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Abstract. This survey revolves around the question how the roots of a monic

polynomial (resp. the spectral decomposition of a linear operator), whose coef-
ficients depend in a smooth way on parameters, depend on those parameters.

The parameter dependence of the polynomials (resp. operators) ranges from

real analytic over C∞ to differentiable of finite order with often drastically
different regularity results for the roots (resp. eigenvalues and eigenvectors).

Another interesting point is the difference between the perturbation theory of

hyperbolic polynomials (where, by definition, all roots are real) and that of
general complex polynomials. The subject, which started with Rellich’s work

in the 1930s, enjoyed sustained interest through time that intensified in the

last two decades, bringing some definitive optimal results. Throughout we try
to explain the main proof ideas; Rellich’s theorem and Bronshtein’s theorem

on hyperbolic polynomials are presented with full proofs. The survey is writ-
ten for readers interested in singularity theory but also for those who intend

to apply the results in other fields.
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2 ADAM PARUSIŃSKI AND ARMIN RAINER

4.1. The case of radicals 34
4.2. Optimal Sobolev regularity of the roots 35
4.3. Absolute continuity via desingularization. Formulas for the roots 37
4.4. Multiparameter case 38
5. Lifting maps over invariants of group representations 40
5.1. A reformulation of the regularity problem for hyperbolic polynomials 40
5.2. Orthogonal representations of compact Lie groups 40
5.3. The main tools 43
5.4. Examples and applications 45
5.5. A reformulation of the regularity problem for general polynomials 46
5.6. Representations of linearly reductive groups 47
5.7. Some remarks on the proofs 51
6. Applications 52
6.1. Zero sets of smooth functions 52
6.2. Extension to the optimal transport between algebraic hypersurfaces 55
7. Appendix A. Function spaces 57
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1. Introduction

The question how the spectral decomposition of a linear operator in Hilbert
space depends on parameters of the operator is a natural and important one. Its
investigation – stimulated without doubt by the development of quantum mechan-
ics – began with Rellich’s paper [99] published in 1937 (the first in a series which
culminated in Rellich’s book [100]). In finite dimensions, the problem reduces to
the questions about the regularity of the eigenvalues and eigenvectors of families
of matrices and, in consequence, one is led to ask how regular the roots of a monic
polynomial depending on parameters can be chosen as functions of these parame-
ters.

In this survey, we will concentrate on the finite dimensional setting of matri-
ces and polynomials; occasionally we will provide references for generalizations to
operators in infinite dimensional Hilbert space.

Real analytic perturbations of normal matrices and hyperbolic polynomials. In [99],
Rellich was concerned with analytic families of linear operators, in particular, he
proved that real analytic curves of Hermitian matrices admit real analytic eigenval-
ues and a real analytic frame of orthonormal eigenvectors. To this end, he showed
that a real analytic curve of monic hyperbolic polynomials admits a real analytic

choice of its roots. A monic polynomial Pa(Z) = Zd +
∑d
j=1 ajZ

d−j with real

coefficients is called hyperbolic if all d roots of Pa (with multiplicities) are real.
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Rellich also realized that the analytic dependence of the spectral decomposition
breaks down as soon as the Hermitian matrix depends on two or more real param-
eters. The analytic multiparameter case was taken up and continued by Kurdyka
and Păunescu [64]: there exists an analytic modification of the parameter space
such that, after this modification, the eigenvalues and the eigenvectors (or the
roots in the case of hyperbolic polynomials) admit real analytic parameterizations,
locally. Actually, these results hold in the more general setting of normal matrices,
as observed by Rainer [94], where the eigenvalues are generally complex valued. We
discuss the analytic perturbation theory in Section 2.

Singularity theory methods. Many results of perturbation theory can be proven
using singularity theory. Puiseux’s theorem is an important ingredient of Rellich’s
proof and the multiparameter case is proven using its multivariable counterpart,
the Abhyankar–Jung theorem. In Section 2 we present a different proof of Rellich’s
theorem on perturbation of hyperbolic polynomials, based on a nowadays standard
singularity theory tool, the splitting, which we also recall briefly. Similar methods
are used in the multiparameter case and in the study of the perturbation of normal
matrices, see Parusiński and Rond [88], where the splitting is replaced by a version
of Hensel’s lemma for normal matrices, or in the problem of lifting over invariants of
group representations, where it is replaced by the slice theorem (see Theorem 5.9).
We describe how this method is used in several places of the survey.

In the multiparameter case, the resolution of singularities is used to make ideals
principal generated by normal crossings. In most cases, this is the ideal generated
by the discriminant of Pa, or of the square-free reduction (Pa)red, so that one can
use then the Abhyankar–Jung theorem. Interestingly, the resolution of singularities
is used as well to show that the continuous roots of Pa, with a = a(t) depending
smoothly on t ∈ R, are locally absolutely continuous, see Section 4.3 and Parusiński
and Rainer [83].

In the case of C∞ coefficients (or coefficients of finite differentiability), besides
splitting, another important ingredient is Glaeser’s inequality and its generaliza-
tions. We recall some of its manifestations in Section 3. The higher order Glaeser
inequalities appear in Section 4.

C∞ perturbations of normal matrices and hyperbolic polynomials. Another field of
application which greatly stimulated the research on the regularity problem for
roots of polynomials is the theory of PDEs – most notably the Cauchy problem
for hyperbolic PDOs. With this goal in mind, Bronshtein [21] proved that any
continuous root of a monic hyperbolic polynomial Pa of degree d with coefficients
Cd−1,1 functions aj : U → R, where U is an open subset of Rn, is locally Lipschitz.
(Glaeser’s inequality gives Bronshtein’s result in the simplest nontrivial case.) Note
that ordering the roots Pa increasingly yields a continuous system of the roots. This
result is sharp. If n = 1 and the coefficients are Cd (resp. C2d), then there is a C1

(resp. twice differentiable) choice of the roots, but there are examples of nonnegative
C∞ functions f such that Z2 = f has no C1,α solution for any α > 0. We give a
full proof of Bronshtein’s theorem with uniform bounds for the Lipschitz constant
in Section 3.2 (it is based on Parusiński and Rainer [81]).

The step from analytic to C∞ coefficients entails a big drop of regularity for
the roots, because it allows for oscillation. The same is true for the eigenvalues
of Hermitian and, more generally, normal matrices; for the eigenvectors it is even
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worse: there are C∞ curves of symmetric 2× 2 matrices that do not admit a con-
tinuous system of eigenvectors. On the other hand, the conditions that guarantee
locally Lipschitz or C1 eigenvalues of Hermitian (even normal) matrices are much
weaker than for hyperbolic polynomials: for instance, a C0,1 (resp. C1) curve of
Hermitian (or, more generally, normal) matrices admits a system of C0,1 (resp. C1)
eigenvalues. We explore several explanations for this phenomenon: one of them is
that the determinant is a G̊arding hyperbolic polynomial with respect to the iden-
tity matrix on the real vector space of d × d Hermitian matrices (see Section 3.4
and Section 3.5). This also gives that C1,1 curves of Hermitian matrices admit
eigenvalues that are locally of Sobolev class W 2,1 (which is optimal in view of the
Sobolev inequality).

There are different approaches (discussed in Section 3.3) to ascertain better Cp

regularity of the roots and the eigenvalues by imposing stronger assumptions. For
instance, given any integer p ≥ 2, forcing f ≥ 0 defined on R and sufficiently many
of its derivatives to vanish on all local minima of f guarantees that the equation
Z2 = f has a Cp solution. Or, one can define a regularity class Fβ , β > 0,
of nonnegative Cβ functions on R, incorporating flatness of f near its zeros in a
certain sense, such that fα ∈ Fαβ for all f ∈ Fβ and α ∈ (0, 1]. In the case of a
curve of monic hyperbolic polynomials or normal matrices, sufficient conditions for
the existence of Cp roots or eigenvalues can be given in terms of the differentiability
of the coefficients and the finite order of contact of the roots or eigenvalues. If the
coefficients are C∞ and definable in any (not necessarily polynomially bounded)
o-minimal expansion of the real field, then the roots and eigenvalues can be chosen
C∞ and definable; this reaffirms that oscillation is to blame for the loss of regularity.

Perturbations of polynomials. General (nonhyperbolic) case. Other problems from
PDEs (cf. [106]) and geometric analysis demand to abandon the hyperbolicity as-
sumption: how regular can the roots of a general (nonhyperbolic) monic polynomial
Pa with smooth coefficients aj : U → C be? This problem was solved only re-
cently by Ghisi and Gobbino [37] in the radical case and by Parusiński and Rainer
[83, 84, 85] in the general case. We present in Section 4 two approaches to this
problem: one is based on formulas for the roots of the universal monic polynomial
of degree d, obtained by resolution of singularities, the other one is elementary and
yields the optimal Sobolev regularity result. It states that the roots of a curve
of monic complex polynomials Pa of degree d with coefficients of class Cd−1,1(I),
where I ⊆ R is a bounded open interval, admit an absolutely continuous parame-
terization whose derivative is in Lp(I) for each 1 ≤ p < d/(d − 1). Actually, each
continuous root has this property, in particular, it belongs to the Sobolev space
W 1,p(I) for each 1 ≤ p < d/(d − 1). Moreover, there are uniform bounds for the
Sobolev norm of the roots in terms of the Cd−1,1 norm of the coefficients. This
result is optimal.

A multiparameter version for continuous roots follows by standard arguments,
provided there exists a continuous root (perhaps on some subset). But in general
there are obstructions for continuous roots, due to monodromy. It turns out that
the possibly discontinuous roots still can be represented by functions of bounded
variation, cf. Section 4.4.1. The proof uses the formulas for the roots of the universal
monic polynomial alluded to above.



PERTURBATION THEORY OF POLYNOMIALS AND LINEAR OPERATORS 5

Lifting from the orbit space. The problem of finding roots with optimal regularity of
monic (hyperbolic and nonhyperbolic) polynomials has a representation-theoretic
interpretation: it is equivalent to a lifting problem over the orbit map σ of the stan-
dard representation of the symmetric group Sd on Rd or Cd, respectively, where the
components of σ are the elementary symmetric functions. This point of view can
be generalized considerably: we will discuss in Section 5 the lifting problem for
real orthogonal representations of compact Lie groups and for complex rational
representations of linearly reductive groups (the representation spaces will always
be finite dimensional). In this general setting, the lifting occurs over a map σ con-
sisting of basic invariants, that is a finite collection of generators of the algebra
of invariant polynomials. It gives another heuristic explanation why the eigenval-
ues of symmetric matrices are better behaved than the roots of monic hyperbolic
polynomials: only a “partial lifting” is necessary (see Section 5.4.1).

Applications. In the last section, Section 6, we give two applications of the results
for general (nonhyperbolic) polynomials. The first concerns the zero set of C∞

functions f . If f vanishes to some finite order γ at a point x0 ∈ Rn, then locally
near x0 the zero set of f is given by the real roots of a monic polynomial Pa of
degree γ, by Malgrange’s preparation theorem. We present several consequences of
the optimal Sobolev regularity of the roots of Pa, most of them observed by Beck,
Becker-Kahn, and Hanin [10]. Often one knows in advance the vanishing order
of a function so that this setup applies, e.g., for solutions of second order elliptic
equations, Laplace eigenfunctions or finite linear combinations of such.

The second application is taken from the recent paper [5] by Antonini, Caval-
letti, and Lerario. This paper brings forward a reinterpretation and an extension of
the regularity problem for the roots of polynomials to the study of the Wasserstein
distance on the space of d-degree hypersurfaces in CPn. This space is embedded
in the space of measures on the projective space and thus the optimal transport
problem between hypersurfaces is studied. An inner Wasserstein distance is ob-
tained which turns the projective space of homogeneous polynomials in a complete
geodesic space.

In the appendix, we collect definitions and basics on function spaces used in the
survey (Section 7) and we present some topological and geometric properties of
the space of monic hyperbolic polynomials of a fixed degree (Section 8). There are
several open problems that we included all over the article.

Notation

We use N := {0, 1, 2, . . .} and N≥m := {n ∈ N : n ≥ m} for m ∈ N. Similarly,
R>a := {x ∈ R : x > a} etc.; for instance R≥0 = [0,∞) and R>0 = (0,∞).

For a subset S of a topological space, S◦, S, and ∂S denote the interior, the
closure, and the boundary of S, respectively. We consider Rn with its Euclidean
structure |x| =

√
x21 + · · ·+ x2n, if not stated otherwise. The open ball in Rn with

center x and radius r > 0 is B(x, r) := {y ∈ Rn : |x − y| < r}; if n = 1, we use
I(x, r) := B(x, r). The unit sphere in Rn is denoted by Sn−1 := {x ∈ Rn : |x| = 1}.
If U ⊆ Rn is an open subset of Rn, then we write V ⋐ U to denote a relatively
compact open subset V of U .

The Lebesgue measure in Rn is denoted by Ln; we also use |E| := Ln(E) for
a Lebesgue measurable set E ⊆ Rn. The k-dimensional Hausdorff measure is Hk
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and Hk⌞E denotes the restriction of Hk to a subset E ⊆ Rn, i.e., (Hk⌞E)(F ) :=
Hk(E ∩ F ).

For a function f , we write Zf for its zero set and Γf for its graph. If f and g are
real valued functions, f ≲ g means that f ≤ C g for some constant C > 0. Generic
constants are denoted by C or C(n, d, . . .) to indicate that it depends on n, d, . . .;
their value may differ from line to line.

We use standard multiindex notation. We write df for the total derivative and
dvf(x) := ∂t|t=0f(x+tv) for the directional derivative. In particular, ∂jf = ∂

∂xj
f =

dejf , where ej is the j-th standard unit vector in Rn. We write∇f = (∂1f, . . . , ∂nf)

for the gradient. Higher order partial derivatives are denoted by f (α) = ∂αf =
∂α1
1 · · · ∂αn

n f , for α ∈ Nn.
A monic polynomial of degree d is Pa(Z) = Zd +

∑d
j=1 ajZ

d−j , where the sub-

script indicates the vector of coefficients a = (a1, . . . , ad). The coefficients may be
real or complex numbers, formal power series, or functions; in the latter cases we
often write Pa(X)(Z), Pa(t)(Z), or Pa(x)(Z) to indicate the variables on which the
coefficients depend. If the first coefficient a1 is zero, then the polynomial is said to
be in Tschirnhausen form and in that case we consistently denote its coefficients

by ãj , i.e., Pã(Z) = Zd +
∑d
j=2 ãjZ

d−j .

By a parameterization or a system of the roots of a family of polynomials Pa(x),
where x ranges over a subset U of Rn, we mean a collection of d functions λ1, . . . , λd
such that Pa(x)(Z) =

∏d
i=1(Z − λi(x)) for all x ∈ U .

The space of monic hyperbolic polynomials of degree d is denoted by Hyp(d),
its subspace of polynomials in Tschirnhausen form by HypT (d), and Hyp0T (d) :=
{Pã ∈ HypT (d) : ã2 = −1}.

For a polynomial P (Z), we denote by ∆P its discriminant. For an analytic
function or a formal power series f , we denote by fred its square-free reduction.
For a square matrix A, we denote by χA its characteristic polynomial and by ∆A

the discriminant of (χA)red.
We write Matm,n(R) for the set of m × n matrices over the ring R and set

Matn(R) := Matn,n(R); for instance, Matm,n(K[[X]]) is the set of m× n matrices
with entries formal power series in X with coefficients in K. For R = K ∈ {R,C}
we also use Km×n := Matm,n(K). For A ∈ Matm,n(C) let A∗ = A

t
be its conjugate

transpose. The identity matrix is denoted by I; its size will always be clear from
the context. We write U(n) = Un(C) for the group of unitary matrices and O(n) =
On(R) for the group of orthogonal matrices. More abstractly, O(V ) is the group
of orthogonal endomorphisms of a finite dimensional Euclidean vector space V .
GLn(C) or GLn(R) denotes the general linear group. The set of diagonal n × n
matrices is denoted by Diag(n), the set of real symmetric n×n matrices by Sym(n)
and the set of complex Hermitian n× n matrices by Herm(n).

The symmetric group of permutations of n elements is Sn. It acts on Kn, where
K ∈ {R,C}, by permuting the coordinates and thus induces an equivalence relation.
The equivalence class of x = (x1, . . . , xn) ∈ Kn can be identified with the unordered
n-tuple [x] = [x1, . . . , xn] (which may be represented by

∑n
j=1 δxj , where δxj is the

Dirac measure).

2. Perturbation theory with real analytic coefficients

2.1. Rellich’s theorems. In 1937 F. Rellich proved the following result.
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Theorem 2.1 (Rellich [99, Satz I], [100, Theorem 1]). Let A(t) be a family of
d × d Hermitian matrices whose coefficients are real analytic in t ∈ I, where I is
an open neighborhood of 0 in R. Then, maybe in a smaller neighborhood of 0, the
eigenvalues and the eigenvectors of A(t) can be chosen real analytic in t.
More precisely, there exist real valued functions λi(t) and complex valued d-vectors
vi(t), i = 1, . . . , d, depending analytically on t, such that for t in an open neighbor-
hood I ′ of 0 in R:

(1) v1(t), . . . , vd(t) is an orthonormal frame in Cd;
(2) A(t)vi(t) = λi(t)vi(t).

Note that the statement of this theorem is local. It was originally stated and
proven in terms of convergent power series but clearly, by unique analytic continu-
ation, it implies a global statement on an arbitrary open interval I and with I ′ = I.
For proving the above theorem, Rellich shows a result that we rephrase as follows.

Theorem 2.2 (Rellich [99]). Let I ⊆ R be an open neighborhood of 0 in R and let

Pa(t)(Z) = Zd +

d∑
j=1

aj(t)Z
d−j , t ∈ I,

be a monic hyperbolic polynomial with real analytic coefficients aj. Then there exist
real analytic functions λi, 1 ≤ i ≤ d, defined maybe in a smaller neighborhood I ′ of
0 in R, which parameterize the roots of Pa, i.e.,

Pa(t)(Z) =

d∏
i=1

(Z − λi(t)), t ∈ I ′.

Actually, Rellich states this result for complex analytic functions that have real
values for real t, see Rellich [99, Hilfssatz II]. Again, for real t, it is easy to see that
it holds globally, that is for an arbitrary I and with I ′ = I.

Rellich’s proof of Theorem 2.2 is based on Puiseux’s theorem. Its idea goes as
follows. Let λi(t) be the complex roots of Pa(t). By Puiseux’s theorem, there is
l ∈ N such that ηi(s) = λi(s

l) are all complex analytic, but also, by the assumption,
every ηi(s) is real whenever sl is real. But this means that ηi, as a power series,
depends only on sl. Indeed, suppose this is not true and let cks

k be the lowest
degree term in the expansion of ηi such that l does not divide k. Then ηi can not
be real for all s such that sl is real. (Rellich gives a slightly different argument still
based on Puiseux’s theorem in [100, pages 30-31].)

Then to show Theorem 2.1 Rellich, for each analytic eigenvalue λ(t) of A(t),
solves the equation A(t)v = λ(t)v using formulas involving the minors of the matrix
A(t). We refer the reader to Rellich’s paper for this elementary argument.

Remark 2.3. It was observed by Rainer [94] that Theorem 2.1 holds as well for
normal matrices. This shows, surprisingly, that it is not the hyperbolicity of the
characteristic polynomial of A(t) that is important but the fact that we can diag-
onalize the matrices in orthonormal bases, but see also Example 2.16. This was
made even more transparent in the proof for normal matrices given in [88], where
analytic diagonalizibility is showed directly without proving first the analyticity of
the eigenvalues. See also Section 2.4.

2.2. A proof of Theorem 2.2. We present here a different proof based on the
splitting principle.
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2.2.1. Tschirnhausen form. Every monic real polynomial

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j

of degree d can be identified with the point a = (a1, . . . , ad) ∈ Rd. We say that Pa
is in Tschirnhausen form if a1 = 0. Every Pa can be put in Tschirnhausen form by
the substitution

Pã(Z) = Pa(Z − a1
d ) = Zd +

d∑
j=2

ãjZ
d−j .

We call it Tschirnhausen transformation. Note that

(1) ãj =

j∑
i=0

Ciaia
j−i
1 , 2 ≤ j ≤ d,

where the Ci are universal constants and a0 = 1. For a polynomial Pã in Tschirn-
hausen form we have

−2ã2 = λ21 + · · ·+ λ2d,

where λ1, . . . , λd are the roots of Pã (with multiplicities), consequently, for a hy-
perbolic polynomial,

ã2 ≤ 0.

Recall that the coefficients (up to their sign) are the elementary symmetric poly-
nomials in the roots, by Vieta’s formulas.

Lemma 2.4. The coefficients of a hyperbolic polynomial Pã in Tschirnhausen form
satisfy

(2) |ãj |1/j ≤
√
2 |ã2|1/2, j = 1, . . . , d.

Proof. Let sk := λk1 + · · · + λkd, k ≥ 1, be the Newton polynomials in λ1, . . . , λd.
We claim that

(3) |sk|1/k ≤ |s2|1/2, k = 2, . . . , d.

Setting λ = (λ1, . . . , λd), we have, for k ≥ 2,

|sk|1/k ≤ ∥λ∥k ≤ ∥λ∥2 = |s2|1/2,

by a well-known relation between the p-norms. The Newton identities between the
Newton polynomials and the elementary symmetric polynomials σk,

jσj =

j∑
i=1

(−1)i−1σj−isi, d ≥ j ≥ 1,

imply

|ãj | ≤
1

j

j∑
i=2

|ãj−i||si| ≤
1

j

j∑
i=2

|ãj−i||s2|i/2.

By (3), it is now easy to conclude the statement using induction. □
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2.2.2. Splitting. The following well-known lemma can be found for instance in [14].

Lemma 2.5. Let Pa = PbPc, where Pb and Pc are monic real polynomials without
common (complex) root. Then we have P = Pb(P )Pc(P ) for analytic mappings

P 7→ b(P ) ∈ RdegPb and P 7→ c(P ) ∈ RdegPc , defined for P near Pa in RdegPa ,
with the given initial values.

Proof. The product Pa = PaPc defines on the coefficients a polynomial map φ such
that a = φ(b, c). Its Jacobian determinant det Jacφ(b, c) equals the resultant of Pb
and Pc which is nonzero, by assumption. Thus φ can be inverted locally, by the
inverse function theorem. □

Let HypT (d) be the space of monic hyperbolic polynomials of degree d in Tschirn-
hausen form and let Hyp0T (d) be the subspace of polynomials Pã with ã2 = −1. By
Lemma 2.4, Hyp0T (d) is compact. Every polynomial in Hyp0T (d) can be written as
a product of two monic real polynomials of positive degree without common root
(indeed, the sum of the roots vanishes while the sum of their squares is 2).

