 46E50, 58B10, 58B25, 58C25, 58D05,
58D15.

Key words and phrases. Convenient setting, Denjoy—Carleman classes, non-quasianalytic of
moderate growth.
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For each multi-index o = (ay,...,a,) € N, we write a! = aq! -y, o =
ay + -+ ay, and 0% = 8'0“/896‘111 R o

Let M = (Mj)ren be an increasing sequence (M1 > M) of positive real
numbers with My = 1. Let U C R™ be open. We denote by C™ (U) the set of all
f € C>=(U) such that, for all compact K C U, there exist positive constants C' and
p such that

(2.1.1) 0% f(2)] < C pll |a! My

for all @« € N® and 2 € K. The set CM(U) is a Denjoy-Carleman class of functions
on U. If My = 1, for all k, then C™(U) coincides with the ring C¥(U) of real
analytic functions on U. In general, C*(U) C CM(U) C C>=(U).

We assume that M = (My) is logarithmically convez, i.e.,

(212) M,? S Mk—l Mk+1 for all k,

or, equivalently, My11/Mj is increasing. Considering My = 1, we obtain that also
(M;,)'/* is increasing and

(2.1.3) M; My, < Ml+k for all I,k € N.
We also get (see (2.9))
(2.1.4) M} My > Mj My, -+ M,, forall a; € Nug,a1 + - +a; =k.

Let M = (M) be logarithmically convex. Then M| = My/My M} > 1 is increasing
by (2.1.4), logarithmically convex, and CM (U) = CM'(U) for all U open in R™ by
(2.1.5). So without loss we assumed at the beginning that M is increasing.

Hypothesis (2.1.2) implies that C™ (U) is a ring, for all open subsets U C R,
which can easily be derived from (2.1.3) by means of Leibniz’s rule. Note that
definition (2.1.1) makes sense also for mappings U — RP. For C™-mappings,
(2.1.2) guarantees stability under composition ([Rou63], see also [BM04, 4.7]; a
proof is also contained in the end of the proof of (3.9)).

A further consequence of (2.1.2) is the inverse function theorem for CM
([Kom79]; for a proof see also [BM04, 4.10]): Let f : U — V be a C™-mapping
between open subsets U,V C R™. Let xg € U. Suppose that the Jacobian matrix
(8f/0x)(xo) is invertible. Then there are neighborhoods U’ of xo, V' of yo := f(z0)
such that f: U’ — V' is a CM-diffeomorphism.

Moreover, (2.1.2) implies that CM is closed under solving ODEs (due to
[Kom80]): Consider the initial value problem

B fta), 2(0) =y,

where f: (=T7,T) x 2 — R", T > 0, and © C R™ is open. Assume that f(¢,z) is
Lipschitz in z, locally uniformly in ¢. Then for each relative compact open subset
Qy C Q there exists 0 < T} < T such that for each y € Q; there is a unique solution
x = x(t,y) on the interval (=11, Ty). If f: (=T,T) x Q — R" is a CM-mapping
then the solution z : (=77, Ty) x 2 — R" is a C™-mapping as well.

Suppose that M = (M) and N = (Ny) satisfy My, < C* Ny, for all k£ and a
constant C, or equivalently,

M\ %
2.1.5 sup | — < 00
( ) kEN=o <Nk)

Then, evidently CM(U) C CN(U). The converse is true as well (if (2.1.2) is
assumed): One can prove that there exists f € CM(R) such that |f*)(0)| > k! My,
for all k (see [Thi08, Theorem 1]). So the inclusion CM(U) C CN(U) implies
(2.1.5).
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Setting Ny, = 1 in (2.1.5) yields that C*(U) = CM(U) if and only if
%

sup (Mp,)
keNso

< 0.

Since (My)'/* is increasing (by logarithmic convexity), the strict inclusion C*(U) €
CM(U) is equivalent to
lim (Mk)% = 0.
k—o0
We shall also assume that C™ is stable under derivation, which is equivalent to
the following condition

1

(2.1.6) sup (%)E < 00.

Note that the first order partial derivatives of elements in CM(U) belong to
CM™(U), where M+ denotes the shifted sequence M+ = (My41)ren. So the
equivalence follows from (2.1.5), by replacing M with M*! and N with M.

Definition. By a DC-weight sequence we mean a sequence M = (Mj,)ren of pos-
itive numbers with My = 1 which is monotone increasing (My+1 > My), loga-
rithmically convex (2.1.2), and satisfies (2.1.6). Then CM(U,R) is a differential
ring, and the class of CM-functions is stable under compositions. DC stands for
Denjoy-Carleman and also for derivation closed.

2.2. Quasianalytic function classes. Let F,, denote the ring of formal power
series in m variables (with real or complex coefficients). For a sequence My =
1, My, My, --- > 0, we denote by FM the set of elements F' = Fox® of F,
for which there exist positive constants C' and p such that

|Fu| < Cpl*l My,

aeN?

for all & € N™. A class CM is called quasianalytic if, for open connected U C R™
and all a € U, the Taylor series homomorphism

1
To: CM(U) = FY, o Tuf(x) = Z — 0" f(a)a"
is injective. By the Denjoy—Carleman theorem ([Den21], [Car26]), the following
statements are equivalent:
(1) CM is quasianalytic.
(2) >orey mik = 0o where my, = inf{(j! M;)'/7 : j >k} is the increasing mino-
rant of (k! My)'/*.
(3) S0 () VE = 0o where M; = inf{(j! M;)=R)/U=D (11 My)=D/0=3)

My
J<k<Ij<l} is the logarithmically convex minorant of k! Mj.
(4) X 7 =00
k+1

For contemporary proofs see for instance [H6r83, 1.3.8] or [Rud87, 19.11].

Suppose that C¥(U) € CM(U) and CM (U) is quasianalytic and logarithmically
convex. Then T, : CM(U) — FM is not surjective. This is due to Carleman
[Car26]; an elementary proof can be found in [Thi08, Theorem 3].

2.3. Non-quasianalytic function classes. If M is a DC-weight sequence which
is not quasianalytic, then there are CM partitions of unity. Namely, there exists
a CM function f on R which does not vanish in any neighborhood of 0 but which
has vanishing Taylor series at 0. Let g(t) = 0 for ¢ < 0 and g(¢t) = f(¢) for ¢ > 0.
From g we can construct C™ bump functions as usual.
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2.4. Strong non-quasianalytic function classes. Let M be a DC-weight se-
quence with C¥(U,R) € CM(U,R). Then the mapping T, : CM(U,R) — FM is
surjective, for all a € U, if and only if there is a constant C' such that

[ee]

M, M,

2.4.1 <C—L f int i > 0.

24.1) kz (bt 1) Mgy = My, ooy mesers =
=j

See [Pet88] and references therein. (2.4.1) is called strong non-quasianalyticity
condition.

2.5. Moderate growth. A DC-weight sequence M has moderate growth if

(2.5.1) sup (M)W <

- jikeNso \Mj My, '
Moderate growth implies derivation closed.

Moderate growth together with strong non-quasianalyticity (2.4.1) is called
strong regqularity: Then a version of Whitney’s extension theorem holds for the
corresponding function classes (e.g. [BBMT91]).

2.6. Gevrey functions. Let § > 0 and put My, = (k!)°, for k € N. Then M =
(My) is strongly regular. The corresponding class C of functions is the Gevrey
class G'T9.

2.7. More examples. Let § > 0 and put M, = (log(k + ¢))°%, for £ € N. Then
M = (M) is quasianalytic for 0 < 6 < 1 and non-quasianalytic (but not strongly)
for 6 > 1. In any case M is of moderate growth.

Let ¢ > 1 and put My = q’"27 for k € N. The corresponding C-functions are
called g-Gevrey regular. Then M = (M) is strongly non-quasianalytic but not of
moderate growth, thus not strongly regular. It is derivation closed.

2.8. Spaces of CM-functions. Let U C R"™ be open and let M be a DC-weight
sequence. For any p > 0 and K C U compact with smooth boundary, define

CY(K) = {f € C®(K) : || fllp.x < oo}
with

g {0 @)

7l xc = sup {p"’“ laf! Mja)
It is easy to see that CI])‘”(K) is a Banach space. In the description of CIZJW(K),
instead of compact K with smooth boundary, we may also use open K C U with
K compact in U, like [Thi08]. Or we may work with Whitney jets on compact K,
like [Kom73b].

The space CM (U) carries the projective limit topology over compact K C U of
the inductive limit over p € Ny:

CMU) = lim ( lim CY(K)).

KCU p€eNso

:aEN”,xEK}.

One can prove that, for p < p/, the canonical injection C}/(K) — Cy(K) is a
compact mapping; it is even nuclear (see [Kom73b], [Kom73a, p. 166]). Hence
h_r)np Cg/l (K) is a Silva space, i.e., an inductive limit of Banach spaces such that
the canonical mappings are compact; therefore it is complete, webbed, and ultra-
bornological, see [Flo71], [Jar81, 5.3.3], also [KM97a, 52.37]. We shall use this
locally convex topology below only for n = 1 — in general it is stronger than the

one which we will define in (3.1), but it has the same system of bounded sets, see
(4.6).
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2.9. Lemma. For a logarithmically convexr sequence My with My =1 we have
M{ My > Mj Mg, -+ My,  for all oy € Nug,aq + -+ aj = k.

Proof. We use induction on k. The assertion is trivial for £ = j. Assume that
j < k. Then there exists ¢ such that a; > 2. Put o} := a; — 1. By induction
hypothesis,

Mj Mg, -+ My -+ Mo, < M{™ My_y.

Since My.41/Mj, is increasing by (2.1.2), we obtain

M,,
MjMal"'Maj:MjMal"'Ma;"'Maj'M1S
M
< MF UMy —E < MF M, O
Mj.—y

Table 1: Let M = (M}) and N = (N}) be increasing (<) sequences of real
numbers with My = Ny = 1. By U we denote an open subset of R". The
mapping T, : CM(U) — FM is the Taylor series homomorphism for a € U
(see (2.2)). Recall that M is a DC-weight sequence if it is logarithmically
convex and stable under derivation.

Properties of M Properties of CM
M increasing, My = 1, = | C¥(U) C CM(U) C C>=(U)
(always assumed below this line)
M is logarithmically convex = | CM(U) is a ring.
(always assumed below this line), CM s closed under composition.
ie., M,f < My—1 M4 for all k. CM ig closed under applying the
Then: (My)/* is increasing, inverse function theorem.

My My, < My for all 1) k, CM ig closed under solving ODEs.

and MF My, > M; My, - M,
for ai€N>0,a1+---+aj:k.

suppen. o (My/Ni)/* < o0 cMU)y ceN)

SUPgen. , (Mi)'/* < oo Ce(U) = CM(U)

limkﬁoo<Mk)1/k =00 CW(U) g CM(U)

K B O 3

Supk€N>0(Mk+1/Mk)1/k < 00 CM g closed under derivation.

(always assumed below this line)

oM — & | CM is quasianalytic,
k=0 (k+1) M1 q Y

or, equivalently, ie., T, : CM(U) — FM is injective
> (g }Wk WWE =00 (not surjective if C«(U) € CM(U)).
Yo Ue-%lj\)/jiil\c/fm < o0 & | OM is non-quasianalytic.

Then CM partitions of unity exist.

limk_wo(Mk)l/k = 0o and & | C¥(U) € CM(U) and
0o M; . . . . .
> e (k+1]\)/11’\€/lk+1 < CMj+1 T, : CM(U) — FM is surjective, i.e.,

for all 5 € N and some C' CM is strongly non-quasianalytic.
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M has moderate growth, i.e., = | OM is cartesian closed

SUp; en o (374) "/ UM < oo will be proved in (5.3)

M is strongly regular, i.e., = | Whitney’s extension theorem
it is strongly non-quasianalytic holds in CM,

and has moderate growth.

§>0and M = (k!)° for k € N. | & | CM is the Gevrey class G19.
Then M is strongly regular.

3. CM_MAPPINGS

3.1. Definition: CM-mappings. Let M be a DC-weight sequence, and let E be a
locally convex vector space. A curve ¢ : R — F is called CM if for each continuous
linear functional £ € E* the curve foc : R — R is of class CM. The curve c is called
strongly C™ if ¢ is smooth and for all compact K C R there exists p > 0 such that

@) ez e k) s bounded in B
—_— T is bounded in FE.
pk k! Mk
The curve c is called strongly uniformly CM if ¢ is smooth and there exists p > 0
such that
®) (z)
¥ (z
————:keN,z R} is bounded in E.
{p’“ ERA x } i un in
Now let M be a non-quasianalytic DC-weight sequence. Let U be a c¢®°-open
subset of F, and let F' be another locally convex vector space. A mapping f : U — F
is called CM if f is smooth in the sense of (7.3) and if f oc is a CM-curve in F
for every CM-curve ¢ in U. Obviously, the composite of CM -mappings is again a
CM _mapping, and the chain rule holds. This notion is equivalent to the expected
one on Banach spaces, see (3.9) below.
We equip the space CM (U, F) with the initial locally convex structure with
respect to the family of mappings

MU, F) Sl oM(R R), fislofoe, £ E*ce CMR,U)

where CM (R, R) carries the locally convex structure described in (2.8) and where
E* is the space of all continuous linear functionals on F.

For U C R™, this locally convex topology differs from the one described in (2.8),
but they have the same bounded sets, see (4.6) below.

If F is convenient, then by standard arguments, the space CM (U, F) is ¢>-closed
in the product [[, . CM(R,R) and hence is convenient. If F is convenient, then a

mapping f : U — F is CM if and only if o f is CM for all £ € F*.

3.2. Example: There are weak CM-curves which are not strong. By [Thi08,
Theorem 1], for each DC-weight sequence M there exists f € C™ (R, R) such that
|f*)(0)] > k! My for all k € N. Then g : R — RN given by g(t),, = f(nt) is CM
but not strongly C™. Namely, each bounded linear functional ¢ on RY depends
only on finitely many coordinates, so we take the maximal p for the finitely many
coordinates of g being involved. On the other hand, for each p and any compact
neighborhood L of 0 the set

(k)
g™ (t)
— L
{pkk!Mk te JceN}

has n-th coordinate unbounded if n > p.
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3.3. Lemma. Let E be a convenient vector space such that there exists a Baire
vector space topology on the dual E* for which the point evaluations ev, are con-
tinuous for all x € E. Then a curve c : R — E is CM if and only if ¢ is strongly
CM | for any DC-weight sequence M.

See (5.2) for a more general version.

Proof. Let K be compact in R. We consider the sets
(€0 ) (x)]
pk k! Mk
which are closed subsets in E* for the Baire topology. We have Up,C A, c = E*.
By the Baire property there exists p and C such that the interior U of A, ¢ is

non-empty. If ¢y € U then for all £ € E* there is an € > 0 such that e/ € U — ¢y
and hence for all z € K and all £ we have

(€0 )@ @) < & (I((el + ) 0 )M (@)| +1(to 0 ) P(a)]) < 2 pF ki My

A,,,sz{feE*: gC’forallkeN,zeK}

So the set "
c\)(z)
— k K
{pk KM, eN,xze }
is weakly bounded in E and hence bounded. (I

3.4. Lemma. Let M be a DC-weight sequence, and let E be a Banach space. For
a curve ¢ : R — FE the following are equivalent.
(1) cis CM.
(2) For each sequence (1) with ritk — 0 for all t > 0, and each compact set
K in R, the set {k!}wk c®(a)ry : a € K,k € N} is bounded in E.
(3) For each sequence (ry) satisfying ri > 0, Tkre > Thae, and rit* — 0 for
all t > 0, and each compact set K in R, there exists an € > 0 such that
{Wlwk c®(a)ry e :a € K,k € N} is bounded in E.

Proof. (1) = (2) For K, there exists p > 0 such that
(k) (k)
c\%(a c\%(a
( )Tk _ # e
]C'Mk E k’p Mk E
is bounded uniformly in k¥ € N and a € K by (3.3).
(2) = (38) Usee=1.
(3) = (1) Let a :=sup,cx Hm c¢®)(a)||g. Using [KM97a, 9.2.(4=1)] these
are the coefficients of a power series with positive radius of convergence. Thus ay/p*
is bounded for some p > 0. O

3.5. Lemma. Let M be a DC-weight sequence. Let E be a convenient vector space,
and let S be a family of bounded linear functionals on E which together detect
bounded sets (i.e., B C E is bounded if and only if £(B) is bounded for all ¢ € §).
Then a curve ¢ : R — E is CM if and only if Coc: R —R is CM for all{ € S.

Proof. For smooth curves this follows from [KM97a, 2.1 and 2.11]. By (3.4), for
any £ € E’, the function ¢ o ¢ is CM if and only if:

(1) For each sequence (1) with 74 t* — 0 for all t > 0, and each compact set

K in R, the set {k!J\l/Ik (toc)®(a)ry :a € K,k € N} is bounded.

By (1) the curve c is CM if and only if the set {k!Jl\/Ik ®(a)ry s a € K,k € N} is
bounded in E. By (1) again this is in turn equivalent to £ oc € CM for all £ € S,

since S detects bounded sets. O
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3.6. CM curve lemma. A sequence z, in a locally convex space E is said to be
Mackey convergent to x, if there exists some X, /' oo such that \,(x, — z) is
bounded. If we fix A = (\,) we say that z, is A-converging.

Lemma. Let M be a non-quasianalytic DC-weight sequence. Then there exist
sequences A\, — 0, tp — too, Sk > 0 in R with the following property: For 1/\ =
(1/An)-converging sequences x,, and v, in a convenient vector space E there exists
a strongly uniformly CM -curve ¢ : R — E with c(ty, +t) = xp, + t.g, for [t| < sp.

Proof. Since CM is not quasianalytic we have >°, 1/(k!Mj)'/* < co. We choose
another non-quasianalytic DC-weight sequence M = (My) with (Mj,/My)'/* — occ.
By (2.3) there is a CM-function ¢ : R — [0,1] which is 0 on {t : |¢| > 1} and which
is 1on {t:[t| < 1}, i.e. there exist C,p > 0 such that

| ()| < CpF k! M, for allt € R and k € N.

For z,v in a absolutely convex bounded set B C F and 0 < T < 1 the curve
c:t— (t/T) - (z+ tv) satisfies (cf. [Bom67, Lemma 2]):
B () = T_kgo(k)(%).(z +to) +kTHF gp(k_l)(%).v
eT 0P RIM(1+ L) B+ kT "Cp" " (k— 1) My_1.B
CTHC P R M(1+ 5).B+TT*CL p" k! My.B
CCE+)T " p k! M,.B
So there are p,C := C'(% + %) > (0 which do not depend on z,v and T such that
B (t) e CT—F pF k! M. B for all k and t.

Let 0 < Tj; <1 with >, T; < oo and tj, := 23, T + T). We choose the A;
such that 0 < )\j/Tf < My, /M, (note that Tf M,/ My, — oo for k — o0) for all j
and k, and that )\J»/T;C — 0 for j — oo and each k.

Without loss we may assume that z,, — 0. By assumption there exists a closed
bounded absolutely convex subset B in E such that x,,v, € A\, - B. We consider
it o((t —t5)/T;) - (zj + (t = t;)vj) and ¢ := Y7 ¢;. The ¢; have disjoint
support C [t; — T}, t; + 1], hence ¢ is C* on R\ {t} with

Mty e CT * pPkIMy A; - B for [t —t;] < Tj.

Then \ M
1™ (#)||p < C p* kM, 25 < CpFRIM == = C p* k1M,
7 1,
for t # ts. Hence ¢ : R — Ep (see [KM97a, 2.14.6] or (7.1)) is smooth at ¢ as
well, and is strongly C™ by the following lemma. 0O

3.7. Lemma. Let c: R\ {0} — E be strongly CM in the sense that c is smooth and
for all bounded K C R\ {0} there exists p > 0 such that

WD) ez e Kb s bounded in B
—_ X s bounded in E.
Then ¢ has a unique extension to a strongly CM -curve on R.

Proof. The curve ¢ has a unique extension to a smooth curve by [KM97a, 2.9].
The strong CM condition extends by continuity. (|
3.8. Corollary. Let M be a non-quasianalytic DC-weight sequence. Then we have:

(1) The final topology on E with respect to all strongly CM -curves equals the
Mackey closure topology.
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(2) A locally convex space E is convenient (7.2) if and only if for any (strongly)
CM_curve ¢ : R — E there exists a (strongly) CM-curve ¢; : R — E with
g =c.

Proof. (1) For any Mackey converging sequence there exists a C™-curve passing
through a subsequence in finite time by (3.6). So the final topologies generated by
the Mackey converging sequences and by the CM-curves coincide.

(2) In order to show that a locally convex space F is convenient, we have to prove
that it is ¢®>°-closed in its completion. So let x,, € E converge Mackey to x, in the
completion. Then by (3.6) there exists a strongly CM-curve ¢ in the completion
passing in finite time through a subsequence of the z,, with velocity v, = 0. The
form of ¢ (in the proof of (3.6)) shows that its derivatives ¢(*)(t) for k& > 0 are
multiples of the z,, and hence have values in E. Then ¢ is a CM-curve and so the
antiderivative ¢ of ¢’ lies in E by assumption. In particular z, € ¢(R) C E.

Conversely, if E is convenient, then every smooth curve ¢ has a smooth anti-
derivative ¢; in E by [KM97a, 2.14]. Since

1 k41 M;, 1
pr Lk +1)! MkJrlcg Ch p(k + 1) M1 pF k! M, <O)
and since
M, _ 1
p(k+ 1) M1 — pMy
by (2.1.2) the antiderivative c; is (strongly) CM if ¢ is so. O

3.9. Theorem. Let M = (M) be a non-quasianalytic DC-weight sequence. Let
U C E be c*®-open in a convenient vector space, and let F' be a Banach space. For
a mapping f : U — F, the following assertions are equivalent.
(1) fis CM.
(2) f is CM along strongly CM curves.
(3) f is smooth, and for each closed bounded absolutely conver B in E and each
x e UNEp there are r >0, p >0, and C > 0 such that

1 .
T I 0 i) @lk ) < O

foralla e UNER with ||a — x|l < r and all k € N.
(4) f is smooth, and for each closed bounded absolutely conver B in E and each
compact K CU N Epg there are p > 0 and C > 0 such that

1 .
T 4 i) @k < O

for alla € K and all k € N.

Proof. (1) = (2) is clear.

(2) = (3) Without loss let E = Ep be a Banach space. For each v € E and
x € U the iterated directional derivative d¥ f(z) exists since f is CM along affine
lines. To show that f is smooth it suffices to check that dﬁn f(zy) is bounded for
each k € N and each Mackey convergent sequences x,, and v, — 0, by [KM97a,
5.20]. For contradiction let us assume that there exist k and sequences z,, and v,
with ||d% f(z,)|| — co. By passing to a subsequence we may assume that z,, and
vy, are (1/),,)-converging for the ), from (3.6). Hence there exists a strongly CM-
curve ¢ in E and with ¢(t 4+ t,,) = x,, + t.v,, for ¢ near 0 for each n separately, and
for ¢, from (3.6). But then [|(f o )™ (t,)|| = ||k f(zn)| — oo, a contradiction.
So f is smooth.
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Assume for contradiction that the boundedness condition in (3) does not hold.
Then there exists « € U such that for all r, p,C > 0 there is an a = a(r,p,C) € U
and k = k(r, p,C) € N with [ja — z|| < r but

1
k! My,
By [KM97a, 7.13] we have

12" f(@)ll L,y < (2€)" o I f (@)]]-

d* f (@)l ez ry > Cp".