Let us now prove Theorem 2.2. The case ã2 = 0 is trivial, since then all ãj = 0.
Thus let Pã ∈ HypT (d) be such that ã2 ̸= 0. Since −ã2(t) is positive, it is of the
form −ã2(t) = t2ku(t), u(0) > 0. Choose one of the two analytic roots of −ã2(t),
±tku 1

2 (t), and denote it by θ(t). Then the polynomial

Qa(Z) := θ−dPã(θZ) = Zd − Zd−2 +

d∑
j=3

θ−j ãjZ
d−j

belongs to Hyp0T (d). By Lemma 2.5, we have

Qa = QbQc,

on some open ball B(Pã, r) ⊆ Rd such that degQb < d, degQc < d, and

bi = ψi(θ
−3ã3, . . . , θ

−dãd), i = 1, . . . ,degQb,

where ψi are real analytic functions; likewise for ci. Note that, by Lemma 2.4,
θ−iãi are real analytic and hence so are bi and ci. If Qa is hyperbolic, then also Qb
and Qc are hyperbolic. This induces a splitting

Pã = PbPc, on B(Pã, r),(4)

where
bi = θiψi(θ

−3ã3, . . . , θ
−dãd), i = 1, . . . ,degPb,

are real analytic functions of t and likewise for ci. To conclude we proceed by
induction on degPa. □

Remark 2.6. At first the above proof looks more complicated than Rellich’s orig-
inal argument. This is because Rellich uses Puiseux’s theorem, that can be proven
itself using the splitting. But the splitting allows to work with coefficients ai that
are not necessarily real analytic, but Cp or C∞ for instance, and that cannot be
easily complexified. It can be also be used in the multiparameter case.

It is natural to ask what happens if the entries of a Hermitian matrix are C∞

functions of t ∈ R. Then, in general, there is a drastic drop of regularity for the
eigenvalues (this will be discussed in detail in Section 3.5 and Section 3.7), while
the eigenvectors may not even admit a continuous choice, as seen in the following
example, see also Example 3.48.
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Example 2.7 ([99, §2.2]). The C∞ curve of symmetric matrices

A(t) := e−1/t2
(
cos t−1 sin t−1

sin t−1 − cos t−1

)
, t ̸= 0,

and A(0) := 0 has the C∞ eigenvalues ±e−1/t2 , but the normalized eigenvectors
cannot be continuous at t = 0.

Under the additional assumption that no two continuous eigenvalues meet to
infinite order of flatness, Rellich’s theorem 2.1 still holds in the C∞ category; see
[2, Theorem 7.6] and [94] for normal matrices.

2.3. Multiparameter case. Both Rellich’s theorems fail in the multiparameter
case.

Example 2.8 (Rellich [99, §2, 1]). The eigenvalues of the symmetric matrix

A(x1, x2) =

(
1 + 2x1 x1 + x2
x1 + x2 1 + 2x2

)
,

λ± = 1 + x1 + x2 ±
√

2(x21 + x22), are not analytic in any neighborhood of (0, 0).

In [64] K. Kurdyka and L. Păunescu proposed multiparameter versions of Rel-
lich’s theorems. The following is a multiparameter generalization of Theorem 2.2.

Theorem 2.9 ([64, Theorems 4.1 and 5.8]). Let U ⊆ Rn be open and

Pa(x)(Z) = Zd +

d∑
j=1

aj(x)Z
d−j , x ∈ U,

be a monic hyperbolic polynomial with real analytic coefficients aj. Then there exist
locally Lipschitz functions λi : U → R, i = 1, . . . , d, which parameterize the roots
of Pa.

Moreover, there exists a modification σ :W → U (by a locally finite composition
of blowings-up with global smooth centers) such that the roots of Pa(σ(w))(Z) can
be parameterized, locally on W , by real analytic functions.

Since all roots of Pa(x) are real, we can order them

λ1(x) ≤ λ2(x) ≤ · · · ≤ λd(x)

and the first claim of the above theorem implies that all such λi are locally Lipschitz.

Example 2.10 ([64, Example 5.9]). Consider Pa(x)(Z) = Z2−(x21+x
2
2). The zero

set of Pa is the double cone. Then both the upper and the lower nappes are graphs
of Lipschitz functions. But note that if we restrict them to a line through the origin
these restrictions are not real analytic. We have to interchange them while passing
through the origin to get analytic roots (that exist by Rellich’s theorem).

If we blow up the origin in the real plane, then the roots become locally, but
not globally, real analytic. Indeed, in the chart x1 = w1, x2 = w1w2 the roots are
±w1

√
1 + w2

2. Going along the exceptional divisor, the center circle of the Möbius
band, changes the sign of the root, i.e., interchanges them.

To show the second claim of Theorem 2.9 Kurdyka and Păunescu use resolution
of singularities, splitting, and the Abhyankar–Jung theorem.
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2.3.1. Abhyankar–Jung theorem. Let K be a field and let

P (Z) = Zd + a1(X)Zd−1 + · · ·+ ad(X) ∈ K[[X]][Z](5)

be a monic polynomial whose coefficients are formal power series in X =
(X1, . . . , Xn). Such a polynomial P is called quasi-ordinary if the discriminant
∆P (X) equals Xα1

1 · · ·Xαn
n U(X), with αi ∈ N and U(0) ̸= 0.

Theorem 2.11 (Abhyankar–Jung theorem). Let K be an algebraically closed field
of characteristic zero and let P ∈ K[[X]][Z] be a quasi-ordinary polynomial such
that the discriminant of P is of the form ∆P (X) = Xα1

1 · · ·Xαr
r U(X), where

U(0) ̸= 0, and r ≤ n. Then there is q ∈ N \ {0} such that P (Z) has its roots

in K[[X
1
q

1 , ..., X
1
q
r , Xr+1, ..., Xn]].

The Abhyankar–Jung theorem can be understood as a multiparameter version of
Puiseux’s theorem. It has first been proven by Jung in 1908 for n = 2 and K = C,
cf. [51]. The first complete proof of Theorem 2.11 appeared in [1].

The Abhyankar–Jung theorem still holds if P has multiple factors (so its discrim-
inant is identically equal to zero) but the discriminant of the square-free reduction
Pred of P is of the form Xα1

1 · · ·Xαr
r U(X).

The Abhyankar–Jung theorem can be proven using splitting, as it is done in [87].
But in order to apply the splitting one needs the following result that is much more
difficult to prove, see [87, Theorem 1.1 and Remark 1.4].

Theorem 2.12. Let K be a (not necessarily algebraically closed) field of character-
istic zero and let P ∈ K[[X]][Z] be a quasi-ordinary polynomial in Tschirnhausen

form (i.e. a1 = 0). Then the ideal (a
d!/i
i (X))i=2,...,d is generated by one of a

d!/i
i (X)

and this generator equals a monomial in X1, . . . , Xn times a unit.

2.3.2. Proof of Theorem 2.9. We sketch a proof of this theorem.
The first claim of the theorem follows from Bronshtein’s theorem, see Theo-

rem 3.2 below. The proof given in [64] is different and based on real analytic
geometry arguments.

To show the second claim one first applies Hironaka’s resolution of singularites
to make the discriminant ∆Pred

of Pred normal crossings. For this it suffices, by [49,
Main Theorem II”(N), page 158], to apply a modification given by the composition
of a locally finite number of global blowings-up with smooth centers. Therefore, one
may suppose that Pred is quasi-ordinary. To conclude Kurdyka and Păunescu use
the Abhyankar–Jung theorem applied to a hyperbolic quasi-ordinary polynomial,
see [64, Proposition 5.4] for details. Instead, one may use here directly Theorem
2.12 and splitting. Firstly, after applying the Tschirnhausen transformation we

may suppose a1 = 0. Secondly, by Lemma 2.4, it is a
d!/2
2 that generates the ideal

(a
d!/i
i )i=2,...,d. Denote by θ(x) one of the two analytic square roots of−a2(x), that is,

if −a2(x) = u(x)
∏
x2αk

k , then θ(x) = ±u 1
2 (x)

∏
xαk

k . Then, one concludes exactly
as in the proof of Rellich’s theorem by splitting the polynomial P and proceeding
by induction on its degree. □

2.4. Perturbation of normal matrices. Kurdyka and Păunescu showed multi-
parameter counterparts of Theorem 2.1 for Hermitian matrices.

Theorem 2.13 ([64, Theorem 6.2 and Remark 6.3]). Let U ⊆ Rn be open and
let A(x), x ∈ U , be an analytic family of Hermitian matrices. Then, there exists
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a locally finite composition of blowings-up with smooth global centers σ : W → U ,
such that locally onW the corresponding family A◦σ admits a simultaneous analytic
diagonalization.

They also gave a version for real antisymmetric matrices, [64, Theorem 7.2]. This
was extended to normal matrices by Rainer [94] by showing that the eigenvalues
and eigenspaces of normal matrices depend analytically on the parameters after
a modification of the parameter space. Note that these results generalize the one
parameter case because there are no nontrivial modifications of one dimensional
nonsingular spaces.

Recall that for a square matrix A we denote by ∆A the discriminant of the
reduced (i.e., square-free) form (χA)red of its characteristic polynomial χA. The
normal crossings assumption for ∆A is sufficient for the local simultaneous reduction
of families of normal matrices as it is showed by Parusiński and Rond in [88]. The
following three algebraic theorems, stated in terms of formal power series K[[X]],
K = R,C, were proven in [88]. They hold as well for several subrings of K[[X]]
including the algebraic power series K⟨X⟩ and the convergent power series K{X},
see Remark 2.20.

Theorem 2.14 ([88, Theorem 2.5]). Let A(X) ∈ Matd(C[[X]]) be normal and
suppose that ∆A(X) = Xα1

1 · · ·Xαn
n u(X) with u(0) ̸= 0. Then there is a unitary

matrix U(X) ∈ Ud(C[[X]]) such that

U(X)−1A(X)U(X) = D(X),

where D(X) is a diagonal matrix with entries in C[[X]].

Theorem 2.15 ([88, Theorem 2.9]). Let A(X) ∈ Matd(R[[X]]) be normal and
suppose that ∆A(X) = Xα1

1 · · ·Xαn
n u(X) with u(0) ̸= 0. Then there exists an or-

thogonal matrix O(X) ∈ Od(R[[X]]) such that O(X)−1A(X)O(X) is block diagonal
with the blocks of size 1 and 2. The blocks of size 2 are 2× 2 matrices of the form(

a(X) b(X)
−b(X) a(X)

)
(6)

for some a(X), b(X) ∈ R[[X]].

Note that it follows that if A(X) is symmetric, resp. antisymmetric, then
O(X)−1A(X)O(X) is symmetric (i.e., diagonal), resp. antisymmetric.

Example 2.16 (Rainer [94, Example 8.3]). The eigenvalues of the one parameter
diagonalizable, but not normal, matrix

A(t) =

t 0 0
0 0 t2

0 t 0

 , t ∈ R,

are t,±t3/2 for t ≥ 0 and t,±i|t|3/2 for t < 0.

The above example shows that the eigenvalues of a real analytic family of diag-
onalizable matrices are not necessarily analytic (even for one parameter families).
As the following theorem shows, for arbitrary analytic families of matrices, not nec-
essarily square, the counterparts of the above two theorems hold for the singular
value decomposition.
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Let A ∈ Matm,n(C). Then A = V DU−1 for some unitary matrices V ∈ Um(C),
U ∈ Un(C), and a (rectangular) diagonal matrix D with real nonnegative coeffi-
cients. The diagonal elements of D are the nonnegative square roots of the eigen-
values of A∗A or, equivalently, of AA∗. They are called singular values of A. If A
is real, then V and U can be chosen orthogonal.

Theorem 2.17 ([88, Theorems 3.1 and 3.3]). Let A = A(X) ∈ Matm,d(C[[X]]),
d ≤ k, and suppose that ∆A∗A(X) = Xα1

1 · · ·Xαn
n u(X) with u(0) ̸= 0. Then there

are unitary matrices V ∈ Um(C[[X]]), U ∈ Ud(C[[X]]) such that

D(X) = V (X)−1A(X)U(X)

is (rectangular) diagonal.
If A = A(X) ∈ Matm,d(R[[X]]), then U and V can be chosen real (that is

orthogonal) so that V (X)−1A(X)U(X) is block (rectangular) diagonal with blocks
as in Theorem 2.15.

Suppose in addition that the last nonzero coefficient of ∆A∗A(X) is of the form

Xβ1

1 · · ·Xβn
n h(X) with h(0) ̸= 0. Then, both in the real and the complex case, we

may require that V (X)−1A(X)U(X) is (rectangular) diagonal with the entries on
the diagonal in R[[X]], and, moreover, that those entries that are nonzero are of
the form Xαa(X), with a(0) > 0, and that the exponents α ∈ Nn are well-ordered.

In general, even if d = m = 1, one needs the extra assumption on the last nonzero
coefficient of ∆A∗A, see [88, Example 3.2], though this assumption is automatically
satisfied if n = 1. It is in general not possible to have the entries of D(X) non-
negative.

2.4.1. Remarks on the proofs. In [64] the authors first use Theorem 2.9 in order
to get, after a modification of the parameter space, the eigenvalues real analytic.
Then they solve linear equations describing the eigenspaces corresponding to the ir-
reducible factors of the characteristic polynomial. This requires to monomialize the
ideal defined by all the minors of the associated matrices which usually necessitates
further blowings-up. A similar approach is adapted in [94]. First the eigenvalues
are made analytic by blowings-up and then further blowings-up are necessary, for
instance to make the coefficients of matrices and their differences normal crossing.

In [40] Grandjean shows results similar to these of [64] and [94] but by a dif-
ferent approach. He does not treat the eigenvalues first, but considers directly the
eigenspaces defined on the complement of the discriminant locus. We refer the
reader to [40] for details.

The proofs in [88] also consider the eigenvalues and eigenspaces at the same
time and only the assumption that the discriminant of the reduced characteristic
polynomial is normal crossings is necessary. These proofs adapt a strategy similar
to the algorithm of the proof of the Abhyankar–Jung theorem of [87] and of the
proof of Rellich’s theorem 2.2 that we presented in Section 2.2. Given a normal
matrix A(X) ∈ Matd(C[[X]]), first one subtracts from A(X) the matrix TrA, so
one can assume TrA = 0. This corresponds to the Tschirnhausen transformation.
Then the following proposition replaces Theorem 2.12.

Proposition 2.18 ([88, Proposition 2.7]). Suppose that the assumptions of Theo-
rem 2.14 are satisfied and that, moreover, A = (aij(X)) is nonzero and TrA = 0.
Then the ideal (aij)i,j=1,...,d of C[[X]] is generated by one of aij and this generator
equals a monomial in X1, . . . , Xn times a unit.
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Note that all the coefficients aij of A have the same weight, in contrast to
Theorem 2.12, where suitable powers of the coefficients of P must be considered.

Finally, the following version of Hensel’s lemma for normal matrices replaces the
splitting lemma, Lemma 2.5. This result is a strengthened version of Cohn’s version
of Hensel’s Lemma, see [24, Lemma 1].

Lemma 2.19 ([88, Lemma 2.1]). Let A(X) ∈ Matd(C[[X]]) be a normal matrix.
Assume that

A(0) =

(
Bo1 0
0 Bo2

)
,

with Boi ∈ Matdi(C), d = d1 + d2, such that the characteristic polynomials of Bo1
and Bo2 are coprime. Then there is a unitary matrix U ∈ Ud(C[[X]]), U(0) = I,
such that

U−1AU =

(
B1 0
0 B2

)
,(7)

and Bi(0) = Boi , i = 1, 2.

Remark 2.20. Theorems 2.14 (for K = C), 2.15 (for K = R), and 2.17 (for
K = R,C remain valid if we replace K[[X]] by a ring K{{X}} satisfying the following
properties:

(i) K{{X1, . . . , Xn}} contains K[X1, . . . , Xn],
(ii) K{{X1, . . . , Xn}} is a Henselian local ring with maximal ideal (X1, . . . , Xn),
(iii) K{{X1, . . . , Xn}} ∩ (Xi)K[[X1, . . . , Xn]] = (Xi)K{{X}} for i = 1, . . . , n.

Important examples of such subrings are: the algebraic power series K⟨X⟩, the
convergent power series K{X}, and the ring of germs of quasianalytic K-valued
functions over R (i.e. C∞ functions satisfying (3.1) – (3.6) of [15]).

Corollary 2.21 ([88, Theorem 5.3]). Let M be a manifold defined in one of the
following categories:

(i) real analytic;
(ii) real Nash;
(iii) quasianalytic (under the asssumptions (3.1) – (3.6) of [15]).

Let A be a matrix whose coefficients are regular functions on M (depending on the
category) and let K be a compact subset of M . Then there exist a neighborhood
Ω of K and the composite of a finite sequence of blowings-up with smooth centers
π : U → Ω, such that locally on U

(a) if A is a complex normal matrix, then A ◦ π satisfies the conclusion of
Theorem 2.14;

(b) if A is a real normal matrix, then A ◦ π satisfies the conclusion of Theo-
rem 2.15;

(c) if A is a (not necessarily square) matrix, then A ◦π satisfies the conclusion
of Theorem 2.17.

Here one has to work with real local coordinates, since a complex change of
coordinates does not commute with complex conjugation and may destroy the as-
sumption that the matrix is normal, as seen in the following example.

Example 2.22 ([64, Example 6.1]). The eigenvalues of the symmetric matrix

A(x1, x2) =

(
x21 x1x2
x1x2 x22

)
,
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are 0 and x21+x
2
2 and (1, x2/x1) and (1,−x1/x2) are the corresponding eigenvectors.

The discriminant of the characteristic polynomial (x21+x
2
2)

2 is not normal crossings
over the reals. It is so over the complex numbers, (x1+ ix2)

2(x1− ix2)2, but in the
new system of coordinates (x1+ ix2, x1− ix2) the matrix is not normal any longer.
To diagonalize this family simultanously one has to blow-up the origin.

Remark 2.23. Many of the results presented for matrices extend (in appropriate
form) to parameterized families of unbounded normal or selfadjoint operators in
Hilbert space with common domain of definition and compact resolvent. See e.g.
[2], [94], and references therein.

3. Differentiable roots of hyperbolic polynomials

3.1. Bronshtein’s theorem. Let I ⊆ R be an open interval and

Pa(t)(Z) = Zd +

d∑
j=1

aj(t)Z
d−j , t ∈ I,

a monic hyperbolic polynomial. It is not hard to see (e.g., [2, Theorem 4.3] and
Remark 3.12 below) that if aj ∈ Cd(I), 1 ≤ j ≤ d, then there exist differentiable
functions λi : I → R, 1 ≤ i ≤ d, which parameterize the roots of Pa, i.e.,

Pa(t)(Z) =

d∏
i=1

(Z − λi(t)), t ∈ I.

Actually, it suffices to assume that the coefficients are of class Cp if p is the maximal
multiplicity of the roots.

Bronshtein [21] proved that the roots λi have locally bounded derivative:

Theorem 3.1 (Bronshtein’s theorem I, [21]). Let I ⊆ R be an open interval and
Y a compact Hausdorff topological space. Let Pa(t, y), (t, y) ∈ I × Y , be a monic
hyperbolic polynomial of degree d such that the multiplicity of its roots does not
exceed p and ∂kt aj(t, y), 1 ≤ j ≤ d, 0 ≤ k ≤ p, are continuous functions on I × Y .
Then, for each compact K ⊆ I × Y , there is a constant C = C(K) > 0 such that
the roots of P can be represented by functions λi(t, y) that are differentiable in t
and satisfy

|∂tλi(t, y)| ≤ C, (t, y) ∈ K, 1 ≤ i ≤ d.

Bronshtein’s original proof is not easy to penetrate (cf. Remark 3.12). A much
simpler proof was given by Parusiński and Rainer [81]. It also gives uniform bounds
for the Lipschitz constant of the roots in terms of the coefficients.

Theorem 3.2 (Bronshtein’s theorem II, [81]). Let I ⊆ R be an open interval.
Let Pa(t), t ∈ I, be a monic hyperbolic polynomial of degree d with coefficients
aj ∈ Cd−1,1(I), 1 ≤ j ≤ d. Then any continuous root λ ∈ C0(I) of Pa is locally
Lipschitz and, for any pair of relatively compact open intervals I0 ⋐ I1 ⋐ I,

(8) LipI0(λ) ≤ C max
1≤j≤d

∥aj∥1/jCd−1,1(I1)
,

with C = C(d) max{δ−1, 1}, where δ := dist(I0,R \ I1).

The last claim of the above theorem, the form of the constant C, follows from
the proof of [81, Theorem 2.1], see also Lemma 3.23 below. Note that the Lipschitz
constant may blow up if we approach the boundary of I as for Pa(t)(Z) = Zd − t
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and I = (0, 1). We remark also that a system of continuous roots always exists,
for hyperbolic polynomials one may order them for instance: λ1(t) ≤ λ2(t) ≤ . . . ≤
λd(t).

Remark 3.3. If p is the maximal multiplicity of the roots of Pa, then it is enough
that aj ∈ Cp−1,1(I), 1 ≤ j ≤ d, for any continuous root λ to be locally Lipschitz
on I. The bound for the Lipschitz constant (8) of λ has to be modified; it will
also depend on a quantity that measures the “uniformity” of having multiplicity at
most p, namely,

B := sup
t∈I

λd(t)− λ1(t)
min1≤i≤d−p(λi+p(t)− λi(t))

,

where λ1(t) ≤ λ2(t) ≤ . . . ≤ λd(t), t ∈ I, is an increasing enumeration of the roots.
See [81, Section 4.7] for details.

We will give a full proof of Theorem 3.2 in Section 3.2. A multiparameter
version follows immediately (because a function defined on a box that is Lipschitz
with respect to each variable is Lipschitz).

Theorem 3.4 ([81, Theorem 2.2]). Let U ⊆ Rn be open. Let Pa(x), x ∈ U , be a
Cd−1,1 family of monic hyperbolic polynomials of degree d. Then any continuous
root λ ∈ C0(U) of Pa is locally Lipschitz and, for any pair of relatively compact
open subsets U0 ⋐ U1 ⋐ U ,

(9) LipU0
(λ) ≤ C(d, n, U0, U1) max

1≤i≤d
∥ai∥1/iCd−1,1(U1)

.

Recall that Hyp(d) denotes the space of monic hyperbolic polynomials of degree
d. Then Hyp(d) can be identified with a closed semialgebraic subset of Rd; see
Section 8. Consider the map λ↑ : Hyp(d)→ Rd which assigns to Pa its increasingly
ordered roots. Then λ↑ is continuous.

Corollary 3.5. Let U ⊆ Rn be open. Then the push forward

(λ↑)∗ : Cd−1,1(U,Hyp(d))→ C0,1(U,Rd), Pa 7→ λ↑ ◦ Pa,

is bounded.

It is natural to ask if the map (λ↑)∗ is continuous. The answer is no:

Example 3.6. Let f(t) := t2 and fn(t) := t2 + 1/n2, n ≥ 1. Then, for all k ∈ N
and each bounded open interval I ⊆ R, ∥f − fn∥Ck(I) = 1/n2 → 0 as n→∞. Let

λ and λn be the positive square roots of f and fn, respectively: λ(t) := |t| and
λn(t) :=

√
t2 + 1/n2. Then, for each bounded open interval I ⊆ R that contains 0,

LipI(λ− λn) ≥ sup
0<t∈I

∣∣∣ (λ(t)− λn(t))− (λ(0)− λn(0))
t

∣∣∣
= sup

0<t∈I

∣∣∣ t−
√
t2 + 1

n2 + 1
n

t

∣∣∣ ≥ ∣∣∣ 1n −
√

1
n2 + 1

n2 + 1
n

1
n

∣∣∣ = 2−
√
2,

for large enough n. Consequently, the map (λ↑)∗ : Ck(R,Hyp(2)) → C0,1(R,R2)
(where k ≥ 2) is not continuous.

But (λ↑)∗ : C1,1(R,Hyp(2))→W 1,p
loc (R,R2) is continuous for each 1 ≤ p <∞:
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Remark 3.7. Let f ∈ C1,1(R, [0,∞)) and fn ∈ C1,1(R, [0,∞)), n ≥ 1, such that
∥f − fn∥C1,1(I) → 0 as n → ∞, for each bounded open interval I ⊆ R. Let λ

and λn be the nonnegative square roots of f and fn, respectively. They are locally
Lipschitz (by Theorem 3.2) and thus differentiable almost everywhere. Then

(λ− λn)(λ+ λn) = f − fn,
(λ′ − λ′n)(λ+ λn) + (λ− λn)(λ′ + λ′n) = f ′ − f ′n,

and, where λ+ λn ̸= 0,

λ′ − λ′n =
f ′ − f ′n
λ+ λn

− λ− λn
λ+ λn

(λ′ + λ′n).

Note that at points t, where λ(t) + λn(t) = 0, we have λ(t) = λn(t) = 0 as well
as f(t) = fn(t) = f ′(t) = f ′n(t) = 0. Let I ⊆ R be a bounded open interval and
1 ≤ p <∞. By Glaeser’s inequality (16), we have on I,∣∣∣f ′ − f ′n

λ+ λn

∣∣∣p ≤ ( |f ′|+ |f ′n|
λ+ λn

)p
≤
(√2C1(λ+ λn)

λ+ λn

)p
= (2C1)

p/2,

where C1 := max{∥((ψf)′′∥L∞(R), supn ∥(ψfn)′′∥L∞(R)} and ψ ≥ 0 is a C∞ func-
tion which equals 1 in a neighborhood of I and has compact support (say in a
1-neighborhood of I). Thus,∥∥∥f ′ − f ′n

λ+ λn

∥∥∥p
Lp(I)

→ 0 as n→∞,

by the dominated convergence theorem. Moreover, on I,∣∣∣λ− λn
λ+ λn

(λ′ + λ′n)
∣∣∣p ≤ (2C2)

p
∣∣∣λ− λn
λ+ λn

∣∣∣p ≤ (2C2)
p,

where C2 := max{LipI(λ), supn LipI(λn)} (which is finite by Theorem 3.2). So∥∥∥λ− λn
λ+ λn

(λ′ + λ′n)
∥∥∥p
Lp(I)

→ 0 as n→∞,

again by the dominated convergence theorem. Thus,

∥λ′ − λ′n∥Lp(I) ≤
∥∥∥f ′ − f ′n
λ+ λn

∥∥∥
Lp(I)

+
∥∥∥λ− λn
λ+ λn

(λ′ + λ′n)
∥∥∥
Lp(I)

→ 0,

as n → ∞. We conclude that the map (λ↑)∗ : C1,1(R,Hyp(2)) → W 1,p
loc (R,R2) is

continuous for each 1 ≤ p <∞.

Open Problem 3.8. Is this also true for d ≥ 3?

It turns out that the derivatives of a differentiable choice of the roots not only
are bounded but they are continuous, provided that the coefficients are Cp, where
p is the maximal multiplicity of the roots. This was first observed by Colombini,
Orrú, and Pernazza [27] and a short proof was given by Parusiński and Rainer [81].

Theorem 3.9 ([81, Theorem 2.4]). Let Pa(t), t ∈ I, be a Cp curve of monic
hyperbolic polynomials, where p is the maximal multiplicity of the roots. Then:

(1) Any continuous root λ of Pa has left- and right-sided derivatives λ′± at each
t ∈ I.

(2) λ′− and λ′+ are continuous in the following sense: for every t0 ∈ I,
limt→t−0

λ′±(t) = λ′−(t0) and limt→t+0
λ′±(t) = λ′+(t0).

(3) There exist differentiable systems of the roots, any differentiable root is C1.
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If the coefficients in Theorem 3.9 are of class C2p, then there are even C1 systems
of the roots such that their derivatives of second order exist everywhere. This is
due to Colombini, Orrú, and Pernazza [27] following the strategy of Kriegl, Losik,
and Michor [55] who needed C3p coefficients. In general, these results cannot be
improved, even for C∞ coefficients.

Example 3.10. (1) The function f : R→ [0,∞) given by

f(t) :=

{
e−1/|t|(sin2(π/|t|) + e−1/t2) if t ̸= 0,

0 if t ̸= 0,

is C∞, but no solution of Z2 = f(t) is C1,α for any α > 0 (cf. [18]). It was shown
in [18] that, given any modulus of continuity ω, there exists a C∞ function on R
(depending on ω) such that no solution of Z2 = f(t) is C1,ω.

(2) A nonnegative C1,1 function g such that no solution of Z2 = g(t) is differen-
tiable at t = 0 is

g(t) :=

{
t2 sin2(log |t|) if t ̸= 0,

0 if t = 0.

(3) Replacing t2 by t4 in the definition of g we get a C3,1 function h such that
no solution of Z2 = h(t) is twice differentiable at t = 0.

(4) Clearly, the solutions of our equation cannot in general be locally Lipschitz
if the right-hand side is not C1,1, e.g., Z2 = t1+α, where α ∈ (0, 1).

We refer to [27] for other illuminating examples (including hyperbolic polynomi-
als of degree ≥ 3).

Wakabayashi [114] gave a different (complex analytic) proof of a more general
Hölder version of Bronshtein’s theorem which had been announced by Ohya and
Tarama [80]. A proof based on Bronshtein’s original method can be found in
Tarama [109].

Theorem 3.11 (Bronshtein’s theorem III, [109, Theorem 1.4]). Let I ⊆ R be an
open bounded interval. Let Pa(t), t ∈ I, be a monic hyperbolic polynomial of degree
d such that the multiplicity of its roots does not exceed p ≥ 2 and aj ∈ Ck,α(I),
1 ≤ j ≤ d. Then each continuous root λ of Pa(t) is locally Hölder continuous of
index

β := min
{
1, k+αp

}
on I. Moreover, if the coefficients form a bounded subset of Ck,α(I), then the
continuous roots form a bounded subset of C0,β(J), for each relatively compact
open subinterval J ⋐ I, as long as the polynomial is hyperbolic with the multiplicity
of the roots uniformly not exceeding p, i.e., B defined in Remark 3.3 is finite.

The main motivation of Bronshtein for proving his theorem was to show Gevrey
well-posedness of the Cauchy problem with multiple characteristics; see [22]. To
this end, he deduces from the Lipschitz continuity of the roots of Pa(t) the bound∣∣∣∂tPa(t)(z)

Pa(t)(z)

∣∣∣ ≲ |Im(z)|−1, 0 < |Im(z)| ≤ 1.

In the setting of Theorem 3.11, Tarama shows in [109] that

(10)
∣∣∣∂jtPa(t)(z)
Pa(t)(z)

∣∣∣ ≲ |Im(z)|−jmax{1,1/β},
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for 1 ≤ j ≤ min{p− 1, k}, 0 < |Im(z)| ≤ 1, and t in a compact subinterval of I. It
is also proved in [109] that the statements of Theorem 3.11 and (10) are equivalent.

Remark 3.12. Bronshtein’s original proof of Theorem 3.1 rests on a polynomial
equation for the derivatives of the roots of Pa, see (13) below. Suppose that λ0 is
a q-fold root of Pa(t0) and consider the polynomial

(11) Pa(t)(Z + λ0) = A0(t)Z
q +A1(t)Z

q−1 + · · ·+Aq(t) +R(t, Z),

where R(t, Z) is a polynomial in Z divisible by Zq+1 (possibly identically zero).

Note that Aj(t) = 1
(q−j)!∂

q−j
Z Pa(t)(λ0) and set aij := ∂itAj(t0). Then a00 ̸= 0,

while a0j = 0 for 1 ≤ j ≤ q, since λ0 is a q-fold root of Pa(t0). Using that Pa is
hyperbolic and that hyperbolicity is preserved by differentiation with respect to Z,
Bronshtein shows that aij = 0 for 0 ≤ i ≤ j − 1 and 1 ≤ j ≤ q, or equivalently, that
Aj(t) = (t− t0)jÂj(t), where Âj is a continuous function.

Consequently, the change of variables Z = (t− t0)W in (11) leads to

(t− t0)−qPa(t)((t− t0)W + λ0) = a00W
q + 1

1!a
1
1W

q−1 + · · ·+ 1
q!a

q
q(12)

+

d∑
k=0

Bk(t)W
d−k,

where Bk are continuous functions with Bk(t0) = 0. It follows that Pa has q roots
of the form λj(t) = λ0 + (t− t0)µj(t), where the µj are the roots of (12) which are
continuous at t0. That means that all the roots of Pa having the value λ0 at t0 are
differentiable at t0 and the derivatives are the solutions of

(13) a00W
q + 1

1!a
1
1W

q−1 + · · ·+ 1
q!a

q
q = 0.

Now, for contradiction, Bronshtein assumes that there is a sequence (tn, yn) →
(t0, y0) such that λ(tn, yn) → λ(t0, y0) and |∂tλ(tn, yn)| → ∞, and that the mul-
tiplicity of λ(tn, yn) as a root of Pa(tn, yn) is q for all n ≥ 1. Then ∂tλ(tn, yn)
satisfies an equation of type (13) which is found as above, where λ(tn, yn) plays the
role of λ0; in particular, the coefficients depend on n. It remains to show that the
coefficients of this equation, after division by the coefficient of W q, are bounded in
n. This is the hard part of Bronshtein’s proof (see [21, Lemma 4 and 4’]).

3.2. Towards a proof of Bronshtein’s theorem. We will give a simple proof
of Theorem 3.2 which is based on [81]. It requires some preparation.

3.2.1. Splitting. We proceed as in Section 2.2.2, but replace the analytic function
θ by |ã2|1/2. Let Pã ∈ HypT (d) be such that ã ̸= 0. Then the polynomial

Qa(Z) := |ã2|−d/2Pã(|ã2|1/2Z) = Zd − Zd−2 +

d∑
j=3

|ã2|−j/2ãjZd−j

belongs to Hyp0T (d) = {Pã ∈ HypT (d) : ã2 = −1}. By Lemma 2.5, we have

Qa = QbQc,

on some open ball B(Pã, r) ⊆ Rd such that degQb < d, degQc < d, and

bi = ψi(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degQb,
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where ψi are real analytic functions; likewise for ci. If Qa is hyperbolic, then also
Qb and Qc are hyperbolic; we restrict our attention to the set B(Pã, r) ∩HypT (d).
This induces a splitting

Pã = PbPc, on B(Pã, r),

where

(14) bi = |ã2|i/2ψi(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degPb.

The coefficients b̃i of Pb̃ resulting from Pb by the Tschirnhausen transformation
have an analogous representation (in view of (1))

(15) b̃i = |ã2|i/2ψ̃i(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degPb.

Shrinking r > 0 slightly, we may assume that all partial derivatives of ψi and ψ̃i of
all orders are bounded on B(Pã, r).

Lemma 3.13. In this situation we have |b̃2| ≤ 4 |ã2|.
Proof. Let λ1, . . . , λd be the roots of Pã such that the first k of them, i.e., λ1, . . . , λk,

are the roots of Pb. Then |b1| ≤
∑k
j=1 |λj | ≤

√
k
(∑k

j=1 λ
2
j

)1/2
and thus

2 |b̃2| =
k∑
j=1

(
λj +

b1
k

)2
=

k∑
j=1

(
λ2j +

b21
k2

+
2

k
λjb1

)

=

k∑
j=1

λ2j +
b21
k2
· k + 2

k
b1

k∑
j=1

λj ≤ (1 + 1 + 2)

k∑
j=1

λ2j ≤ 8 |ã2|,

since
∑d
j=1 λ

2
j = −2ã2. □

3.2.2. Glaeser’s inequality. A classical inequality used by Glaeser in [39] (and at-
tributed by him to Malgrange) is the following: for nonnegative C1 functions f on
R with f ′′ ∈ L∞(R) we have

(16) f ′(t)2 ≤ 2f(t)∥f ′′∥L∞(R), t ∈ R.
Note that this shows Bronshtein’s theorem in the simplest nontrivial case. We shall
need a local version. For t0 ∈ R and r > 0, let I(t0, r) denote the open interval
centered at t0 with radius r,

I(t0, r) := {t ∈ R : |t− t0| < r}.
Lemma 3.14. Let I ⊆ R be an open bounded interval. Let f ∈ C1,1(I) satisfy
f ≥ 0 or f ≤ 0 on I. Let M > 0 and assume that t0 ∈ I, f(t0) ̸= 0, and
I0 := I(t0,M

−1|f(t0)|1/2) ⊆ I. Then

|f ′(t0)| ≤ (M +M−1 LipI0(f
′))|f(t0)|1/2.

If additionally LipI0(f
′) ≤M2, then

|f ′(t0)| ≤ 2M |f(t0)|1/2.
Note that if f(t0) = 0 also f ′(t0) = 0.

Proof. Suppose that f ≥ 0; otherwise consider −f . Thus f(t0) > 0 and

0 ≤ f(t0 + h) = f(t0) + f ′(t0)h+

∫ 1

0

f ′(t0 + hs)− f ′(t0) ds · h.

The assertion follows from setting h := ±M−1|f(t0)|1/2. □
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3.2.3. Interpolation estimates.

Lemma 3.15. Let T (x) = a0 + a1x + · · · + amx
m ∈ C[x] satisfy |T (x)| ≤ A for

x ∈ [0, B] ⊆ R. Then

|aj | ≤ C(m)AB−j , 0 ≤ j ≤ m.

Proof. It suffices to assume A = B = 1; for the general case consider A−1T (By).
Noting that (T (x0), . . . , T (xm))t = V (a0, . . . , am)t and hence (a0, . . . , am)t =
V −1(T (x0), . . . T (xm))t, where V is the Vandermonde matrix of the equidistant
points 0 = x0 < x1 < · · · < xm = 1, the statement follows easily. □

Lemma 3.16. Let f ∈ Cm,1(I), where I ⊆ R is a bounded open interval. Then

|f (k)(t)| ≤ C(m) |I|−k
(
∥f∥L∞(I) + LipI(f

(m))|I|m+1
)
, t ∈ I, 1 ≤ k ≤ m.

Proof. Let t ∈ I. Then [t, t + |I|/2) or (t − |I|/2, t] is contained in I. Let s be a
point in the respective interval. By Taylor’s formula,∣∣∣ m∑

k=0

f (k)(t)

k!
(s− t)k

∣∣∣
=
∣∣∣f(s)− (s− t)m

∫ 1

0

(1− u)m−1

(m− 1)!
(f (m)(t+ u(s− t))− f (m)(t)) du

∣∣∣
≤ ∥f∥L∞(I) + |I|m+1 LipI(f

(m)).

Now apply Lemma 3.15. □

3.2.4. The key argument.

Definition 3.17. Let I1 ⊆ R be an open bounded interval and I0 ⋐ I1 a relatively
compact open subinterval. Let Pã(t), t ∈ I1, be a monic hyperbolic polynomial
of degree d in Tschirnhausen form with coefficients ãj ∈ Cd−1,1(I1), j = 2, . . . , d.
Let A > 0 be a constant. We say that (Pã, I1, I0, A) is admissible if for every
t0 ∈ I0 \ {t : ã2(t) = 0}

IA(t0) := I(t0, A
−1|ã2(t0)|1/2) ⊆ I1,(17)

1

2
≤ ã2(t)

ã2(t0)
≤ 2, t ∈ IA(t0),(18)

|ã(k)j (t)| ≤ Ak |ã2(t0)|(j−k)/2, 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, t ∈ IA(t0),(19)

LipIA(t0)(ã
(d−1)
j ) ≤ Ad |ã2(t0)|(j−d)/2, 2 ≤ j ≤ d.(20)

The following lemma is an easy exercise.

Lemma 3.18. Let (Pã, I1, I0, A) be admissible. Then the functions aj :=

|ã2|−j/2ãj, 2 ≤ j ≤ d, are well-defined on IA(t0) and satisfy

|a(k)j (t)| ≤ Ak |ã2(t0)|−k/2, 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, t ∈ IA(t0),(21)

LipIA(t0)(a
(d−1)
j ) ≤ Ad |ã2(t0)|−d/2, 2 ≤ j ≤ d.(22)

There is some redundancy in the conditions (17)–(20), up to multiplying A by
some constant C(d) ≥ 1:

Lemma 3.19. Suppose that (17), (19) for k ≥ j, 2 ≤ j ≤ d, and (20) hold. Then
there is a constant C(d) ≥ 1 such that (Pã, I1, I0, C(d)A) is admissible.
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Proof. By (19) for j = k = 2, LipIA(t0)(ã
′
2) ≤ A2. Lemma 3.14 and (17) imply

|ã′2(t0)| ≤ 2A |ã2(t0)|1/2.

Thus, for t ∈ I6A(t0),

|ã2(t)− ã2(t0)| ≤ |ã′2(t0)||t− t0|+ LipIA(t0)(ã
′
2) |t− t0|2

≤ 1

3
|ã2(t0)|+

1

36
|ã2(t0)| <

1

2
|ã2(t0)|,

which gives (18). That (19) also holds for k < j follows from Lemma 3.16 applied
to f = ãj and m = j − 1, together with (18) and Lemma 2.4. □

Proposition 3.20. Let (Pã, I1, I0, A) be admissible and t0 ∈ I0 \ {t : ã2(t) = 0}.
Then there exist a constant C(d) > 1 and open bounded intervals J1 ⋑ J0 ∋ t0, J0
relatively compact in J1, such that the following holds. We have

Pã = PbPc, on J1,

where Pb and Pc are monic hyperbolic polynomials of degree < d and with coefficients
in Cd−1,1(J1), and, after Tschirnhausen transformation, (Pb̃, J1, J0, C(d)A) and
(Pc̃, J1, J0, C(d)A) are admissible.

Proof. Consider

a := (−1, a3, . . . , ad) : IA(t0)→ Rd−1,

which defines a continuous bounded curve, by Lemma 2.4. By Lemma 3.18,

(23) |a′(t)| ≤ A |ã2(t0)|−1/2, t ∈ IA(t0).

Choose a finite cover of Hyp0T (d) by balls B1, . . . , Bs such that on each Bi we have
a splitting of Pã (cf. Section 3.2.1). There exists r1 ∈ (0, 1) such that for any
p ∈ Hyp0T (d) there is i ∈ {1, . . . , s} such that B(p, r1) ⊆ Bi (note that 2r1 is a
Lebesgue number of the cover B1, . . . , Bs). Set

J1 := IA/r1(t0).

Then J1 ⊆ a−1(B(a(t0), r1)) so that

Pã = PbPc, on J1.

Fix r0 < r1 and set J0 := IA/r0(t0). The coefficients of Pb̃ (after Tschirnhausen
transformation) are given by the formulas (15).

Let us show that (Pb̃, J1, J0, B) is admissible, where B = C(d)A for a suitable
constant C(d). If B is a constant satisfying

B ≥ 2
√
2A

r1 − r0
,

then, for each t1 ∈ J0 \ {t : b̃2(t) = 0},

B−1|b̃2(t1)|1/2 ≤
r1 − r0
A

|ã2(t0)|1/2,

by Lemma 3.13 and (18). This implies

JB(t1) := I(t1, B
−1|b̃2(t1)|1/2) ⊆ J1,

by the definition of J1 and J0. Note that r1 and r0 can be chosen in a universal
way so that we subsume the dependence of B on them in C(d).
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Next we claim that, on J1,

|∂kt [ψ̃i ◦ (a3, . . . , ad)]| ≤ C(d)Ak |ã2(t0)|−k/2, 0 ≤ k ≤ d− 1,

LipJ1(∂
d−1
t [ψ̃i ◦ (a3, . . . , ad)]) ≤ C(d)Ad |ã2(t0)|−d/2.

Recall that the real analytic functions ψ̃i and its partial derivatives of all orders are
bounded by universal constants. Thus the claim is obvious for k = 0. We have

∂t[ψ̃i ◦ (a3, . . . , ad)] = dψ̃i(a)(a
′)

so that the claim for k = 1 follows from (23). For 2 ≤ k ≤ d− 1, the claim follows
from differentiating this equation and using (21). In a similar way, using also (22),

one gets the estimate for LipJ1(∂
d−1
t [ψ̃i ◦ (a3, . . . , ad)]).

Now it is easy to conclude (from the formulas (15))

|b̃(k)i (t)| ≤ C(d)Ak |ã2(t0)|(i−k)/2, t ∈ J1, 1 ≤ k ≤ d− 1,

LipJ1(b̃
(d−1)
i ) ≤ C(d)Ad |ã2(t0)|(i−d)/2,

for all 2 ≤ i ≤ degPb. By Lemma 3.13 and (18), |ã2(t0)|−1 ≤ 2 |ã2(t1)|−1 ≤
8 |b̃2(t1)|−1 and thus

|b̃(k)i (t)| ≤ C(d)Ak |b̃2(t1)|(i−k)/2, t ∈ J1, i ≤ k ≤ d− 1,

LipJ1(b̃
(d−1)
i ) ≤ C(d)Ad |b̃2(t1)|(i−d)/2,

for all 2 ≤ i ≤ degPb. Thus we may conclude that (Pb̃, J1, J0, B) is admissible from
Lemma 3.19. □

Remark 3.21. We have the same estimates for bi instead of b̃i.

Theorem 3.22. Let (Pã, I1, I0, A) be admissible. Let λ : I1 → R be a continuous
root of Pã. Then λ is Lipschitz on I0 with LipI0(λ) ≤ C(d)A.

Proof. We proceed by induction on the degree. The only monic polynomial of
degree 1 in Tschirnhausen form is Z; so there is nothing to prove. So assume that
degPã ≥ 2. Fix t0 ∈ I0 \ {t : ã2(t) = 0}. By Proposition 3.20, we may assume that
on a neighborhood J1 of t0 we have

λ(t) = − b1(t)

degPb
+ µ(t),

where µ is a continuous root of Pb̃ and (Pb̃, J1, J0, C(d)A) is admissible. By the
induction hypothesis, µ is Lipschitz on J0 with LipJ0(µ) ≤ C(d)A. Thus λ is
Lipschitz on J0 with LipJ0(λ) ≤ C(d)A, in view of Remark 3.21. It is an easy
exercise to show that these local uniform Lipschitz bounds on I0 \ {t : ã2(t) = 0}
imply that LipI0(λ) ≤ C(d)A, since λ vanishes on the set {t : ã2(t) = 0}. □

3.2.5. Proof of Bronshtein’s theorem. Before we start with the proof, we observe
in the following lemma that the assumptions of Theorem 3.2 (after Tschirnhausen
transformation) yield an admissible quadruple.

Lemma 3.23. Let I1 ⊆ R be a bounded open interval and Pã a monic hyperbolic
polynomial of degree d in Tschirnhausen form with coefficients ãj ∈ Cd−1,1(I1),
2 ≤ j ≤ d. If I0 ⋐ I1 is an open subinterval, relatively compact in I1, then
(Pã, I1, I0, A) is admissible with

A := 6max{A1, A2},(24)
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where

A1 := max
{
δ−1∥ã2∥1/2L∞(I1)

, (LipI1(ã
′
2))

1/2
}
,

A2 := max
2≤j≤d

{
LipI1(ã

(d−1)
j ) ∥ã2∥(d−j)/2L∞(I1)

}1/d
,

and δ := dist(I0,R \ I1).