So for each p and n take r = nip and C = n. Then there are a,, € U with

lan,, — || < nip, moreover v, , with ||v, ,|| =1, and &, , € N such that

(2¢)Fnp

e ||dkre > n.
Fon,p! My, ,, pPmoe I flanp)l >n

Un,p

Since K := {an, : n,p € N} U {z} is compact, this contradicts the following
Claim. For each compact K C E there are C,p > 0 such that for all k € N and

z € K we have sup,| < |ldE f(z)|| < C p*Fk! M.

Otherwise, there exists a compact set K C F such that for each n € N there are

kn €N, z,, € K, and v, with ||v,|| = 1 such that

kn+1
1 n
15 £ ()|l > kol M, (v) |

where we used C' = p := 1/)\2 with the )\, from (3.6). By passing to a subsequence
(again denoted n) we may assume that the z,, are 1/ -converging, thus there exists
a strongly CM-curve ¢ : R — E with c(t, +t) = z,, + t.\,.v,, for ¢ near 0 by (3.6).
Since

(foc)®(t,) = Medk (),

we get

I 0 = EIN T (g M )\ 1
kn!Mkn n kn!Mkn kn+2 5

)\nkn+1
a contradiction to foc e CM.

(3) = (4) is obvious since the compact set K is covered by finitely many balls.

(4) = (1) We have to show that focis CM for each CM-curve c: R — E. By
(3.4.2) it suffices to show that for each sequence (1) satisfying v, > 0, rire > rp4e,
and ry, t* — 0 for all ¢ > 0, and each compact interval I in R, there exists an € > 0
such that {m (foc)®(a)ry e :a € I,k € N} is bounded.

By (3.4.2) applied to r42* instead of 7y, for each ¢ € E*, each sequence (ry)
with 7 t* — 0 for all £ > 0, and each compact interval I in R the set {ﬁ (o
)®(a)rp 2 : a € I,k € N} is bounded in R. Thus n c®a)rp 2k :a €
I,k € N} is contained in some closed absolutely convex B C E. Consequently,
c®) . T — Ep is smooth and hence K, := {2 c¢®)(a) 7, 2F : a € I} is compact in

RIM,,
Ep for each k. Then each sequence () in the set
1 1
- (k) . — —
K'_{k:!Mkc (a)rk.aEI,kEN}—U2kKk

keN

has a cluster point in K U{0}: either there is a subsequence in one Ky, or 2*»z; €
Ky, C B for ky, — o0, hence z,, — 0 in Eg. So K U{0} is compact.



DENJOY-CARLEMAN MAPPINGS 101

By Faa di Bruno ([FdB55] for the 1-dimensional version)

oc)F)(q , @) (q %) (a

k! 041! (7%

and (2.1.4) for a € I and k € N we have

<

& d? f(c(a)llLi gy, p) ] ) (@)|| B Tas
<MEY D I1—;
j j =1

i\M - |
JZ0 aeNd 1M i*Ma,
ar+-Fa;=Fk
E—-1Y , ;1 1
<MY (j_l)CpJQk = Mfp(1+p)"'C .
j=0

k
So {k,}vfk (foc)®(a) (m) rp:a€lke N} is bounded as required. O

3.10. Corollary. Let M and N be non-quasianalytic DC-weight sequences with
(2.1.5)

(%) <

sup (— 00

kGNIiU N/C

Then CM (U, F) C CN(U, F) for all convenient vector spaces E and F and each ¢>-

open U C E. Moreover C*(U,F) C CM(U,F) C C>®(U, F). All these inclusions
are bounded.

Proof. The inclusions CM C CN C C* follow from (3.9) since this is true for
condition (3.9.3) applied to £ o f for £ € F*.

Without loss let FF = R. If f is C* then for each closed absolutely convex
bounded B C E the mapping foip : UNEp — R is given by its locally converging
Taylor series by [KM97a, 10.1]. So (3.9.3) is satisfied for M}, = 1 and thus for each
DC-weight sequence M. So f is CM. All inclusions are bounded by the uniform
boundedness principle (4.1) below for CM and [KM97a, 5.26] for C*°. O

3.11. Corollary. Let M = (M}) be a non-quasianalytic DC-weight sequence. Then
we have:
(1) Multilinear mappings between convenient vector spaces are C™ if and only
if they are bounded.
(2) If f: EDU — F is CM, then the derivative df : U — L(E,F) is CM,
and also c/l} :U x E — F is CM, where the space L(E, F) of all bounded
linear mappings is considered with the topology of uniform convergence on

bounded sets.
(3) The chain rule holds.

Proof. (1) If f is multilinear and C** then it is smooth by (3.9) and hence bounded
by (7.3.2). Conversely, if f is multilinear and bounded then it is smooth by (7.3.2).
Furthermore, f oip is multilinear and continuous and all derivatives of high order
vanish. Thus condition (3.9.3) is satisfied, so f is CM.

(2) Since f is smooth, by (7.3.3) the map df : U — L(E, F) exists and is smooth.
Let ¢ : R — U be a CM-curve. We have to show that ¢ — df (c(t)) € L(E, F) is C™.
By [KM97a, 5.18] and (3.5) it suffices to show that t — c(t) — £(df (c(t)).v) € R
is CM for each £ € F* and v € E. We are reduced to show that x — £(df (z).v)
satisfies the conditions of (3.9). By (3.9) applied to £ o f, for each closed bounded
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absolutely convex B in E and each x € U N Ep there are r > 0, p > 0, and C' > 0

such that
1 .
4o £ o iB)(@)lLxcen,m < C "

for all a € U N Ep with ||a — z||p < r and all ¥ € N. For v € E and those B
containing v we then have

ld*(d(o £)( ) oin)(@)lLr(zyr) = 4" (o foip)(a)(v,... )Lk, )
< |la** (o foip)(@)llr+(mp mllollEs < C oM (k+ 1) Mt

My
< Cp R ((k+1 )
< C oMMk + Do
M, 1/k
< C pFE! M, forﬁ>psup((k+1)p k“) ,
E>1 M,

the latter quantity being finite by (2.1.6). By (4.2) below also df is CM.
(3) This is valid for all smooth f. O

3.12. Remark. For a quasianalytic DC-weight sequence M, theorem (3.9) is

wrong. In fact, take any rational function, e.g. % Let t — z(t),y(t) be in

CM(R,R) with 2(0) = 0 = y(0). Then z(t) = t"Z(t) and y(t) = t"g(t) for r > 0
and for CM-functions Z and 3 since C™ is derivation closed. If (x,y) is not con-
stant we may choose r such that #(0)? + %(0)? # 0, since CM is quasianalytic.

Then ¢ s QO _ v _s(0)5(1)°

FORESIOE O TOE is C™ near 0, but the rational function is not

smooth.

4. CM_UNIFORM BOUNDEDNESS PRINCIPLES

4.1. Theorem (Uniform boundedness principle). Let M = (M) be a non-
quasianalytic DC-weight sequence. Let E, F, G be convenient vector spaces and
let U C F be c®-open. A linear mapping T : E — CM (U, G) is bounded if and only
ifevy ol : E — G is bounded for every x € U.

This is the CM-analogon of (7.3.7). Compare with [KM97a, 5.22-5.26] for the
principles behind it. They will be used in the following proof and in (4.6) and
(4.10).

Proof. For x € U and ¢ € G* the linear mapping foev, = CM(z,¢) : CM(U,G) —
R is continuous, thus ev, is bounded. So if T" is bounded then so is ev, oT.

Conversely, suppose that ev, oT is bounded for all z € U. For each closed
absolutely convex bounded B C E we consider the Banach space Ep. For each
¢ € G*, each CM-curve ¢ : R — U, each t € R, and each compact K C R the
composite given by the following diagram is bounded.

evc(t)

E——CcMU,q) G

] lCM(c,E) ¢

evy

Ep —> CM (R, R) — lim G}/ (K, R) > g

By [KM97a, 5.24 and 5.25] the map T is bounded. In more detail: Since
hi)np CM(K,R) is webbed by (2.8), the closed graph theorem [KM97a, 52.10] yields

that the mapping Fp — li_rr)lp C’é\/[(K, R) is continuous. Thus 7" is bounded. d

4.2. Corollary. Let M = (My) be a non-quasianalytic DC-weight sequence.
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(1) For convenient vector spaces E and F, on L(E, F') the following bornologies
coincide which are induced by:
e The topology of uniform convergence on bounded subsets of E.
e The topology of pointwise convergence.
o The embedding L(E,F) C C*(E, F).
e The embedding L(E,F) C CM(E, F).
(2) Let E, F, G be convenient vector spaces and let U C E be c¢™-open. A
mapping f : U x F — G which is linear in the second variable is CM if and
only if f¥ : U — L(F,G) is well defined and CM.

Analogous results hold for spaces of multilinear mappings.

Proof. (1) That the first three topologies on L(FE, F') have the same bounded sets
has been shown in [KM97a, 5.3 and 5.18]. The inclusion CM (E, F) — C®(E, F) is
bounded by (3.10) and by the uniform boundedness principle in (7.3.7). It remains
to show that the inclusion L(E,F) — CM(E, F) is bounded, where the former
space is considered with the topology of uniform convergence on bounded sets.
This follows from the uniform boundedness principle (4.1).

(2) The assertion for C* is true by (7.3.6).

If fisCM let ¢ : R — U be a CM-curve. We have to show that ¢t —
fY(c(t)) € L(F,G) is CM. By [KM97a, 5.18] and (3.5) it suffices to show that
t = L(fV(c(t)(v)) = L(f(c(t),v)) € Ris CM for each ¢ € G* and v € F; this is
obviously true.

Conversely, let fV : U — L(F,G) be CM. We claim that f: U x F — G is CM.
By composing with ¢ € G* we may assume that G = R. By induction we have

dkf(x,wo)((vk,wk), ce (vl,wl)) = dk(fv)(x)(vk, ooy v1)(wo)+
k
B A @ ks T o) )

We check condition (3.9.3) for f:

Hdkf(x7wO)HL’C(EBxFB/,]R) <

k
< () (@) () (wo)ll e (rpr) + Z " () @) | Lr1 By, LRy 7))

=1
k
<A (F) @) Lk Ly mp lwoll B + D Nd ™ (F) @) | o1 (L )
i=1
k
< Cp" k! Myllwollg + Y Cp"™t (k= 1)! My—y = C p* K My (J|woll 5 + 5572)
=1
where we used (3.9.3) for L(ip/,R) o fV : U — L(Fpg:,R). Thus f is CM. O

4.3. Proposition. Let M = (M}) be a non-quasianalytic DC-weight sequence. Let
E and F be convenient vector spaces and let U C E be c>*-open. Then we have the
bornological identity
CM(U,F) =1lim CM(R, F),
S
where s runs through the strongly CM-curves in U and the connecting mappings
are given by g* for all reparametrizations g € CM(R,R) of curves s.

Proof. By (3.9) the linear spaces CM (U, F), lim CM(R, F) and lim CM (R, F)
s —c

coincide, where ¢ runs through the C™-curves in U: Each element (f.). determines
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a unique function f : U — F given by f(z) := (f o const,)(0) with foc = f. for
all such curves ¢, and f € CM if and only if f. € C™ for all such ¢, by (3.9).
Since CM (R, F) carries the initial structure with respect to ¢, for all £ € F*
we may assume F' = R. Obviously the identity lim_ CM(R,R) — lim CM(R,R) is
continuous. As projective limit the later space is convenient, so we may apply the
uniform boundedness principle (4.1) to conclude that the identity in the converse
direction is bounded. U

4.4. Proposition. Let M = (My) be a non-quasianalytic DC-weight sequence. Let
FE and F be convenient vector spaces and let U C E be c>-open. Then the bornology
of CM (U, F) is initial with respect to each of the following families of mappings

(1) iy =CM(ig,F): CM(U,F) - CM(UnNEg, F),
(2) OZW(Z'BJT\/):C'J\/I(U,F)—>C'IM(UH.EB,FV)7
(3) cM(ig,0): CM(U,F) — CM(U N Ep,R),

where B runs through the closed absolutely convex bounded subsets of E and ip :
Ep — E denotes the inclusion, and where £ runs through the continuous linear
functionals on F, and where V' runs through the absolutely convezx 0-neighborhoods
of F and Fy is obtained by factoring out the kernel of the Minkowsky functional of
V' and then taking the completion with respect to the induced norm.

Warning: The structure in (2) gives a projective limit description of CM (U, F) if
and only if F' is complete since then F' = liilv Fy.

Proof. Since ig : Fg — E, ny : F — Fy and £ : F — R are bounded linear the
mappings iy, CM(ig,my) and CM(ip,¢) are bounded and linear.

The structures given by (1), (2) and (3) are successively weaker. So let,
conversely, C™ (ip,f)(B) be bounded in C™(U N Ep,R) for all B and ¢. By
(4.3) CM (U, F) carries the initial structure with respect to all ¢* : CM (U, F) —
CM(R, F), where ¢ : R — U are the strongly C™ curves and these factor locally
as (strongly) CM-curves into some Ep. By definition C™ (R, F') carries the initial
structure with respect to CM(¢7,0) : CM(R,F) — CM(I,R) where ¢f : [ — R
are the inclusions of compact intervals into R and ¢ € F*. Thus CM (U, F) carries
the initial structure with respect to CM(c|;,£) : CM (U, F) — CM(I,R), which is
coarser than that induced by C™ (U, F) — CM(U N Ep,R). O

4.5. Definition. Let F and F be Banach spaces and A C FE convex. We consider
the linear space C™(A, F) consisting of all sequences (f*) € [],cn C(A, L*(E, F))
satisfying

4 ()(w) - () w) = / Pty — o)y — ) dt

forall k € N, z,y € A, and v € EF. If A is open we can identify this space with
that of all smooth functions A — F by passing to jets.

In addition, let M = (M},) be a non-quasianalytic DC-weight sequence and (r)
a sequence of positive real numbers. Then we consider the normed spaces

(A F) = { ()6 € C(AF) < () ) < o0}
where the norm is given by

IF*(@) (v, ... v |

T My oy ]| -+ (v

||(fk)H(rk) = sup{k! :kEN,aeA,vieE}.
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If (1) = (p*) for some p > 0 we just write p instead of (r) as indices. The spaces

C(%)(A, F) are Banach spaces, since they are closed in £>°(N, (> (A, L*(E, F))) via

(¥ = (k= mfk)-

4.6. Theorem. Let M = (My,) be a non-quasianalytic DC-weight sequence. Let E
and F be Banach spaces and let U C E be open. Then the space CM (U, F) can
be described bornologically in the following equivalent ways, i.e. these constructions
give the same vector space and the same bounded sets.

(1) lim lim G (W, F)
W

(2) lim lim CM (K, F)

(3) lim C{r, (K, F)

(4) lim lim C* (1, F)

Moreover, all involved inductive limits are reqular, i.e. the bounded sets of the in-
ductive limits are contained and bounded in some step.

Here K runs through all compact conver subsets of U ordered by inclusion, W
runs through the open subsets K C W C U again ordered by inclusion, p runs
through the positive real numbers, (ry) runs through all sequences of positive real
numbers for which p*/r;, — 0 for all p > 0, ¢ runs through the C™ -curves in U
ordered by reparametrization with g € CM(R,R) and I runs through the compact
intervals in R.

Proof. Note first that all four descriptions describe smooth functions f : U — F,
which are given by = — f°(x) in (1)-(3) for appropriately chosen K with » € K
where fY: K — F and by z +— f.(t) in (4) for c withx = ¢(t),t € [ and f.: [ — F.
Smoothness of f follows, since we may test with C*-curves and these factor locally
into some K.

By (3.9) all four descriptions describe C* (U, F) as vector space.

Obviously the identity is continuous from (1) to (2) and from (2) to (3).

The identity from (3) to (1) is continuous, since the space given by (3) is as inverse
limit of Banach spaces convenient and the inductive limit in (1) is by construction
an (LB)-space, hence webbed, and thus we can apply the uniform S-boundedness
principle [KM97a, 5.24], where S = {ev, : x € U}.

So the descriptions in (1)—(3) describe the same complete bornology on CM (U, F)
and satisfy the uniform S-boundedness principle.

Moreover, the inductive limits involved in (1) and (2) are regular: In fact the
bounded sets B therein are also bounded in the structure of (3), i.e., for every
compact K C U and sequence (r}) of positive real numbers for which p*/ry — 0
for all p > 0:

[ f5(a)(v1,. .., o)l
su ckeNacAv, e E,feB}: <
o e My Jor] - [[on] /€ B}

and so the sequence
If*(a) (vs, - . vn)|
UMy [[oal - - flok |

satisfies supy, ax/r < oo for all (ry) as above. By [KM97a, 9.2] these are the
coefficients of a power series with positive radius of convergence. Thus ay/p* is
bounded for some p > 0. This means that B is contained and bounded in C/J]V[(K, F).

ak::sup{ :aGA,viEE,fEB}<oo
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That also (4) describes the same bornology follows again by the S-uniform
boundedness principle, since the inductive limit in (4) is regular by what we said
before for the special case E = R and hence the structure of (4) is convenient. [

4.7. Lemma. Let M be a non-quasianalytic DC-weight sequence. For any conve-
nient vector space E the flip of variables induces an isomorphism L(E,CM (R, R)) =
CM(R, E") as vector spaces.

Proof. For ¢ € CM (R, E') consider é(z) := evyoc € CM(R,R) for x € E. By
the uniform boundedness principle (4.1) the linear mapping ¢é is bounded, since
evy ot = c(t) € E'.

If conversely ¢ € L(E,C™(R,R)), we consider {(t) = evyof € E' = L(E,R) for
t € R. Since the bornology of E’ is generated by S := {ev, :x € E}, { : R — E' is
CM  for ev, of = {(x) € CM(R,R), by (3.5). O

4.8. Lemma. Let M = (M) be a non-quasianalytic DC-weight sequence. By
AM(R) we denote the ¢ -closure of the linear subspace generated by {ev; : t € R}
in CM(R,R)" and let § : R — AM(R) be given by t — evy. Then AM(R) is the
free convenient vector space over CM | i.e. for every convenient vector space G the
CM _curve § induces a bornological isomorphism

LOM(R),G) = CM(R,G).

We expect MM (R) to be equal to CM(R,R) as it is the case for the analogous
situation of smooth mappings, see [KM97a, 23.11], and of holomorphic mappings,
see [Sie95] and [Sie97].

Proof. The proof goes along the same lines as in [KM97a, 23.6] and in [FK88,
5.1.1]. Note first that A™(R) is a convenient vector space since it is ¢c>-closed in the
convenient vector space CM (R, R)’. Moreover, § is CM by (3.5), since evj, o6 = h
for all h € CM(R,R), so 6* : LA (R),G) — CM(R,G) is a well-defined linear
mapping. This mapping is injective, since each bounded linear mapping A (R) —
G is uniquely determined on §(R) = {ev, : t € R}. Let now f € CM(R,G). Then
tof e CM(R,R) for every £ € G* and hence f : CM(R,R)" — [],. R given by
f(@) = (@ o f))ieg- is a well-defined bounded linear map. Since it maps ev; to
flevy) = 6(f(t)), where 6§ : G — [I;- R denotes the bornological embedding given
by x +— ((z))sec~, it induces a bounded linear mapping f: AM(R) — G satisfying
fod = f. Thus 6* is a linear bijection. That it is a bornological isomorphism
(i.e. 0* and its inverse are both bounded) follows from the uniform boundedness
principles (4.1) and (4.2). O

4.9. Corollary. Let M = (M) and N = (Nj) be non-quasianalytic DC-weight
sequences. We have the following isomorphisms of linear spaces

(1) C=(R,CM(R,R)) = CM(R,C=(R,R))
(2) C¥(R,CM(R,R)) = CM(R,C¥(R,R))
(3) CY(R,CM(R,R)) = CM(R,CY(R,R))

Proof. For a € {oo,w, N} we get

CM(R,C*(R,R)) = LAM(R), C*(R,R)) by (4.8)
=~ C*(R,LAM(R),R)) by (4.7), [KM97a, 3.13.4, 5.3, 11.15]
~ CY(R,CM (R, R)) by (4.8). O
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4.10. Theorem. (Canonical isomorphisms) Let M = (My) and N = (Ng) be
non-quasianalytic DC-weight sequences. Let E, F be convenient vector spaces and
let W; be c>-open subsets in such. We have the following natural bornological
isomorphisms:

( ) CM(leCN(W27F)) = CN(W27CM(W17F));

(2) CM(Wy,C®(Wa, F)) = C=(Wy, CM (W, F)).

(3) CM(W1 C®(Wy, F)) =2 C%(Wo, CM (W1, F)).

(4) CM (W, L(E, F)) = L(E,CM (W, F).

(5) CM (W, €°°(X F)) Nf‘”(X CM (W, F)).

(6) CM (W, Lip™(X, F)) = Lip"(X,CM (W4, F)).
In (5) the space X is an £*°-space, i.e. a set together with a bornology induced by
a family of real valued functions on X, cf. [FK88, 1.2.4]. In (6) the space X is a
Lip*-space, cf. [FK88, 1.4.1]. The spaces {>°(X, F) and Lip*(W, F) are defined in
[FKS88, 3.6.1 and 4.4.1].

Proof. All isomorphisms, as well as their inverse mappings, are given by the flip of
coordinates: f — f, where f(:ﬂ)(y) := f(y)(x). Furthermore, all occurring function
spaces are convenient and satisfy the uniform S-boundedness theorem, where S is
the set of point evaluations, by (4.1), [KM97a, 11.11, 11.14, 11.12], and by [FK88,
3.6.1, 4.4.2, 3.6.6, and 4.4.7].

That f has values in the corresponding spaces follows from the equation f (z) =
evy o f. One only has to check that f itself is of the corresponding class, since it
follows that f — f is bounded. This is a consequence of the uniform boundedness
principle, since

(evao( ))(f) = eva(f) = f(z) = evaof = (eva):(f).

That f is of the appropriate class in (1) and in (2) follows by composing with
the appropriate curves ¢; : R — Wy, ¢o : R — W5 and A € F* and thereby reducing
the statement to the special case in (4.9).

That f is of the appropriate class in (3) follows by composing with ¢; €
CM(R, W) and CP2(cg,N) : C¥(Wa, F) — CP2(R,R) for all A € F* and ¢y €
P2 (R, Wy), where (3 is in {00, w}. Then C%2(cy, Ao foe; = (CM(er, M) o focg)™
R — C?2(R,R) is CM by (4.9), since CM (¢, \) o focy : R — Wy — CM(Wy, F) —
CM(R,R) is CP2.

That f is of the appropriate class in (4) follows, since L(E, F) is the ¢*-closed
subspace of CM(E, F) formed by the linear C™-mappings.