Proof. Let t0 ∈ I0\{t : ã2(t) = 0}. We have IA1
(t0) ⊆ I1, i.e., (17). By Lemma 3.14,

|ã′2(t0)| ≤ 2A1 |ã2(t0)|1/2.

This implies (as in the proof of Lemma 3.19) that (18) holds for t ∈ I6A1(t0). Now
(20) is clear from the definition of A2. Finally, Lemma 2.4 and Lemma 3.16 imply
(19), for t ∈ IA(t0). □

Now let Pã be a monic hyperbolic polynomial of degree d in Tschirnhausen
form with coefficients ãj ∈ Cd−1,1(I), 2 ≤ j ≤ d. Fix relatively compact open
subintervals I0 ⋐ I1 ⋐ I. By Lemma 3.23 and Theorem 3.22, any continuous root
λ of Pã is Lipschitz on I0 with LipI0(λ) ≤ C(d)A, where A is defined in (24). This
implies

LipI0(λ) ≤ C(d) max{δ−1, 1} max
2≤j≤d

∥ãj∥1/jCd−1,1(I1)
.

If Pa is not necessarily in Tschirnhausen form, we apply the Tschirnhausen
transformation Pa ; Pã. Then ãj is a weighted homogeneous polynomial of degree
j in a1, . . . , ad, where aj has the weight j; see (1). The roots are shifted by a1/d.
Thus any continuous root λ of Pa is Lipschitz on I0 and

LipI0(λ) ≤ C(d) max{δ−1, 1} max
1≤j≤d

∥aj∥1/jCd−1,1(I1)
.

This ends the proof of Theorem 3.2.

3.3. Sufficient conditions for Cp roots. Let us analyze what causes the loss of
regularity and give several sufficient conditions for better regularity of the roots.

3.3.1. The effect of positive local minima. A finer analysis of Example 3.10(1) indi-
cates that the small positive local minima of the function f prevent the solutions of
Z2 = f from being C1,α. This is confirmed by the following result of Bony, Broglia,
Colombini, and Pernazza [18].

Theorem 3.24 ([18, Theorem 3.5]). Let f : R→ [0,∞) be of class C4. Then Z2 =
f has a C2 solution if and only if there exists a continuous function γ vanishing
on {t ∈ R : f (j)(t) = 0, 0 ≤ j ≤ 4} such that for each local minimum t0 of f with
f(t0) > 0 we have f ′′(t0) ≤ γ(t0)f(t0)1/2.

Bony, Colombini, and Pernazza [19] extended this result. Forcing f and suffi-
ciently many of its derivatives to vanish on all local minima of f , turns out to be
sufficient for the existence of Cp square roots:

Theorem 3.25 ([19]). Let f : R→ [0,∞) be of class C2p, p ≥ 2, and assume that
f vanishes along with its derivatives up to order 2p−4 at all its local minima. Then
Z2 = f has a Cp solution. A solution with a derivative of order p + 1 everywhere
exists, provided that, under the same assumption on the minima, f is C2p+2.
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3.3.2. A regularity class for taking radicals. A different approach is due to Ray and
Schmidt-Hieber [98]. They define a regularity class Fβ , β > 0, for nonnegative
functions f : [0, 1] → [0,∞) which behaves nicely with respect to radicals. For
β > 0 we let Cβ be a short notation for the Hölder class Cm,α, where m is the
largest integer strictly smaller than β and α = β −m. For f ∈ Cβ([0, 1]) set

|f |Fβ([0,1]) := max
1≤j<β

(
sup
t∈[0,1]

|f (j)(t)|β

|f(t)|β−j
)1/j

.

It measures the flatness of f near its zeros. In particular, if |f |Fβ([0,1]) < ∞ then
that f vanishes at some point entails that also all its derivatives up to order < β
vanish. Consider

F β([0, 1]) := {f ∈ Cβ([0, 1]) : f ≥ 0, ∥f∥Fβ([0,1]) <∞},
where

∥f∥Fβ([0,1]) := ∥f∥Cβ([0,1]) + |f |Fβ([0,1]).

Note that f ∈ F β([0, 1]) may possess infinitely many nonzero local mimima.

Theorem 3.26 ([98]). Let α ∈ (0, 1] and β > 0. For all f ∈ F β([0, 1]), we have

∥fα∥Fαβ([0,1]) ≤ C(α, β) ∥f∥αFβ([0,1]).

In particular, fα ∈ Cαβ([0, 1]).

Moreover, bounds on the wavelet coefficients of fα are derived in [98] which give
additional information on the local regularity of fα.

3.3.3. Finite order of contact. In the case of a curve of monic hyperbolic polyno-
mials Pa(t), t ∈ I, of degree d, sufficient coefficients for the existence of Cp roots
can be given in terms of the differentiability of the coefficients and the finite order
of contact of the roots; see Rainer [92, 95].

In order to present these results we need some terminology. The polynomial

∆s(X1, . . . , Xd) :=
∑

i1<...<is

(Xi1 −Xi2)
2 · · · (Xi1 −Xis)

2 · · · (Xis−1
−Xis)

2

is symmetric and so it is a (unique) polynomial in the elementary symmetric func-
tions:

∆s = ∆̃s(σ1, . . . , σd).

Thus t 7→ ∆̃s(Pa(t)), where we identify Pa with its vector of coefficients, is well-
defined. We say that Pa(t), t ∈ I, is normally nonflat if for each t0 ∈ I the
following condition is satisfied. Let s be the maximal integer such that the germ at
t0 of t 7→ ∆̃s(Pa(t)) is not zero. Then

mt0(∆̃s(Pa)) := sup{m ∈ N : (t− t0)−m∆̃s(Pa(t)) is continuous near t0} <∞.

We call this quantity the multiplicity of ∆̃s(Pa) at t0; obviously we can analogously
define the multiplicity of any continuous univariate function. It is not hard to see
that Pa(t), t ∈ I, is normally nonflat if and only if for any continuous system λj ,
1 ≤ j ≤ d, of its roots mt0(λi − λj) =∞ implies λi = λj near t0.

Let Pa(t), t ∈ I, be a normally nonflat curve of monic hyperbolic polynomials.
In [92, 95], numbers γ(Pa),Γ(Pa) ∈ N∪ {∞}, γ(Pa) ≤ Γ(Pa), are defined, in terms
of a splitting algorithm for Pa, that encode the conditions for Cp solvability. We
refer the reader to [92] and [95] for the details of the definition.
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Theorem 3.27 ([92, 95]). Let Pa(t), t ∈ I, be a normally nonflat curve of monic
hyperbolic polynomials of degree d. If p ∈ N ∪ {∞} and Pa(t), t ∈ I, has Cp+Γ(Pa)

coefficients, then it admits a Cp+γ(Pa) system of its roots.

Note that for p =∞ the theorem yields the result of Alekseevsky, Kriegl, Losik,
and Michor [2] that C∞ systems of the roots exist if the coefficients are C∞.

3.3.4. Definability: no oscillation. Let us state one more result. It shows that,
actually, it is not the infinite contact between the roots that is to blame for the
loss of regularity, but oscillation. Of course, smooth coefficients can admit infinite
oscillation only in conjuction with infinite flatness. The result is formulated in the
framework of o-minimal expansions S of the real field. That means that S is a
family S = (Sn)n≥1, where Sn is a collection of subsets of Rn such that

• Sn is a boolean algebra with respect to the usual set-theoretic operations,
• Sn contains all semialgebraic subsets of Rn,
• S is stable by cartesian products and linear projections,
• each S ∈ S1 has only finitely many connected components.

The S -definable sets are those sets S such that there exists n ≥ 1 with S ∈ Sn.
A map is S -definable if its graph is S -definable.

Theorem 3.28 ([92, Theorem 4.12]). Let S be an arbitrary o-minimal expansion
of the real field. Let Pa(t), t ∈ I, be a curve of monic hyperbolic polynomials with
C∞-coefficients that are S -definable. Then there exists a C∞-system of the roots
of Pa consisting of S -definable functions.

By Miller’s dichotomy theorem [77], for a fixed o-minimal expansion S , either
for every S -definable function f : R → R there is N ∈ N such that f(t) = O(tN )
as t → ∞, or the global exponential function exp : R → R is S -definable. In the
latter case, there are infinitely flat C∞ functions in S . On the other hand, S
cannot contain oscillating functions.

3.4. G̊arding hyperbolic polynomials. There are various ways to generalize
univariate hyperbolic polynomials to multivariate polynomials. Of particular in-
terest are the G̊arding hyperbolic polynomials and the closely related real stable
polynomials; they have numerous applications in PDEs, combinatorics, optimiza-
tion, functional analysis, probability, etc.

3.4.1. G̊arding hyperbolic and real stable polynomials. A homogeneous polynomial
f(Z1, . . . , Zn) ∈ R[Z1, . . . , Zn] of degree d is said to be G̊arding hyperbolic with
respect to v ∈ Rn if f(v) ̸= 0 and for all x ∈ Rn the univariate polynomial f(x −
Tv) ∈ R[T ] is hyperbolic, i.e., has all roots real. Geometrically, this means that
any affine line with direction v meets the real hypersurface {x ∈ Rn : f(x) = 0} in
d points (with multiplicities).

This notion was introduced by G̊arding [35] in the 1950s. He showed that f
being G̊arding hyperbolic with respect to a direction v is a necessary and sufficient
condition for local well-posedness of the Cauchy problem with principal symbol
f and initial data on a hyperplane with normal vector v. G̊arding hyperbolic
polynomials have found many applications ever since, for instance, in Gurvits’
proof [42] of the van der Waerden conjecture.

An important example is the determinant on the real vector space of d × d
Hermitian matrices: it is G̊arding hyperbolic with respect to the identity matrix I.
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A polynomial f(Z1, . . . , Zn) ∈ C[Z1, . . . , Zn] is called stable if f(z1, . . . , zn) ̸= 0
for all (z1, . . . , zn) ∈ Cn with Im(zj) > 0, 1 ≤ j ≤ n. If all coefficients of a stable
polynomial are real, it is called real stable. Real stable polynomials played a crucial
role in the recent proof of the Kadison–Singer conjecture [73].

These notions are closely related.

Proposition 3.29 ([20, Proposition 1.1]). Let f ∈ R[Z1, . . . , Zn] be of degree d and
let fH ∈ R[Z1, . . . , Zn,W ] be the unique homogeneous polynomial of degree d such
that

fH(Z1, . . . , Zn, 1) = f(Z1, . . . , Zn).

Then f is real stable if and only if fH is G̊arding hyperbolic with respect to every
vector v = (v1, . . . , vn, 0) with vi > 0 for all i.

Interesting examples of real stable polynomials are generated as follows (see [20,
Proposition 1.12]): Let A1, . . . , An be positive semidefinite d× d matrices and B a
(complex) Hermitian d× d matrix. Then the polynomial

f(Z1, . . . , Zn) = det
( n∑
j=1

ZjAj +B
)

is either real stable or identically zero. Conversely, any real stable polynomial in
two variables Z1 and Z2 can be written as ±det(Z1A1 +Z2A2 +B), where Aj are
positive semidefinite and B is symmetric, see [20, Theorem 1.13]. The latter result
is based on the Lax conjecture [66] for G̊arding hyperbolic polynomials which is
true: as noted in [67] it follows from [46] and [113].

Remark 3.30. The Lax conjecture states that a homogeneous polynomial f on
R3 is G̊arding hyperbolic of degree d with respect to the direction (1, 0, 0) with
f(1, 0, 0) = 1 if and only if there exist real symmetric d× d matrices A and B such
that

(25) f(X,Y, Z) = det(XI+ Y A+ ZB).

A representation of type (25) is in general not possible for G̊arding hyperbolic
polynomials on Rn with n ≥ 4. Indeed, the dimension of the space of G̊arding
hyperbolic polynomials of degree d on Rn with respect to a fixed direction is

(
n+d−1

d

)
while the set of polynomials in R[X1, . . . , Xn] of the form

(26) det(X1I+X2A2 + · · ·+XnAn),

where Ai are real symmetric d× d matrices, has dimension at most (n− 1) ·
(
d+1
2

)
.

A particular homogeneous polynomial of degree 2 which is G̊arding hyperbolic with
respect to (1, 0, . . . , 0) but cannot be represented in the form (26) is the Lorentzian
polynomial f(X) = X2

1 −X2
2 − · · · −X2

n for n ≥ 4. Cf. [67, p. 2498].

See the survey article [9] for background on G̊arding hyperbolic polynomials and
more ways to generated examples.

3.4.2. Characteristic roots. Let f(Z1, . . . , Zn) ∈ R[Z1, . . . , Zn] be a homogeneous
polynomial of degree d which is G̊arding hyperbolic with respect to a direction
v ∈ Rn. We may factorize

f(x+ Tv) = f(v)

d∏
j=1

(T + λ↓j (x)),
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where

λ↓1(x) ≥ . . . ≥ λ
↓
d(x)

are the decreasingly ordered roots of f(x− Tv) ∈ R[T ]. We call

λ↓ = (λ↓1, . . . , λ
↓
d) : R

n → Rd

the characteristic map of f with respect to v and λ↓1, . . . , λ
↓
d (in no particular order)

the characteristic roots. The polynomial f is recovered by f(x) = f(v)
∏d
j=1 λ

↓
j (x).

Then, for all j = 1, . . . , d, r ∈ R≥0, and s ∈ R,

λ↓j (rx+ sv) = rλ↓j (x) + s,

λ↓j (−x) = −λ
↓
d+1−j(x).

(27)

G̊arding [36, Theorem 2] proved that λ↓d is concave which, by (27), is equivalent

to λ↓1 being convex. In view of (27) it follows that the largest root λ↓1 is sublinear
(i.e., positively homogeneous and subadditive). The connected component Cf of
the set Rn \ {f = 0} which contains v is an open convex cone, one has Cf = {x ∈
Rn : λ↓d(x) > 0}, and f is G̊arding hyperbolic with respect to each w ∈ Cf .

Following [9, Theorem 3.1], we can produce new G̊arding hyperbolic polynomials
from the given f : if g is a homogeneous symmetric polynomial of degree e on Rd
which is G̊arding hyperbolic with respect to (1, 1, . . . , 1) and has characteristic
map µ↓, then g ◦ λ↓ is G̊arding hyperbolic of degree e with respect to v and its
characteristic map is µ↓ ◦ λ↓.

Let us apply this to the homogeneous symmetric polynomial

gk(Y1, . . . , Yd) :=
∏

I⊆{1,...,d}
|I|=k

∑
i∈I

Yi

of degree
(
d
k

)
which is G̊arding hyperbolic with respect to (1, 1, . . . , 1) and has

the characteristic roots µI(Y ) = 1
k

∑
i∈I Yi, where I ranges over the subsets

of {1, . . . , d} with k elements. On the set {Y1 ≥ Y2 ≥ · · · ≥ Yd} we have
µI(Y ) ≥ µJ(Y ) if and only if

∑
i∈I i ≤

∑
j∈J j, in particular, µ{1,...,k} is the

largest characteristic root. Then gk ◦ λ↓ is G̊arding hyperbolic with respect to v

and has the largest characteristic root µ{1,...,k} ◦ λ↓ = 1
k

∑k
i=1 λ

↓
i . From G̊arding’s

result we may conclude that, for all k = 1, . . . , d, the sum of the k largest roots

σk :=

k∑
i=1

λ↓i

is a sublinear function on Rn. Any finite sublinear function on Rn is globally
Lipschitz; see [101, Corollary 10.5.1]. So the functions σk, k = 1, . . . , d, are convex
and globally Lipschitz. We have proved

Proposition 3.31 ([96, Proposition 4.1]). Let f(Z1, . . . , Zn) ∈ R[Z1, . . . , Zn] be a
homogeneous polynomial of degree d which is G̊arding hyperbolic with respect to a
direction v ∈ Rn. The characteristic map λ↓ : Rn → Rd is globally Lipschitz and
difference-convex on Rn.

A real valued function on a convex subset of Rn is called difference-convex if
it can be written as the difference of two continuous convex functions (cf. [7] and
[48]). The class DC of difference-convex functions arises as the smallest vector
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space containing all the continuous convex function on the given set. If U ⊆ Rn is
open, then (cf. [112, Theorem 11] and [48, Section II])

C1,1(U) ⊆ DCloc(U) ⊆ C0,1(U).

On the other hand, the first order partial derivatives of a difference-convex function
f : U → R have bounded variation, i.e., the weak second order partial derivatives of
f are signed Radon measures (cf. Section 7.4). This follows from Dudley’s result [33]
that a Schwartz distribution is a convex function if and only if its second derivative
is a nonnegative matrix valued Radon measure. In dimension one, a real valued
function f on a compact interval is difference-convex if and only if f is absolutely
continuous and f ′ has bounded variation. Note also that DC(Rn) = DCloc(Rn),
by [44].

Using the regularity properties of difference-convex functions, we may further
investigate the regularity of the roots of G̊arding hyperbolic polynomials.

Theorem 3.32 ([96, Lemma 4.5 and Theorem 4.6]). Let f(Z1, . . . , Zn) ∈
R[Z1, . . . , Zn] be a homogeneous polynomial of degree d which is G̊arding hyper-
bolic with respect to some direction in Rn. Then:

(1) If x : R → Rn is of class C1, then there exists a differentiable system
λ = (λ1, . . . , λd) of the roots of f along x (i.e., λ(t) and λ↓(x(t)) coincide
as unordered d-tuples for all t).

(2) Let x ∈ DC(R,Rn) ∩W 2,1
loc (R,Rn) (for instance, x ∈ C1,1(R,Rn)). Then

any differentiable system λ = (λ1, . . . , λd) of the roots of f along x is actu-
ally of class

λ ∈ C1(R,Rd) ∩DC(R,Rd) ∩W 2,1
loc (R,R

d).

(3) The result is uniform in the following sense: Let I ⊆ R be a bounded open
interval. Let U be an open neighborhood of the closure of I1+k in R1+k.
Suppose that x : U → Rn is such that
• x is locally DC on U ,

• x(·, r) ∈ C1(I,Rn) ∩W 2,1(I,Rn) for all r ∈ Ik.
Assume that, for each r ∈ Ik, a C1 system λ(·, r) of the roots of f along

x(·, r) is fixed. Then the family λ(·, r), for r ∈ Ik, is bounded in C1(I,Rd)
and there is a nonnegative L1 function m : Ik → [0,∞) such that

∥λ(·, r)∥W 2,1(I,Rd) ≤ m(r), for a.e. r ∈ Ik.

Remark 3.33. It is shown in [45, Theorem 4.2] that for any G̊arding hyperbolic
polynomial f with respect to v ∈ Rn of degree d, x0 ∈ Rn, and w ∈ Cf there is
a system λ = (λ1, . . . , λd) : R → Rd of the roots of f along t 7→ x0 + tw which is
real analytic and such that each λj : R → R is strictly increasing and surjective.
The inverses of the λj form a system of the characteristic roots of the G̊arding
hyperbolic polynomial f with respect to w ∈ Rn along t 7→ x0 + tv. The proof
is based on the homogeneity properties (27) and the description of Cf as the set,

where λ↓1 ≥ · · · ≥ λ
↓
d are positive.

3.5. Eigenvalues of Hermitian matrices. Let us apply the above findings to
the G̊arding hyperbolic polynomial det (with respect to the identity matrix I) on
the real vector space Herm(d) of complex d× d Hermitian matrices. Its character-

istic map λ↓ = (λ↓1, . . . , λ
↓
d) : Herm(d) → Rd assigns to a Hermitian matrix A its
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eigenvalues in decreasing order

λ↓1(A) ≥ · · · ≥ λ
↓
d(A).

As a special case of Proposition 3.31, we get:

Corollary 3.34 ([96, Corollary 6.1]). The characteristic map λ↓ : Herm(d)→ Rd

is globally Lipschitz and difference-convex on Herm(d). The sum
∑k
i=1 λ

↓
i , for

k = 1, . . . , d, of the k largest eigenvalues is sublinear.

The following result is a consequence of Theorem 3.32.

Theorem 3.35 ([96, Theorem 6.2]). Let A : R → Herm(d) be a curve of d × d
Hermitian matrices. Then:

(1) If A is of class C1, then there exists a differentiable system λ = (λ1, . . . , λd)
of the eigenvalues of A.

(2) If A is of class DC∩W 2,1
loc on R (for instance, if it is of class C1,1), then any

differentiable system λ = (λ1, . . . , λd) of the eigenvalues of A is actually of
class

λ ∈ C1(R,Rd) ∩DC(R,Rd) ∩W 2,1
loc (R,R

d).

(3) The result in (2) is uniform in the following sense: Let I ⊆ R be a bounded
open interval. Let U be an open neighborhood of the closure of I1+k in
R1+k. Suppose that A : U → Herm(d) is such that
• A is locally DC on U ,

• A(·, r) is of class C1 ∩W 2,1 on I for all r ∈ Ik.
Assume that, for each r ∈ I

k
, a C1 system λ(·, r) of the eigenvalues of

A(·, r) is fixed. Then the family λ(·, r), for r ∈ Ik, is bounded in C1(I,Rd)
and there is a nonnegative L1 function m : Ik → [0,∞) such that

∥λ(·, r)∥W 2,1(I,Rd) ≤ m(r), for a.e. r ∈ Ik.

The conclusion of this theorem is best-possible among all Sobolev spaces W k,p.
Indeed, by the Sobolev inequality, W k,p regularity with k+p > 3 would imply C1,α

regularity with some α > 0, contradicting the following counterexample.

Example 3.36 ([61]). There is a C∞ curve A(t), t ∈ R, of real symmetric 2 × 2
matrices and a convergent sequence tn ∈ R such that

A(tn + t) =

(
2−n

2

2−nt

2−nt −2−n2

)
, for |t| ≤ n−2, n ≥ 1.

There is no C1,α-system of the eigenvalues of A for any α > 0.

A little more work leads to the following stronger version of (1).

Theorem 3.37. If A : R→ Herm(d) is of class C1, then there exists a C1 system
λ = (λ1, . . . , λd) of the eigenvalues of A.

This is due to Rellich [100] in the case of symmetric matrices (see also Weyl
[115]), and it was proved for normal matrices in Rainer [94]; see Theorem 3.43
below.

Note that, conversely, Theorem 3.35 implies Theorem 3.32 if n ≤ 3; cf. Re-
mark 3.30.
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3.6. Singular values. Theorem 3.35 contains information on the regularity of sin-
gular values. Let A ∈ Cm×n be any complex m× n matrix and let

σ↓
1(A) ≥ σ

↓
2(A) ≥ · · · ≥ σ↓

n(A) ≥ 0

be the singular values of A in decreasing order, i.e., the nonnegative square roots

of the eigenvalues of A∗A. If rankA = ℓ, then σ↓
ℓ+1(A) = · · · = σ↓

n(A) = 0. Thus

we set ℓ := min{m,n} and consider only σ↓
j (A), for j = 1, . . . , ℓ. We may consider

the σ↓
j as functions on the vector space Cm×n.

Without loss of generality assume that m ≤ n and let Ã be the n × n matrix
resulting from A by adding n −m rows consisting of zeros. Then the eigenvalues
of the Hermitian matrix

(28)

(
0 Ã

Ã∗ 0

)
are precisely

σ↓
1(A) ≥ · · · ≥ σ↓

n(A) ≥ −σ↓
n(A) ≥ · · · ≥ −σ

↓
1(A).

By Corollary 3.34, for all k = 1, . . . , ℓ, the sum

k∑
j=1

σ↓
j

of the k largest singular values is a sublinear function on Cm×n viewed as a real

vector space. In fact, the sums A 7→
∑k
j=1 σ

↓
j (A) are the so-called Ky Fan norms.

Corollary 3.38. The mapping σ↓ = (σ↓
1 , . . . , σ

↓
ℓ ) : Cm×n → Rℓ, where ℓ =

min{m,n}, is globally Lipschitz and difference-convex on Cm×n.

Theorem 3.39. Let A : R→ Cm×n be a curve of m×n complex matrices of class
C1∩DC ∩W 2,1

loc . If rankA(t) = min{m,n} =: ℓ for all t, then there exists a system

σ = (σ1, . . . , σℓ) of the singular values of A such that σ ∈ C1(R,Rℓ)∩DC(R,Rℓ)∩
W 2,1

loc (R,Rℓ). This result is uniform in the sense explained in Theorem 3.35.

Proof. Apply Theorem 3.35 to the Hermitian matrix (28). The condition on the
rank of A guarantees that the nontrivial singular values of A are always strictly
positive and hence there exists a C1 system of them, since there exists a C1 system
of the eigenvalues of (28). □

The rank condition is necessary; for instance, the singular value of the symmetric
1× 1 matrix A(t) = (t) is |t| which does not admit a C1 parameterization.

3.7. Eigenvalues of normal matrices. We have seen that the eigenvalues of
Hermitian matrices have similar regularity properties as the roots of hyperbolic
polynomials. Actually, they are slightly stronger under much weaker assumptions,
see Theorem 3.35, since the eigenvalues of Hermitian matrices are the characteristic
roots of the determinant which is G̊arding hyperbolic with respect to the identity
matrix.

Interestingly, the eigenvalues of the wider class of normal complex matrices have
similar strong regularity properties.
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Theorem 3.40 ([12], [11, VII.4.1]). Let A,B be normal complex d × d matrices
and let λj(A) and λj(B), 1 ≤ j ≤ d, denote the respective eigenvalues. Then

min
σ∈Sd

max
1≤j≤d

|λj(A)− λσ(j)(B)| ≤ C ∥A−B∥

for a universal constant C with 1 < C < 3, where Sd is the symmetric group and
∥ · ∥ is the operator norm.

This result shows that the unordered d-tuple of eigenvalues [λ1(A), . . . , λd(A)] is
Lipschitz continuous as a function of the normal matrix A. On the left-hand side
we have the Wasserstein metric W∞ (up to a constant factor); see Example 6.8.
In general, the single eigenvalues do not admit a continuous parameterization, as
shown by the following example.

Example 3.41. Each choice of the eigenvalues of the normal matrix

A(z) :=

(
0 z
|z| 0

)
, z ∈ C,

must be discontinuous in a neighborhood of 0.

Continuous systems of the eigenvalues always exist for continuous families of
Hermitian matrices (e.g., by ordering the eigenvalues increasingly or decreasingly)
or for continuous real one-parameter families of normal matrices (cf. [52, II.5.2]).
The following theorem should be compared to Bronshtein’s theorem 3.2.

Theorem 3.42 ([94, Proposition 6.3]). Let A(t), t ∈ R, be a C0,1 curve of normal
complex matrices. Then any continuous system of the eigenvalues of A is C0,1.

Let us sketch the main ideas in the proof. Fix s ∈ R and an eigenvalue z of A(s).
Letm be the multiplicity of z. For t near s, there arem eigenvalues λ1(t), . . . , λm(t),
close to z and λj , 1 ≤ j ≤ m, are continuous functions. For each t, we may
choose an orthonormal system of eigenvectors v1(t), . . . , vm(t) corresponding to
λ1(t), . . . , λm(t). For each t and each sequence tk → t, we have, after passing
to a subsequence, vj(tk) → wj(t), where w1(t), . . . , wm(t) form an orthonormal
system of eigenvectors of A(t) (restricted to the direct sum of eigenspaces of the
λj(t), 1 ≤ j ≤ m). Then

A(t)− λj(t)
tk − t

vj(tk) +
A(tk)−A(t)

tk − t
vj(tk) =

λj(tk)− λj(t)
tk − t

vj(tk).

By taking the inner product with wj(t) and passing to the limit, one can show
that for any continuous system λj of the eigenvalues of A the derivatives λ′j(t) exist
whenever A′(t) exists, they form the set of eigenvalues of A′(t) and satisfy

(29) λ′j(t) = ⟨A′(t)wj(t) | wj(t)⟩,
possibly after applying a suitable permutation of the eigenvalues on one side of t.
Now it suffices to check that λj is locally absolutely continuous. Then, by means
of (29), we see that λ′j exists almost everywhere and is locally bounded. We may

conclude that λj is C
0,1.

With the help of the formula (29), one can show that there are C1 systems of
the eigenvalues provided that t 7→ A(t) is C1.

Theorem 3.43 ([94, Proposition 6.11]). Let A(t), t ∈ R, be a C1 curve of normal
complex matrices. Then there is a C1 system of the eigenvalues of A. If t 7→ A(t)
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is C2, then there is a C1 system of the eigenvalues of A which is twice differentiable
everywhere.

Note that this is best possible, by Example 3.36. The next example shows that
the assumption that A is normal cannot be omitted.

Example 3.44 ([52, II.5.9]). Let α > 1 and β > 2. Then

A(t) =

(
|t|α |t|α − |t|β

(
2 + sin 1

|t|
)

−|t|α −|t|α

)
, t ∈ R \ {0}, A(0) = 0,

forms a C1 curve of diagonalizable (but not normal) matrices. The eigenvalues of
A are given by

λ±(t) = ±|t|
α+β

2

(
2 + sin

1

|t|

) 1
2

, t ∈ R \ {0}, λ±(0) = 0.

The derivatives λ′± exist everywhere, but they are discontinuous at 0 if α + β ≤ 4
and even unbounded near 0 if α+ β < 4.

For multiparameter families of normal matrices we have the following.

Corollary 3.45 ([94, Theorem 6.19]). Let A(x), x ∈ U , be a C0,1 family of normal
complex matrices on an open subset U ⊆ Rn and let λ : V → C be a continuous
eigenvalue of A defined on an open subset V ⊆ U . Then λ is of class C0,1. More-
over, if x0 ∈ U ∩V and c : R→ U is a C0,1 curve with c(0) = x0 and c((0, 1)) ⊆ V ,
then λ ◦ c|(0,1) is globally Lipschitz on (0, 1).

The first statement follows from Theorem 3.42 and the fact that C0,1 regularity
can be tested on C∞ curves (cf. [60]). For the second assertion, we note that the
formula (29) yields that the Lipschitz constant of λ ◦ c|(0,1) is globally bounded by
the one of A ◦ c|(0,1).

In the spirit of Theorem 3.27, it is possible to give sufficient conditions for the
existence of Cp eigenvalues and eigenvectors of curves of normal matrices in terms
of the differentiability of the entries and the order of contact of the eigenvalues.

Theorem 3.46 ([95, Theorem 7.8]). Let A(t), t ∈ I, be a curve of normal complex
matrices. Suppose that the characteristic polynomial is normally nonflat. There
exists Θ(A) ∈ N ∪ {∞} such that if p ∈ N≥1 ∪ {∞} and A(t), t ∈ I, has Cp+Θ(A)

entries, then it admits a Cp+Θ(A) system of its eigenvalues and a Cp system of
eigenvectors.

If the entries of the normal matrix A are definable in an o-minimal expansion of
the real field, then the eigenvalues have the same regularity without the assumption
of normal nonflatness.

Theorem 3.47 ([95, Theorem 8.1]). Let A(t), t ∈ I, be a definable curve of normal
complex matrices. There exists an integer Θ(A) ∈ N such that if p ∈ N ∪ {∞} and
A(t), t ∈ I, has Cp+Θ(A) entries, then it admits a Cp+Θ(A) system of its eigenvalues.

That there is no hope for continuous eigenvectors in this setup (even if there is
no oscillation) is seen by the following example.

Example 3.48 ([95, Example 9.5]). Let

B(t) :=

(
1 0
0 1

)
for t ≥ 0 and B(t) :=

(
1 1
1 −1

)
for t < 0.
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Then A(t) := tp+1B(t) is a definable Cp curve of real symmetric matrices which
does not admit a continuous system of eigenvectors. If the underlying o-minimal

expansion of the real field defines the exponential function, then A(t) := e−1/t2B(t)
is a definable C∞ curve of real symmetric matrices not admitting continuous eigen-
vectors.

Remark 3.49. Many of the results are true (in slightly adjusted form) for pa-
rameterized families of unbounded normal operators in Hilbert space with common
domain of definition and with compact resolvent. Cf. [62, 63, 94] and references
therein.

4. Regularity of the roots in the general (nonhyperbolic) case

Let I ⊆ R be a bounded open interval and let

(30) Pa(t)(Z) = Zd +

d∑
j=1

aj(t)Z
d−j , t ∈ I,

be a monic polynomial with complex valued functions aj : I → C, j = 1, . . . , d, as
coefficients. It is not hard to see that if the coefficients aj are continuous then Pa
always admits a continuous system of the roots (e.g. [52, II.5.2]). In the absence of
hyperbolicity assumptions, the roots of P cannot be chosen Lipschitz even in the
simplest radical case: ad = t and aj ≡ 0 for j ≤ d− 1.

Motivated by the analysis of certain systems of pseudo-differential equations,
Spagnolo [106] posed the question of absolute continuity of the roots of Pa. Using
explicit formulas for the roots, he gave the positive answer for the polynomials of
degree 2 and 3 in [105].

The positive answer to this question in the general case was given in Parusiński
and Rainer [83, 84] with two different proofs. They both use in a substantial way
the work of Ghisi and Gobbino [37] on the radical case, where the optimal regularity
conditions were given. The paper [84] also contains the optimal Sobolev regularity
of the roots in the general case, see below for precise statements.

4.1. The case of radicals. The first result towards absolute continuity of the
roots is probably Lemma 1 in Colombini, Jannelli, and Spagnolo [25] which states
that for a real valued nonnegative function f of class Ck,α(I) on a bounded open
interval I, with k ∈ N≥1 and 0 < α ≤ 1, the real radical f1/(k+α) is absolutely
continuous on I and satisfies

∥(f
1

k+α )′∥k+αL1(I) ≤ C(k, α, I)∥f∥Ck,α(I).

Tarama [108] extended this lemma to real valued functions (not necessarily non-
negative). A better summability for the weak partial derivatives of f1/(k+1) was
obtained by Colombini and Lerner [26] for nonnegative Ck+1 functions f of several
real variables.

The case of radicals was settled by Ghisi and Gobbino [37] by finding their
optimal regularity.

Theorem 4.1 (Ghisi and Gobbino [37, Theorem 2.2]). Let I ⊆ R be a bounded
open interval and let f be a real valued continuous function such that there exists
g ∈ Ck,α(I) so that |f |k+α = |g| on I. Then f ′ ∈ Lpw(I), where 1

p +
1

k+α = 1, and

∥f ′∥p,w,I ≤ C(k)max
{
[Höldα,I(g

(k))]
1

k+α |I|
1
p , ∥g′∥

1
k+α

L∞(I)

}
;(31)
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in particular, f belongs to the Sobolev space W 1,q(I) for every q ∈ [1, p).

Here Lpw(I) denotes the weak Lebesgue space equipped with the quasinorm

∥f∥p,w,I := supr≥0

{
r · L1({t ∈ I : |f(t)| > r})

1
p
}
, where L1 is the one dimen-

sional Lebesgue measure. By Höldα,I(g
(k)) we mean the α-Hölder constant of g(k)

on I, and |I| = L1(I) is the length of the interval I, see also Section 7.
Ghisi and Gobbino also provided examples that show that the assumptions as

well as the conclusion in their theorem are best possible.

• Take g(t) = t and f(t) = |t|
1

k+α on the interval I = (−1, 1). Then f ′ ̸∈
Lp(I) for p defined by 1

p+
1

k+α = 1. So the summability of f ′ in Theorem 4.1

is optimal. See [37, Example 4.3].
• In [37, Example 4.4], a C∞ function g : I → R on an interval I = (0, r)
with the following properties is constructed:

– g belongs to Ck,β(I) for every β < α but not for β = α.

– f := |g|
1

k+α has unbounded variation on I and hence f ′ ̸∈ L1(I).
So the differentiability assumption on g in Theorem 4.1 is optimal.

Higher order Glaeser inequalities [37, Theorems 2.1 and 3.2] play an important
role in the proof of Theorem 4.1. We recall a slightly more general statement in
the next subsection, see Corollary 4.4.

4.2. Optimal Sobolev regularity of the roots.

Theorem 4.2 ([84, Theorem 1]). Let I ⊆ R be a bounded open interval and let Pa
be a monic polynomial (30) with complex valued coefficients aj ∈ Cd−1,1(I), j =
1, . . . , d. Let λ ∈ C0(I) be a continuous root of Pa. Then λ is absolutely continuous
on I and belongs to the Sobolev space W 1,p(I) for every 1 ≤ p < d/(d − 1). The
derivative λ′ satisfies

∥λ′∥Lp(I) ≤ C(d, p)max{1, |I|1/p} max
1≤j≤d

∥aj∥1/jCd−1,1(I)
,(32)

where the constant C(d, p) depends only on d and p.

The above result can be understood as a complex analogue of Bronshtein’s the-
orem, see Theorem 3.2. Its proof given in [84] follows the strategy of the proof
of Bronshtein’s theorem as explained in Section 3.2, though many details are sig-
nificantly more complex. The universal splitting Pã = PbPc allows the induction
on the degree of Pa. After the Tschirnhausen transformation Pb ; Pb̃ the new

polynomials Pb̃ split again near points t1 ∈ I, where not all b̃i vanish. The central
idea of the underlying induction is to show an inequality between the combined
coefficients of Pã and Pb̃ and a similar expression for Pb̃ and the polynomial issued
from the splitting of Pb̃, that is [84, Formula (18)]. The proof of this technical
step is based on the radical case, Theorem 4.1, and on the following interpolation
lemma.

Lemma 4.3 ([84, Lemma 4]). Let I ⊆ R be a bounded open interval, m ∈ N>0,
and α ∈ (0, 1]. If f ∈ Cm,α(I), then for all t ∈ I and s = 1, . . . ,m,

|f (s)(t)| ≤ C|I|−s
(
VI(f) + VI(f)

(m+α−s)/(m+α)(Höldα,I(f
(m)))s/(m+α)|I|s

)
,(33)

for a universal constant C depending only on m and α.

Here VI(f) := supt,s∈I |f(t)− f(s)|. As a corollary we get the following general-
izations of the higher order Glaeser inequalities of [37].
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Corollary 4.4 ([84, Corollary 3]). Let m ∈ N>0 and α ∈ (0, 1]. Let I = (t0 −
δ, t0+δ) with t0 ∈ R and δ > 0. If f ∈ Cm,α(I) is such that f and f ′ do not change
their sign on I, then for all s = 1, . . . ,m,

|f (s)(t0)| ≤ C|I|−s
(
|f(t0)|+ |f(t0)|(m+α−s)/(m+α)(Höldα,I(f

(m)))s/(m+α)|I|s
)
,

(34)

for a universal constant C depending only on m and α.

Note that the bound (32) is not invariant under rescaling of the interval I, in
contrast to (31).

Open Problem 4.5. Replace (32) by a scale invariant bound.

Unlike in the case of radicals, i.e., Theorem 4.1, it is not known whether in the

setting of Theorem 4.2, λ′ belongs to the weak Lebesgue space L
d/(d−1)
w (I). The

proof cannot be, at least easily, adapted because ∥ · ∥pp,w,I is not σ-additive.

Open Problem 4.6. Is λ′ in the setting of Theorem 4.2 an element of the weak

Lebesgue space L
d/(d−1)
w (I)? If so is there an explicit bound for ∥λ′∥d/(d−1),w,I in

terms of the coefficients aj and the interval I?

4.2.1. Multivalued Sobolev functions. In [4] Almgren developed a theory of d-valued
Sobolev functions. A d-valued function is a mapping with values in the set Ad(Rm)
of unordered d-tuples of points in Rm. Let us denote by [x] = [x1, . . . , xd] the un-
ordered d-tuple consisting of x1, . . . , xd ∈ Rm; then [x1, . . . , xd] = [xσ(1), . . . , xσ(d)]
for each permutation σ ∈ Sd. The set Ad(Rm) = {[x] = [x1, . . . , xd] : xi ∈ Rm}
forms a complete metric space when endowed with the metric

d([x], [y]) := min
σ∈Sd

( d∑
i=1

|xi − yσ(i)|2
)1/2

.

This is (up to a constant factor) the Wasserstein metric W2, see Example 6.8.
Almgren proved that there is an integer N = N(d,m), a positive constant C =
C(d,m), and an injective Lipschitz mapping ∆ : Ad(Rm) → RN , with Lipschitz
constant Lip(∆) ≤ 1 and Lip(∆|−1

∆(Ad(Rm))) ≤ C; moreover, there is a Lipschitz

retraction of RN onto ∆(Ad(Rm)).
One can use this bi-Lipschitz embedding to define Sobolev spaces of d-valued

functions: for open U ⊆ Rn and 1 ≤ p ≤ ∞ define

W 1,p(U,Ad(Rm)) := {f : U → Ad(Rm) : ∆ ◦ f ∈W 1,p(U,RN )}.
For an intrinsic definition, see [30, Definition 0.5 and Theorem 2.4].

Let us identify R2 ∼= C. Theorem 4.2 implies a sufficient condition for a d-valued
function U → Ad(C) to belong to the Sobolev spaces W 1,p(U,Ad(C)) for every
1 ≤ p < d/(d− 1); see Theorem 4.7 below.

We shall use the following terminology. By a parameterization of a d-valued
function f : U → Ad(C) we mean a function φ : U → Cd such that f(x) = [φ(x)] =
[φ1(x), . . . , φd(x)] for all x ∈ U . Let π : Cd → Ad(C) be defined by π(z) := [z]; it is
a Lipschitz mapping with Lipschitz constant Lip(π) = 1. Then a parameterization
of f amounts to a lifting φ of f over π, i.e., f = π ◦ φ. The elementary symmetric
polynomials induce a bijective mapping a : Ad(C)→ Cd,

aj([z1, . . . , zd]) := (−1)j
∑

i1<···<ij

zi1 · · · zij , 1 ≤ j ≤ d.
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In other words, the monic complex polynomials of degree d are in one-to-one cor-
respondence with their unordered d-tuples of roots.

Theorem 4.7 ([84, Theorem 6]). Let U ⊆ Rn be open and let f : U → Ad(C) be
continuous. If a ◦ f ∈ Cd−1,1(U,Cd), then f ∈ W 1,p(V,Ad(C)) for each relatively
compact open V ⋐ U and each 1 ≤ p < d/(d− 1). Moreover,

∥∇(∆ ◦ f)∥Lp(V ) ≤ C(d, n, p,K,∆)
(
1 + max

1≤j≤d
∥aj ◦ f∥1/jCd−1,1(W )

)
,

where K is any finite cover of V by open boxes
∏d
i=1(αi, βi) contained in U and

W =
⋃
K.

In particular, the roots of a polynomial Pa of degree d with coefficients aj ∈
Cd−1,1(U), j = 1, . . . , d, form a d-valued function λ : U → Ad(C) which belongs

to W 1,p
loc (U,Ad(C)) for each 1 ≤ p < d/(d − 1); in fact, it is well-known that

λ : U → Ad(C) is continuous (cf. [52] or [91, Theorem 1.3.1]). Theorem 4.7 implies
that the push-forward

(a−1)∗ : Cd−1,1(U,Cd)→
⋂

1≤p<d/(d−1)

W 1,p
loc (U,Ad(C)).

is a bounded mapping. Similarly to the hyperbolic case, the continuity of this
map is an important open problem, compare to Example 3.6, Remark 3.7, Open
Problem 3.8.

Open Problem 4.8. Is the map (a−1)∗ continuous?

4.3. Absolute continuity via desingularization. Formulas for the roots.
The main theorem of Parusiński and Rainer [83] also implies the absolute continuity
of the roots of (30) provided the coefficients aj are of class Ck, for k sufficiently
large. Its statement, see Theorem 4.9 below, is weaker than the optimal bound of
Theorem 4.2. On the other hand, it presents a different approach through modifica-
tions of the space of coefficients of the universal monic polynomial that replaces the
arguments for each curve of polynomials separately. This approach can be better
suited in some cases, for instance in the proof of the bounded variation property,
see Theorem 4.11 below.

Theorem 4.9 ([83, Main Theorem]). For every d ∈ N>0 there is k = k(d) ∈ N>0

and p = p(d) > 1 such that the following holds. Let I ⊆ R be a bounded open
interval and let Pa be a monic polynomial of degree d with complex valued coefficients
aj ∈ Ck(I), j = 1, . . . , d. Then:

(1) Let λj ∈ C0(I), j = 1, . . . , d, be a continuous parameterization of the roots
of Pa on I. Then the distributional derivative of each λj in I is a measurable
function λ′j ∈ Lq(I) for every q ∈ [1, p). In particular, each λj ∈ W 1,q(I)
for every q ∈ [1, p).

(2) This regularity of the roots is uniform. Let {Paν : ν ∈ N},

Paν(t)(Z) = Zd +

d∑
j=1

aν,j(t)Z
d−j ∈ Ck(I)[Z], ν ∈ N ,

be a family of curves of polynomials, indexed by ν in some set N , so that
the set of coefficients {aν,j : ν ∈ N , j = 1, . . . , d} is bounded in Ck(I).
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Then the set

{λν ∈ C0(I) : Paν (λν) = 0 on I, ν ∈ N}

is bounded in W 1,q(I) for every q ∈ [1, p).

For instance, for d = 3 the proof given in [83, Part 3] provides k(3) = 6 and
p(3) = 6/5, which is worse than the optimal k = 3, p = 3/2, but still better than
Spagnolo’s result which gives the absolute continuity (i.e. p = 1) for k = 25.

The proof of the above theorem is based on formulas for the roots of the universal

monic polynomial Pa(Z) = Zd +
∑d
j=1 ajZ

d−j in terms of its coefficients a =

(a1, . . . , ad) ∈ Cd. They are obtained as follows. By Hironaka’s resolution of
singularities [49], there is a tower of smooth principalizations

Cd σ2←−M2
σ3,2←−M3

σ4,3←− · · · σd,d−1←− Md(35)

which successively principalize the generalized discriminant ideals Dm in C[a], m =
2, . . . , d, defined in [83, Section 1.1]. These ideals give the stratification of the space
of polynomials by root multiplicities. Then, locally on Md, the roots of the pulled
back polynomial Pσ∗

d(a)
are given by linear combinations with rational coefficients

d∑
m=1

Am (φm ◦ σd,m), where(36)

φm = fαm
m ψm(y

1/qm
m,1 , . . . , y1/qmm,rm , ym,rm+1, . . . , ym,d).