That f is of the appropriate class in (5) or (6) follows from (4), using the free
convenient vector spaces £*(X) or \¥(X) over the £>-space X or the the Lip"-space
X, see [FK88, 5.1.24 or 5.2.3], satisfying ¢>°(X,F) = L({}(X),F) or satisfying
Lip* (X, F) = L(\*(X), F). Existence of these free convenient vector spaces can be
proved in a similar way as in (4.8). O

5. EXPONENTIAL LAW
5.1. Difference quotients. For the following see [FK88, 1.3]. For a subset K C
R™ o= (oq,...,a,) € N, a linear space E, and f : K — F let:
R*) = {(z0,...,21) € RFFL 2y # 2 for #i}
K*={(2",...;2") e R x . xRt i (2] ... 2l )€ K for 0 <ij < o}
K = KN (R x ... x R<an>)
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Bi(z) = k! for x = (20, ...,xx) € R%)
0<j<k
J#i

Ii—Ij

SUf(xt, ... a") = Z Z" Biy(zh) ... By, (&™) fa) ... al)

i1=0 i, =0

Note that §°f = f and 6% = 62" o... 06y where
okg(xt,. . a™) =68 (g(at, ... 2"t att L a™) ().
Lemma. Let E be a convenient vector space. Let U C R™ be open. For f : U — FE
the following conditions are equivalent:
(1) f:U—EisCM.
(2) For every compact conver set K in U and every £ € E* there exists p > 0

such that 5 (£ f)( )
« o T
> :a €Nz € K@
{pa| o My TS }

s bounded in R.
Furthermore, the norm on the space CM(K,R) from (2.8) (for convex K) is also

given by
0% f (@)
[l 2= sup {

OTIN e N e KEOL
a‘|a|’Mla\ - ‘ }

Proof. By composing with bounded linear functionals we may assume that £ = R.
(1) = (2) If f is CM then for each compact convex set K in U there exists
p > 0 such that

9% f .
{p‘a‘ Ial(!glcv)fw caeN' z e K}

is bounded in R.
For a differentiable function g : R — R and ¢y < --- < t; there exist s; with
t; < s; < t;+1 such that
5jg(t0, e ,tj) = 6jilg/(80, ey 5j71)~
This follows by Rolle’s theorem, see [KM97a, 12.4]. Recursion, for g = 9% f, shows
that 8% f(20,...,2™) = % f(s) for some s € K.
(2) = (1) f is C* by [FK88, 1.3.29] since each difference quotient 6 f is

bounded on bounded sets.
For g € C*°(R,R), using (see [FK88 1.3.6])

(t)—ZZ,Ht —t1) g(to, ..., 1;),

=0 (=0
induction on j and differentiability of g shows that

J
89 (to, - 1) = 71 > 0 glte, -, 15, 1),
=0

where 87Tl g(to, ... tj,t;) == limy_4, 7T lg(to,...,t;,t). If the right hand side di-
vided by pl®! |a|l M|, is bounded, then also 6’¢’/(p!®! |a|! M|,,) is bounded.
By recursion, applied to g = §%90*~7f, we conclude that f € CM. O

5.2. Lemma. Let E be a convenient vector space such that there exists a Baire vec-
tor space topology on the dual E* for which the point evaluations ev, are continuous
for all x € E. For a mapping f : R™ — E the following are equivalent:

(1) Lo fis CM foralll € E*.
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(2) For every conver compact K CR™ there exists p > 0 such that

{ 0% f(x)

JeTfalt M, SN E K} s bounded n B,

(3) For every convex compact K C R™ there exists p > 0 such that

{ 6 f(x)

plellall Mo ra €Nz € K<a>} is bounded in E.

Proof. (2) = (1) is obvious.
(1) = (2) Let K be compact convex in R™. We consider the sets

0%(L0 ) (@)

A, o= {E € E":
g plollaft Mg

SCforallaEN”,xeK}

which are closed subsets in E* for the Baire topology. We have Up,c A,c = E*.
By the Baire property there exists p and C such that the interior U of A, ¢ is
non-empty. If ¢y € U then for all £ € E* there is an € > 0 such that e/ € U — £,
and hence for all z € K and all a we have

0% f)(@)] < L (10%((eb + o) o f) (@) +10%(bo o f)()]) < 2 p!*T|alt My
So the set
{ 9°f(x)
o] My,
is weakly bounded in E' and hence bounded.

(3) = (1) follows by lemma (5.1). (1) = (3) follows as above for the
difference quotients instead of the partial differentials. O

:aEN",xEK}

5.3. Theorem. (Cartesian closedness) Let M = (My) be a non-quasianalytic DC-
weight sequence of moderate growth (2.5.1). Then the category of CM -mappings
between convenient real vector spaces is cartesian closed. More precisely, for con-
venient vector spaces E, F and G and ¢ -open sets U C E and W C F a mapping
F:UXxW — G is CM if and only if f¥ : U — CM(W,G) is CM.

Proof. We first show the result for U =R, W =R, G =R.

If f € CM(R2 R) then clearly for any x € R the function fV(z) = f(z, )€
CM(R,R). To show that ¥ : R — CM(R,R) is CM it suffices to check (5.1.2) for
all £ € CM(R,R)*. Such an ¢ factors over li_II)lp CM(L) for some compact L C R.
Let K C R be compact. Since f is CM there exists C > 0 and p > 0 by lemma
(5.1) such that

5(1
1o S, y)l <C  foraeN? (z,y) e (K x L),
p‘“|\a|!M‘a|

Since M is of moderate growth (2.5.1) we have M; ), < o**M; M), for some o > 0.
Let a = (a1, az) € N2, Then:

‘ 61 fV(x) { 05267 f (2, )]
O = sup

P ar! My, pItaq! My, p3? ag! M,
S Sup{ a1 oo ol as!

caweNye L<a2>}

p2,L
105207 f (=, )]
p1° P2 (a1+az)! (al + a2)!g_a1_a2Ma1+a2

D 6N,y€L<D‘2>}

0% f (z, )] (
< ’ tag €N, eL“2>}
< sup{pcln p3? o—lalo—laf |O‘|!M|a\ Q2 Y
6&
< sup{‘l‘f(%y)l tag € Njy € L<a2>} < C for a; € N,z € Kt
pe |a|'M\a|



110 A. KRIEGL, P.W. MICHOR, A. RAINER

for p1 = py = 20p. So fV : K — ng(L,]R) is CM. Thus £o fV is CM.

Conversely, let f¥ : R — CM(R,R) be C™. Then fV : R — lim CM(L,R)
is CM for all compact subsets L C R. The dual space (lii>np2 CM(L,R))* can be
equipped with the Baire topology of the countable limit h£1p2 Cgf (L,R)* of Banach

spaces.

R —— CM(R,R) —lim C/(L,R)

]

K Ch (L,R)

Thus the mapping fY : R — lii>np C/ﬂf(L,R) is strongly CM by (5.2). Since the

inductive limit lim CM(L,R) is countable and regular ([Flo71, 7.4 and 7.5] or
—psy P2

[KM97a, 52.37]), for each compact K C R there exists p; > 0 such that the

bounded set
o™ fY¥ (x)
_ N K
{p;“ all M, 1S

is contained and bounded in C)/(L,R) for some py > 0. Thus for a; € N and
z € K we have (using (2.1.3))

§o1 \4 §ot Vv T
00> C = sup |7 f'(y) _’al f'()
aren || p1t anl Mg, pa2,L prtonl M, pa,L
yeK

{ 105207 f (=, )]
p?l al! Mal pgz a2! Ma2
105207 f (2, y)l

{p‘fél p;tz (311—!9-?;22!)1 (al + Ozg)!Marle

0% f(z, y)| (or2)
> : az
= sup{pm| all M, aweNyel }

sup :ageN,yEL<a2>}

%

sup

tay €eNjy e L<O‘2>}

where p = max(p1, p2). Thus f is CM.

Now we consider the general case. Given a CM-mapping f : U x W — G we
have to show that f¥ : U — CM(W,G) is CM. Any continuous linear functional
on CM (W, Q) factors over some step mapping CM (o, £) : CM(W,G) — CM (R, R)
of the cone in (3.1) where ¢y is a CM-curve in W and £ € G*. So we have to check
that CM(co, ) o fVocy : R — CM(R,R) is CM for every CM-curve ¢; in U. Since
(o foler X))V =CM(cyg,£)o fYoc this follows from the special case proved
above.

If f¥:U — CM(W,G) is CM then (Lo fo(cy x c2))¥ = CM(co,l) o f¥oc is
CM for all CM-curves ¢; : R — U, ¢ : R — W and ¢ € G*. By the special case, f
is then C'M., O

5.4. Example: Cartesian closedness is wrong in general. Let M be a DC-
weight sequence which is strongly non-quasianalytic but not of moderate growth.
For example, M}, = 2k satisfies this by (2.7). Then by (2.4) there exists f : RZ — R
of class CM with 9*f(0,0) = |a|! M|o|. We claim that f : R — CM(R,R) is not
cM.

Since M is not of moderate growth there exist j, / oo and k, > 0 such that
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Consider the linear functional ¢ : C™(R,R) — R given by

(Jn)
0(g) :Z 9 (0).

0L,
This functional is continuous since
(]” (Jn
9 g
S | S X i e < OO ol <

for suitable p where
WL

for all p. But £o fV is not CM since

(Jn k)
., FUnR)(0,0)
||£Of ||p1,[71,1] = Sup kkl Mk Z 'M n]n

1 f(]"‘k")(o,(])

> sup - -
n p]{?n knl Mk" jn' MJn nin
i k)M nintkn
> sup (]n + ) Jntkn > sup -

n pl kn'jn Mkn M n]n T pk" njn
for all p; > 0.

5.5. Theorem. Let M be a non-quasianalytic DC-weight sequence which is of mod-
erate growth. Let E, F, etc., be convenient vector spaces and let U and V be c¢>-

open subsets of such.
(1) The exponential law holds:

cMu,cMv,aq)) = cM™U x V,G)
is a linear CM -diffeomorphism of convenient vector spaces.
The following canonical mappings are CM.
2) ev:CM(U,F)xU —F, ev(f,z)=f(z)
3) ins: E— CM(FExF), ins(z)(y)=(z,y)
4) (N oMu,eMv, @) — cMU x V,G)
5 () :cMUxV,G)—cMUu,cMVv,q))
6) comp:CM(F,G) x CM(U,F) — CM(U,G)
7 oM | ). CcM(F F) x CM(E,E) - CM(CM(E,F),CM(E,, FY))
(f,9) = (h— fohoy)

(8) H 1 HCM(Equ‘) — CM(H Ei>HFi)

Proof. (2) The mapping associated to ev via cartesian closedness is the identity
on CM(U, F), which is CM | thus ev is also CM.

(3) The mapping associated to ins via cartesian closedness is the identity on
E x F, hence ins is CM.

(4) The mapping associated to ( )" via cartesian closedness is the CM-
composition of evaluations evo(ev x Id) : (f;z,y) — f(z)(y).

(5) We apply cartesian closedness twice to get the associated mapping (f; z;y) —
f(x,y), which is just a CM evaluation mapping.

(6) The mapping associated to comp via cartesian closedness is (f,g;x) +—
f(g(z)), which is the CM-mapping ev o(Id x ev).

(
(
(
(
(
(
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(7) The mapping associated to the one in question by applying cartesian closed-
ness twice is (f,g;h,z) — g(h(f(x))), which is the C*-mapping evo(Id x ev) o
(Id x Id x ev).

(8) Up to a flip of factors the mapping associated via cartesian closedness is the
product of the evaluation mappings CM (E;, F;) x E; — Fj.

(1) follows from (4) and (5). O

6. MANIFOLDS OF CM_MAPPINGS

6.1. CM-manifolds. Let M = (M}) be a non-quasianalytic DC-weight sequence
of moderate growth. A CM-manifold is a smooth manifold such that all chart
changings are C'™-mappings. Likewise for C™-bundles and CM™ Lie groups.

Note that any finite dimensional (always assumed paracompact) C°°-manifold
admits a C>°-diffeomorphic real analytic structure thus also a CM-structure.
Maybe, any finite dimensional C™-manifold admits a C™-diffeomorphic real ana-
lytic structure.

6.2. Spaces of CM-sections. Let E — B be a CM vector bundle (possibly infinite
dimensional). The space CM(B « E) of all C™ sections is a convenient vector
space with the structure induced by

CM(B — E) = [T CM(ua(Ua), V)

5+ Pryothy 0 50U, "

where B D U, —“— uy(U,) C W is a CM-atlas for B which we assume to be
modelled on a convenient vector space W, and where 9, : E|y, — Uy x V form a
vector bundle atlas over charts U, of B.

Lemma. For a CM wvector bundle E — B a curve ¢ : R — CM(B «— E) is CM if
and only if ¢ :Rx B — E is CM.

Proof. By the description of the structure on C™ (B « E) we may assume that B
is ¢>°-open in a convenient vector space W and that £ = BxV. Then CM(B «— Bx
V)= CM(B,V). Then the statement follows from the exponential law (5.3). O

An immediate consequence is the following: If U C E is an open neighborhood
of s(B) for a section s, F — B is another vector bundle and if f : U — F
is a fiber respecting C™ mapping, then f, : CM(B «— U) — CM(B « F) is
CM on the open neighborhood CM (B « U) of s in CM(B < E). We have
(d(f)(s)v)e = d(fluns, ) (s(x))(v(z)).

6.3. Theorem. Let M = (My) be a non-quasianalytic DC-weight sequence of mod-
erate growth. Let A and B be finite dimensional C™ manifolds with A compact.
Then the space CM (A, B) of all CM -mappings A — B is a CM -manifold modelled
on convenient vector spaces CM(A «— f*TB) of CM sections of pullback bundles
along f : A — B. Moreover, a curve ¢ : R — CM(A, B) is CM if and only if
N :RxA— BisCM,

Proof. Choose a C™ Riemannian metric on B which exists since we have CM
partitions of unity. C™-vector fields have CM-flows by [Kom80]; applying this to
the geodesic spray we get the C™ exponential mapping exp : TB D U — B of this
Riemannian metric, defined on a suitable open neighborhood of the zero section.
We may assume that U is chosen in such a way that (wp,exp) : U — B x B is
a CM diffeomorphism onto an open neighborhood V of the diagonal, by the C™
inverse function theorem due to [Kom79].
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For f € CM(A, B) we consider the pullback vector bundle

AxpTB—— f*TB s 1R

|
f

A——B

Then CM (A « f*TB) is canonically isomorphic to the space CM (A, TB); := {h €
CM(A,TB) :mgoh = f} via s+ (r5f)osand (Ida,h) < h. Now let

Us:={g9€ CM(A,B): (f(x), g(x)) €V for all z € A},
up: Uy — CM(A — f*TB),
us(9)(x) = (,expyi, (9(2) = (, (T, exp) " o (£, 9))(2))-

Then u; is a bijective mapping from Uy onto the set {s € CM(A — f*TB) : s(A) C
[*U = (75 f)~H(U)}, whose inverse is given by u}l(s) =expo(nyf)os, where we
view U — B as fiber bundle. The push forward uy is CM since it maps CM-curves
to CM-curves by lemma (6.2). The set uf(Uy) is open in CM (A « f*TB) for the
topology described above in (6.2).

Now we consider the atlas (Uy,uy)pecn(a,p) for CM(A, B). Its chart change
mappings are given for s € uy(Ur NU,) C CM(A — ¢*TB) by

(ug o ugt)(s) = (Ida, (5, exp) " o (f,expo(njg) 0 5))

= (T]:l OTQ)*(S)v
where 74(2,Yy(2)) = (7,expy(y)(Yy(z))) is a CM diffeomorphism 7, : ¢*TB 2
g*U — (g x Idg)~}(V) C A x B which is fiber respecting over A. The chart
change ufou, ' = (Tf_1 07,)s is defined on an open subset and it is also CM since
it respects CM-curves.

Finally for the topology on CM (A, B) we take the identification topology from
this atlas (with the ¢>°-topologies on the modeling spaces), which is obviously finer
than the compact-open topology and thus Hausdorff.

The equation uy o ug_l = (7']?1 o 74)« shows that the C structure does not
depend on the choice of the C™ Riemannian metric on B.

The statement on CM-curves follows from lemma (6.2). O

6.4. Corollary. Let Ay, Ay and B be finite dimensional C™ manifolds with A; and
Ay compact. Then composition

CM(Az,B) x CM(Ay, Ay) - CM(A1,B), (f.9)— fog

is CM. However, if N = (Ny) is another non-quasianalytic DC-weight sequence of
moderate growth with (Ny/My)'/* \, 0 then composition is not CV.

Proof. Composition maps CM-curves to C™-curves, so it is CM.

Let A; = Ay = S!' and B = R. Then by (2.1.5) there exists f € CM (S, R)\
CN(S1,R). We consider f : R — R periodic. The universal covering space of
CM(S1,S1) consists of all 27Z-equivariant mappings in C(R,R), namely the
space of all g + Idg for 27-periodic g € CM. Thus CM (S, S1) is a real analytic
manifold and ¢ + (x +— 2 +t) induces a real analytic curve ¢ in CM (S, S'). But
f. ocis not CV since:

OFli=0(fs 0 ))(@) _ OFli=of(x+1) _ fP(x)
k‘!pka a k‘!pka a k‘!pka
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which is unbounded for z in a suitable compact set and for all p > 0 since f ¢
oN. O

6.5. Theorem. Let M = (My) be a non-quasianalytic DC-weight sequence of mod-
erate growth. Let A be a compact (= finite dimensional) CM manifold. Then
the group DiffM(A) of all CM -diffeomorphisms of A is an open subset of the CM
manifold CM (A, A). Moreover, it is a C™-regular CM Lie group: Inversion and
composition are CM. Its Lie algebra consists of all CM -vector fields on A, with the
negative of the usual bracket as Lie bracket. The exponential mapping is CM . It is
not surjective onto any neighborhood of 1d 4.

Following [KM97b], see also [KM97a, 38.4], a CM-Lie group G with Lie algebra
g =T.G is called CM-regular if the following holds:

e For each CM-curve X € CM (R, g) there exists a CM-curve g € CM(R,G)
whose right logarithmic derivative is X, i.e.,

9(0) =e
Ohg(t) =To(usM)X(t) = X(t).g(t)

The curve g is uniquely determined by its initial value g(0), if it exists.
e Put evolg;(X) = g(1) where g is the unique solution required above. Then
evoly, : CM(R, g) — G is required to be CM also.

Proof. The group DiffM(A) is open in CM (A, A) since it is open in the coarser
C' compact open topology, see [KM97a, 43.1]. So Diff* (4) is a CM-manifold and
composition is CM by (6.3) and (6.4). To show that inversion is C* let ¢ be a
CM_curve in Diff™ (A). By (6.3) the map ¢ : R x A — A is CM and (invoe)” :
Rx A — A satisfies the finite dimensional implicit equation ¢’ (¢, (inv oc)” (¢, 2)) = =
for € A. By the finite dimensional C™ implicit function theorem [Kom79] the
mapping (inv oc)” is locally CM and thus C™. By (6.3) again, inv oc is a C™-curve
in Diff™ (A4). So inv : Diff™ (4) — Diff™(A4) is CM. The Lie algebra of Diff* (A)
is the convenient vector space of all C™-vector fields on A, with the negative of the
usual Lie bracket (compare with the proof of [KM97a, 43.1]).

To show that DiffM(A) is a CM-regular Lie group, we choose a CM-curve in
the space of CM-curves in the Lie algebra of all C™ vector fields on A4, ¢ : R —
CM(R,CM(A « TA)). By lemma (6.2) c corresponds to a R2-time-dependent C'*
vector field ¢ : R? x A — TA. Since CM _vector fields have CM-flows and since
A is compact, evol”(c(s))(t) = FIf ) is CM in all variables by [Kom80]. Thus
Diff” (A) is a CM-regular CM Lie group.

The exponential mapping is evol” applied to constant curves in the Lie algebra,
i.e., it consists of flows of autonomous C™ vector fields. That the exponential map
is not surjective onto any C™-neighborhood of the identity follows from [KM97a,
43.5] for A = S'. This example can be embedded into any compact manifold, see
[Gra88|. O

7. APPENDIX. CALCULUS BEYOND BANACH SPACES

The traditional differential calculus works well for finite dimensional vector
spaces and for Banach spaces. For more general locally convex spaces we sketch here
the convenient approach as explained in [FK88] and [KM97a]. The main difficulty
is that composition of linear mappings stops to be jointly continuous at the level
of Banach spaces, for any compatible topology. We use the notation of [KM97a]
and this is the main reference for the whole appendix. We list results in the order
in which one can prove them, without proofs for which we refer to [KM97a]. This
should explain how to use these results.
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7.1. The c*®-topology. Let F be a locally convex vector space. A curvec: R — F
is called smooth or C*° if all derivatives exist and are continuous - this is a concept
without problems. Let C*°(R, E) be the space of smooth functions. It can be
shown that the set C*°(RR, E') does not depend on the locally convex topology of F,
only on its associated bornology (system of bounded sets).
The final topologies with respect to the following sets of mappings into E coin-
cide:
(1) C*[R,E).
(2) The set of all Lipschitz curves (so that {% :t # s} is bounded in F).
(3) The set of injections Ep — E where B runs through all bounded absolutely
convex subsets in F, and where Ep is the linear span of B equipped with
the Minkowski functional ||z||p := inf{A > 0: 2 € AB}.
(4) The set of all Mackey-convergent sequences x,, — x (there exists a sequence

0 < A, /" oo with A\, (2, — 2) bounded).

This topology is called the c>*°-topology on E and we write ¢* FE for the resulting
topological space. In general (on the space D of test functions for example) it
is finer than the given locally convex topology, it is not a vector space topology,
since addition is no longer jointly continuous. The finest among all locally convex
topologies on E which are coarser than ¢ E is the bornologification of the given
locally convex topology. If E is a Fréchet space, then ¢ F = F.

7.2. Convenient vector spaces. A locally convex vector space E is said to be
a convenient vector space if one of the following equivalent conditions is satisfied
(called ¢*-completeness):

(1) For any ¢ € C*°(R, E) the (Riemann-) integral fol c(t)dt exists in E.

(2) Any Lipschitz curve in E is locally Riemann integrable.

(3) A curve ¢ : R — F is smooth if and only if A o ¢ is smooth for all A €
E*, where E* is the dual consisting of all continuous linear functionals on
E. Equivalently, we may use the dual E’ consisting of all bounded linear
functionals.

(4) Any Mackey-Cauchy-sequence (i. e. tym(Zn — Zm) — 0 for some t,,, — o0
in R) converges in F. This is visibly a mild completeness requirement.

5) If B is bounded closed absolutely convex, then Ep is a Banach space.

6) If f : R — E is scalarwise £ip®, then f is Lip”, for k > 1.

7) If f:R — E is scalarwise C* then f is differentiable at 0.

8) If f: R — F is scalarwise C* then f is C'°.

Here a mapping f : R — F is called Lip” if all derivatives up to order k exist and

are Lipschitz, locally on R. That f is scalarwise C'*° means A o f is C* for all
continuous linear functionals on FE.

A~ NN N

7.3. Smooth mappings. Let E, F', and G be convenient vector spaces, and let
U C E be c*®-open. A mapping f : U — F is called smooth or C*, if foc €
C®(R, F) for all c € C®°(R,U). The main properties of smooth calculus are the
following.

(1) For mappings on Fréchet spaces this notion of smoothness coincides with
all other reasonable definitions. Even on R? this is non-trivial.

(2) Multilinear mappings are smooth if and only if they are bounded.

(3) If f: EDU — F is smooth then the derivative df : U x E— F is smooth,
and also df : U — L(E, F) is smooth where L(E,F) denotes the space of
all bounded linear mappings with the topology of uniform convergence on
bounded subsets.

(4) The chain rule holds.
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(5) The space C>=(U, F) is again a convenient vector space where the structure
1s given by the obvious injection

C(U, F) =0 T C®(RR), fr (Lo foo),
c€C> (R,U),L€F*
where C*° (R, R) carries the topology of compact convergence in each deriv-
ative separately.
(6) The exponential law holds: For c¢>-open V C F,

C(U,C>(V,G)) = C=(U x V,G)

s a linear diffeomorphism of convenient vector spaces. Note that this is the
main assumption of variational calculus.

(7) A linear mapping f : E — C*(V,Q) is smooth (bounded) if and only if
E L5 C™(V,G) —=+— G is smooth for each v € V. This is called the
smooth uniform boundedness theorem [KM97a, 5.26].

(8) The following canonical mappings are smooth.

ev:C®(E,F)x E—F, ev(f,z)=f(x)

ins: E— C®(F,Ex F), ins(z)(y) = (z,y)

( ) C=(E,C*(F,G)) —» C>®(E x F,G)

( )V:C®EXFG) —C®E,C®F,QG))

comp : C*°(F,G) x C*(E,F) — C*(E,Q)

C=( )i C®(F, ) x C%(Ey, E) — C=(C™(E, F),C*(Ey, F}))
(f:9) = (h— fohog)

7.4. Remarks. Note that the conclusion of (7.3.6) is the starting point of the
classical calculus of variations, where a smooth curve in a space of functions was
assumed to be just a smooth function in one variable more. It is also the source
of the name convenient calculus. This and some other obvious properties already
determines the convenient calculus.

There are, however, smooth mappings which are not continuous. This is un-
avoidable and not so horrible as it might appear at first sight. For example the
evaluation ' x E* — R is jointly continuous if and only if E is normable, but it is
always smooth. Clearly smooth mappings are continuous for the ¢*°-topology.

8. CALCULUS OF HOLOMORPHIC MAPPINGS

8.1. Holomorphic curves. Let E be a complex locally convex vector space whose
underlying real space is convenient — this will be called convenient in the sequel. Let
D c C be the open unit disk and let us denote by H(ID, E) the space of all mappings
¢ : D — FE such that Aoc : D — C is holomorphic for each continuous complex-linear
functional A on E. Its elements will be called the holomorphic curves.

If E and F are convenient complex vector spaces (or ¢>-open sets therein), a
mapping f : E — F is called holomorphicif foc is a holomorphic curve in F for each
holomorphic curve ¢ in E. Obviously f is holomorphic if and only if Ao f : ' — Cis
holomorphic for each complex linear continuous (equivalently: bounded) functional
Aon F. Let H(E, F) denote the space of all holomorphic mappings from F to F.

8.2. Lemma (Hartog’s theorem). Let Ey, for k = 1,2 and F be complex convenient
vector spaces and let Uy C Ej be c¢>®-open. A mapping f : Uy x Uy — F is
holomorphic if and only if it is separately holomorphic (i. e. f( ,y) and f(z, )
are holomorphic for all x € Uy and y € Us).
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This implies also that in finite dimensions we have recovered the usual definition.

8.3. Lemma. If f : E D U — F is holomorphic then df : U x E — F exists, is
holomorphic and C-linear in the second variable.
A multilinear mapping is holomorphic if and only if it is bounded.

8.4. Lemma. If E and F are Banach spaces and U is open in E, then for a mapping
f:U — F the following conditions are equivalent:

(1) f is holomorphic.
(2) f is locally a convergent series of homogeneous continuous polynomials.
(3) f is C-differentiable in the sense of Fréchet.

8.5. Lemma. Let E and F be convenient vector spaces. A mapping f : E — F is
holomorphic if and only if it is smooth and its derivative in each point is C-linear.

An immediate consequence of this result is that H(E, F') is a closed linear sub-
space of C*°(FEg, Fr) and so it is a convenient vector space if F is one, by (7.3.5).
The chain rule follows from (7.3.4).

8.6. Theorem. The category of convenient complex vector spaces and holomorphic
mappings between them is cartesian closed, i. e.

H(E x F,G) = H(E,H(F,G)).

An immediate consequence of this is again that all canonical structural mappings
as in (7.3.8) are holomorphic.

9. CALCULUS OF REAL ANALYTIC MAPPINGS

9.1.  We now sketch the cartesian closed setting to real analytic mappings in infinite
dimension following the lines of the Frolicher—Kriegl calculus, as it is presented in
[KM97a]. Surprisingly enough one has to deviate from the most obvious notion
of real analytic curves in order to get a meaningful theory, but again convenient
vector spaces turn out to be the right kind of spaces.

9.2. Real analytic curves. Let E be a real convenient vector space with contin-
uous dual E*. A curve ¢ : R — E is called real analytic if Aoc: R — R is real
analytic for each A € E*. It turns out that the set of these curves depends only on
the bornology of E. Thus we may use the dual E’ consisting of all bounded linear
functionals in the definition.

In contrast a curve is called strongly real analytic if it is locally given by power
series which converge in the topology of E. They can be extended to germs of
holomorphic curves along R in the complexification E¢ of E. If the dual E* of E
admits a Baire topology which is compatible with the duality, then each real analytic
curve in F is in fact topologically real analytic for the bornological topology on E.

9.3. Real analytic mappings. Let F and F' be convenient vector spaces. Let U
be a ¢>-open set in F. A mapping f : U — F is called real analytic if and only if
it is smooth (maps smooth curves to smooth curves) and maps real analytic curves
to real analytic curves.

Let C“(U, F) denote the space of all real analytic mappings. We equip the space
C¥(U,R) of all real analytic functions with the initial topology with respect to the
families of mappings

C*(U,R) <<= C*(R,R), for all ¢ € C*(R,U)
C¥(U,R) === C*°(R,R), for all ¢ € C®(R,U),

where C*°(R,R) carries the topology of compact convergence in each derivative
separately, and where C¥(R,R) is equipped with the final locally convex topology
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with respect to the embeddings (restriction mappings) of all spaces of holomorphic
mappings from a neighborhood V of R in C mapping R to R, and each of these
spaces carries the topology of compact convergence.

Furthermore we equip the space C* (U, F') with the initial topology with respect
to the family of mappings

C¥(U, F) 2+ C*(U,R), for all A € F*.
It turns out that this is again a convenient space.

9.4. Theorem. In the setting of (9.3) a mapping f : U — F is real analytic if and
only if it is smooth and is real analytic along each affine line in E.

9.5. Lemma. The space L(E, F) of all bounded linear mappings is a closed linear
subspace of C*(E,F). A mapping f : U — L(E,F) is real analytic if and only if
evgof : U — F is real analytic for each point x € E.

9.6. Theorem. The category of convenient spaces and real analytic mappings is
cartesian closed. So the equation

CY(U,C*(V,F)) = C*(U x V,F)

is valid for all c>-open sets U in E and V in F, where E, F, and G are convenient
vector spaces.

This implies again that all structure mappings as in (7.3.8) are real analytic.
Furthermore the differential operator

d:C*(U,F) — C*(U,L(E, F))

exists, is unique and real analytic. Multilinear mappings are real analytic if and
only if they are bounded.

9.7. Theorem (Real analytic uniform boundedness principle). A linear mapping
f:E— C¥(V,G) is real analytic (bounded) if and only if E -1 C*(V,G) <Y+ G
is real analytic (bounded) for each v € V.
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THE CONVENIENT SETTING FOR QUASIANALYTIC
DENJOY-CARLEMAN DIFFERENTIABLE MAPPINGS

ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

ABSTRACT. For quasianalytic Denjoy—Carleman differentiable function classes
CQ where the weight sequence Q = (Qg) is log-convex, stable under deriva-
tions, of moderate growth and also an L-intersection (see (1.6)), we prove the
following: The category of C'®-mappings is cartesian closed in the sense that
CR(E,C?(F,G)) = C?(E x F,G) for convenient vector spaces. Applications
to manifolds of mappings are given: The group of C@-diffeomorphisms is a
regular C@-Lie group but not better.

Classes of Denjoy-Carleman differentiable functions are in general situated be-
tween real analytic functions and smooth functions. They are described by growth
conditions on the derivatives. Quasianalytic classes are those where infinite Taylor
expansion is an injective mapping.

That a class of mappings S admits a convenient setting means essentially that
we can extend the class to mappings between admissible infinite dimensional spaces
E,F,... so that S(E, F') is again admissible and we have S(E x F,G) canonically
S-diffeomorphic to S(F,S(F,G)) (the exponential law). Usually this comes hand
in hand with (partly nonlinear) uniform boundedness theorems which are easy S-
detection principles.

For the C° convenient setting one can test smoothness along smooth curves.
For the real analytic (C*) convenient setting we have: A mapping is C* if and only
if it is C*° and in addition C* along C*-curves (C* along just affine lines suffices).
We shall use convenient calculus of C'*° and C* mappings in this paper; see the
book [KM97a], or the three appendices in [KMR09a] for a short overview.

In [KMRO09a] we succeeded to show that non-quasianalytic log-convex Denjoy-
Carleman classes CM of moderate growth (hence derivation closed) admit a conve-
nient setting, where the underlying admissible locally convex vector spaces are the
same as for smooth or for real analytic mappings. A mapping is CM if and only if
it is CM along all CM™-curves. The method of proof there relies on the existence of
CM partitions of unity.

In this paper we succeed to prove that quasianalytic log-convex Denjoy-Carleman
classes C? of moderate growth which are also L-intersections (see (1.6)), admit a
convenient setting. The method consists of representing C? as the intersection
N{CT : L € £(Q)} of all larger non-quasianalytic log-convex classes C'¥; this is
the meaning of: @ is an L-intersection. In (1.9) we construct countably many
classes @@ which satisfy all these requirements. Taking intersections of derivation
closed classes C” only, or only of classes C* of moderate growth, is not sufficient
for yielding the intended results. Thus we have to strengthen many results from
[KMRO09a] before we are able to prove the exponential law. A mapping is C% if
and only if it is C* along each C'*-curve for each L € £(Q). It is an open problem
(even in R?), whether a smooth mapping which is C% along each C%?-curve (or
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122 A. KRIEGL, P.W. MICHOR, A. RAINER

affine line), is indeed C?. As replacement we show that a mapping is C? if it is
C? along each C% mapping from a Banach ball (5.2). The real analytic case from
[KM90] is not covered by this approach.

The initial motivation of both [KMR09a] and this paper was the desire to prove
the following result which is due to Rellich [Rel42] in the real analytic case. Let
t— A(t) fort € R be a curve of unbounded self-adjoint operators in a Hilbert space
with common domain of definition and with compact resolvent. If t — A(t) is of
a certain quasianalytic Denjoy-Carleman class C?, then the eigenvalues and the
eigenvectors of A(t) may be parameterized C in t also. We manage to prove this
with the help of the results in this paper and in [KMRO09a]. Due to length this will
be explained in another paper [KMRO9b].

Generally, one can hope that the space C* (A, B) of all Denjoy-Carleman C-
mappings between finite dimensional C*-manifolds (with A compact for simplicity)
is again a C™-manifold, that composition is C™, and that the group Diff¥ (A) of
all CM_diffeomorphisms of A is a regular infinite dimensional C™-Lie group, for
each class CM which admits a convenient setting. For the non-quasianalytic classes
this was proved in [KMR09a]. For quasianalytic classes this is proved in this paper.

1. WEIGHT SEQUENCES AND FUNCTION SPACES

1.1. Denjoy—Carleman C™-functions in finite dimensions. We mainly follow
[KMRO09a] and [Thi08] (see also the references therein). We use N = Nyq U {0}.
For each multi-index @ = (a,...,a,) € N, we write a! = aq! -y, o] =
oy + -+ ay, and 9% = 9l°1 /9x - Dz ln.

Let M = (My)ren be a sequence of positive real numbers. Let U C R™ be open.
We denote by CM (U) the set of all f € C°°(U) such that, for all compact K C U,
there exist positive constants C' and p such that

0% f(z)| < C plo la]! M|, for all « € N" and z € K.

The set CM(U) is a Denjoy—Carleman class of functions on U. If My = 1, for all
k, then CM (U) coincides with the ring C*(U) of real analytic functions on U.
A sequence M = (My,) is log-convez if k — log(My,) is convex, i.e.,

M? < My_y My, for all k.
If M = (M) is log-convex, then k +— (Mj,/My)'/* is increasing and
(1) M; M, < My Ml+k for all [,k € N.

Furthermore, we have that k — kM), is log-convex (since Euler’s I'-function is so),
and we call this weaker condition weakly log-convez. If M is weakly log-convex then
CM(U,R) is a ring, for all open subsets U C R™.

If M is log-convex then (see the proof of [KMR09a, 2.9]) we have

(2) MM, >M;M,, - M,, forall a;€Nsgwithas +---+a; =k

This implies that the class of C™-mappings is stable under composition ([Rou63],
see also [BMO04, 4.7]; this also follows from (1.4)). If M is log-convex then the
inverse function theorem for C™ holds ([Kom79]; see also [BM04, 4.10]), and CM
is closed under solving ODEs (due to [Kom80]).

Suppose that M = (M},) and N = (Ny,) satisfy M) < C* Ny, for a constant C
and all k. Then CM(U) C CN(U). The converse is true if M is weakly log-convex:
There exists f € CM(R) such that |f*)(0)| > k! My, for all k (see [Thi08, Theorem

1)).
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If M is weakly log-convex then CM is stable under derivations (alias derivation
closed) if and only if

M1\ w

3 sup ( ) < 00

®) keN=o \ My,

A weakly log-convex sequence M is called of moderate growth if
Mk \75%

4 sup (37) < 00.

@ jkeNso M M,

Moderate growth implies derivation closed.

Definition. A sequence M = (M};)k=0,1,2,... is called a weight sequence if it satisfies

My =1 < M; and is log-convex. Consequently, it is increasing (i.e. My < My11).
A DC-weight sequence M = (M)g=01,2,.. is a weight sequence which is also

derivation closed (DC stands for Denjoy-Carleman and also for derivation closed).

This was the notion investigated in [KMR09a].

1.2. Theorem (Denjoy—Carleman [Den21], [Car26]). For a sequence M of positive

numbers the following statements are equivalent.

(1) CM is quasianalytic, i.e., for open connected U C R"™ and each a € U, the
Taylor series homomorphism centered at a from CM(U,R) into the space
of formal power series is injective.

(2) S, ﬁ = oo where mi(l) = inf{(j! M;)/7 . j > k} is the increasing

k
minorant of (k! M;,)'/*.
(3) Zil(W)l/k = oo where Mz(lc) is the log-conver minorant of k! My,
k

given by Mz(lc) = inf{(j!Mj)%(l!Ml)% g <k<lj<l}

b(le)
M
(4) S0, gy = 0
k=0 7,b(o) .
Mlc+1

For contemporary proofs see for instance [H6r83, 1.3.8] or [Rud87, 19.11].

1.3. Sequence spaces. Let M = (Mg)ren be a sequence of positive numbers and
p > 0. We consider (where F stands for ‘formal power series’)

FM = {(fk)keN €RY:3C>0VkeN:|fi| <Cp* k! Mk.} and FM = | F.
p>0
Note that, for U C R™ open, a function f € C*>°(U,R) is in CM (U, R) if and only
if for each compact K C U
(sup{|0“f(z)| : z € K, |a| = k})pen € FM.
Lemma. We have
FMUC FMY 5 3p > 0k : M} < pP M7
& 3C,p>0Vk: M} < Cp* M.

Proof. (=) Let f, := kIM}. Then f = (fi)ken € FM C ]-'M2, so there exists a
p > 0 such that kIM} < p*+1EIME for all k.

(<) Let f = (fr)ren € FM' | ie. there exists a o > 0 with |fi| < o" T kIM] <
(po)*LEIM2 for all k and thus f € FM° O

1.4. Lemma. Let M and L be sequences of positive numbers. Then for the compo-
sition of formal power series we have

]_‘M Of'i/o g f‘MOL
where (M o L)y, := max{M;Lq, ...La, : 05 € Nsg,oq + -+ a; =k}

J
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Here FL; := {(gr)ren € F¥ : go = 0} is the space of formal power series in F~
with vanishing constant term.

Proof. Let f € FM and g € FL. For k > 0 we have (inspired by [FdB55])

(f 09 Z fg Z Ja, o
[ N
: 7. Qe
aeNL 7
ai+-+a;=k

|(fog k‘ 2 : ‘ § : |ga1| |ga]‘
]{," M o L)k . ‘ allLal o Ozj!La,
J= QGNQO J

art-ta;=k

> ’;cg,<i ( )p’“ci

aeNL
a1+---+o¢j:k

k
<> pjC
j=1

k
(k=1
:pﬁprngZ(prg)J l(j_1> = ];PfoC (14 ppCy)™t
j=1
CiC
:(pg(1+pfcg))kw

1+psCy

1.5. Notation for quasianalytic weight sequences. Let M be a sequence of
positive numbers. We may replace M by k — C p* M, with C,p > 0 without
changing FM. In particular, it is no loss of generality to assume that M; > 1 (put
Cp > 1/My) and My = 1 (put C := 1/My). If M is log-convex then so is the
modified sequence and if in addition p > My/M; then the modified sequence is
monotone increasing. Furthermore M is quasianalytic if and only if the modified
sequence is so, since M, ,i(lc) is modified in the same way. We tried to make all con-
ditions equivariant under this modification. Unfortunately, the next construction
does not react nicely to this modification.

For a quasianalytic sequence M = (Mj) let the sequence M = (M}) be defined
by

k k
. 1 .

j=1
We have M), < M. Note that if we put my = (k!Mk)l/k (and mg := 1) and
1y := (k!Mj,)'/* (where we assume M}, > 0) then

i 1
my = 1-—
(5
j=1
or, recursively,
m -1
karl = ka and Tho = ]., m1 =mi — 1.
my
And conversely, if all Mj, > 0 (this is the case if M is increasing and M; > 1) then
M41
Ty

Mpr1 = 1+ my and mg =1, m; =m1 +1

i.e.

k
1
1 :*(1
(1) my = My +;m
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For sequences M we define (recall from (1.1) that M is called weakly log-convex
if k — log(k! My,) is convex):

L(M) :={L > M : L non-quasianalytic, log-convex}
Ly, (M) :={L > M : L non-quasianalytic, weakly log-convex} D L(M)

1.6. Theorem. Let Q = (Qk)r=0,1,2,... be a quasianalytic sequence of positive real
numbers. Then we have:

(1) If the sequence Q = (Qy) is log-convex and positive then

Fe= () F~
LeL(Q)
(2) If Q is weakly log-convex, then for each L',L? € L,(Q) there exists an
L e L,(Q) with L < L', L?
(3) If Q is weakly log-convex of moderate growth, then for each L € L,(Q)
there exists an L' € L, (Q) such that L3-+k < C’j““Lij for some positive
constant C' and all j,k € N.

We could not obtain (2) for log-convex instead of weakly log-convex, in particular
for £(Q) instead of L, (Q).

Definition. A quasianalytic sequence @ of positive real numbers is called L-
intersectable or an L-intersection if FO = mLeL‘(Q) FL holds.

Note that we may replace any non-quasianalytic weight sequence L for which
k— (%’:)1/’C is bounded, by an L € E(Q)Nwith FL = FE: Choose p > 1/L; (see
(1.5)) and p > sup{(%’j)l/k :k € N} then Ly := pF Ly > Qy.

Proof. (1) The proof is partly adapted from [Bom65].

Let g = (k' Qx)'* and qo = 1, similarly ¢, = (k! Qx)'/*, I, = (k!Ly)'/*, etc..
Then ¢ is increasing since g = 1, and ) and the Gamma function are log-convex.

Clearly FQ C N LeL(Q) FE. To show the converse inclusion, let f ¢ F% and
gr = |fx|*/*. Then

7 9k
lim — = oc.
dk
Choose aj,b; > 0 with a; /" oo, b; \, 0, and ) ﬁ < 00. There exist strictly
increasing k; such that % > a,. Since % is increasing by (1.5.1) we get b; % =
4 gﬁ qﬁ J J
I qr; dk,

and 1 < 3; := b,

ary
diq
9k 4
;.
kj
(4) Biv1 = (B5)" -
Define a piecewise affine function ¢ by
0 if k=0,
d(k) == kjlogB;  ifk =k,
¢;j +d;k  for the minimal j with k& < &,

> a;b; — 00. Passing to a subsequence we may assume that ky > 0

/" oo. Passing to a subsequence again we may also get

where ¢; and d; are chosen such that ¢ is well defined and ¢(k;—1) = ¢; + d;jk;_1,
ie., for j > 1,
(5) cj +d;k; = kjlog 35,

Cj + djkj,1 = k}j,1 log ﬁjfl, and

C():O7
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do = log By.-
This implies first that ¢; < 0 and then
kjlog B — kj—1log 81

L.
6 logB; <d; = < J log (3;
() gﬂj— j kj*kj—l _kj*kj—l g Oj
@ log Bj+1
< ——T ] 4.
- kj *klj—l - Ogﬁj+1

Thus j — d; is increasing. It follows that ¢ is convex. The fact that all ¢; < 0
implies that ¢(k)/k is increasing.

Now let
Ly = e?(k) 'Qk-
Then L = (L;) is log-convex and satisfies Ly = 1 by construction and f ¢ FL,
since we have % = q’;kﬁj =b; — 0 and so m.ﬂc -

Let us check that L is not quasianalytic. By ( ) and since (qx) is increasing, we
have, for k;_1 < k < kj,

Ly 7 e¢(k)*¢(k+1)Qk B e¢>(k)*¢(k+1)q/l§ a4 q/’i
(k+DLip1 (k+1)Qryr G B qtt
L gy 1
T Bide bigk, Gk
Thus, by (1.5.1),
kf Ly o Lot o L
Pl (k+1)Lgt1 ~ bigk, i, B T bigky T agh;

which shows that L is not quasianalytic and Cy := Y-, i < oo by (1.2).
(k!Ly)/*

Next we claim that F9 C FL. Since é—’; = Fo0TF = e?(R)/k ig increasing, we

k
7 1
quk(HZf):qfk,

1
q; k q; Iy

have
q 1 g = g
oo>—1+01> Zl— l—l ZTJ
— 1 PR
Jj=1 Jj=1

which proves F@ C FL. Finally we may replace L by some L € £(Q) without
changing F* by the remark before the proof. Thus (1) is proved.

(2) Assume without loss that L} = L2 = 1. Let k!Lj, be the log-convex minorant
of k!Ly, where Ly := min{Lj, L?}. Since L', L? > L > Q and k!Qy is log-convex we
have L', L? > L > Q. Since L', L? are not quasianalytic and are weakly log-convex
(hence k — (k!L7)Y/* is increasing), we get that k ~— (k!Lj)'/* is increasing and

1 1 1
— < + < o0.
D R DL RS DL LS
By (1.2, 2=1) we get that L is not quasianalytic. By (1.2, 1=3) we get

>k W < oo since L°U¢) = [, i.e. L is not quasianalytic.
(3) Let Qi := k!Qp, Ly, := k!Ly, and so on. Since Q is of moderate growth we

have et
1/t N\ Y (k+5)
Cs = sup Qk+] QSup (Qkﬂ ) < 00.
QrQ; ki \QrQ;

Let L € L,(Q); w1th0ut loss we assume that Lo = 1. We put
fi=Cgmin{L;Ly_j:j=0,... k}=CEmin{L;Ly_;:0<j<k/2}.
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Then

. 1/(k+3) i 1/(k+7)
sup <k+]> < sup ki < Cp < 0.
j j k,j LkLJ

Since L is log—conv§x we have~ii < éjigk_j and Z/kj/kj—l < iji2k+1_j for j =
0,...,k; therefore L}, = C%kLi and Ly, | = C’%kHLkLkH. It is easy to check
that L' is log-convex. To see that L’ is not quasianalytic we will use that (L} )'/*

is increasing since L’ is log-convex. So it suffices to compute the sum of the even
indices only.