Here σm = σ2 ◦ σ3,2 ◦ · · · ◦ σm,m−1, σd,m = σm+1,m ◦ · · · ◦ σd,d−1, fm ∈ Dm

is a local generator of σ∗
m(Dm), ψm is a convergent power series, qm ∈ N≥1,

αm ∈ 1
qm

N≥1, and ym,i is a local system of coordinates so that f−1
m (0) is given

by ym,1ym,2 · · · ym,rm = 0. These formulas reduce the problem to radicals and then
one may use Theorem 4.1.

The theorem is first proven for, sufficiently generic, real analytic curves of poly-
nomials. Let a(t) be such a curve, for genericity it suffices that the discriminant of
Pa(t) is not identically equal to zero. Note that a(t) can be uniquely lifted over the
sequence of blowings-up (35) by the universal property of blowing-ups. The main
difficulty is to get uniform bounds for the norms independent of the choice of the
curve.

If a(t) is arbitrary, then by the Weierstrass approximation theorem it can be
approximated by a sequence of polynomial curves (aν) ⊆ Cω(I,Cd), such that

aν → a in Ck(I,Cd) as ν →∞.

Then, thanks to the uniformity of the bounds, one concludes by the Arzelá–Ascoli
theorem, or alternatively by the Rellich–Kondrachov compactness theorem, by pass-
ing to a subsequence.

4.4. Multiparameter case. Though Theorems 4.1, 4.2, 4.9 are one dimensional,
they can be fairly easily extended to the multiparameter case by a standard sec-
tioning argument. We recall the statement for the analogue of Theorem 4.2. For
Theorem 4.1 and Theorem 4.9, see [37, Theorem 2.3] and [83, Multiparameter
Theorem], respectively.
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Theorem 4.10 ([84, Theorem 2]). Let U ⊆ Rn be open and let

(37) Pa(x)(Z) = Zd +

d∑
j=1

aj(x)Z
d−j , x ∈ U,

be a monic polynomial with complex valued coefficients aj ∈ Cd−1,1(U), j =
1, . . . , d. Let λ ∈ C0(V ) be a root of Pa on a relatively compact open subset V ⋐ U .
Then λ belongs to the Sobolev space W 1,p(V ) for every 1 ≤ p < d/(d − 1). The
distributional gradient ∇λ satisfies

(38) ∥∇λ∥Lp(V ) ≤ C(d, n, p,K) max
1≤j≤d

∥aj∥1/jCd−1,1(W )
,

where K is any finite cover of V by open boxes
∏n
i=1(αi, βi) contained in U and

W =
⋃
K; the constant C(d, n, p,K) depends only on d, n, p, and the cover K.

There is a simpler version of the above theorem, avoiding covers by open boxes
in the statement, valid for bounded Lipschitz domains, see [85, Theorem A.1].

4.4.1. Bounded variation of the roots. There is nevertheless an important difference
between the one parameter and the multiparameter case. Recall that by a theorem
of Kato [52, II.5.2] a continuous family of complex monic polynomials depending
on one real parameter always admits a continuous choice of roots. This is no
longer true if the dimension of the parameter space is at least two. In that case,
monodromy may prevent the existence of continuous roots. For instance, the radical
R2 = C ∋ (x+iy) 7→ (x+iy)1/d, d > 1, does not admit continuous parameterizations
near the origin.

Functions of bounded variation (BV ) are integrable functions whose distribu-
tional derivative is a vector valued finite Radon measure (cf. Section 7.4). They
form an algebra of discontinuous functions. Due to their ability to deal with discon-
tinuities, they are widely used in the applied sciences, see e.g. [53]. It is shown by
Parusiński and Rainer in [85] that the roots of a polynomial (37) with coefficients
in a differentiability class of sufficiently high order can be represented by functions
of bounded variation.

Theorem 4.11 ([85, Theorem 1.1]). For all integers d, n ≥ 2 there exists an integer
k = k(d, n) ≥ max{d, n} such that the following holds. Let Ω ⊆ Rn be a bounded
Lipschitz domain and let (37) be a monic polynomial of degree d with complex valued
coefficients a = (a1, . . . , ad) ∈ Ck−1,1(Ω,Cd).

Then the roots of Pa admit a parameterization λ = (λ1, . . . , λd) by special func-
tions of bounded variation (SBV ) on Ω such that

(39) ∥λ∥BV (Ω) ≤ C(d, n,Ω) max
{
1, ∥a∥L∞(Ω)

}
max

{
1, ∥a∥Ck−1,1(Ω)

}
.

There is a finite collection of Ck−1 hypersurfaces Ej in Ω such that λ is continuous
in the complement of E :=

⋃
j Ej. Any hypersurface Ej is closed in an open subset

of Ω but possibly not in Ω itself. All discontinuities of λ are jump discontinuities.

The main difficulty of the problem is to make a good choice of the discontinuity
set E of the roots. On the complement of E, the roots are of optimal Sobolev class
W 1,p, for all 1 ≤ p < d

d−1 , by [84], see Theorem 4.10. In general, it is not possible to

choose the discontinuity set E of finite codimension one Hausdorff measure Hn−1,
[85, Example 2.4]. Thus, in order to have bounded variation it is crucial that the
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jump height of a selection of a root is integrable (with respect to Hn−1) along its
discontinuity set, see also the end of Section 6.1.

The proof is based on the radical case, see [85, Theorem 1.4], which is significantly
simpler, and on the formulas (36) for the roots of the universal polynomial Pa,
a ∈ Cd, obtained in [83]. The result of Ghisi and Gobbino [37] is used in several
places. Interestingly, the method of [83] seems to be better suited for the control
of the discontinuities and integrability along them than a more elementary method
of [84].

5. Lifting maps over invariants of group representations

5.1. A reformulation of the regularity problem for hyperbolic polynomi-
als. The regularity problem for the roots of hyperbolic polynomials can be seen
as a special lifting problem: let the symmetric group Sd act on Rd by permuting
the coordinates. The algebra of invariant polynomials R[Rd]Sd is generated by the
elementary symmetric functions

σi =
∑

j1<···<ji

xj1 · · ·xji , 1 ≤ i ≤ d.

Each point in the image of the map σ = (σ1, . . . , σd) : Rd → Rd represents, in
view of Vieta’s formulas, a monic hyperbolic polynomial Pa of degree d, in a unique
way. The fiber of σ over this point is the orbit Sd(λ1, . . . , λd) = {(λτ(1), . . . , λτ(d)) :
τ ∈ Sd}, where λ1, . . . , λd are the roots of Pa (with multiplicities). Thus σ(Rd) =
Hyp(d).

In this picture, a family of monic hyperbolic polynomials Pa(x), x ∈ U ⊆ Rn,
is a map p : U → Rd with image contained in σ(Rd) and a system of roots for the
family Pa is a lifting p : U → Rd of p over σ, i.e., σ ◦ p = p. The regularity problem
can be rephrased as follows: Given that p has some regularity, how regular can a
lifting of p be chosen?

Rd

σ

��
U

p

77

p
// σ(Rd)

This setup can be generalized considerably and we will see that Bronshtein’s
theorem 3.2 and many other results on the perturbation theory of hyperbolic poly-
nomials hold in greater generality.

We shall also discuss a generalization of the nonhyperpolic case along the same
lines in Section 5.5 and subsequent sections.

5.2. Orthogonal representations of compact Lie groups. Let G be a compact
Lie group and let ρ : G → O(V ) be an orthogonal representation in a real finite
dimensional Euclidean vector space V with inner product ⟨· | ·⟩. We will often just
write G ⟲ V . In particular, G may be a finite group. By a classical theorem of
Hilbert and Nagata, the algebra R[V ]G of invariant polynomials on V is finitely
generated. So let {σi}ni=1 be a system of homogeneous generators of R[V ]G and call
it a system of basic invariants.

A system of basic invariants {σi}ni=1 is called minimal if there is no polynomial
relation of the form σi = P (σ1, . . . , σ̂i, . . . , σn), or equivalently, {σi}ni=1 induces a
basis of the real vector space R[V ]G+/(R[V ]G+)

2, where R[V ]G+ = {f ∈ R[V ]G : f(0) =
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0}; cf. [31, Section 3.6]. The elements in a minimal system of basic invariants may
not be unique, but their number and their degrees di := deg σi are unique. Let us
set

d := max
1≤i≤n

di

and consider the orbit map σ = (σ1, . . . , σn) : V → Rn. The image σ(V ) is a
semialgebraic set in the categorical quotient V//G := {y ∈ Rn : P (y) = 0 for all P ∈
I }, where I is the ideal of relations between σ1, . . . , σn. Since G is compact, σ is
proper and separates orbits of G, and it thus induces a homeomorphism between
the orbit space V/G and σ(V ).

Note that, by the differentiable slice theorem, V/G is a local model for the orbit
space of differentiable G-manifolds.

The given data, i.e., the representation G ⟲ V , a fixed system of basic invariants
{σi}ni=1 with degrees di = deg σi, and the corresponding orbit map σ, will be
abbreviated by the triple (G ⟲ V, d, σ).

In this setting, we may consider the following lifting problem: let f : U → Rn,
U ⊆ Rm, be a map with some regularity (Cω, C∞, Cp, etc.) and image contained in
σ(V ); for brevity we will write f ∈ C (f, σ(V )), where C is the respective regularity
class. How regular can a lifting f : U → V of f be?

V

σ

��
U

f

77

f
// σ(V )

Note that any two systems of basic invariants differ by a polynomial diffeomorphism.
Thus this question is independent of the choice of {σi}ni=1 and hence of σ.

5.2.1. Differentiable lifting. The results known for this lifting problem generalize
the results for hyperbolic polynomials. The role of the polynomial degree (as an
order of differentiablity of the coefficients needed to guarantee certain regularity
properties of the roots) is here played by d, the maximal degree of a minimal
system of basic invariants.

Theorem 5.1 ([56, Proposition 3.1 and Theorem 4.4]). Let (G ⟲ V, d, σ) be a real
finite dimensional orthogonal representation of a compact Lie group. Let I ⊆ R be
an open interval. Then:

(1) Each continuous curve c : I → σ(V ) has a continuous lifting c : I → V .
(2) Each Cd curve c : I → σ(V ) has a differentiable lifting c : I → V .

In Parusiński and Rainer [82], the proof of Bronshtein’s theorem presented in
Section 3.2 was generalized and led to the following essentially optimal results.

The next theorem is the analogue of Bronshtein’s theorem 3.2.

Theorem 5.2 ([82, Theorem 1]). Let (G ⟲ V, d, σ) be a real finite dimensional
orthogonal representation of a compact Lie group. Let I ⊆ R be an open interval.
Each curve c ∈ Cd−1,1(I, σ(V )) has a lifting c ∈ C0,1(I, V ) such that, for any pair
of relatively compact open intervals I0 ⋐ I1 ⋐ I,

(40) LipI0(c) ≤ C max
1≤i≤n

∥ci∥1/diCd−1,1(I1)
.
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The constant C > 0 depends only on I0, I1, and the isomorphism classes of the
representation G ⟲ V and respective minimal systems of basic invariants.

In analogy to Theorem 3.9, we have

Theorem 5.3 ([82, Theorem 2]). Let (G ⟲ V, d, σ) be a real finite dimensional
orthogonal representation of a compact Lie group. Let I ⊆ R be an open interval.
Each curve c ∈ Cd(I, σ(V )) has a lifting c ∈ C1(I, V ).

For finite groups and polar representations, a precursor of this theorem was
obtained by [57, 59] (by reduction to the case Sd ⟲ Rd and thus to Bronshtein’s
theorem).

An orthogonal representation G ⟲ V is called polar, if there exists a linear
subspace Σ ⊆ V , called a section or a Cartan subspace, which meets each orbit
orthogonally; cf. [28], [29]. The trace of the G-action on Σ is the action of the
generalized Weyl group W (Σ) = NG(Σ)/ZG(Σ) on Σ, where NG(Σ) := {g ∈ G :
gΣ = Σ} and ZG(Σ) := {g ∈ G : gs = s for all s ∈ Σ}. This group is finite, and
it is a reflection group if G is connected. The algebras R[V ]G and R[Σ]W (Σ) are
isomorphic via restriction, by a generalization of Chevalley’s restriction theorem,
due to [29] and independently [110], and thus the orbit spaces V/G and Σ/W (Σ)
are isomorphic. Consequently, the lifting problem can be reduced to a finite group
action.

For finite group actions, Theorem 5.2 and Theorem 5.3 can be sharpened.

Theorem 5.4 ([82, Corollary 1 and 3]). Let (G ⟲ V, d, σ) be a real finite dimen-
sional orthogonal representation of a finite group. Let I ⊆ R be an open interval.
Then:

(1) Any continuous lifting c of c ∈ Cd−1,1(I, σ(V )) is locally Lipschitz and
satisfies (40).

(2) Any differentiable lifting c of c ∈ Cd(I, σ(V )) is C1.
(3) Each curve c ∈ C2d(I, σ(V )) has a C1 lifting whose second order derivatives

exist everywhere.

If G is a compact Lie group of positive dimension, then a Lipschitz (or a C1)
lifting c of c can be distorted to a continuous lifting that is not locally Lipschitz
simply by taking gc, where g : I → G is a suitable continuous curve.

As a consequence of the uniformity of Theorem 5.2, we obtain a lifting result for
maps in several variables.

Theorem 5.5 ([82, Corollary 2]). Let (G ⟲ V, d, σ) be a real finite dimen-
sional orthogonal representation of a finite group. Let U ⊆ Rm be open and
f ∈ Cd−1,1(U, σ(V )). If f ∈ C0(Ω, V ) is a continuous lifting of f on an open
subset Ω ⊆ U , then f is locally Lipschitz and, for any pair of relatively compact
open subsets Ω0 ⋐ Ω1 ⋐ Ω,

(41) LipΩ0
(f) ≤ C max

1≤i≤n
∥fi∥1/diCd−1,1(Ω1)

.

The constant C > 0 depends only on Ω0, Ω1, m, and on the isomorphism classes
of the representation G ⟲ V and respective minimal systems of basic invariants.

Not every representation admits unrestricted continuous lifting. For instance,
the orbit space of a finite rotation group acting in the standard way on R2 is
homeomorphic to the set C obtained from the sector {reiφ ∈ C : r ∈ [0,∞), 0 ≤
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φ ≤ φ0} by identifying the rays that constitute its boundary. A loop on C cannot be
lifted to a loop in R2 unless it is homotopically trivial in C \ {0}. Reflection groups
admit continuous lifting defined everywhere, e.g., the hyperbolic case Sd ⟲ Rd.

In view of the examples for hyperbolic polynomials, these lifting results are
generally optimal.

5.2.2. Real analytic lifting. Real analytic curves can always be lifted.

Theorem 5.6 ([3, Lemma 3.8 and Theorem 4.2], [82, Theorem 4]). Let (G ⟲
V, d, σ) be a real finite dimensional orthogonal representation of a compact Lie
group. Let I ⊆ R be an open interval. Each curve c ∈ Cω(I, σ(V )) has a lift-
ing c ∈ Cω(I, V ).

That there always exist local real analytic liftings was shown in [3]. As observed
in [82], the local liftings can be glued to a global real analytic lifting, since the first
Čech cohomology group Ȟ1(I,Ga) vanishes, where Ga denotes the sheaf of real
analytic maps I ⊇ U → G, by [111].

Similarly, one sees that generic C∞ curves admit liftings. The genericity con-
dition is a generalization of normal nonflatness considered for polynomials in Sec-
tion 3.3.3: for integer s ≥ 0 let As be the union of all orbit type strata S of V/G (cf.
Section 5.3.4) of dimension dimS ≤ s and let Is ⊆ R[V ]G be the ideal of invariant
polynomials vanishing on As−1. Now c ∈ C∞(I, σ(V )) is called normally nonflat
if, for each t0 ∈ I, there exists f ∈ Is such that the Taylor series of f ◦ c at t0 is not
zero, where s is minimal with the property that the germ of c at t0 is contained in
As. Roughly speaking, it means that lower dimensional orbit type strata are not
met with infinite order of flatness.

Theorem 5.7 ([3, Theorem 4.1]). Let (G ⟲ V, d, σ) be a real finite dimensional
orthogonal representation of a compact Lie group. Let I ⊆ R be an open interval.
Each normally nonflat curve c ∈ C∞(I, σ(V )) has a lifting c ∈ C∞(I, V ).

In the C∞ case, the gluing of local liftings is much easier; cf. [3, Lemma 3.8].
Real analytic maps depending on several variables cannot be lifted in general,

but they admit liftings after composition with local blowings-up (i.e., blowings-up
over an open subset composed with the inclusion of this subset).

Theorem 5.8 ([93, Theorem 5.4]). Let (G ⟲ V, d, σ) be a real finite dimensional
orthogonal representation of a compact Lie group. LetM be a real analytic manifold
and f ∈ Cω(M,σ(V )). For any compact subset K ⊆M there exist a neighborhood
U of K and a finite covering {πj : Uj → U} of U , where each πj is a composite
of finitely many local blowings-up with smooth center, such that, for all j, the map
f ◦ πj has a real analytic lifting on Uj.

Actually, this continues to hold in suitable quasianalytic classes of C∞ functions
(instead of Cω); cf. [93].

5.3. The main tools. Let us briefly discuss the main tools used for the lifting
problem and identify their counterpart in the study of hyperbolic polynomials.

5.3.1. Removing fixed points. Let V G := {v ∈ V : Gv = v} be the linear subspace
of fixed points and let V ′ be its orthogonal complement in V . Then V = V G ⊕ V ′,
R[V ]G = R[V G] ⊗ R[V ′]G, and V/G = V G × V ′/G. Thus it suffices to study the
lifting problem for G ⟲ V ′ or equivalently to assume V G = {0}. This corresponds
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to the Tschirnhausen transformation (see Section 2.2.1); indeed, (Rd)Sd = {x ∈
Rd : x1 = x2 = · · · = xd} and (Rd)′ = {x ∈ Rd : x1 + x2 + · · ·+ xd = 0}.

5.3.2. Dominant invariant. We may assume that v 7→ ⟨v | v⟩ = ∥v∥2 belongs to
the system of basic invariants {σi}ni=1, say it is σ1. This does not change d; in fact,
V G = {0} implies d ≥ 2. Then σ1 is dominant in the sense that

|σi|1/di ≤ C(σ) |σ1|1/d1 , 1 ≤ i ≤ n,

by homogeneity. This corresponds to the dominance of the second coefficient of
monic hyperbolic polynomials in Tschirnhausen form (see Lemma 2.4).

5.3.3. The slice theorem. For v ∈ V , let Nv := Tv(Gv)
⊥ be the normal subspace of

the orbitGv at v. It carries a natural actionGv ⟲ Nv of the isotropy subgroup Gv :=
{g ∈ G : gv = v}. The crossed product (or associated bundle) G ×Gv Nv carries
the structure of an affine real algebraic variety as the categorical (and geometric)
quotientG×Nv//Gv with respect to the actionGv ⟲ (G×Nv), h(g, x) := (gh−1, hx).
The G-equivariant polynomial mapping ϕ : G ×Gv

Nv → V , [g, x] 7→ g(v + x),
induces a polynomial mapping ψ : (G×Gv

Nv)//G→ V //G sending (G×Gv
Nv)/G

into V/G. The Gv-equivariant embedding α : Nv ↪→ G×Gv Nv, x 7→ [e, x], induces
an isomorphism β : Nv//Gv → (G×GvNv)//G mapping Nv/Gv onto (G×GvNv)/G.

Nv ��
α //

τ

��

η

))
G×Gv

Nv
ϕ //

��

V

σ

��
Nv/Gv //
� _

��

(G×Gv
Nv)/G� _

��

// V/G� _

��
Nv//Gv

β //

θ

44(G×Gv
Nv)//G

ψ // V //G

Theorem 5.9 ([72], [102]). There is an open ball Bv ⊆ Nv centered at the origin
such that the restriction of ϕ to G ×Gv

Bv is an analytic G-isomorphism onto a
G-invariant neighborhood of v in V . The mapping θ is a local analytic isomorphism
at 0 which induces a local homeomorphism of Nv/Gv and V/G.

The slice theorem allows to reduce the lifting problem locally to the slice repre-
sentation Gv ⟲ Nv. This reduction replaces the splitting principle (see Lemma 2.5
and Section 3.2.1) for polynomials. (The passage to the slice representation at
v = (λ1, . . . , λd) for the standard action Sd ⟲ Rd corresponds to a full splitting
Pã = Pb1Pb2 · · ·Pbk , where each factor Pbi corresponds to precisely one of the dis-
tinct elements among the λ1, . . . , λd and degPbi is its multiplicity.)

The reduction and the assumption V G = {0} allow to proceed by induction on
the “size” of G: if H and G are compact Lie groups, then H is smaller than G
if either dimH < dimG or, given that dimH = dimG, H has fewer connected
components than G. For finite groups this reduces to induction on the group order.
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5.3.4. Orbit type stratification. The conjugacy class (H) of H = Gv in G is called
the type of the orbit Gv. Let V(H) be the union of all orbits of type (H). The
collection of the connected components of the smooth manifolds V(H)/G forms the
orbit type stratification of V/G; cf. [102]. By [13], there is an identification between
the orbit type stratification of V/G and the natural stratification of σ(V ) as a
semialgebraic set (for the construction of the latter see [13, p. 246] or [69, Section
25]); it is analytically locally trivial and thus satisfies Whitney’s conditions (a) and
(b). The inclusion relation on the set of subgroups of G induces a partial ordering on
the family of orbit types. There is a unique minimal orbit type, the principal orbit
type, corresponding to the open and dense submanifold Vreg consisting of points v,
where the slice representation Gv ⟲ Nv is trivial. The projection Vreg → Vreg/G is
a locally trivial fiber bundle. There are only finitely many isomorphism classes of
slice representations.

5.4. Examples and applications.

5.4.1. Differentiable eigenvalues of real symmetric matrices. Let the orthogonal
group O(d) = O(Rd) act by conjugation on the real vector space Sym(d) of real
symmetric d× d matrices,

O(d)× Sym(d) ∋ (S,A) 7→ SAS−1 = SASt ∈ Sym(d).

The algebra of invariant polynomials R[Sym(d)]O(d) is isomorphic to R[Diag(d)]Sd

by restriction, where Diag(d) is the vector space of real diagonal d×d matrices upon
which Sd acts by permuting the diagonal entries. More precisely, R[Sym(d)]O(d) =
R[Σ1, . . . ,Σd], where

Σi(A) = Trace(
∧i

A :
∧i Rd → ∧iRd)

is the i-th characteristic coefficient of A and Σi|Diag(d) = σi, where σi is the i-th

elementary symmetric polynomial and we identify Diag(d) ∼= Rd (cf. [76, 7.1]). This
means that the representation O(d) ⟲ Sym(d) is polar and Diag(d) forms a section.

Let A : R → Sym(d) be a curve of symmetric matrices of some regularity. The
characteristic polynomial χA is a curve of monic hyperbolic polynomials of the same
regularity. In this case, as we already know from Section 3.5, the regularity results
provided by the general theory for hyperbolic polynomials are not optimal.

A heuristic explanation is that in this problem only a “partial” lifting is nec-
essary: the curve χA in the orbit space is the projection of the curve A under
Sym(d)→ Sym(d)/O(d) and is then lifted over Diag(d)→ Diag(d)/ Sd.

R
A

ww
χA

��

yy
Diag(d) �

� //

��

Sym(d)

��
Diag(d)/ Sd Sym(d)/O(d) σ(Rd) �

� // Rd

5.4.2. Differentiable decomposition of nonnegative functions into sums of squares.
Let the orthogonal group O(n) act in the standard way on Rn. The algebra of
invariant polynomials R[Rn]O(n) is generated by σ =

∑n
i=1 x

2
i ; note that d = 2.
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The orbit space Rn/O(n) can be identified with the half-line [0,∞) = σ(Rn). Each
line through the origin of Rn forms a section of O(n) ⟲ Rn.

Lifting a nonnegative function f over σ means decomposing f into a sum of
n squares. We conclude (from Theorem 5.5) that any nonnegative C1,1 function
f : Rm → [0,∞) is the square of a C0,1 function g. The image of the lifting
(g, 0, . . . , 0) lies in the section R(1, 0, . . . , 0) of O(n) ⟲ Rn.

There are stronger results that benefit from the additionally available space:

Theorem 5.10 ([34]). Any nonnegative C3,1 function f : Rm → [0,∞) is a sum
of n = n(m) squares of C1,1 functions.

This is sharp in the sense that there exist C∞ functions f : Rm → [0,∞), form ≥
4, that are not sums of squares of C2 functions; see [18]. In fact, a real nonnegative
homogeneous polynomial p of degree 2d on Rm that is a sum of squares of Cd

functions fi is necessarily a sum of squares of polynomials, since Taylor expansion
of fi gives fi(x) = qi(x)+o(|x|d) at x = 0, where qi is a homogeneous polynomial of
degree d, so that p =

∑
i q

2
i . But there exist nonnegative homogeneous polynomials

of degree 4 on R4 that are not sums of squares of polynomials; cf. [16, Section 6.3].
For the same reason, there are nonnegative C∞ functions on R3 that are not sums
of squares of C3 functions.

In dimension m = 1 (where there are no algebraic obstructions) there is the
following result.

Theorem 5.11 ([17]). Let p ∈ N. Any nonnegative C2p function f : R → [0,∞)
is the sum of two squares of Cp functions.

The decomposition depends on p.

5.4.3. Polynomials with symmetries. In [71] the lifting problem was used to improve
upon the regularity problem for hyperbolic polynomials with symmetries. The idea
is the following. A curve of monic hyperbolic polynomials of degree d is a curve p
in the semialgebraic set Hyp(d) = σ(Rd) ⊆ Rd, where σ consists of the elementary
symmetric functions σi. If p lies in some proper semialgebraic subset of Hyp(d), then
p has to fulfill more constraints and thus, in general, the conditions that guarantee
the existence of differentiable systems of the roots are weaker. For instance, if we
know that the roots of p fulfill some linear relations, i.e., they lie in some linear
subspace V of Rd, then p lies in σ(V ) ⊆ Hyp(d). The symmetries of the roots are
represented by the induced action G ⟲ V of

G :=
{τ ∈ Sd : τV = V }

{τ ∈ Sd : τv = v for all v ∈ V }
.

The solution of the lifting problem can be brought to bear, if the restrictions σi|V ,
1 ≤ i ≤ d, generate R[V ]G. Indeed, the orbit type stratification of G ⟲ V is
generally coarser than the restriction to V of the orbit type stratification of Sd ⟲ Rd.

5.5. A reformulation of the regularity problem for general polynomials.
If we let the symmetric group Sd act on Cd, by permuting the coordinates, then
again C[Rd]Sd is generated by the elementary symmetric functions σi, 1 ≤ i ≤ d.
The map σ = (σ1, . . . , σd) : Cd → Cd is onto. Each point in Cd represents a monic
polynomial of degree d with complex coefficients and the σ-fiber over this point is
the Sd-orbit through the d-tuple of its roots (with multiplicities).
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A family of monic polynomials Pa(x), x ∈ U ⊆ Rm, is a map p : U → Cd and a
system of roots for the family Pa is a lifting p : U → Cd of p over σ, i.e., σ ◦ p = p.
Given that p is regular of some kind, how regular can a lifting of p be?

Cd

σ
��

U

p

88

p
// Cd

Note that, in contrast to the hyperbolic case (cf. Section 5.1), there are no con-
straints for the map p, since σ(Cd) = Cd.

Let us see now how this problem can be studied in greater generality. From now
on, representation spaces V will be complex and finite dimensional.

5.6. Representations of linearly reductive groups. An algebraic group G is
called linearly reductive if for each rational representation V and each subrepresen-
tation W ⊆ V there is a subrepresentation W ′ ⊆ V such that V =W ⊕W ′.

By Hilbert’s finiteness theorem, for rational representations V of linearly reduc-
tive groups G, the algebra of G-invariant polynomials C[V ]G is finitely generated.
Let {σi}ni=1 be a system of homogeneous generators which we call basic invariants.
In a minimal system of basic invariants the number n of elements σi and their
degrees di := deg σi are uniquely determined; set

d := max
1≤i≤n

di.

The map σ = (σ1, . . . , σn) : V → σ(V ) ⊆ Cn can be identified with the morphism
V → V //G induced by the inclusion C[V ]G → C[V ]; the categorical quotient V //G
is the affine variety with coordinate ring C[V ]G. In this setting, V //G is generally
not a geometric quotient : the G-orbits in V are not in a one-to-one correspondence
with the points in V //G. In fact, for every point z ∈ V //G there is a unique closed
orbit in the fiber σ−1(z) which lies in the closure of every other orbit in this fiber.
On the other hand, if G is a finite group, then all G-orbits are closed and thus V //G
is a geometric quotient isomorphic to the orbit space V/G.

We write again (G ⟲ V, d, σ) for this setup. If f : U → Cn, U ⊆ Rm, is a map
with some regularity and image contained in σ(V ) (which in general is a proper
subset of Cn), we ask how regular a lifting f of f can be. By a lifting of f we mean
a map f : U → V such that f = σ ◦ f and, for all x ∈ U , f(x) lies in the unique
closed orbit in the fiber σ−1(f(x)).

V

σ

��
U

f

77

f
// σ(V )

The problem is independent of the choice of the basic invariants, since any two
choices differ by a polynomial diffeomorphism.

The main difference to the real problem introduced in Section 5.2 is that there is
no invariant polynomial that dominates all the others. Even for finite G, where we
can always choose an invariant Hermitian inner product on V (by averaging over G)
and hence assume that the representation is unitary, the invariant form v 7→ ∥v∥2
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is not a member of C[V ]G. This makes the complex case much more difficult and
causes a larger loss of regularity.

5.6.1. Sobolev lifting. Let us first assume that G is a finite group. Then each
continuous curve c : I → σ(V ), where I ⊆ R is an interval, has a continuous lifting
c : I → V , by [70, Theorem 5.1]. In Parusiński and Rainer [86], the optimal Sobolev
regularity for the roots of polynomials was extended to group representations. The
following result generalizes Theorem 4.2.

Theorem 5.12 ([86, Theorem 1.1]). Let (G ⟲ V, d, σ) be a complex finite di-
mensional representation of a finite group G. Let c ∈ Cd−1,1([α, β], σ(V )) be a
curve defined on an open bounded interval (α, β). Then each continuous lifting
c : (α, β) → V of c over σ is absolutely continuous and belongs to W 1,p((α, β), V )
with

(42) ∥c′∥Lp((α,β)) ≤ C max
1≤j≤n

∥cj∥
1/dj
Cd−1,1([α,β])

for all 1 ≤ p < d/(d − 1), where C is a constant which depends only on the repre-
sentation G ⟲ V , the length of the interval (α, β), and p.

The bound (42), similarly as (32), is not scale invariant.

Remark 5.13. Let us comment on how the constant C in (42) depends on the
length of the interval (α, β).

(a) In general, the constant C is of the form

C(G ⟲ V, p) max{1, (β − α)1/p, (β − α)−1+1/p}.
(b) If the curve c starts, ends, or passes through 0 (the most singular point in

σ(V )), then C is of the form

(43) C(G ⟲ V, p) max{1, (β − α)1/p}.
(c) If the representation is coregular, then again the constant is of the form (43).

A representation G ⟲ V is called coregular if C[V ]G is isomorphic to a polynomial
algebra, i.e., there is a system of basic invariants without polynomial relations
among them. By the Shephard–Todd–Chevalley theorem ([104], [23], [103]), this
is the case if and only if G is generated by pseudoreflections (i.e., invertible linear
transformations of finite order and fixed point space a hyperplane).

(d) The constant is also of the form (43) if the curve c satisfies c(j)(α) = c(j)(β) =
0 for all j = 1, . . . , d− 1.

Note that, in view of the counterexamples for the regularity of the roots of
polynomials, the results of Theorem 5.12 (as most of the subsequent results) are
optimal.

The lifting of mappings defined in open domains of dimension m > 1 essentially
admits the same regularity as for curves, provided that continuous lifting is possible.
But, in general, there are topological obstructions for continuous lifting.

Theorem 5.14 ([86, Theorem 1.4]). Let (G ⟲ V, d, σ) be a complex finite dimen-
sional representation of a finite group G. Let f ∈ Cd−1,1(Ω, σ(V )), where Ω ⊆ Rm
is an open bounded box Ω = I1 × · · · × Im. Then each continuous lifting f : U → V
of f over σ defined on an open subset U ⊆ Ω belongs to W 1,p(U, V ) and satisfies

(44) ∥∇f∥Lp(U) ≤ C(G ⟲ V,Ω,m, p) max
1≤j≤n

∥fj∥
1/dj

Cd−1,1(Ω)
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for all 1 ≤ p < d/(d− 1).

The case U = Ω is not excluded. It is clear that Theorem 5.14 implies a version
of the statement, where Ω ⊆ Rm is any bounded open set, U ⋐ Ω is relatively
compact open in Ω, and the constant also depends on U (or more precisely on
a cover of U by boxes contained in Ω). Concerning a global result we have the
following.

Remark 5.15. If G ⟲ V is coregular, then Theorem 5.14 holds as stated for any
bounded Lipschitz domain Ω; cf. [86, Remark 1.5].

If there is no continuous lifting, it is natural to ask how bad the discontinuities
can be:

Open Problem 5.16. When continuous lifting is impossible, do there exist liftings
of bounded variation?

See Theorem 5.23 for a partial answer.
In the general case, for an infinite linearly reductive group G, it is not clear if a

continuous curve in σ(V ) admits a continuous lifting to V . The notion of stability in
geometric invariant theory provides a remedy. A point v ∈ V is called stable if the
orbit Gv is closed and the isotropy group Gv is finite. The subset V s ⊆ V of stable
points is G-invariant and open in V , and its image σ(V s) is open in V //G ∼= σ(V )
(cf. [78, Proposition 5.15]). The restriction σ : V s → σ(V s) of the map σ provides
a one-to-one correspondence between points in σ(V s) ∼= V s/G and G-orbits in V s,
that is V s/G is a geometric quotient. A continuous curve c : I → σ(V s) has a
continuous lifting c : I → V s, cf. [86, Lemma 1.6]. Theorem 5.12 has the following
corollary.

Corollary 5.17 ([86, Theorem 1.7]). Let (G ⟲ V, d, σ) be a rational com-
plex finite dimensional representation of a linearly reductive group G. Let c ∈
Cd−1,1([α, β], σ(V s)) be a curve defined on a compact interval [α, β] with c([α, β]) ⊆
σ(V s). Then there exists an absolutely continuous lifting c : [α, β] → V s of c over
σ which belongs to W 1,p([α, β], V s) with

(45) ∥c′∥Lp([α,β]) ≤ C(G ⟲ V, [α, β], p) max
1≤j≤n

∥cj∥
1/dj
Cd−1,1([α,β])

for all 1 ≤ p < d/(d− 1).

For a mapping f defined on a compact subset K of Rm with f(K) ⊆ σ(V s) the
situation is more complicated: we can apply Theorem 5.14 to the slice representa-
tions at any point v ∈ V s, but it is not clear if these local (and partial) lifts can be
glued in a continuous fashion.

More can be said for polar representations (which include e.g. the adjoint ac-
tions). We encountered polar representations already in Section 5.2 in the real
setup. Let us briefly discuss them in the framework of rational representations V of
linearly reductive groups G; we follow [29]. Let v ∈ V be such that the orbit Gv is
closed and consider the linear subspace Σv = {x ∈ V : gx ⊆ gv}, where g is the Lie
algebra of G. All orbits that intersect Σv are closed, whence dimΣv ≤ dimV //G.
The representation G ⟲ V is said to be polar if there exists v ∈ V with closed orbit
Gv and dimΣv = dimV //G. Then Σv is called a section or Cartan subspace of V .
Any two sections are G-conjugate. Let us fix a section Σ. All closed orbits in V in-
tersect Σ. The Weyl group W := NG(Σ)/ZG(Σ), where NG(Σ) = {g ∈ G : gΣ = Σ}
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is the normalizer and ZG(Σ) = {g ∈ G : gx = x for all x ∈ Σ} is the centralizer of
Σ in G, is finite and the intersection of any closed G-orbit in V with Σ is precisely
one W -orbit. The ring C[V ]G is isomorphic via restriction to the ring C[Σ]W . If G
is connected, then W is a pseudoreflection group and hence C[V ]G ∼= C[Σ]W is a
polynomial ring, by the Shephard–Todd–Chevalley theorem.

Corollary 5.18 ([86, Theorem 1.8]). Let (G ⟲ V, d, σ) be a polar representation of
a linearly reductive group G. Then:

(1) Each curve c ∈ Cd−1,1([α, β], σ(V )) has an absolutely continuous lifting
c : (α, β)→ V of c over σ which belongs to W 1,p((α, β), V ) for all 1 ≤ p <
d/(d− 1) and satisfies (42).

(2) Let f ∈ Cd−1,1(Ω, σ(V )), where Ω ⊆ Rm is an open bounded box Ω =
I1 × · · · × Im. Each continuous lifting f defined on an open subset U ⊆ Ω
with values in a section Σ is of class W 1,p on U for all 1 ≤ p < d/(d− 1)
and satisfies (44).

(3) If G is connected, then the constant in (42) is of the form (43) and Ω can
be any bounded Lipschitz domain.

This follows from applying Theorem 5.12 and Theorem 5.14 to W ⟲ Σ.

Open Problem 5.19. To what extent are the above results true for general (non-
polar) representation?

5.6.2. Analytic lifting. Let (G ⟲ V, d, σ) be a complex finite dimensional repre-
sentation of a finite group G. Then the orbit space coincides with the categorical
quotient V //G which is a normal affine variety. Thus the orbit space has the natural
structure of a complex analytic set and there are several types of morphisms into
V //G, like regular, rational, or holomorphic. In [58] those regular, holomorphic, or
formal maps into V //G that admit a regular, holomorphic, or formal lifting to V
are characterized. The conditions are formulated in terms of the orbit type strati-
fication of the orbit space which, in this case (compare with Section 5.3.4), is finer
than its stratification as affine variety and with the use of spaces of jets at 0 ∈ Cm
of morphisms Cm → V //G of finite and infinite order.

Now let (G ⟲ V, d, σ) be a rational representation of a linearly reductive group
G. Suppose that c : R → V //G ∼= σ(V ) ⊆ Cn is real analytic. In contrast to the
real case, there does not always exist a real analytic lifting of c over σ. But there
is the following generalization of Puiseux’s theorem.

Theorem 5.20 ([70, Theorem 3.3 and 3.4]). Let (G ⟲ V, d, σ) be a rational repre-
sentation of a linearly reductive group G. Then:

(1) Let I ⊆ R be an open interval, t0 ∈ I, and c ∈ Cω(I, σ(V )). Then there
exists a positive integer N such that, locally near t0, t 7→ c(t0 ± (t− t0)N )
admits a real analytic lifting c± to V .

(2) Let U ⊆ C be open and connected, z0 ∈ U , and c ∈ H(U, σ(V )), i.e., c is
holomorphic. Then there exists a positive integer N such that, locally near
z0, z 7→ c(z0 + (z − z0)N ) admits a holomorphic lifting c to V .

In analogy to Section 5.2.2, one defines that c is normally nonflat at t0, see [70,
Section 2.5]; roughly speaking, it means that c does not meet lower dimensional
strata of the orbit type stratification of V //G with infinite order of flatness at t0.
Then in (1) we may take c ∈ C∞(I, σ(V )) if c is normally nonflat at t0 and conclude
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that c± is of class C∞. Or we may work with suitable quasianalytic subclasses of
C∞.

As a consequence, we may conclude that real analytic curves in σ(V ) have liftings
that are locally absolutely continuous.

Theorem 5.21 ([70, Theorem 5.4]). Let (G ⟲ V, d, σ) be a rational represen-
tation of a linearly reductive group G. Let I ⊆ R be an open interval. Each
c ∈ Cω(I, σ(V )) admits a lifting c : I → V that is locally absolutely continuous.

Again this remains true for smooth curves in σ(V ) that are normally nonflat.
For maps in several variables into σ(V ) there is an analogue of Theorem 5.8,

where, however, local blowings-up and local power substitutions must be used. A
local power substitution is the composite of the inclusion of a coordinate chart U
and a map W → U given in local coordinates by

(x1, . . . , xm) 7→ ((−1)ϵ1xγ11 , . . . , (−1)ϵmxγmm ),

for some integers γi ≥ 1 and ϵi ∈ {0, 1}.

Theorem 5.22 ([93, Theorem 4.6]). Let (G ⟲ V, d, σ) be a rational represen-
tation of a linearly reductive group G. Let M be a real analytic manifold and
f ∈ Cω(M,σ(V )). For each compact K ⊆ M , there exist a neighborhood U of K
in M and a finite covering {πj : Uj → U} of U , where each πj is a composite of
finitely many maps each of which is either a local blowing-up with smooth center or
a local power substitution, such that, for all j, the map f ◦ πj has a real analytic
lifting on Uj.

The theorem remains true for suitable quasianalytic subclasses of C∞ as well as
for holomorphic maps. In the latter case, a local power substitution is simply a
map of the form (z1, . . . , zm) 7→ (zγ11 , . . . , zγmm ).

It is possible to extract information about the existence of weak liftings of f
(without modification of its domain). For instance, there is the following result
which gives a partial answer to Open Problem 5.16.

Theorem 5.23 ([93, Theorem 6.11]). Let (G ⟲ V, d, σ) be a rational representation
of a linearly reductive group G. Let U ⊆ Rm be open and f ∈ Cω(U, σ(V )). For each
compact K ⊆ U , there exist a neighborhood W of K in U and a lifting f :W → V
of f of class SBV (i.e., special functions of bounded variation).

Actually, f can be taken in a suitable quasianalytic class.

5.7. Some remarks on the proofs. We focus on the proof of Theorem 5.12. The
foundation of the proof is that the result holds for finite rotation groups Cd ∼= Z/dZ
acting in the standard way on C, where C[C]Cd is generated by z 7→ zd and a
lifting of a map f is a solution of the radical equation zd = f . This follows from
Theorem 4.1. Among all representations of finite groups G of a fixed order |G|, it
is the one with the worst loss of regularity, since in general d ≤ |G|, by Noether’s
degree bound, and equality can only happen for cyclic groups.

The strategy in the general case is similar to the one described in Section 5.3.
Evidently, one may reduce to the case that the linear subspace V G of invariant
vectors is trivial. Then Luna’s slice theorem (see [72] or [102, Theorem 5.3]) allows
us to reduce the problem locally to the slice representation Gv ⟲ Nv of the isotropy
group Gv on Nv, where TvV ∼= Tv(Gv)⊕Nv is a Gv-splitting. Since in our case G is
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finite, we have Nv ∼= V . The assumption V G = {0} entails that for all v ∈ V \ {0}
the isotropy group Gv is a proper subgroup of G which suggests to use induction
on the group order. For this induction scheme to work it is important that the slice
reduction is uniform in the sense that it does not depend on the parameter t of the
curve c in σ(V ) ⊆ Cn.

The lack of a dominant invariant polynomial (in contrast to the real case) forces
one to choose at points t0 with c(t0) ̸= 0 a dominant component ck of c such that

|c1/dkk (t0)| = max
1≤j≤n

|c1/djj (t0)|

and to work on small neighborhoods of t0 with this distinguished component ck.
The better bound in the case that G ⟲ V is coregular (cf. Remark 5.13; see

also Remark 5.15 and Corollary 5.18(3)) is achieved by an application of Whitney’s
extension theorem to extend the curve c to a larger interval on which it can be
suitably modified without changing it on the original interval (α, β). Coregularity
guarantees that the extended curve still lies in σ(V ) (because σ(V ) = Cn).

6. Applications

6.1. Zero sets of smooth functions. It is well-known that every closed subset
of Rn is the zero set Zf of some real valued C∞ function f : Rn → R. So in general
Zf can be arbitrarily irregular. On the other hand, constraints for the derivatives
of f entail regularity properties of Zf ; think of the implicit function theorem or of
the solutions of elliptic and parabolic PDEs.

Let us assume here that our function f vanishes to some finite order γ at a point
x0. Then Malgrange’s preparation theorem puts one in the position to study Zf in
a neighborhood of x0, by using the regularity theorems for the roots of polynomials,
that is Theorem 4.2 or Theorem 4.9. Indeed, in suitable local coordinates at x0, we
have f = p · u, where p is a monic polynomial in one of the coordinates with C∞

coefficients in the other coordinates and u is a C∞ unit.
This setting is widely applicable, for instance, to solutions of second order elliptic

equations, Laplace eigenfunctions and finite linear combinations of such ([32], [68],
[50]), etc. Often Zf is called the nodal set of f , but we will stick to the term zero
set.

The following result is taken from Bär [8].

Theorem 6.1 ([8, Lemma 3]). Let f : Rn → R be a C∞ function that vanishes to
order γ at x0. Then there exist r0 > 0 and a affine hyperplane H in Rn such that
Zf ∩B(x0, r0) is contained in the union of countably many graphs of C∞ functions
from H ∩B(x0, r0) to H

⊥. Moreover, for all r < r0,

Hn−1(Zf ∩B(x0, r)) ≤ n2n−1γ rn−1.

Note that Yomdin [116] obtained a similar result; he assumed that the partial
derivatives of some order j of f are “small” in a certain precise sense and concluded
that f behaves in many regards like a polynomial of degree j − 1, in particular, it
has vanishing order at most j − 1.

The following theorem is a consequence of Theorem 4.2 or Theorem 4.9 (together
with Malgrange’s preparation theorem), due to Beck, Becker-Kahn, and Hanin [10].

Theorem 6.2 ([10, Theorem 1]). Let U ⊆ Rn be open and let Θ be a compact
smooth manifold (possibly with boundary). Let f ∈ C∞(U × Θ) and write fθ :=
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f(·, θ) for θ ∈ Θ. Suppose that fθ0 has finite vanishing order γ at x0 ∈ U . Then
there exist p > 1, r0 > 0, a neighborhood V of θ0 in Θ, an affine hyperplane
H ⊆ Rn, and functions fθi ∈W 1,p(H,H⊥), 1 ≤ i ≤ γ, θ ∈ V , with

sup
1≤i≤γ, θ∈V

∥fθi ∥W 1,p <∞

such that

Zfθ ∩B(x0, r0) ⊆
γ⋃
i=1

Γfθ
i
, θ ∈ V,

where Γfθ
i
is the graph of fθi .