Z 1 1 Z 1
= = = ~7<OO
k L, 1/ (k) CQ k Lil/*

It remains to show that L' > Q. Since L € L,,(Q) we have Q < L and for j = |k/2],

Qr _ Qr < Q @Qk—j<1 0
LiLy_; ‘ L ST

L;_E;C_C’S

1.7. Corollary. Let Q) be a quasianalytic weight sequence. Then

Fe= ) F-
LeL.u(Q)

Proof. Without loss we may assume that the sequence gy, is increasing. Namely, by
definition this is the case if and only if gx < gr4+1 —1. Since Qo = 1 and (Qy) is log-
convex, Q,lc/k is increasing and thus g1 — qx > QE(([H— DIFT — k%) > Q, i>1
If we set Qy := e*Qy, then Q = (Qk) is a quasianalytic weight sequence with
Q1 > 1, FQ = FQ, and §j, is increasing.

Now a little adaptation of the proof of (1.6.1) shows the corollary: Define here

i, := Bjgr  for the minimal j with k£ < k;.

Then 2 = 21
9k Ik

=b; — 0 and Som’l]—::oo. We have

J

k; k; . kj
> im Y g Y s
et e i Bidk  bjgk; het s Gk T Dig; T agb;

and thus Y 7o i < 00. As i is increasing, the Denjoy—Carleman theorem (1.2)

implies that Ly = 75 is non-quasianalytic. Since é—’; = (3; is increasing, we find (as in

the proof of (1.6.1)) that C := max{Ly/L1,supy ‘lz—:} < o0o. Replacing Li, by C*L;,
we may assume that ) < L. Let the sequence k!L; be the log-convex minorant of
k!Ly. Since Q) is (weakly) log-convex, we have @ < L. By (1.2) and the fact that
L is non-quasianalytic, L is non-quasianalytic as well. Thus L € £,,(Q) and still

fé¢FL d
Corollary (1.7) implies that for the sequence w = (1) describing real analytic
functions we have F* = o () F L. Note that L, (w) consists of all weakly log-
convex non-quasianalytic L > 1. This is slightly stronger than a result by T. Bang,
who shows that 7 = (| F* where L runs through all non-quasianalytic sequences
with I = (k! Li)"/* increasing, see [Ban46], [Bom65].
This result becomes wrong if we replace weakly log-convex by log-convex:
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1.8. The intersection of all %, where L is any non-quasianalytic weight

sequence. Put
klog(k +e))*
Q= PR EAN gy 1
Then @ = (Qy) is a quasianalytic weight sequence of moderate growth with @1 > 1.
We claim that Q is L-intersectable, i.e., FQ = ﬂLeL(Q) FE. We could check that
Q is log-convex. This can be done, but is quite cumbersome. A simpler argument
is the following. We consider ¢, := k, ¢ := 1. Then Q) = k¥/k! is log-convex.

Since C; logk < Z?Zl jl < Cylogk, we have by (1.5.1)
Csklog(k + e) < q), < Cyklog(k + €)
for suitable constants C;. Hence F? = F?'. By theorem (1.6.1) we have

Fe=r¥= (| Ft= ) F-
LEL(Q) LeL(Q)

since £(Q) and £(Q') contain only sequences which are ”equivalent mod (p*)”. The
claim is proved.
Let L be any non-quasianalytic weight sequence. Consider
(K'Lip)v I
Q= — = —.
k k
Since L is log-convex and Ly = 1, we find that L,lg/ F s increasing. Thus, for s < k

we find

a kooslW/s LYe
— = k- i/zc§26
ar s k! L,

(using Stirling’s formula for instance). Since L is not quasianalytic, we have
ey ﬁ < 0o. But

s Lol Loy DL ek
SO 2¢e « s 2e  «y 2
VE<s<k VE<s<k
The sum on the left tends to 0 as & — oco. So I‘Zik = klffk is bounded. Thus
FecFr

So we have proved the following theorem (which is intimately related to [Rud62,
Thm. C]).

Theorem. Put Q; = (klog(k +e))k/k!, Qo = 1. Then Q is L-intersectable. In
fact,

F9 = ﬂ{]—"L : L non-quasianalytic weight sequence}. O

Remark. Log-convexity of Q is only sufficient for @ being an L-intersection, see
(1.6.1): Using Stirling’s formula we see that F@ = FQ" for Q;, = (klog(k+e€))* /k!
and QY = (log(k + €))*. Also £(Q) and £(Q") contain only sequences which are
“equivalent mod (p*)” and (1.6.1) holds for @, thus also for Q”. But Q" is not
log-convex.

1.9. A class of examples. Let log™ denote the n-fold composition of log defined
recursively by

log! :=log,
log" :=logolog"™*, (n>2).
For 0 < 6§ < 1, n € Ny, we recursively define sequences ¢*" = (qg’")kz,in by
qi’l = klogk,
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@ =g (log" (k)% (n>2),

where k,, is the smallest integer greater than e 7T n, i.e.,

e

“{’n::"eTTn—‘? eTTn::Q_/~

n times

Let Q5,n = (Q%n)keN with
[
bn o,

sn 1

- d,n k—1+4+k, k >1
koo (k_1+ﬁn)g(qk—1+nn) , (k>1),

and consider
Q:={Q"Mu{Q’":0<§<1,ne N}
It is easy to check inductively that each @ € Q is a quasianalytic weight sequence
of moderate growth with Q; > 1. Namely, (log™(k))%* is increasing, log-convex,
and has moderate growth. Quasianalyticity follows from Cauchy’s condensation
criterion or the integral test. By construction, @ 3 Q — F€ is injective.
Let us consider

k
1
~ln . 1,n-—1
qkn = qkn I+ Z ql,nfl
J

J=kn

Since % log"(x) = m, we have (by comparison with the correspond-

ing integral)

k
1
Cilog"(k) < Y ——t < Calog" (k)
j=tn 17
and thus
(1) Caqp™ < 4" < Cag,™
for suitable constants C;. Hence F@'" = FQ'". Since QY"1 is log-convex,

theorem (1.6.1) implies

FQl,n _ FQ‘l,n _ ﬂ fL _ m fL
LeL(Qrm) LeL(Qbm)

since £(Q™) and L(Q"™) contain only sequences which are ”equivalent mod (p*)”.
Hence we have proved (the case n =1 follows from (1.8)):

Theorem. Each Q" (n € Nsg) is a quasianalytic weight sequence of moderate
growth which is an L-intersection, i.e.,

FT = () FLoO
LeL@ )

Conjecture. This is true for each Q € Q.

Remark. Let @ be any quasianalytic log-convex sequence of positive numbers.
Then the corresponding sequence @ (determined by (1.5.1)) is quasianalytic and
L-intersectable. However, the mapping Q — F< is not injective. For instance, the
image of (CpFQ},) is the same for all positive C' and p (which follows from (1.5.1)).
Here is a more striking example:
Let Q" € Q and let P = (PY"™); be defined by
1

o s, k—1+kn S _
B = g PR )T B =1

3
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where
k
pz’n::qg’n 1+Z% , for0<d <1,
j=rn 4’
G
rmar =g (14 3 L)
J=Kn+1 qj

We claim that FP'"' = FP"" = FP°" for all 0 < 6,e < 1. For: Since

d (log"(@))'0 1
dr 1-6  zlog(z)---log" (z)(log"(z))?’
we have
k
(log" (k))' —° 1 (log™ (K))' —°
o VW <« < Mo VWS
Cl 1—5 __Z q(?’n_02 1_(5 ’
J=kn 1j
and thus
k 1
n n 1 . r n n —
i _ ot (U X g0) o) oyt
E,n_lnke k — lnkelnk‘lfe_
p" (log"(k)) (1+ZJ_:M q%n) (log™ (k))* (log" (K))
and similarly
5,n
plecn 2 C’4
py

for suitable constants C;. By lemma (1.3) we have FP" = FP" forall 0 < 6, < 1.
The same reasoning with § = 0 proves that FPUUT — PO

1.10. Definition of function spaces. Let M = (M} )ren be a sequence of positive
numbers, E and F' be Banach spaces, U C E open, K C U compact, and p > 0.
We consider the non-Hausdorff Banach space

C¥ (U F) = {f € C=(U,F): (SEE ||f(k)(95)||Lk(E,F))k € féw}
= {feC=(WU.F): |flx, < o0}, where

1F 9 @)l s,
[fll 5 == SUP{W v e K ke N},

the inductive limit
C¥ (U, F) :=lim C¥ (U, F),
p>0

and the projective limit

CM(U,F) := lim C¥ (U, F), where K runs through all compact subsets of U.
KCU
Here f**)(x) denotes the k™-order Fréchet derivative of f at z.

Note that instead of ||f(k)(x)||Lk(E,F) we could equivalently use sup{||d” f(z)||F :
vl < 1} by [KM97a, 7.13.1]. For E = R™ and F' = R this is the same space as
in (1.1).

For convenient vector spaces E and F', and ¢*-open U C E we define:

CM(U,F) = {feCOO(U,F) VB 'Y compact K CUNEg 3p>0:
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f(k)($)(’111,..,71}k)
k‘!pkMk
:{fGCOO(U,F) :VBY compact K CUNERg3p>0:
dy f (@) . .

{m tkeN,z e K, [jv]|p < 1} is bounded in F}

Here B runs through all closed absolutely convex bounded subsets and Ep is the
vector space generated by B with the Minkowski functional ||v||p = inf{\ > 0:v €
AB} as complete norm.

Now we define the spaces of main interest in this paper: First we put

CM(R,U):={c:R—U : focec CM(R,R) VYl € E*}.

ckeNze K, |vlp < 1} is bounded in F}

In general, for L log-convex non-quasianalytic we put
CHU,F):={f: foce CER,F)Vece CER,U)}
={f:lofocec CER,R)Vce C*R,U),V € F*}

supplied with the initial locally convex structure induced by all linear mappings
CL(c,0) : f— Lo foce CER,R), which is a convenient vector space as c>-
closed subspace in the product. Note that in particular the family £, : C*(U, F) —
CE(U,R) with ¢ € F* is initial, whereas this is not the case for C'* replaced by C{
as example (1.11) for {inj, og¥ (k) : k € N} C CL(R,RY) shows, where inj, denotes
the inclusion of the k-th factor in RY.

For Q a quasianalytic L-intersection we define the space

COU,F) = () CHUF)
LeL(Q)

supplied with the initial locally convex structure. By theorem (1.6.1) this definition
coincides with the classical notion of C? if E and F are finite dimensional.

Lemma. For Q a quasianalytic L-intersection, the composite of C?-mappings is
again C9, and bounded linear mappings are C<.

Proof. This is true for CT (see [KMR09a, 3.1 and 3.11.1]) for every L € L(Q)
since each such L is log-convex. O

1.11. Example. By [Thi08, Theorem 1], for each weakly log-convex sequence M
there exists f € CM(R,R) such that [f*)(0)] > k! My, for all k € N. Then g :
R? — R given by g(s,t) = f(st) is CM, whereas there is no reasonable topology
on CM(R,R) such that the associated mapping g¥ : R — CM(R,R) is CM. For a
topology on CM (R, R) to be reasonable we require only that all evaluations ev; :
CM(R,R) — R are bounded linear functionals.

Proof. The mapping g is obviously CM. If gV were CM, for s = 0 there existed p

such that
(g") ™ (0)
{ kLR Mj, ken}
was bounded in C™ (R, R). We apply the bounded linear functional ev; for ¢ = 2p
and then get

(g ©O)2p) _ 2p)" FM0) _ o1

a contradiction. O
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This example shows that for C’é\/f one cannot expect cartesian closedness. Using
cartesian closedness (3.3) and (2.3) this also shows (for F = CM(R,R) and U =
R = E) that

CY U F) 2 () G (UNEp, Fv)
B,V
where Fy, is the completion of F//py,*(0) with respect to the seminorm py induced
by the absolutely convex closed 0-neighbourhood V.

If we compose g¥ with the restriction map (incly)* : CM(R,R) — RY := [[, .y R
then we get a CM-curve, since the continuous linear functionals on RN are linear
combinations of coordinate projections ev; with ¢ € N. However, this curve cannot
be CM as the argument above for t > p shows.

2. WORKING UP TO CARTESIAN CLOSEDNESS: MORE ON NON-QUASIANALYTIC
FUNCTIONS

In [KMR09a] we developed convenient calculus for CM where M was log-convex,
increasing, derivation closed, and of moderate growth for the exponential law. In
this paper we describe quasianalytic mappings as intersections of non-quasianalytic
classes C'*, but we cannot assume that L is derivation closed. Thus we need stronger
versions of many results of [KMR09a] for non-quasianalytic L which are not deriva-
tion closed, and sometimes even not log-convex. This section collects an almost
minimal set of results which allow to prove cartesian closedness for certain quasi-
analytic function classes.

2.1. Lemma (cf. [KMR09a, 3.3]). Let M = (My)ren be a sequence of positive
numbers and let E be a convenient vector space such that there exists a Baire vector
space topology on the dual E* for which the point evaluations ev, are continuous
for allz € E. Then a curve c: R — E is CM if and only if ¢ is CM.

Proof. Let K be compact in R and ¢ be a C™-curve. We consider the sets
[£(c™ ()]
pk k! Mk
which are closed subsets in E* for the given Baire topology. We have | J 0.C Apc =
E*. By the Baire property there exists p and C' such that the interior U of A, ¢ is

non-empty. If ¢y € U then for each ¢ € E* there is a § > 0 such that §¢ € U — {4,
and hence for all z € K and all £ we have

(0 )M (@) < & (I((6€+ ) 0 )W) (@)| + (6o 0 )P (@)]) < 2 p* k1 M.

AP7C::{€€E*: ngorallkeN,xeK}

So the set "
()
————:keNzxe K
{ oF Kl Mj, v }
is weakly bounded in E and hence bounded. (I

2.2. Lemma (cf. [KMR09a, 3.4]). Let M = (My)ren be a sequence of positive
numbers and let ¥ be a Banach space. For a smooth curve ¢ : R — E the following
are equivalent.
(1) cis CM =CM.
(2) For each sequence (ry) with 1y p* — 0 for all p > 0, and each compact set
K in R, the set {ﬁ c®(a)ry : a € K,k € N} is bounded in E.
(3) For each sequence (r1,) satisfying v, > 0, rxre > rae, and vy, p* — 0 for
all p > 0, and each compact set K in R, there exists an § > 0 such that

{kul\/[k c®(a)ry o* 1 a € K,k € N} is bounded in E.
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Proof. (1) = (2) For K, there exists p > 0 such that

(k) (a) (k) (a)
KM, " K ok Mj,

| | it
E E
is bounded uniformly in £ € N and a € K by (2.1).

(2) = (B) Used=1.

(3) = (1) Let a = sup,eg ”k'i}wk ™ (a)||g. Using (4=1) in [KM97a, 9.2]
these are the coefficients of a power series with positive radius of convergence. Thus
ay/p" is bounded for some p > 0. d

2.3. Lemma (cf. [KMRO09a, 3.5]). Let M = (Mjy)ren be a sequence of positive
numbers. Let E be a convenient vector space, and let S be a family of bounded
linear functionals on E which together detect bounded sets (i.e., B C E is bounded
if and only if €(B) is bounded for all { € S). Then a curve ¢ : R — E is CM if and
only iffoc:R—R is CM foralll € S.

Proof. For smooth curves this follows from [KM97a, 2.1, 2.11]. By (2.2), for £ € S,
the function £ o ¢ is CM if and only if:

(1) For each sequence (r) with 7 t* — 0 for all ¢ > 0, and each compact set
K in R, the set {2~ (£oc)®(a)ry, : a € K,k € N} is bounded.

RTM,
By (1) the curve ¢ is CM if and only if the set {k!}wk c®(a)ry, :a € K,k € N} is
bounded in E. By (1) again this is in turn equivalent to £oc € CM for all £ € S,
since S detects bounded sets. g

2.4. Corollary. Let M = (My)ken be a non-quasianalytic weight sequence or an
L-intersectable quasianalytic weight sequence. Let U be ¢*°-open in a convenient
vector space E, and let S = {{ : F — F;} be a family of bounded linear map-
pings between convenient vector spaces which together detect bounded sets. Then a
mapping f: U — F is CM if and only if Lo f is CM for all £ € S.

In particular, a mapping f : U — L(G, H) is C™ if and only if ev,of : U — H
is CM for each v € G, where G and H are convenient vector spaces.

This result is not valid for CM instead of C™, by a variant of (1.11): Replace
CM(R,R) by RY.
Proof. First, let M be non-quasianalytic. By composing with curves we may
reduce to U = F = R. By composing each ¢ € S with all bounded linear functionals
on Fy we get a family of bounded linear functionals on F' to which we can apply
(2.3). For quasianalytic M the result follows by definition. The case F = L(G, H)
follows since the ev, together detect bounded sets, by the uniform boundedness
principle [KM97a, 5.18]. O

2.5. Ct-curve lemma (cf. [KMR09a, 3.6]). A sequence z,, in a locally convex
space F is said to be Mackey convergent to x, if there exists some A, /" oo such
that A, (z, — x) is bounded. If we fix A = ()\,) we say that x, is A-converging.

Lemma. Let L be a non-quasianalytic weight sequence. Then there exist sequences
A = 0, tgy = too, Sg > 0 in R with the following property: For 1/A = (1/A,)-
converging sequences T, and v, in a convenient vector space E there exists a strong
uniform CL-curve ¢ : R — E with c(t, +t) = zp + t.y for |t| < sp.

Proof. Since C* is not quasianalytic we have >, 1/(k!Lj)*/* < co by (1.2). We
choose another non-quasianalytic weight sequence L = (L) with (Ly/Li)"* — oc.
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By [KMR09a, 2.3] there is a C'L-function ¢ : R — [0, 1] which is 0 on {¢ : [¢| > 5}
and which is 1 on {¢ : [t| < 1}, i.e. there exist C, p > 0 such that

lp®) ()| < Cp* k'L, for allt € R and k € N.

For x,v in an absolutely convex bounded set B C F and 0 < T < 1 the curve
c:t ¢(t)T) - (xz+ tw) satisfies (cf. [Bom67, Lemma 2]):
P (t) =T * " (L).(x +tw) + kT F oD (L)
eTHOp L1+ L)B+ kT " Cp*" (k- 1) Ly_1.B
CTCp K Ly(1+5).B+TT " CLp" k! Ly.B
CCE+2)T"p "k Ly.B
So there are p,C := C'(% + %) > (0 which do not depend on z,v and T such that
B (t) € CTF p* k! Ly,.B for all k and t.

Let 0 < T; <1 with ZJ_TJ < 0o and tj, = 2_Zj<ij + T). We choose the A
such that 0 < )\j/Tf < Ly /Ly (note that T]k Ly /Ly — oo for k — oo) for all j and
k, and that )\j/TJk — 0 for j — oo and each k.

Without loss we may assume that z,, — 0. By assumption there exists a closed
bounded absolutely convex subset B in E such that x,,v, € A\, - B. We consider
cj it ((t —t)/Ty) - (x; + (t = tj)v;) and ¢ := Y ¢;. The ¢; have disjoint
support C [t; — T}, t; + 1], hence ¢ is C* on R\ {t} with

Mty e CT; * p"kILL N - B for [t —t5] < T
Then N I
e® (#)||p < C p" kILy, 22 < CpFRILy 22 = O pF KILy,
T; Ly,

for t # too. Hence ¢ : R — Ep is smooth at to, as well, and is strongly C* by the
following lemma. O

2.6. Lemma (cf. [KMRO09a, 3.7]). Let c¢: R\ {0} — E be strongly C* in the sense
that c is smooth and for all bounded K C R\ {0} there exists p > 0 such that

(k)()
) (x . '
{pkk![/k'kENﬂCEK} s bounded in E.

Then ¢ has a unique extension to a strongly C*-curve on R.

Proof. The curve ¢ has a unique extension to a smooth curve by [KM97a, 2.9].
The strong C” condition extends by continuity. O

2.7. Theorem (cf. [KMRO09a, 3.9]). Let L = (L) be a non-quasianalytic weight se-
quence. Let U C E be c*-open in a convenient vector space, let F' be a Banach space
and f : U — F a mapping. Furthermore, let L < L be another non-quasianalytic
weight sequence. Then the following statements are equivalent:

(1) fisCL, ie. focisCL for all CF-curves c.

(2) flunes : EB 2 UNER — F is CL for each closed bounded absolutely

conver B in E. _
(3) focisCE for all CE-curves c.
(4) feCy(UF).

Proof. (1) = (2) is clear, since Ep — E is continuous and linear, hence all
C*-curves c into the Banach space Ep are also C* into F and hence focis C* by
assumption.

(2) = (3) is clear, since CF C CL.
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(3) = (4) Without loss let £ = Eg be a Banach space. For each v € E and
x € U the iterated directional derivative d¥ f(x) exists since f is C* along affine
lines. To show that f is smooth it suffices to check that d¥ f(x,) is bounded for
each k € N and each Mackey convergent sequences x,, and v, — 0, by [KM97a,
5.20]. For contradiction let us assume that there exist k and sequences z,, and v,
with ||d¥ f(zy)|| — co. By passing to a subsequence we may assume that z,, and
vy, are (1/\,)-converging for the )\, from (2.5) for the weight sequence L. Hence
there exists a CbL-curve cin E and with ¢(t +t,) = x, + t.v, for t near 0 for each
n separately, and for ¢, from (2.5). But then ||(f o ¢)®)(¢,)|| = ||d* f(xn)| — oo,
a contradiction. So f is smooth.

Assume for contradiction that the boundedness condition in (4) does not hold:
There exists a compact set K C U such that for each n € N there are k, € N,
Zn € K, and v,, with ||v,|| = 1 such that

kn+1
1 n
ldtz el > o, (55)

where we used C' = p := 1/A2 with the A, from (2.5) for the weight sequence L. By
passing to a subsequence (again denoted n) we may assume that the x,, are 1/\-

Un

converging, thus there exists a Cf-curve ¢ : R — E with c(t, +t) = xp + t.\p.vp
for t near 0 by (2.5). Since

(f 0 )P (tn) = Aydy, f(@n),

1 1
I(f o))\ [k, Ndbn fla)ll )™ 1
< Tl L, =\ T Z Tm %%

AFn T
n

we get

a contradiction to f oc € CF.

(4) = (1) We have to show that focis CL for each CL-curve ¢: R — E. By
(2.2.3) it suffices to show that for each sequence (71 ) satisfying v, > 0, rire > ri4e,
and ry, t* — 0 for all ¢ > 0, and each compact interval I in R, there exists an € > 0
such that {37~ (f o c)®(a)rye® :a € I,k €N} is bounded.

By (2.2.2) applied to 742F instead of 7y, for each ¢ € E*, each sequence (ry)
with 74 t* — 0 for all ¢+ > 0, and each compact interval I in R the set {ﬁ (Lo
)®(a)r,2¥ : a € I,k € N} is bounded in R. Thus {5t c®a)rp2k :a €
I,k € N} is contained in some closed absolutely convex B C E. Consequently,
c®) . I — Ep is smooth and hence K} := {kllLk c®(a)r, 2% : a € T} is compact in
Ep for each k. Then each sequence () in the set

1
:—{k'L I aelkeN}:UQkKk
keN

has a cluster point in K U{0}: either there is a subsequence in one Ky, or 2F»z; €
Ky, C B for k,, — o0, hence z, — 0in Ep. So K U {0} is compact.
By Faa di Bruno ([FdBBE)] for the 1-dimensional version, k > 1)

0 )M (a 1 ) (g ) (q
(f) =3 ¥ ﬁdjf(c(a))( @) f))

aq! ;!
izl O"ENJ>0 !
ar+--+a;=k

and (1.1.2) for a € I and k € N5 we have

foe)®(a)ry| <

[
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j ||djf(0(a ”LJ Ep,F @) (a)|| g Ta;
<>y (Es.,F) H I I

, ; ;! Lo,
jzl aeNL
a1+--~+05j:}€
j 1 Bl 1
<ZL Cp]2—k:L1p(1+L1p) Cor
j>1
k
So {k!lLk (f oc)®)(a) (1+I241p) re:ac€l, ke N} is bounded as required. O

2.8. Corollary. Let L = (L) be a non-quasianalytic weight sequence. Let U C E
be c*-open in a convenient vector space, let F' be a convenient vector space and
f: U — F a mapping. Furthermore, let L < L be a non-quasianalytic weight
sequence. Then the following statements are equivalent:
(1) fisCE.
(2) flunes : EB 2 UNER — F is CL for each closed bounded absolutely
conver B in E. -~
(3) focisCE for all CE-curves c.
(4) myofe€ CbL(U7 R) for each absolutely convex 0-neighborhood V- C F', where
7wy F'— Fy denotes the natural mapping.

Proof. Each of the statements holds for f if and only if it holds for 7y o f for each
absolutely convex 0-neighborhood V' C F. So the corollary follows from (2.7). O

2.9. Theorem (Uniform boundedness principle for CM | cf. [KMR09a, 4.1]). Let

= (My) be a non-quasianalytic weight sequence or an L-intersectable quasian-
alytic weight sequence. Let E, F, G be convenient vector spaces and let U C F
be c®-open. A linear mapping T : E — CM(U,G) is bounded if and only if
ev, ol : E — G is bounded for every x € U.

Proof. Let first M be non-quasianalytic. For x € U and ¢ € G* the linear mapping
loev, = CM(z,0): CM(U,G) — R is continuous, thus ev, is bounded. Therefore,
if T' is bounded then so is ev, oT.

Conversely, suppose that ev, oT is bounded for all x € U. For each closed
absolutely convex bounded B C E we consider the Banach space Ep. For each
¢ € G*, each CM-curve ¢ : R — U, each t € R, and each compact K C R the
composite given by the following diagram is bounded.

€Ve(t)

E——=CcMU,G)

T lC'M(c,E) Y4

Ep — CM(R,R) — lim C}(K,R) =

HR

Q

By [KM97a, 5.24, 5.25] the map T is bounded. In more detail: Since lii>np C’,],”(K7 R)
is webbed, the closed graph theorem [KM97a, 52.10] yields that the mapping Fp —
h_r)np CM(K,R) is continuous. Thus T is bounded.

For quasianalytic M the result follows since the structure of a convenient vector
space on CM (U, G) is the initial one with respect to all inclusions CM (U, G) —
CL(U,G) for all L € L(M). O

As a consequence we can show that the equivalences of (2.7) and (2.8) are not
only valid for single functions f but also for the bornology of C* (U, F):
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2.10. Corollary (cf. [KMR09a, 4.6]). Let L = (L) be a non-quasianalytic weight
sequence. Let E and F be Banach spaces and let U C E be open. Then

CHU, F) = CL(U. F) == limlim C% (U, F)
K p
as vector spaces with bornology. Here K runs through all compact subsets of U
ordered by inclusion and p runs through the positive real numbers.

Proof. The second equality is by definition (1.10). The first equality, as vector
spaces, is by (2.7). By (1.10) the space CL(U, F) is convenient.

The identity from right to left is continuous since C¥(U, F) carries the initial
structure with respect to the mappings

C*(cr,0) : CH(U, F) — C*(R,R) = lim lim CF ,(R,R) — lim CF ,(R, R),
ICR p>0 p>0
where ¢ runs through the C* £ Cl-curves, ¢ € F* and I runs through the
compact intervals in R, and for K := ¢(I) and p' := (1+p||c||1,0) -0, where o0 > 0 is
chosen such that [|c]|; , < oo, the mapping C*(c|r,¢) : C% (U, F) — Cf ,(R,R) —
hLQp/> 0 CIL7 o (R,R) is continuous by (1.4). These arguments are collected in the
diagram:

lim CF(R,R) — CL(R,R) 5 CHUF) < CL(U,F) =1lim  C{(U,F)

| |

C}®,R) =lim Cr,(R,R) < lim Cf (U, F) = CL(U, F)

! |

Ct(elrb)
CF,(R,R) Ck (U, F)

The identity from left to right is bounded since the countable (take p € N) inductive
limit lii>np of the (non-Hausdorff) Banach spaces C’IL(’p(U, F') is webbed and hence

satisfies the S-boundedness principle [KM97a, 5.24] where S = {ev, : ¢ € U}, and
by [KM97a, 5.25] the same is true for CF (U, F). O

2.11. Corollary (cf. [KMR09a, 4.4]). Let L = (Lj) be a non-quasianalytic weight
sequence. Let & and F be convenient vector spaces and let U C E be c*-open.
Then

CHMU,F) = lim C*(R,F) = lim C*(UN Ep, F) = lim C*(R, F)

ceCL BCE sect

as vector spaces with bornology, where ¢ runs through all C*-curves in U, B runs
through all bounded closed absolutely convexr subsets of E, and s runs through all
CE-curves in U.

Proof. The first and third inverse limit is formed with ¢* : C*(R, F) — CF(R, F)
for g € CF(R,R) as connecting mappings. Each element (f.). determines a unique
function f : U — F given by f(x) := (f o const,)(0) with f oc = f. for all such
curves ¢, and f € C* if and only if f. € CT for all such ¢, by (2.8). The second
inverse limit is formed with incl* : CE(UNEg, F) — CX(UNEg/, F) for B’ C B as
connecting mappings. Each element (fp)p determines a unique function f : U — F
given by f(x) := fi_1,1).(2) with f|g, = fp for all B, and f € C* if and only if
fB € CF for all such B, by (2.8). Thus all equalities hold as vector spaces.
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The first identity is continuous from left to right, since the family of £,
CL(R,F) — CE(R,R) with £ € F* is initial and CL(c,¢) = ¢, oc* : CE(U,F) —
CI(R,R) is continuous and linear by definition.

Continuity for the second one from left to right is obvious, since C*-curves in
UNEg are CF into U C E.

In order to show the continuity of the last identity from left to right choose a C£-
curve sin U, an ¢ € F* and a compact interval I C R. Then there exists a bounded
absolutely convex closed B C E such that s|; is CF = CT into U N Ep, hence
CL(s|1,0) : CL(U,F) — CE(I,R) factors by (1.4) as continuous linear mapping
(s|lp)* : CE(UN Ep,R) — CE(I,R) over CL(U,F) - CL({UNER, F) — CL({UN

Ep,R) =22 CL(U N Ep,R). Since the structure of CY(R, F) is initial with
respect to incl* o, : CF(R, F) — CL(I,R) the identity lim CLUNER,F)—

. L . .
linserL C*(R, F) is continuous.

Conversely, the identity lim__ . CY(R,F) — CE(U,F) is bounded, since
S’
CE(R, F) is convenient and hence also the inverse limit im _ ., CE(R, F) and
S
CL(U, F) satisfies the uniform boundedness theorem (2.9) with respect to the point-
evaluations ev, and they factor over (const,)* : CY(U, F) — CF(R, F). O

3. THE EXPONENTIAL LAW FOR CERTAIN QUASIANALYTIC FUNCTION CLASSES

We start with some preparations. Let @ = (Qx) be an L-intersectable quasian-
alytic weight sequence. Let F and F' be convenient vector spaces and let U C F
be c>-open.

3.1. Lemma. For Banach spaces E and F we have
COUF) =CPU.F)= (] GUF)
NeLw(Q)
as vector spaces.

Proof. Since @ is L-intersectable we have F@ = ﬂLeL @) FL. Hence

C2(U,F)={f € C=®(U,F): VK : (sup IF P @) esme € F9= [ FL}
LeL(Q)

={feC™(U,F):VKVL € L(Q) : (SEE 1 @)l € £

={feC>®(U,F):VL € L(Q) VK : (Sup £ * ()] € FEY

- N c¢twrnEd ) cHw.F) =CcoU.F).
LeL(Q) LeL(Q)
QUL N ckw.p 2 () CEHU.F)2CQU.F). O
LeL(Q) LeLw,(Q)

3.2. Lemma. For log-convex non-quasianalytic L', L? and weakly log-convex non-
quasianalytic N with Ny, < C*"LLL? for some positive constant C and all
k,n € N, for Banach-spaces E1 and Es, and for f € CN(Uy x Uz, R) we have
f¥ e ct Uy, CF (Us,R)).

Proof. Since f is C{¥, by definition, for all compact K; C U; there exists a p > 0

such that for all k,j € N, z; € K; and [jv1|| =+ = |Jv;|| =1 = [Jw1]| = - - - = ||wg]|
we have

|6§8{f($1,$2)(’l}1, sy U, Wy .- ,’LUk)| < pk+j+1(k +.])'Nk+]
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< PFHITRRHIRIGICHYILILE = p(2Cp) 1L} - (2Cp)*kILE.

In particular (87 f)Y (K1)(0E¥) is contained and bounded in C’bL2 (Uz,R), where oE;
denotes the unit ball in Ey, since d*((8 )V (z1))(x2) = 0587 f(z1, 7).

Claim. If f € C} then f¥ : Uy — CbLQ(U27R) is C™ with &7 fV = (8{f)v.

Since CbL2 (U2, R) is a convenient vector space, by [KM97a, 5.20] it is enough to show
that the iterated unidirectional derivatives d fV (x) exist, equal & f(z, )(v7), and
are separately bounded for x, resp. v, in compact subsets. For 7 = 1 and fixed x, v,
and y consider the smooth curve ¢ : ¢t — f(x + tv,y). By the fundamental theorem

Lt ) S0 ) 0,1y @) = L= _ ()

11

:t/ s/ c’(tsr) drds
o Jo
1 g1

:t/ s/ O f(z +tsrv,y)(v,v) drds.
o Jo

Since (07 f)V(K1)(oE?}) is bounded in C’bL2 (U2, R) for each compact subset K7 C Uy
this expression is Mackey convergent to 0 in C’bL2(U2,R), for t — 0. Thus d, fV(z)
exists and equals 01 f(z, )(v).

Now we proceed by induction, applying the same arguments as before to
(df)" : (2,y) = O f(w,y)(v7) instead of f. Again (97 (d] f¥)")Y(K1)(0E}) =
(712 f)V(K1)(0E1, 0, v,...,v) is bounded, and also the separated boundedness
of dJ f¥(z) follows. So the claim is proved.

It remains to show that f¥ : Uy — CL* (Uy,R) := lim  lim C]Iép(U%R) is CF.
By (2.4), it suffices to show that fY : U; — h_H)lp CIL(z,p(Ug,R) is C’bL1 C CL' for all
Ko, i.e., for all compact Ko C Uy and K7 C U; there exists p; > 0 such that

dkf\/(Kl)(’Ul, e ,Uk)
klpk L

sk e Nl < 1} is bounded in li_n}C[LQ’p(UQ,R),
P

or equivalently: For all compact Ko C Uy and K7 C U; there exist p;1 > 0 and
p2 > 0 such that

OLOr f(Kq1, Ka) (v, ..
TR LA L]

For k1 € N, z € Ky, p; :=2Cp, and |lv;|| <1 we get:

dklf\/(ﬂj)(vl, ey Ulcl)
py kil L}

- Vi) tkeNleN, vl < 1} is bounded in R.

Ka,p2

= sup{ 105201 f(@,y) (v, - 5w,
PPk VL Pkt ko L2,

k1+k2)!
Gahall ohithe 982 08 (2, y) (01, .. 5w, .|

Lk ey e ol < 1)

< sup k€ N,y € Ko, Jlwil <1}
p/1€1 péiz (kl + k2)' Nk1+k2 '
20+ 12) ) (o s .
< sup{( ) k‘l - f(x,y)(v1, w1 )l ke €N,y € Ko, |wi]| < 1}
P1 P2 (kl +k2)!N/€1+k2

= su { |8(k1,k2)f(.%',y)(’l}1, ey W, )‘
P pk1+/€2 (kl + k‘2)| Nk1+k2

So fVis CF1, O

Tk ENye Ky il <1} <p
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3.3. Theorem (Cartesian closedness). Let Q@ = (Qx) be an L-intersectable quasi-
analytic weight sequence of moderate growth. Then the category of C?-mappings
between convenient real vector spaces is cartesian closed. More precisely, for con-
venient vector spaces E1, Eo and F and c>®-open sets Uy C Ey and Uy C Ey a
mapping f : Uy x Uy — F is C? if and only if f¥ : Uy — C%(Uy, F) is C<.

Actually, we prove that the direction (<) holds without the assumption of mod-
erate growth.

Proof. (=) Let f : Uy x Uy — F be C%, ie. CL for all L € £(Q). Since
(Ei)B, — E; is bounded and linear and since CT is closed under composition we
get that Lo f : (U1N(E1)p,) x (U2N(E2)p,) — Ris C* = CF (by (2.7) since (E;)p,
are Banach-spaces) for £ € F'*, arbitrary bounded closed B; C E; and all L € £(Q).
Hence lo f is CF even for all L € £,,(Q) by (3.1). For arbitrary L, L? € £(Q), by
(1.6.3) and (1.6.2), there exists an N € L£,,(Q) with Ny4, < C**"LiL2 for some
positive constant C' and all k,n € N. Thus fo f : (U1N(E1)p,) X (UsN(F2)B,) — R
is CN. By (3.2), the function (¢o f)¥ : Uy N (E1)p, — CbL2(U2 N (Es)p,,R) is CL".
Since the cone

2 in 2 2
CQUs, F) — CF (U, F) 28220 0L (17, (By) 5, R) = CF (Ua N (Es) 5, R),

with Ly € £(Q), ¢ € F*, and bounded closed By C Es, generates the bornology
by (2.11), and since obviously fV(z) = f(z, ) € C9(U,, F), we have that f¥ :
Uy N (By)p, — C2Us, F)is CE', by (2.4). From this we get by (2.8) that fV :
Uy — CQUy, F) is CF' for all L' € £(Q), ie., f¥ : Uy — CQUs, F) is C? as
required. The whole argument above is collected in the following diagram where
Up, stands for U; N Ep,:

fec? frect! .
Ul > U2 - S F Ul 8 CQ(UZ’ F) CL (U27 F)
Tincl Zl Tincll/ﬁ) Z*oinclzi(lll)
Up, x U, L vt O ol (2 Ry —— OB (12
By X BQTR = Blﬁc (Ug,,R) ==y (Ug,,R)

(<) Let, conversely, f¥ : Uy — C9(Uy, F) be C9, i.e., CL for all L € £(Q). By the
description of the structure of C? (U, F') in (1.10) the mapping f¥ : Uy — CF(Us, F)
is CL. We now conclude that f:U xU; — Fis CE: this direction of cartesian
closedness for C'* holds even if L is not of moderate growth, see [KMR09a, 5.3] and
its proof. This is true for all L € £(Q). Hence f is C¥. O

3.4. Corollary. Let Q be an L-intersectable quasianalytic weight sequence of mod-
erate growth. Let E, F, etc., be convenient vector spaces and let U and V be
c™-open subsets of such. Then we have:

(1) The exponential law holds:

CRU,CR(V,R)) = C9U x V, Q)

is a linear C?-diffeomorphism of convenient vector spaces.
The following canonical mappings are C%.

(2)  ev:C%UF)xU—F, ev(f,z)=f(x)
(3) ins: E— C9F,ExF), ins(z)(y) = (z,y)
4) () :CPU,C%(V,Q)) = CoUU x V,G)
(5)  ( )V:CPUxV,G)— COU,C?(V,G))
(6)  comp:C%F,G)x C?U,F)— C?U,G)
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(7)) C( , ):CFF) xC?E,E) — CQ<CQ(E,F),CQ(E1,F1))
(f.9) = (h— fohog)

Proof. This is a direct consequence of cartesian closedness (3.3). See [KMR09a,
5.5] or even [KM97a, 3.13] for the detailed arguments. O

4. MORE ON FUNCTION SPACES

In this section we collect results for function classes C™ where M is either a
non-quasianalytic weight sequence or an L-intersectable quasianalytic weight se-
quence. In order to treat both cases simultaneously, the proofs will often use
non-quasianalytic weight sequences L > M. These are either M itself if M is non-
quasianalytic or are in £L(M) if M is L-intersectable quasianalytic. In both cases
we may assume without loss that L is increasing, by (1.5).

4.1. Proposition. Let M = (My) be a non-quasianalytic weight sequence or an
L-intersectable quasianalytic weight sequence. Then we have:

(1) Multilinear mappings between convenient vector spaces are C™ if and only
if they are bounded.

(2) If f: ED U — F is CM, then the derivative df : U — L(E, F) is CM+1,
and also (df)" : UXE — F is CM+1 | where the space L(E, F) of all bounded
linear mappings is considered with the topology of uniform convergence on
bounded sets.

(3) The chain rule holds.

Proof. (1) If f is CM then it is smooth by (2.8) and hence bounded by [KM97a,
5.5]. Conversely, if f is multilinear and bounded then it is smooth, again by [KM97a,
5.5]. Furthermore, f oip is multilinear and continuous and all derivatives of high
order vanish. Thus condition (2.8.4) is satisfied, so f is CM.

(2) Since f is smooth, by [KM97a, 3.18] the map df : U — L(E, F) exists and
is smooth. Let L > M, ; be a non-quasianalytic weight sequence and ¢ : R — U
be a CL-curve. We have to show that t — df(c(t)) € L(E,F) is Ct. By the
uniform boundedness principle [KM97a, 5.18] and by (2.3) it suffices to show that
the mapping t — c(t) — £(df (c(t))(v)) € R is CL for each £ € F* and v € E. We
are reduced to show that z — £(df (z)(v)) satisfies the conditions of (2.7). By (2.7)
applied to £ o f, for each L > M, each closed bounded absolutely convex B in E,
and each x € U N Ep there are r > 0, p > 0, and C > 0 such that

1 :
W Lr [d"(£o foip)(@)llLrpym < Cp*

for all @ € U N Ep with ||a —z||p < r and all k¥ € N. For v € E and those B
containing v we then have:

ld*(d(£o f)( (@) oin)(@)llLrmyr) = ld"T (€0 foin)(a)(v,... )|k Eyr)
<[ d* (o foip) @)y mllvlp < C oM (k+1)! Ly
= Cp((k+1)"*p)* k! Liy1 < Cp(2p)* k! (Ly1)k

By (4.2) below also (df)"is CE+1.
(3) This is valid even for all smooth f by [KM97a, 3.18]. O

4.2. Proposition. Let M = (My) be a non-quasianalytic weight sequence or an
L-intersectable quasianalytic weight sequence.
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(1) For convenient vector spaces E and F, on L(E, F') the following bornologies
coincide which are induced by:
e The topology of uniform convergence on bounded subsets of E.
e The topology of pointwise convergence.
o The embedding L(E,F) C C*(E, F).
e The embedding L(E,F) C CM(E, F).
(2) Let E, F, G be convenient vector spaces and let U C E be c¢™-open. A
mapping f : U x F — G which is linear in the second variable is CM if and
only if f¥ : U — L(F,G) is well defined and CM.

Analogous results hold for spaces of multilinear mappings.

Proof. (1) That the first three topologies on L(FE,F) have the same bounded
sets has been shown in [KM97a, 5.3, 5.18]. The inclusion CM(E, F) — C>~(E, F)
is bounded by the uniform boundedness principle [KM97a, 5.18]. Conversely, the
inclusion L(E, F) — CM(E, F) is bounded by the uniform boundedness principle
(2.9).

(2) The assertion for C* is true by [KM97a, 3.12] since L(E,F) is closed in
C>(E,F).

If fis CM™ let L > M be a non-quasianalytic weight-sequence and let ¢ : R —
U be a Cl-curve. We have to show that fY oc is CL into L(F,G). By the
uniform boundedness principle [KM97a, 5.18] and (2.3) it suffices to show that
t— L(fY(c(t)(w)) = £(f(c(t),v)) € Ris CF for each £ € G* and v € F; this is
obviously true.

Conversely, let fV : U — L(F,G) be CM and let L > M be a non-quasianalytic
weight-sequence. We claim that f : U x F — G is C*. By composing with ¢ € G*
we may assume that G = R. By induction we have

dkf(x,wo)((vk,wk), e (vl,wl)) =d"(fV)(x) (v, ..., v1)(wo)+

k
+ de_l(fv)(x)(vk, T ) (wg)

We check condition (2.7.4) for f where x € K which is compact in U:

1d* f(x, Wo)|| Lk (Bp x Fpr R) <
k

<N () @) @olll ks my + Y N )@ oh1 (85, 1R 2)

i=1

k
<N () @) (B L m) [woll B + D N (F) @) Le1 (25 L0 2)

i=1
k
< Cp* R Lifwolls + > Cp" ' (k= 1)1 Lyy = Cp* k!Lk(HwOHB/ + %)
i=1
where we used (2.7.4) for L(ip/,R) o f¥ : U — L(Fp/,R). Since L is increasing, f
is OF. d

4.3. Theorem. Let Q = (Qyr) be an L-intersectable quasianalytic weight sequence.
Let U C E be c™-open in a convenient vector space, let F' be another convenient
vector space, and f : U — F a mapping. Then the following statements are equiv-
alent:

(1) fis C9, i.e., for all L € L(Q) we have f o c is CF for all C*-curves c.

(2) flunes : Ep 2 UNEp — F is C9 for each closed bounded absolutely

conver B in E.
(3) For all L € L(Q) the curve foc is CL for all CF-curves c.
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(4) wy o f is C’? for all absolutely convex 0-neighborhoods V' in F and the
associated mapping my : F — Fy .

Proof. This follows from (2.8) for L := L since C? := ﬂLec(Q) CF and CbQ =

mLeﬁ(Q) sz:- U

4.4. Theorem (cf. [KMR09a, 4.4]). Let Q@ = (Qk) be an L-intersectable quasiana-
lytic weight sequence. Let E and F be convenient vector spaces and let U C E be
c>®-open. Then

C?U,F) = lim CYR,F)= lim CY(UNEg,F)= lim CHR,F
— — —
LeL(Q),ceCt BCE LeL(Q),seCk

as vector spaces with bornology, where ¢ runs through all C*-curves in U for L €
L(Q), B runs through all bounded closed absolutely convex subsets of E, and s runs
through all CE-curves in U for L € L(Q).

Proof. This follows by applying lim to (2.11). O

LeL(Q)

4.5. Jet spaces. Let E and F be Banach spaces and A C E convex. We consider
the linear space C™(A, F) consisting of all sequences (f*) €[],y C(A, L*(E, F))
satisfying

ﬁ@ﬂ@—fﬂ@@%=l(ﬁ“hﬂ¢@—zmy—%wﬁ

forall k € N, z,y € A, and v € EF. If A is open we can identify this space with
that of all smooth functions A — F' by the passage to jets.

In addition, let M = (M},) be a weight sequence and (ry) a sequence of positive
real numbers. Then we consider the normed spaces

CHNAF) = {(/) € C=(A, F) (/)| < o0}
where the norm is given by

k a)(vy,...,v
1F ey = Sup{ |.£* (a)( Dl

klry My ot - - - - - llok]|

:kGN,aGA,viGE}.

If (ry.) = (p*) for some p > 0 we just write p instead of (r;) as indices. The spaces
C(I‘fk)(A, F) are Banach spaces, since they are closed in £>°(N, (A, L*(E, F))) via
(fk)k = (k = k!rklefk)'

If A is open, C*®(A, F) and CZ,‘/[(A, F) coincide with the convenient spaces
treated before.

4.6. Theorem (cf. [KMRO09a, 4.6]). Let M = (My) be a non-quasianalytic weight
sequence or an L-intersectable quasianalytic weight sequence. Let E and F be Ba-
nach spaces and let U C E be open and conver. Then the space CM(U, F) =
C,f‘/[(U, F) can be described bornologically in the following equivalent ways, i.e. these
constructions give the same vector space and the same bounded sets

(1) lim lim C2 (W, F)
K p,W

(2) lim lim CY (K, F)
K p

3) lim O} (K, F)

K1(T'k)
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Moreover, all involved inductive limits are reqular, i.e. the bounded sets of the in-
ductive limits are contained and bounded in some step.

Here K runs through all compact convex subsets of U ordered by inclusion, W
runs through the open subsets K C W C U again ordered by inclusion, p runs
through the positive real numbers, (rr) Tuns through all sequences of positive real
numbers for which p* /1y — 0 for all p > 0.

Proof. This proof is almost identical with that of [KMR09a, 4.6]. The only change
is to use (2.7) and (4.3) instead of [KMR09a, 3.9] to show that all these descriptions
give CM (U, F) as vector space. O

4.7. Lemma (cf. [KMR09a, 4.7]). Let M be a non-quasianalytic weight sequence.
For any convenient vector space E the flip of variables induces an isomorphism
L(E,CM(R,R)) = CM (R, E’) as vector spaces.

Proof. This proof is identical with that of [KMR09a, 4.7] but uses (2.9) instead of
[KMRO09a, 4.1] and (2.3) instead of [KMR09a, 3.5]. O

4.8. Lemma (cf. [KMRO09a, 4.8]). Let M = (My) be a non-quasianalytic weight
sequence. By MM (R) we denote the c>-closure of the linear subspace generated by
{ev, : t € R} in CM(R,R) and let § : R — AM(R) be given by t — ev,. Then
)\M(]R) is the free convenient vector space over CM | i.e. for every convenient vector
space G the CM -curve § induces a bornological isomorphism

6 LOAM(R),G) = CM(R,G).

We expect AM(R) to be equal to CM(R,R)" as it is the case for the analogous
situation of smooth mappings, see [KM97a, 23.11], and of holomorphic mappings,
see [Sie95] and [Sie97].

Proof. The proof goes along the same lines as in [KM97a, 23.6] and in [FK88,
5.1.1]. Tt is identical with that of [KMRO09a, 4.8] but uses (2.3), (2.9), and (4.2) in
that order. O

4.9. Corollary (cf. [KMR09a, 4.9]). Let L = (L) and L' = (L}) be non-
quasianalytic weight sequences. We have the following isomorphisms of linear
spaces

(1) C*(R,CE(R,R)) = CE(R,C*(R,R))

(2) C*(R,CH(R,R)) = CL(R,C¥(R,R))

(3) CF'(R,CL(R,R)) = CL(R,CLY' (R, R))

Proof. This proof is that of [KMR09a, 4.9] with other refernces: For a € {oo,w, L'}
we get

CE(R,C*(R,R)) = L(AE(R), C*(R,R)) by (4.8)
~ C*(R,L(A*(R),R)) by (4.7), [KM97a, 3.13.4, 5.3, 11.15]
~ C“(R,CL(R,R)) by (4.8). O

4.10. Theorem (Canonical isomorphisms). Let M = (M) be a non-quasianalytic
weight sequences or an L-intersectable quasianalytic weight-sequences; likewise
M’ = (M]). Let E, F be convenient vector spaces and let W; be ¢>-open sub-
sets in such. We have the following natural bornological isomorphisms:

(1) CM (W, CM (W, F)) 2= CM' (W, CM (W1, F)),

(2) CM(W1 C>®(Wa, F)) = C(W,, CM (W1, F)).

(3) oM (Wl C¥(Wa, F)) = C¥(Wa, CM(Wy, F)).

(4) CM(Wy, L(E, F)) =< L(E,CM (W, F)).
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(5) CM(Wy,0°(X, F)) = >(X,CM(W, F)).

(6) CM (W, Lip* (X, F)) = Lip"(X,CM (W1, F)).
In (5) the space X is an {*°-space, i.e. a set together with a bornology induced by
a family of real valued functions on X, cf. [FK88, 1.2.4]. In (6) the space X is a
Lip®-space, cf. [FK88, 1.4.1]. The spaces (>°(X,F) and Lip" (W, F) are defined in
[FKS88, 3.6.1 and 4.4.1].

Proof. This proof is very similar with that of [KMR09a, 4.8] but written differently.
Let C! and C? denote any of the functions spaces mentioned above and X; and X,
the corresponding domains. In order to show that the flip of coordinates f — f ,
CY(X1,C% (X, F)) — C*(X2,CH (X1, F)) is a well-defined bounded linear mapping
we have to show:

e f(zg) € CYXy,F), which is obvious, since f(z2) = evy,of : X; —
C*(Xy, F) — F.

o f€C*(X,,C (X1, F)), which we will show below.

o fi— f is bounded and linear, which follows by applying the appropriate
uniform boundedness theorem for C2 and C' since f — ev,, oev,, of =
evy, 0evy, of is bounded and linear.

All occurring function spaces are convenient and satisfy the uniform S-boundedness
theorem, where S is the set of point evaluations:
CM by (1.10) and (2.9).
C> by [KM97a, 2.14.3, 5.26],
C¥ by [KM97a, 11.11, 11.12],
L by [KM97a, 2.14.3, 5.18],
(> by [KM97a, 2.15, 5.24, 5.25] or [FK88, 3.6.1 and 3.6.6]
Lip* by [FK88, 4.4.2 and 4.4.7]

It remains to check that f is of the appropriate class:

(1) follows by composing with the appropriate (non-quasianalytic) curves ¢; :
R — Wi, c: R — Wy and A € F* and thereby reducing the statement to
the special case in (4.9.3).

(2) as for (1) using (4.9.1).

(3) follows by composing with co € CP2(R, W), where f33 is in {oo,w}, and with

CL(cy, ) : CM(Wy, F) — CE(R,R) where ¢; € CF(R, W) with L > M
non-quasianalytic and A € F*. Then C*(c;,\) o focy = (CP(cg, A\) o f o
c1)~ : R — CL(R,R) is C”2 by (4.9.1) and (4.9.2), since C”2(cq, Ao focy :
R — Wy — C*(Wy, F) — CP2(R,R) is CL.
For the inverse, compose with ¢; and C”2(cg, \) : C¥(Wa, F) — CP2 (R, R).
Then C?(cy,\) o foey = (CE(er,A) o foeg)™ : R — CP2(R,R) is CF
by (4.9.1) and (4.9.2), since C*(c;,A\) o focy: R — Wy — CE(Wy, F) —
CE(R,R) is CP2.

(4) since L(E, F) is the ¢>-closed subspace of CM(E, F) formed by the linear
CM_mappings.

(5) follows from (4), using the free convenient vector spaces £!(X) over the £>°-
space X, see [FK88, 5.1.24 or 5.2.3], satisfying (>°(X, F) = L({}(X), F).

(6) follows from (4), using the free convenient vector spaces A\*(X) over the
Lip*-space X, satistying Lip" (X, F) = L(\*(X), F). Existence of this free
convenient vector space can be proved in a similar way as in (4.8). d

5. MANIFOLDS OF QUASIANALYTIC MAPPINGS

For manifolds of real analytic mappings [KM90] we could prove that composition
and inversion (on groups of real analytic diffeomorphisms) are again C* by testing
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along C*°-curves and C*-curves separately. Here this does not (yet) work. We have
to test along C'L-curves for all L in £(Q), but for those L we do not have cartesian
closedness in general. But it suffices to test along C?-mappings from open sets in
Banach spaces, and this is a workable replacement.

5.1. C?-manifolds. Let Q = (Qy) be an L-intersectable quasianalytic weight se-
quence of moderate growth. A C®-manifold is a smooth manifold such that all
chart changings are C@-mappings. Likewise for C@-bundles and C% Lie groups.

Note that any finite dimensional (always assumed paracompact) C°°-manifold
admits a C°-diffeomorphic real analytic structure thus also a C@-structure.
Maybe, any finite dimensional C?-manifold admits a C%-diffeomorphic real an-
alytic structure. This would follow from:

Conjecture. Let X be a finite dimensional real analytic manifold. Consider the
space C?(X,R) of all C?-functions on X, equipped with the (obvious) Whitney
C®-topology. Then C¥(X,R) is dense in C?(X,R).

This conjecture is the analogon of [Gra58, Proposition 9].

5.2. Banach plots. Let @ = (Qx) be an L-intersectable quasianalytic weight se-
quence of moderate growth. Let X be a C%-manifold. By a C?-plot in X we mean
a CQ-mapping ¢ : D — X where D C E is the open unit ball in a Banach space E.

Lemma. A mapping between C?-manifolds is C? if and only if it maps CQ-plots
to CQ-plots.

Proof. For a convenient vector space F the c*>°-topology is the final topology for
all injections EFg — E where B runs through all closed absolutely convex bounded
subsets of E. The ¢*-topology on a ¢*°-open subset U C F is final with respect
to all injections Eg N U — U. For a C%?-manifold the topology is the final one
for all C@-plots. Let f : X — Y be the mapping. If f respects C@-plots it is
continuous and so we may assume that Y is ¢*-open in a convenient vector space
F and then likewise for X C E. The (affine) plots induced by X N Ep C X are
C®. By definition f is C? if and only if it is C* for all L € £(Q) and this is the
case if f is CF on X N Ep for all B by (2.8). O

5.3. Spaces of C%-sections. Let p : E — B be a C? vector bundle (possibly
infinite dimensional). The space C?(B « E) of all C%?-sections is a convenient
vector space with the structure induced by

CoUB — E) — [[ C?ua(Ua), V)

s+—)pr20'¢aosou;1

where B D U, —%— u,(U,) € W is a C%-atlas for B which we assume to be
modeled on a convenient vector space W, and where ¢, : E|ly, — U, x V form a
vector bundle atlas over charts U, of B.

Lemma. Let D be a unit ball in a Banach space. A mapping c: D — C9(B « E)
is a C9-plot if and only if > : D x B — E is C<.

Proof. By the description of the structure on C?(B « E) we may assume that
B is ¢*°-open in a convenient vector space W and that E = B x V. Then we have
C?B «+ B x V)= C%B,V). Thus the statement follows from the exponential
law (3.3). O

Let U C E be an open neighborhood of s(B) for a section s and let ¢ : F' — B
be another vector bundle. The set C?(B « U) of all C%-sections s’ : B — E with
s'(B) C U is open in the convenient vector space C?(B « E) if B is compact.
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An immediate consequence of the lemma is the following: If U C E is an open
neighborhood of s(B) for a section s, F — B is another vector bundle and if
f:U — F is a fiber respecting C?-mapping, then f, : C9(B « U) — C?(B « F)
is C? on the open neighborhood C?(B « U) of s in C?(B « E). We have
(d(f:)(s)v)a = d(flune, ) (s(z))(v(z)).

5.4. Theorem. Let @ = (Qx) be an L-intersectable quasianalytic weight sequence of
moderate growth. Let A and B be finite dimensional C®-manifolds with A compact
and B equipped with a C? Riemann metric. Then the space C?(A, B) of all C9-
mappings A — B is a C?-manifold modeled on convenient vector spaces C?(A «—
f*TB) of C9-sections of pullback bundles along f : A — B. Moreover, a mapping
c:D — C9A, B) is a C?-plot if and only if ¢ : D x A — B is C%?.

If the CQ-structure on B is induced by a real analytic structure then there exists
a real analytic Riemann metric which in turn is C<.
Proof. C%-vector fields have C?-flows by [Kom80]; applying this to the geodesic
spray we get the C? exponential mapping exp : TB D U — B of the Riemann
metric, defined on a suitable open neighborhood of the zero section. We may
assume that U is chosen in such a way that (7p,exp) : U — B x B is a C9-
diffeomorphism onto an open neighborhood V of the diagonal, by the C? inverse
function theorem due to [Kom79].

For f € C%(A, B) we consider the pullback vector bundle

AxTB~<~—AxpTB—— f*TB 2 s 1R

|,
f

A——B

Then the convenient space of sections C?(A « f*TB) is canonically isomorphic
to the space C9(A,TB); :={h € CY(A,TB) : mgoh = f} via s+ (7 f) o s and
(Ida,h) <= h. Now let
Us:={g € C%A,B) : (f(z), g(z)) € V for all z € A},
up: Uy — C9(A «— f*TB),
up(9)(x) = (2, expyi,y (9())) = (, (w5, exp) ™" o (. 9))(@)).

Then uy : Uy — {s € C9(A « f*TB): s(A) C f*U = (n5f)"1(U)} is a bijection
with inverse u;l(s) = expo(nff)os, where we view U — B as a fiber bundle. The
set uy(Uy) is open in C9(A « f*TB) for the topology described above in (5.3)
since A is compact and the push forward uy is C@ since it respects C%-plots by
lemma (5.3).

Now we consider the atlas (Uy,uy)sccea,py for C?(A,B). Its chart change
mappings are given for s € uy(U; NU,) C C?(A « g*TB) by

(ugougt)(s) = (Ida, (mp,exp) "' o (f,expo(ngg) o 5))
= (7—;1 OTQ)*(S)v

where 74(z,Yy(2)) = (7,expy(5)(Yy(x))) Is a C@-diffeomorphism 7, : ¢*TB 2
g*U — (g x Idg)~' (V) € A x B which is fiber respecting over A. The chart
change uf ouy ' = (1, Yo 7,). is defined on an open subset and it is also C? since
it respects C?-plots by lemma (5.3).

Finally for the topology on C?(A, B) we take the identification topology from

this atlas (with the ¢>-topologies on the modeling spaces), which is obviously finer
than the compact-open topology and thus Hausdorff.
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The equation uyou, ' = (1, '07,). shows that the C%-structure does not depend
on the choice of the C? Riemannian metric on B.
The statement on C%-plots follows from lemma (5.3). O

5.5. Corollary. Let A1, As and B be finite dimensional C?-manifolds with A, and
Ao compact. Then composition

C9(Ay, B) x C9(Ay, Ay) — C%(A1,B), (f,9)— fog

is C9. However, if N = (Ny) is another weight sequence (L-intersectable quasian-
alytic) with (Ny,/Qr)Y* \, 0 then composition is not CV.

Proof. Composition maps C?-plots to C?-plots, so it is C<.

Let Ay = A; = S! and B = R. Then by [Thi08, Theorem 1] or [KMR09a,
2.1.5] there exists f € C?(S1,R)\ CV (S, R). We consider f as a periodic function
R — R. The universal covering space of C? (S, S!) consists of all 2rZ-equivariant
mappings in C?(R,R), namely the space of all g + Idg for 2m-periodic g € C?.
Thus C?(S*,S') is a real analytic manifold and ¢ + (x — x +t) induces a real
analytic curve ¢ in C%¢(S*, S1). But f. oc is not CV since:

Ofl=o(fio )W) (@) _ Flemof(z +18) _ fP(2)
k‘!pka a k‘!pka a k‘!pka

which is unbounded in & for z in a suitable compact set and for all p > 0, since

fecr. 0

5.6. Theorem. Let Q = (Qk) be a, L-intersectable quasianalytic weight sequence of
moderate growth. Let A be a compact (= finite dimensional) C?-manifold. Then
the group Difo(A) of all C-diffeomorphisms of A is an open subset of the C9-
manifold C?(A, A). Moreover, it is a C?-regular C? Lie group: Inversion and
composition are C?. Its Lie algebra consists of all C?-vector fields on A, with the
negative of the usual bracket as Lie bracket. The exponential mapping is C9. It is
not surjective onto any neighborhood of 1d 4.

Following [KM97b], see also [KM97a, 38.4], a C?-Lie group G with Lie algebra
g = T.G is called C%-regular if the following holds:

e For each CP-curve X € C%(R,g) there exists a C?-curve g € C9(R,G)
whose right logarithmic derivative is X, i.e.,

g(0)  =e
Brg(t) = Te(u™)X(t) = X (t).9()

The curve g is uniquely determined by its initial value g(0), if it exists.
e Put evol;(X) = ¢g(1) where g is the unique solution required above. Then
evoly, : C9(R, g) — G is required to be C? also.

Proof. The group Diff(A) is open in C?(A, A) since it is open in the coarser
C' compact-open topology, see [KM97a, 43.1]. So Diff? (A) is a C?-manifold and
composition is C? by (5.4) and (5.5). To show that inversion is C? let ¢ be a C%-
plot in Diff?(A4). By (5.4) themap ¢ : DxA — Ais C9 and (invoe)) : DxA — A
satisfies the Banach manifold implicit equation ¢ (¢, (invoc)”(t,z)) = z for z € A.
By the Banach C? implicit function theorem [Yam89] the mapping (invoc)" is
locally C? and thus C9. By (5.4) again, invoc is a C%-plot in Diff?(4). So
inv : Diff?(A) — Diff?(A) is C9. The Lie algebra of Diff?(A) is the convenient
vector space of all C%?-vector fields on A, with the negative of the usual Lie bracket
(compare with the proof of [KM97a, 43.1]).
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To show that Difo(A) is a C@-regular Lie group, we choose a C?-plot in the
space of C%-curves in the Lie algebra of all C¥ vector fields on A, ¢ : D —
CO(R,C?(A « TA)). By lemma (5.3) ¢ corresponds to a (D x R)-time-dependent
C% vector field ¢™ : D x R x A — TA. Since C®-vector fields have C?-flows
and since A is compact, evol” (c”\(s))(t) = FI¢ ) is €@ in all variables by [Yam91].
Thus Difo(A) is a C@-regular C? Lie group.

The exponential mapping is evol” applied to constant curves in the Lie algebra,
i.e., it consists of flows of autonomous C? vector fields. That the exponential map
is not surjective onto any C'%-neighborhood of the identity follows from [KM97a,
43.5] for A = S'. This example can be embedded into any compact manifold, see

[Grag8|. O
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ABSTRACT. If u +— A(u) is a C%*-mapping, for 0 < a < 1, having as values
unbounded self-adjoint operators with compact resolvents and common do-
main of definition, parametrized by u in an (even infinite dimensional) space,
then any continuous (in u) arrangement of the eigenvalues of A(u) is indeed
C%% in .

Theorem. Let U C E be a c™-open subset in a convenient vector space E, and
0<a<1. Letuw— A(u), foru € U, be a C**-mapping with values unbounded
self-adjoint operators in a Hilbert space H with common domain of definition and
with compact resolvent. Then any (in u) continuous eigenvalue A(u) of A(u) is
C%* in u.

Remarks and definitions. This paper is a complement to [KMO03] and builds
upon it. A function f : R — R is called C% if % is locally bounded in ¢ # s.
For a = 1 this is Lipschitz.

Due to [Bom67] a mapping f : R® — R is C%“ if and only if f o ¢ is C%* for
each smooth (i.e. C*) curve c¢. [Fau89] has shown that this holds for even more
general concepts of Holder differentiable maps.

A convenient vector space (see [KM97]) is a locally convex vector space E sat-
isfying the following equivalent conditions: Mackey Cauchy sequences converge;
C>™-curves in E are locally integrable in F; a curve ¢ : R — FE is C* (Lipschitz)
if and only if £ o ¢ is C*° (Lipschitz) for all continuous linear functionals ¢. The
¢*-topology on F is the final topology with respect to all smooth curves (Lipschitz
curves). Mappings f defined on open (or even ¢*-open) subsets of convenient vec-
tor spaces E are called C%% (Lipschitz) if f ocis C%% (Lipschitz) for every smooth
curve ¢. If E is a Banach space then a C%®-mapping is locally Holder-continuous
of order « in the usual sense. This has been proved in [Fau91], which is not easily
accessible, thus we include a proof in the lemma below. For the Lipschitz case see
[FK88] and [KM97, 12.7].

That a mapping ¢ — A(t) defined on a ¢*-open subset U of a convenient vector
space E is C%% with values in unbounded operators means the following: There is
a dense subspace V of the Hilbert space H such that V is the domain of definition
of each A(t), and such that A(t)* = A(t). And furthermore, t — (A(t)u,v) is C%®
for each u € V and v € H in the sense of the definition given above.

This implies that ¢ — A(t)u is of the same class U — H for each u € V by
[KM97, 2.3], [FK88, 2.6.2], or[Fau9l, 4.1.14]. This is true because C%® can be
described by boundedness conditions only; and for these the uniform boundedness
principle is valid.

Lemma ([Fau9l]). Let E and F be Banach spaces, U open in E. Then, a mapping
f:U — F is C% if and only if f is locally Hélder of order c, i.e., Wﬁ@w 18

z—yll*
locally bounded.
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Proof. If f is C%* but not locally Holder near z € U, there are x,, # y,, in U with
[[n —z[| < 1/4" and [jyn — 2| < 1/4", such that || f(yn) = f(zn)[| = 7.2 [Jyn —zn .
Now we apply the general curve lemma [KM97, 12.2] with s, := 2"y, — x,|| and

en(t) =z, — 2+ t% to get a smooth curve ¢ with c¢(t +t,,) — z = ¢, (t) for

0 <t < 5. Then ]| (Foo) (b +50) — (Fo) (bl = grimgme 1 () — S ()| >
n. The converse is 0bv1ous. U

The theorem holds for F = R. Let t — A(t) be a C%“-curve. Going through
the proof of the resolvent lemma in [KMO3| carefully, we find that ¢ — A(t) is
a C%“mapping U — L(V,H), and thus the resolvent (A(t) — z)~! is C%“ into
L(H,H) in t and z jointly.

For a continuous eigenvalue ¢ — A(t) as in the theorem, let the eigenvalue \(s)
of A(s) have multiplicity N for s fixed. Choose a simple closed curve v in the
resolvent set of A(s) enclosing only A(s) among all eigenvalues of A(s). Since the
global resolvent set {(¢,z) € R x C: (A(t) — z) : V — H is invertible} is open, no
eigenvalue of A(t) lies on ~, for t near s. Consider

oo /(A(t) — ) lde = P(),

a C%%-curve of projections (on the direct sum of all eigenspaces corresponding to
eigenvalues in the interior of v) with finite dimensional ranges and constant ranks.
So for ¢ near s, there are equally many eigenvalues (repeated with multiplicity) in
the interior of 4. Let us order them by size, pu1(t) < pa(t) < -+ < un(t), for all
t. The image of t — P(t), for ¢t near s describes a finite dimensional C%* vector
subbundle of R x H — R, since its rank is constant. The set {u;(¢) : 1 <i < N}
represents the eigenvalues of P(t)A(t)|p()(m). By the following result, it forms a
C%“_parametrization of the eigenvalues of A(t) inside -, for ¢ near s.

The eigenvalue A(t) is a continuous (in ¢) choice among the y;(t), and it is C%®
in t by the proposition below.

Result ([Weyl2], see also [Bha97, 111.2.6]). Let A, B be N x N Hermitian matrices.
Let p11(A) < p2(A) < -+ < pun(A) and pi(B) < pa(B) < -+ < pn(B) denote the
eigenvalues of A and B, respectively. Then

max|j1;(4) = iy (B)| < |4 = BI|.

Here ||.|| is the operator norm.

Proposition. Let 0 < a < 1. Let U 3 u+ A(u) be a C®*-mapping of Hermitian
N X N matrices. Let u — X\;(u), i = 1,...,N be continuous mappings which
together parametrize the eigenvalues of A(u). Then each \; is C%%.

Proof. It suffices to check that )\; is C%® along each smooth curve in U, so we may
assume without loss that U = R. We have to show that each continuous eigenvalue
t — A(t) is a C%*function on each compact interval I in U. Let uy(u) < -+ <
v (u) be the increasingly ordered arrangement of eigenvalues. Then each p; is a
C%“_function on I with a common Hélder constant C by the result above. Let
t < s be in I. Then there is an ig such that A(¢t) = w4, (t). Now let ¢; be the
maximum of all r € [¢, s] such that A(r) = p;, (). If t1 < s then p;, (t1) = pa, (1)
for some 41 # ip. Let ¢3 be the maximum of all r € [t1, s] such that A\(r) = p,, (7).
If to < s then p;, (t2) = wi,(t2) for some o ¢ {ig,41}. And so on until s = ¢ for
some k < N. Then we have (where tg = t)

[A(s) = A(8)] Zluz] ) Z G (G — 5N ol oy O
(S—t ]+1_t) s—t
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Proof of the theorem. For each smooth curve ¢ : R — U the curve R > ¢ —
A(c(t)) is C%%, and by the 1-parameter case the eigenvalue \(c(t)) is C%. But
then u — A(u) is C%«. O

Remark. Let u — A(u) be Lipschitz. Choose a fixed continuous ordering of the
eigenvalues, e.g., by size. We claim that along a smooth or Lipschitz curve ¢(t) in
U, none of these can accelerate to oo or —oo in finite time. Thus we may denote
them as ... \j(u) < A\jir1(u) < ..., for all u € U. Then each )\; is Lipschitz.

The claim can be proved as follows: Let t — A(t) be a Lipschitz curve. By
reducing to the projection P(t)A(t)|p(:)(m), we may assume that ¢ +— A(t) is a
Lipschitz curve of N x N Hermitian matrices. So A’(t) exists a.e. and is locally
bounded. Let ¢ — A(t) be a continuous eigenvalue. It follows that A satisfies [KMO03,
(6)] a.e. and, as in the proof of [KMO03, (7)], one shows that for each compact interval
T there is a constant C such that [N (t)] < C + C|A(t)| a.e. in I. Since t — A(t)
is Lipschitz, in particular, absolutely continuous, Gronwall’s lemma (e.g. [Die60,
(10.5.1.3)]) implies that [A(s) — A(t)] < (1 4+ [A(t)])(e?!** — 1) for a constant a
depending only on I.
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DENJOY-CARLEMAN DIFFERENTIABLE PERTURBATION OF
POLYNOMIALS AND UNBOUNDED OPERATORS
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ABSTRACT. Let t — A(t) for t € T be a CM-mapping with values unbounded
operators with compact resolvents and common domain of definition which are
self-adjoint or normal. Here C™ stands for C* (real analytic), a quasianalytic
or non-quasianalytic Denjoy-Carleman class, C'°°, or a Holder continuity class
CY%<, The parameter domain T is either R or R™ or an infinite dimensional
convenient vector space. We prove and review results on C™-dependence on
t of the eigenvalues and eigenvectors of A(t).

Theorem. Lett — A(t) fort € T be a parameterized family of unbounded operators
in a Hilbert space H with common domain of definition and with compact resolvent.
Ift € T =R and all A(t) are self-adjoint then the following holds:

(A) If A(t) is real analytic in t € R, then the eigenvalues and the eigenvectors
of A(t) may be parameterized real analytically in t.

(B) If A(t) is quasianalytic of class C? int € R, then the eigenvalues and the
eigenvectors of A(t) may be parameterized C in t.

(C) If A(t) is non-quasianalytic of class C* in t € R and if no two unequal
continuously parameterized eigenvalues meet of infinite order at any t € R,
then the eigenvalues and the eigenvectors of A(t) can be parameterized C*
m t.

(D) If A(t) is C*™ int € R and if no two unequal continuously parameterized
eigenvalues meet of infinite order at any t € R, then the eigenvalues and
the eigenvectors of A(t) can be parameterized C™ in t.

(E) If A(t) is C™ int € R, then the eigenvalues of A(t) may be parameterized
twice differentiably in t.

(F) If A(t) is CY int € R for some a > 0, then the eigenvalues of A(t) may
be parameterized in a C' way in t.

Ift e T =R and all A(t) are normal then the following holds:

(G) If A(t) is real analytic int € R, then for each tg € R and for each eigenvalue
X of A(to) there exists N € N such that the eigenvalues near \ of A(to=+s™)
and their eigenvectors can be parameterized real analytically in s near s = 0.

(H) If A(t) is C° int € R, then for each ty € R and for each eigenvalue \ of
A(to) there exists N € N such that the eigenvalues near X of Aty £ sV)
and their eigenvectors can be parameterized C? in s near s = 0.

(I) If A(t) is C* in t € R, then for each ty € R and for each eigenvalue A
of A(to) at which no two of the unequal continuously arranged eigenvalues
(see [Kat76, 11.5.2] ) meet of infinite order, there exists N € N such that the
eigenvalues near \ of A(to£s™) and their eigenvectors can be parameterized
CT in s near s = 0.
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If A(t) is C* int € R, then for each ty € R and for each eigenvalue A
of A(to) at which no two of the unequal continuously arranged eigenvalues
(see [Kat76, 11.5.2] ) meet of infinite order, there exists N € N such that the
eigenvalues near X of A(to£s™) and their eigenvectors can be parameterized
C*> in s near s = 0.

If A(t) is C* int € R and no two of the unequal continuously parameter-
ized eigenvalues meet of infinite order at any t € R, then the eigenvalues
and the eigenvectors of A(t) can be parameterized by absolutely continuous
functions, locally in t.

Ift € T =R" and all A(t) are normal then the following holds:

(L)

(M)

If A(t) is C¥ or C? int € R™, then for each ty € R™ and for each eigenvalue
A of A(to), there exists a finite covering {m : Uy — W} of a neighborhood
W of tg, where each my is a composite of finitely many mappings each
of which is either a local blow-up along a C* or C? submanifold or a
local power substitution, such that the eigenvalues and the eigenvectors of
A(mi(s)) can be chosen C or C9 in s. If A is self-adjoint, then we do not
need power substitutions.

If A(t) is C¥ or C9 int € R™, then the eigenvalues and their eigenvectors
of A(t) can be parameterized by functions which are special functions of
bounded variation (SBV), see [DGAS8S8] or [AFP00], locally in t.

IfteT C E, ac™®-open subset in an infinite dimensional convenient vector space
then the following holds:

(N)

(0)

For 0 < o < 1, if A(t) is C% (Hélder continuous of exponent a) in
t € T and all A(t) are self-adjoint, then the eigenvalues of A(t) may be
parameterized in a C%® way in t.

For 0 < a < 1, if A(t) is C% (Hélder continuous of exponent o) in
t € T and all A(t) are normal, then we have: For each ty € T and each
eigenvalue zy of A(tg) consider a simple closed C'-curve v in the resolvent
set of A(to) enclosing only zo among all eigenvalues of A(tg). Then fort
near to in the ¢ -topology on T, no eigenvalue of A(t) lies ony. Let A(t) =
(A1(t),...,AN(t)) be the N-tuple of all eigenvalues (repeated according to
their multiplicity) of A(t) inside of v. Then t — A(t) is C%% for t near to
with respect to the non-separating metric

d(A, p) = min max |Ai — fio()

on the space of N-tuples.

Part (A) is due to Rellich [Rel42] in 1942, see also [Bau72] and [Kat76, VII, 3.9].
Part (D) has been proved in [AKLM98, 7.8], see also [KM97, 50.16], in 1997, which
contains also a different proof of (A). (E) and (F) have been proved in [KMO03] in
2003. (G) was proved in [Rai09a, 7.1]; it can be proved as (H) with some obvious
changes, but it is not a special case since C“ does not correspond to a sequence
which is an L-intersection (see [KMRO9D]). (J) and (K) were proved in [Rai09a,

7.1]. (N

) was proved in [KMRO09c].

The purpose of this paper is to prove the remaining parts (B), (C), (H), (I), (L),
(M), and (O).

Definitions and remarks. Let M = (Mj)ren=n., be an increasing sequence
(M1 > My,) of positive real numbers with My = 1. Let U C R" be open. We
denote by CM(U) the set of all f € C>°(U) such that, for each compact K C U,
there exist positive constants C and p such that

0% f(z)| < C plo lal! M|, for all @ € N" and = € K.
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The set CM(U) is a Denjoy—Carleman class of functions on U. If My = 1, for all
k, then CM™(U) coincides with the ring C*(U) of real analytic functions on U. In
general, C*(U) C CM(U) C C>(U).

Here Q = (Qk)ren is a sequence as above which is quasianalytic, log-convex,
and which is also an L-intersection, see [KMRO09b] or [KMR09a] and references
therein. Moreover, L = (Ly)ren is a sequence as above which is non-quasianalytic
and log-convex.

That A(t) is a real analytic, CM (where M is either Q or L), C*, or C*@
family of unbounded operators means the following: There is a dense subspace
V of the Hilbert space H such that V is the domain of definition of each A(t),
and such that A(t)* = A(t) in the self-adjoint case, or A(t) has closed graph and
A(t)A(t)* = A(t)*A(t) wherever defined in the normal case. Moreover, we require
that ¢ — (A(t)u,v) is of the respective differentiability class for each v € V and
v € H. From now on we treat only CM = C¥, CM for M = Q, M = L, and
cM =0,

This implies that ¢ — A(t)u is of the same class CM(E, H) (where E is either
R or R") or is in C*®(E, H) (if E is a convenient vector space) for each u € V' by
[KM97, 2.14.4, 10.3] for C*, by [KMR09a, 3.1, 3.3, 3.5] for M = L, by [KMRO09D,
1.10, 2.1, 2.3] for M = @, and by [KM97, 2.3], [FK88, 2.6.2] or [Fau9l, 4.14.4] for
C%® because C%“ can be described by boundedness conditions only and for these
the uniform boundedness principle is valid.

A sequence of functions A; is said to parameterize the eigenvalues, if for each
z € C the cardinality |{i : X\i(t) = z}| equals the multiplicity of z as eigenvalue of
A(t).

Let X be a C¥ or C% manifold. A local blow-up ® over an open subset U of X
means the composition ® = ¢ o ¢ of a blow-up ¢ : U’ — U with center a C* or
C® submanifold and of the inclusion ¢ : U — X. A local power substitution is a
mapping ¥ : V — X of the form ¥ = ¢ 01, where ¢ : W — X is the inclusion of a
coordinate chart W of X and ¢ : V' — W is given by

(yh R yq) = ((71)611‘?17 LR (*1)6”3“)7
for some v = (71,...,7) € (Nsg)? and all € = (e1,...,¢) € {0,1}?, where
Y1, ..., Yq denote the coordinates of W (and ¢ = dim X).
This paper became possible only after some of the results of [KMR09a] and
[KMRO9b] were proved, in particular the uniform boundedness principles. The

wish to prove the results of this paper was the main motivation for us to work on
[KMRO09a] and [KMRO9b).

Applications. Let X be a compact C? manifold and let ¢ — g; be a C?-curve of
C? Riemannian metrics on X. Then we get the corresponding C® curve ¢ — A(g;)
of Laplace-Beltrami operators on L?(X). By theorem (B) the eigenvalues and
eigenvectors can be arranged C%. Question: Are the eigenfunctions then also C9?

Let © be a bounded region in R™ with C% boundary, and let H(t) = —A + V(t)
be a CQ-curve of Schrodinger operators with varying C® potential and Dirichlet
boundary conditions. Then the eigenvalues and eigenvectors can be arranged C©.
Question: Are the eigenvectors viewed as eigenfunctions then also in C?(Q x R)?

Example. This is an elaboration of [AKLM98, 7.4] and [KM03, Example]. Let
S(2) be the vector space of all symmetric real (2 x 2)-matrices. We use the CL-
curve lemma [KMRO09a, 3.6] or [KMR09Db, 2.5]: There exists a converging sequence
of reals t,, with the following property: Let A, B, € S(2) be any sequences which
converge fast to 0, i.c., for each k € N the sequences n*A,, and n*B,, are bounded
in S(2). Then there exists a curve A € C*(R, S(2)) such that A(t,+s) = A, +sB,
for |s| < 25, for all n.
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We use it for

1 /1 0 1 /(0 1 2 1
An:=w<o —1>» B,,,:=M<1 0)’ where sn =27 < o

The eigenvalues of A,, +tB,, and their derivatives are

1 2n272nt

1+ (4)?2, N =t—m—m—.
1+ ()2

An(t) = £

on? Sn

Then
N(tn +50) = N(tn) _ A(s0) = An(0) _ :t2"2_2"5n
Sn sq s94/2
on(a(n—1)—1)
::I:Tﬂoofora>0.

So the condition (in (C), (D), (I), (J), and (K)) that no two unequal continuously
parameterized eigenvalues meet of infinite order cannot be dropped. By [AKLM98,
2.1], we may always find a twice differentiable square root of a non-negative smooth
function, so that the eigenvalues A are functions which are twice differentiable but
not CH* for any o > 0.

Note that the normed eigenvectors cannot be chosen continuously in this example
(see also example [Rel37, §2]). Namely, we have

1 1 0 1 1 1
Resolvent Lemma. Let CM be any of C¥, C%, CE, C>=, or C*2, and let A(t)
be normal. If A is C™ then the resolvent (t,z) — (A(t) — 2)~1 € L(H, H) is CM
on its natural domain, the global resolvent set

{(t,z) e T xC: (A(t) —z): V — H is invertible}
which is open (and even connected).

Proof. By definition the function ¢ — (A(t)v, u) is of class CM for each v € V and
u € H. We may conclude that the mapping t +— A(t)v is of class CM into H as
follows: For CM = C> we use [KM97, 2.14.4]. For CM = C* we use in addition
[KM97, 10.3]. For CM = C? or CM = CT we use [KMR09b, 2.1] and /or [KMR09a,
3.3] where we replace R by R”. For C™ = C%% we use [KM97, 2.3], [FK8S, 2.6.2],
or [Fau91, 4.1.14] because C%® can be described by boundedness conditions only
and for these the uniform boundedness principle is valid.

For each t consider the norm |jul|? := |jul|?> + [|A(t)u[> on V. Since A(t) is
closed, (V,|| |l+) is again a Hilbert space with inner product (u,v); := (u,v) +
(A(t)u, A(t)v).

(1) Claim (see [AKLMOS, in the proof of 7.8], [KM97, in the proof of 50.16], or
[KMO03, Claim 1]). All these norms || || on V are equivalent, locally uniformly in
t. We then equip V with one of the equivalent Hilbert norms, say || |lo.

We reduce this to C%“. Namely, note first that A(¢) : (V,| ||s) — H is bounded
since the graph of A(t) is closed in H x H, contained in V' x H and thus also closed in
(V.1 |ls) x H. For fixed u,v € V, the function ¢ — (u,v)s = (u,v)+ (At)u, A(t)v)
is C%@ since t — A(t)u is it. By the multilinear uniform boundedness principle
([KM97, 5.18] or [FK88, 3.7.4]) the mapping t — ( , ) is C%“ into the space of
bounded sesquilinear forms on (V,|| ||s) for each fixed s. Thus the inverse image of
( , )s+3(unit ball) in L((V, || [ls)® (V.| |s);C) is a ¢>-open neighborhood
U of sin T. Thus v/1/2||ulls < [lull; < +/3/2|u|s for all ¢ € U, i.e. all Hilbert

norms | ||z are locally uniformly equivalent, and claim (1) follows.
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By the linear uniform boundedness theorem we see that ¢t — A(f) is in
CM(T,L(V, H)) as follows (here it suffices to use a set of linear functionals which
together recognize bounded sets instead of the whole dual): For CM = C™ we
use [KM97, 1.7 and 2.14.3]. For CM = C“ we use in addition [KM97, 9.4]. For
CM = C% or CM = CF we use [KMRO9b, 2.2 and 2.3] and/or [KMR09a, 3.5]
where we replace R by R”. For CM = C%® see above.

If for some (t,z) € T x C the bounded operator A(t) — z: V — H is invertible,
then this is true locally with respect to the ¢*°-topology on the product which is
the product topology by [KM97, 4.16], and (t,2) — (A(t) —2)"' : H — V is CM,
by the chain rule, since inversion is real analytic on the Banach space L(V, H). O

Note that (A(t) —z)~!: H — H is a compact operator for some (equivalently
any) (t, z) if and only if the inclusion i : V — H is compact, since i = (A(t) —z)"lo
(A(t)—2):V —-H — H.

Polynomial proposition. Let P be a curve of polynomials
Pt)(x) = 2™ —ar1(t)z" '+ 4+ (=1)"a,(t), teR.

(a) If P is hyperbolic (all roots real) and if the coefficient functions a; are all
C® then there exist C9 functions \; which parameterize all roots.

(b) If P is hyperbolic (all roots real), if the coefficient functions a; are C* and
no two of the different roots meet of infinite order, then there exist C
functions \; which parameterize all roots.

(c) If the coefficient functions a; are C9, then for each tq there exists N € N
such that the roots of s — P(to + s") can be parameterized C? in s for s
near 0.

(d) If the coefficient functions a; are C* and no two of the different roots meet
of infinite order, then for each ty there exists N € N such that the roots of
s+ P(tg £ sV) can be parameterized C* in s for s near 0.

All C? or CL solutions differ by permutations.

The proof of parts (a) and (b) is exactly as in [AKLM98] where the corresponding
results were proven for C* instead of C'”, and for C* instead of C%. For this we
need only the following properties of C? and C*:

e They allow for the implicit function theorem (for [AKLM98, 3.3]).
e They contain C* and are closed under composition (for [AKLM98, 3.4]).
e They are derivation closed (for [AKLM98, 3.7]).

Part (a) is also in [CCO04, 7.6] which follows [AKLM98]. It also follows from the
multidimensional version [Rai09b, 6.10] since blow-ups in dimension 1 are trivial.
The proofs of parts (c) and (d) are exactly as in [Rai09a, 3.2] where the correspond-
ing result was proven for C* instead of C%, and for C* instead of C, if none of
the different roots meet of infinite order. For these we need the properties of C%
and C* listed above.

Matrix proposition. Let A(t) for t € T be a family of (N x N)-matrices.

() If T =R >t — A(t) is a C9-curve of Hermitian matrices, then the
eigenvalues and the eigenvectors can be chosen C.

(f) If T =R >t A(t) is a CE-curve of Hermitian matrices such that no two
eigenvalues meet of infinite order, then the eigenvalues and the eigenvectors
can be chosen C*.

(g If T =R >t — A(t) is a CF-curve of normal matrices such that no
two eigenvalues meet of infinite order, then for each ty there exists Ny €
N such that the eigenvalues and eigenvectors of s +— A(tg £ s™) can be
parameterized C* in s for s near 0.
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(h) Let T C R™ be open and let T > t +— A(t) be a C¥ or CP-mapping of
normal matrices. Let K C T be compact. Then there exist a neighborhood
W of K, and a finite covering {m : U, — W} of W, where each my, is a
composite of finitely many mappings each of which is either a local blow-
up along a C¥ or C9 submanifold or a local power substitution, such that
the eigenvalues and the eigenvectors of A(my(s)) can be chosen C* or C9
in s. Consequently, the eigenvalues and eigenvectors of A(t) are locally
special functions of bounded variation (SBV). If A is a family of Hermitian
matrices, then we do not need power substitutions.

The proof of the matrix proposition in case (e) and (f) is exactly as in [AKLM98,
7.6], using the polynomial proposition and properties of C? and C*. Item (g) is
exactly as in [Rai09a, 6.2], using the polynomial proposition and properties of C.
Item (h) is proved in [Rai09b, 9.1 and 9.6], see also [KPO08].

Proof of the theorem. We have to prove parts (B), (C), (H), (I), (L), (M), and
(0). So let CM be any of C¥, C9, CL, or C*%, and let A(t) be normal. Let z
be an eigenvalue of A(ty) of multiplicity N. We choose a simple closed C! curve
in the resolvent set of A(tg) for fixed ¢y enclosing only z among all eigenvalues of
A(tp). Since the global resolvent set is open, see the resolvent lemma, no eigenvalue
of A(t) lies on =, for t near to. By the resolvent lemma, A : T — L((V,| o), H)
is CM | thus also

TR [y(A(t) — 2"V dz = P(t,4) = P(1)

is a CM mapping. Each P(t) is a projection, namely onto the direct sum of all
eigenspaces corresponding to eigenvalues of A(t) in the interior of +, with finite
rank. Thus the rank must be constant: It is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H, H) of P(t) to
the subset of operators of rank < N = rank(P(tp)) is continuous in ¢ and is either
0or 1.

So for t in a neighborhood U of ¢y there are equally many eigenvalues in the
interior of 7, and we may call them \;(¢) for 1 < i < N (repeated with multiplicity).

Now we consider the family of N-dimensional complex vector spaces t +—
P(t)(H) C H, for t € U. They form a CM Hermitian vector subbundle over
U of Ux H — U: For given t, choose v1,...vy € H such that the P(t)v; are
linearly independent and thus span P(¢t)H. This remains true locally in ¢t. Now we
use the Gram Schmidt orthonormalization procedure (which is C¥) for the P(t)v;
to obtain a local orthonormal C™ frame of the bundle.

Now A(t) maps P(t)H to itself; in a C™ local frame it is given by a normal
(N x N)-matrix parameterized C™ by t € U.

Now all local assertions of the theorem follow:

(B) Use the matrix proposition, part (e).

(C) Use the matrix proposition, part (f).

(H) Use the matrix proposition, part (h), and note that in dimension 1 blowups
are trivial.

(I) Use the matrix proposition, part (g).

(L,M) Use the matrix proposition, part (h), for R™.

(O) We use the following
Result ([BDMS83], [Bha97, VII.4.1]). Let A, B be normal (N x N )-matrices
and let \i(A) and X\;(B) fori=1,...,N denote the respective eigenvalues.
Then

min max [\;(4) ~ gy (B) < |l - B

g€eSN
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for a universal constant C with 1 < C' < 3. Here || || is the operator norm.

Finally, it remains to extend the local choices to global ones for the cases (B)
and (C) only. There t — A(t) is C? or CF, respectively, which imply both C',
and no two different eigenvalues meet of infinite order. So we may apply [AKLM98,
7.8] (in fact we need only the end of the proof) to conclude that the eigenvalues can
be chosen C'*° on T' = R, uniquely up to a global permutation. By the local result
above they are then C9 or C'. The same proof then gives us, for each eigenvalue
Ai + T — R with generic multiplicity IV, a unique N-dimensional smooth vector
subbundle of R x H whose fiber over ¢ consists of eigenvectors for the eigenvalue
Ai(t). In fact this vector bundle is C? or CT by the local result above, namely the
matrix proposition, part (e) or (f), respectively. O
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