Remark 6.3. Theorem 6.2 was proved in [10] based on Theorem 4.9. Using the
optimal result, Theorem 4.2, in the proof, one can get more precise information on
p: the statement is true for all 1 ≤ p < γ/(γ − 1).

By the same strategy, one gets similar parameterization results in the setting
studied by Yomdin [116] (where the partial derivatives of some order are small) as
well as for C∞ functions all of whose derivatives are suitably controlled by a weight
sequence (e.g. functions in a quasianalytic Denjoy–Carleman class), see Rainer [97].
In the latter case, the vanishing order is bounded (globally on a convex body) by
a quantity computed from the weight sequence which has similarities with the
polynomial degree.

Note that, if one is interested only in the properties of the zero set of a function
near a point of finite vanishing order, then there is some freedom in the choice of
the local coordinates (i.e., the hyperplane H in Theorem 6.2).

Open Problem 6.4. Is is possible to improve the above results by choosing the
local system of coordinates wisely?

As a consequence of Theorem 6.1 or Theorem 6.2, one gets a nonconcentration
estimate [10, Proposition 4]: suppose that the vanishing order of fθ is at most γ
for all θ ∈ Θ. For compact K ⊆ U and m-rectifiable E ⊆ Rn, for some m ≤ n− 1,
there exists r0 > 0 such that

Hn−1(Zfθ ∩ E′
r ∩K) ≤ C(n) r−1Hn(Er), r ≤ r0,

for all θ ∈ Θ and all images E′ of Lipschitz maps E → K with Lipschitz constant
≤ 1, where Er, E

′
r denote the r-neighborhoods of E,E′ in Rn. This entails the

following continuity result. Let Singf := {x ∈ Zf : ∇f(x) = 0}.

Corollary 6.5 ([10, Corollary 2]). Let U ⊆ Rn be open and f ∈ C∞(U×[0, 1]) such
that f1 := f(·, 1) has finite vanishing order on U . Then for any compact K ⊆ U
with Hn−1(K ∩ Singf ) = 0 we have

lim
θ→1
Hn−1(Zfθ ∩K) = Hn−1(Zf1 ∩K).

In particular, the authors of [10] conclude a continuity result for the zero sets of
the heat flow on a compact smooth Riemannian manifold (M, g): if u :M×(0,∞)→
R solves

(∂t +∆g)u(x, t) = 0

with initial data u0 ∈ L2(M), then

lim
t→1
Hn−1(Zut) = Hn−1(Zψ),
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where ψ is the first nonzero eigenspace projection of u0 and the time variable
underwent a change from t to 2

π arctan(t).
Another application of Theorem 6.2 presented in [10] is that, given C∞ functions

f0, f1, . . . , fp on a compact Riemannian manifold (M, g) of dimension n such that
for all (θ0, θ1, . . . , θp) ∈ Rp+1 \ {0} the vanishing order of θ0f0 + · · · + θpfp is at
most γ on M , the map

RPp ∋ [θ0 : · · · : θp] 7→ ∂{θ0f0 + · · ·+ θpfp < 0}

into the space of modulo 2 flat (n − 1)-cycles in M is an admissible p-sweepout
(see [10] for the definition). This was proposed by Marques and Neves in [74],
where they settled a conjecture of Yau on the existence of infinitely many minimal
surfaces in the setting of positive Ricci curvature. This proof uses an argument
involving the growth in p of the min-max width ωp(M) which is defined in terms of
admissible p-sweepouts and is a nonlinear version of the spectrum of the Laplacian
(cf. Gromov [41]). In fact, by Guth [43], one has

ωp(M) ≤ C p1/n,

which is reproved in [10, Theorem 3] as a corollary of Theorem 6.2.
Let us finish this section with a few consequences of the results for radicals, i.e.

Theorem 4.1, due to Ghisi and Gobbino [37] and the co-area formula. These facts
play an essential role in the proof of the existence of BV roots, Theorem 4.11, in
[85]. They concern the behavior of differentiable functions near their zero set and
the level sets of their sign; they are interesting in their own right. Note that there
is no assumption on the vanishing order.

Theorem 6.6 ([85, Theorem 3.5]). Let k ∈ N≥1, α ∈ (0, 1], and set s = k+α. Let

Ω ⊆ Rn be a bounded Lipschitz domain and f ∈ Ck,α(Ω,Rℓ+1), f ̸≡ 0. Then there
is a constant C = C(n, ℓ, k, α,Ω) such that for all 0 < ϵ ≤ 1 and all small δ > 0 we
have ∣∣{y ∈ (0, δ) : y1/sHn−1(|f |−1(y)) ≥ ϵ−1C ∥f∥1/s

Ck,α(Ω)

}∣∣ ≤ ϵδ.
In particular, if A ⊆ [0,∞) has full measure near 0, i.e., |A ∩ [0, ϵ)| = ϵ for some

ϵ > 0, then there is a sequence A ∋ yj → 0 with

sup
j

(
y
1/s
j Hn−1(|f |−1(yj))

)
≤ C ∥f∥1/s

Ck,α(Ω)
.

That means that the Hn−1-measures of the level sets {|f | = yj} do not grow faster

than y
−1/s
j as yj → 0.

The sign of f : Ω→ Rℓ+1 is the map sgn(f) : Ω \ f−1(0)→ Sℓ given by

sgn(f) :=
f

|f |
.

Theorem 6.7 ([85, Theorem 3.3]). Let k ∈ N≥1, α ∈ (0, 1], and set s = k+α. Let

Ω ⊆ Rn be a bounded Lipschitz domain and f ∈ Ck,α(Ω,Rℓ+1), where n ≥ ℓ ≥ 1.
Then there is a constant C = C(n, ℓ, k, α,Ω) such that for each small ϵ > 0

(46) Hℓ
({
y ∈ Sℓ :

∫
sgn(f)−1(y)

|f |ℓ/s dHn−ℓ ≥ ϵ−1 C ∥f∥ℓ/s
Ck,α(Ω)

})
≤ ϵ.
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In particular, we have ℓ/s-integrability with respect to Hn−ℓ of f along almost
every level set of the sign of f :∫

sgn(f)−1(y)

|f |ℓ/s dHn−ℓ <∞, for Hℓ-a.e. y ∈ Sℓ.

Moreover, for every relatively compact open K ⋐ Ω \ f−1(0),

Hn−ℓ
(
K ∩ sgn(f)−1(y)

)
<∞, for Hℓ-a.e. y ∈ Sℓ.

6.2. Extension to the optimal transport between algebraic hypersurfaces.
A recent paper [5], by Antonini, Cavalletti, and Lerario, contains an interesting
reinterpretation and extension of the regularity problem of the roots, Section 4,
to the study of the Wasserstein distance on the space of d-degree hypersurfaces in
CPn.

Let (M, g) be a smooth compact Riemannian manifold and let P(M) denote
the space of Borel probability measures on M . Fix q ≥ 1. For any µ0, µ1 ∈P(M),
the q-Wasserstein distance is defined by

Wq(µ0, µ1) :=

(
inf

ξ∈Π(µ0,µ1)

∫
M×M

dg(x, y)
q ξ(dxdy)

) 1
q

,

where dg is the geodesic distance on M and Π(µ0, µ1) is the set of transport plans
between µ0 and µ1, i.e., the set of probability measures ξ onM×M with marginals
µ0 and µ1 (the push-forward measures of ξ with respect to the natural projections).
Intuitively, this distance minimizes the transport cost from µ0 to µ1 over all such
plans.

Denote by Hn,d the space of complex homogeneous polynomials of degree d in
n+1 variables. Let Pn,d := P(Hn,d) be the projectivization. Note that Pn,d can be

identified with CPN , N =
(
n+d
d

)
− 1. Let ZP denote the zero set of P ∈ Hn,d. This

set depends only on the class of P in Pn,d. Therefore, to simplify the notation, we
will consider the zero sets ZP of P ∈ Pn,d, abusing the terminology slightly.

Let us associate to each P ∈ Pn,d a measure µ(P ) ∈ P(CPn) as follows. If ZP
is nonsingular, then we take the restriction to ZP of the Hausdorff measure H2n−2

(with respect to the Fubini–Study metric of CPn), normalized:

µ(P ) :=
1

vol(ZP )
H2n−2⌞ZP ,

where vol(ZP ) := (H2n−2⌞ZP )(ZP ). (Note that all nonsingular hypersurfaces of
degree d have the same volume vol(ZP ) = d vol(CPn−1) so that the normalization
factor does not depend on P .)

Denote by ∆n,d ⊆ Pn,d the discriminant locus, i.e., the set of polynomials P ∈
Pn,d such that ZP is singular. It is a hypersurface in Pn,d = CPN given by

∆n,d :=

{
P ∈ Pn,d : ∃z ∈ Cn+1 \ {0}, P (z) = ∂P

∂z0
(z) = · · · = ∂P

∂zn
(z) = 0

}
,

Using integral geometry (a Cauchy–Crofton kind of argument) one can extend the
definition of µ(P ) to singular hypersurfaces, that is for P ∈ ∆n,d, as follows, see [5,
Theorem 1.1],∫

CPn

f dµ(P ) :=
1

d

∫
G(1,n)

( ∑
z∈ZP∩ℓ

mz(P |ℓ)f(z)

)
volG(1,n)(dℓ), f ∈ C0(CPn),
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where G(1, n) stands for the set of projective lines in projective n-space, which is
equivalent to the Grassmannian Gr(2, n + 1), and mz(P |ℓ) is the multiplicity of z
as a zero of P |ℓ. Then for every q ≥ 1, the map µ : Pn,d →Pq(CPn) is continuous
and injective. (Here by Pq(CPn) we mean P(CPn) with the Wasserstein distance
Wq.)

Example 6.8 (n = 1). For simplicity, we prefer to work with a polynomial of
one complex variable P ∈ C[z]. The passage to homogeneous polynomials of two
complex variables z0, z1 is classical be means of homogenization, see e.g. [5, Remark
3.2].

Consider the space of monic polynomials of degree d in one complex variable,
Pa(z) = zd+ a1z

d−1 + · · ·+ ad−1z+ ad, a = (a1, . . . , ad) ∈ Cd. To each polynomial
P = Pa ∈ Cd one associates a probability measure µ(P ) ∈P(C) defined by

µ(P ) :=
1

d

∑
P (z)=0

mz(P ) · δz,

where mz(P ) ∈ N denotes the multiplicity of z as a zero of P and δz is the Dirac
measure. This defines a map

µ : Cd →P(C).
Geometrically, the image of µ can be identified with the quotient of Cd under the
action of the symmetric group Sd. The q-th Wasserstein metric on P(C) is given
by

Wq([x], [y]) =
(1
d
min
σ∈Sd

d∑
j=1

|xj − yσ(j)|q
)1/q

,

where [x] = [x1, . . . , xd] and [y] = [y1, . . . , yd] are unordered d-tuples. It is geodesi-
cally convex and coincides with the restriction of the q-Wasserstein metric of Pq(C).

Contrary to the case n = 1, in general, the image of µ is not geodesically convex
for the Wq-metric, that is the geodesic joining µ(P0) to µ(P1) in Pq(CPn) will in
general not stay on µ(Pn,d). To overcome this issue it is proposed in [5] to consider
the inner Wq-distance, adopting the approach of J.-D. Benamou and Y. Brenier.
For this one needs the notion of a q-absolutely continuous curve in this setup. A
curve µt : I → Pq(CPn) belongs to ACq(I,Pq(CPn)) and is called q-absolutely
continuous if there is f ∈ Lq(I) such that

Wq(µs, µt) ≤
∫ t

s

f(τ) dτ, for all s ≤ t.

In that case, for L1-a.e. t ∈ I the limit limh→0Wq(µt+h, µt)/|h| exists, is denoted
by |µ̇t|q, and called metric speed. Then the inner Wq-distance on Pn,d is defined
by

W in
q (P0, P1) := inf

µt:=µ(γ(t))

(∫
I

|µ̇t|qq dt
) 1

q

,

where the infimum is taken over all q-absolutely continuous curves γ : I = [0, 1]→
Pn,d joining P0 and P1.

It is shown in Section 5.2 of [5], see Theorem 5.13 and Remark 6.10 therein,
that the metric space (Pn,d,W

in
q ) is complete and geodesic. Moreover, away of the

discriminant locus ∆n,d the W in
q distance and the Fubini–Study distance dFS on

Pn,d defined via the identification Pn,d = CPN are related as follows.
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Theorem 6.9. Let ϵ > 0 and denote Pn,d(ϵ) := {p ∈ Pn,d : dFS(p,∆n,d) ≥ ϵ}.
Then the identity map

id : (Pn,d(ϵ),dFS)→ (Pn,d(ϵ),W
in
q )

is Lipschitz. In particular, Pn,d(ϵ) is compact in the W in
q –topology.

In the proof, continuous semialgebraic curves are used. By Puiseux’s theorem,
they can be reparametrized, near their singular points, to get Cm regularity, for
arbitrary finite m.

Another important question is the compactness of (Pn,d,W
in
q ). This problem

was only partially solved in [5].

Theorem 6.10 ([5, Theorem 6.11]). There is e(n) ∈ N such that, for every 1 ≤
q < e(n)d/(e(n)d − 1), the complete and separable geodesic space (Pn,d,W

in
q ) is

compact.

Theorem 4.2 is used in the proof of the above theorem to provide q-absolutely
continuous curves as follows. This is fairly straightforward for n = 1 because, any
curve of polynomials

Pa(t)(z) = zd +

d∑
j=1

aj(t)z
d−j , t ∈ [0, 1],

with aj ∈ Cd−1,1([0, 1]), defines, after homogenization, an element of
ACq([0, 1];Pq(CP1)) for every 1 ≤ q < d/(d− 1). Thus one may take e(1) = 1.

Thanks to the uniformity of the bound of Theorem 4.2, the general case can
be reduced to the case n = 1 by restriction to all affine lines parameterized by
G(1, n) and then integration over this Grassmannian, provided we can avoid the
lines entirely included in ZP . This is always possible for generic P if d > 2n −
3, [5, Theorem 6.3], but not in general. Therefore it is proposed in [5] to use
the integration over the group of unitary transformations of a rational curve of
sufficiently high degree (instead of a line). It follows from a recent result of B.
Lehmann, E. Riedl and S. Tanimoto that for a given curve of polynomials Pt ∈ Pn,d
there is a rational curve of degree e(n), given by an explicit formula, such that none
of its unitary transformations can be entirely included in ZPt

. For all details of the
proof we refer the reader to [5].

Open Problem 6.11. For which q ≥ 1 is the space (Pn,d,W
in
q ) compact? In

particular, is it always compact for q = 2?

7. Appendix A. Function spaces

7.1. Hölder spaces. Let Ω ⊆ Rn be open. We denote by C0(Ω) the space of
continuous complex valued functions on Ω. For k ∈ N≥1 ∪{∞}, Ck(Ω) is the space
of k-times continuously differentiable functions,

Ck(Ω) = {f ∈ CΩ : ∂αf ∈ C0(Ω) for 0 ≤ |α| ≤ k}, k ∈ N,

and

C∞(Ω) =
⋂
k∈N

Ck(Ω).

The space of real analytic functions on Ω is denoted by Cω(Ω). If Ω ⊆ Cn, then
H(Ω) is the space of holomorphic functions on Ω.
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If the open set Ω ⊆ Rn is bounded, we write Ck(Ω) for the space of all f ∈ Ck(Ω)
such that ∂αf , 0 ≤ |α| ≤ k, has a continuous extension to the closure Ω. Then
Ck(Ω) endowed with the norm

∥f∥Ck(Ω) := sup
|α|≤k

sup
x∈Ω
|∂αf(x)|

is a Banach space. The spaces Ck(Ω), C∞(Ω), Cω(Ω), andH(Ω) carry their natural
locally convex topologies, where Ω is not necessarily bounded; note that Ck(Ω),
C∞(Ω), and H(Ω) are Fréchet spaces.

Let α ∈ (0, 1] and let Ω ⊆ Rn be open and bounded. A function is α-Hölder
continuous in Ω if

Höldα,Ω(f) := sup
x,y∈Ω, x ̸=y

|f(x)− f(y)|
|x− y|α

<∞.

It is Lipschitz continuous in Ω if it is 1-Hölder continuous in Ω; in that case, we
write

LipΩ(f) := Höld1,Ω(f) <∞.
For k ∈ N and α ∈ (0, 1], we have the scale of Hölder(–Lipschitz) spaces

Ck,α(Ω) := {f ∈ Ck(Ω) : ∂βf is α-Hölder continuous for |β| = k}
and we equip them with the norm

∥f∥Ck,α(Ω) := ∥f∥Ck(Ω) + sup
|β|=k

Höldα,Ω(∂
βf).

Then Ck,α(Ω) is a Banach space. We write Ck,α(Ω) (where Ω is not necessarily
bounded) for the space of all functions f ∈ Ck(Ω) such that ∥f |Ω′∥Ck,α(Ω

′
) < ∞

for all relatively compact Ω′ ⋐ Ω with its natural Fréchet topology.

7.2. Lebesgue spaces and weak Lebesgue spaces. Let Ω ⊆ Rn be open and
1 ≤ p ≤ ∞. The Lebesgue space Lp(Ω) is the space of measurable complex val-
ued functions f : Ω → C that are p-integrable with respect to the n-dimensional
Lebesgue measure Ln; actually, the elements of Lp(Ω) are equivalence classes of
functions that coincide Ln-almost everywhere. If not stated otherwise, “measur-
able” always means “Lebesgue measurable”. The Lp-norms make the Lebesgue
spaces to Banach spaces:

∥f∥Lp(Ω) :=
(∫

Ω

|f(x)|pdx
)1/p

, 1 ≤ p <∞,

∥f∥L∞(Ω) := ess supx∈Ω |f(x)|, p =∞.

We denote by Lploc(Ω) the space of measurable functions f : Ω → C such that
∥f∥Lp(K) <∞ for each compact subset K ⊆ Ω.

Let Ω ⊆ Rn be open and bounded. For 1 ≤ p < ∞, the weak Lp-space is the
space of all measurable functions f : Ω→ C such that

∥f∥p,w,Ω := sup
r>0

(
r · Ln({x ∈ Ω : |f(x)| > r})1/p

)
<∞;

again, we identify functions that coincide Ln-almost everywhere. Note that ∥·∥p,w,Ω
is only a quasinorm: the triangle inequality fails, but for fj ∈ Lpw(Ω) one still has∥∥∥ m∑

j=1

fj

∥∥∥
p,w,Ω

≤ m
m∑
j=1

∥fj∥p,w,Ω.
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The spaces Lpw(Ω) are complete with respect to the quasinorms ∥ · ∥p,w,Ω, i.e., they
are quasi-Banach spaces. If p > 1, then there exists a norm equivalent to ∥ · ∥p,w,Ω
which makes Lpw(Ω) into a Banach space. For 1 ≤ q < p <∞, we have

∥f∥q,w,Ω ≤ ∥f∥Lq(Ω) ≤
( p

p− q

)1/q
Ln(Ω)1/q−1/p ∥f∥p,w,Ω

and thus there are continuous strict inclusions Lpw(Ω) ⊆ Lq(Ω) ⊆ Lqw(Ω). The
Lpw-quasinorm is σ-subadditive (i.e., ∥f∥pp,w,Ω ≤

∑
j ∥f∥

p
p,w,Ωj

for countable open

covers Ω =
⋃
j Ωj) but not σ-additive.

7.3. Sobolev spaces. Let Ω ⊆ Rn be open. For k ∈ N≥1 and 1 ≤ p ≤ ∞, we
consider the Sobolev space

W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) for |α| ≤ k},
where ∂αf are distributional derivatives, with the norm

∥f∥Wk,p(Ω) :=
∑
|α|≤k

∥∂αf∥Lp(Ω).

Then W k,p(Ω) are Banach spaces. We denote by W k,p
loc (Ω) the space of functions

f ∈ Lploc(Ω) such that ∂αf ∈ Lploc(Ω) for |α| ≤ k.
Let k = 1 and suppose f ∈ Lp(Ω). Then f ∈ W 1,p(Ω) if and only if f has

a representative f that is absolutely continuous on almost all line segments in Ω
parallel to the coordinate axes and whose classical derivatives ∂if belong to Lp(Ω).
In particular, for a bounded interval I ⊆ R, W 1,1(I) can be identified with the
space AC(I) of absolutely continuous functions on I. We recall that, by definition,

f ∈ AC(I) if for every ϵ > 0 there exists δ > 0 such that
∑k
j=1 |f(bj)−f(aj)| ≤ ϵ for

every finite number of disjoint intervals (aj , bj), j = 1, . . . , k, satisfying [aj , bj ] ⊆ I
and

∑k
j=1(bj − aj) ≤ δ.

In the case that p =∞ and that Ω is a bounded Lipschitz domain, f ∈W 1,∞(Ω)
if and only if f has a representative that is Lipschitz continuous on Ω.

7.4. Functions of bounded variation. Let Ω ⊆ Rn be open. A real valued
f ∈ L1(Ω) is a function of bounded variation in Ω if the distributional derivative
of f is representable by a finite Radon measure in Ω, i.e., for all C∞ functions
φ : Ω→ R with compact support in Ω and all 1 ≤ i ≤ n,∫

Ω

f(x)∂iφ(x) dx = −
∫
Ω

φdDif,

for some Rn-valued Radon measure Df = (D1f, . . . ,Dnf) on Ω. By definition, a
complex valued function is of bounded variation in Ω if its real and imaginary parts
are. The space BV (Ω) of all functions of bounded variation in Ω equipped with
the norm

∥f∥BV (Ω) := ∥f∥L1(Ω) + |Df |(Ω),
where |Df |(Ω) is the total variation measure, is a Banach space.

The Sobolev space W 1,1(Ω) is strictly contained in BV (Ω) (for f ∈W 1,1(Ω) we
have Df = ∇f Ln).

Functions of bounded variation may have discontinuities. Let f ∈ BV (Ω). Then
the Lebesgue decomposition with respect to Ln induces a decomposition

Df = Daf +Djf +Dcf,
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where Daf = ∇f Ln is the absolutely continuous part, Djf is the jump part (given
by integration of the jump height against the restriction of Hn−1 to the set of
approximate jump points Jf , i.e., D

jf = ((f+ − f−)⊗ νf ) (Hn−1⌞Jf ), where νf is
the direction of the jump), and Dcf is the Cantor part.

The closed subspace SBV (Ω) := {f ∈ BV (Ω) : Dcf = 0} of BV (Ω) is called the
space of special functions of bounded variation. We have continuous strict inclusions
W 1,1(Ω) ⊆ SBV (Ω) ⊆ BV (Ω).

8. Appendix B. The space of hyperbolic polynomials

The fact that the regularity of the roots of hyperbolic polynomials is essentially
better than that of the roots of general polynomials is related to the geometry of
the space Hyp(d) of monic hyperbolic polynomials of degree d and the constraints
a sufficiently differentiable curve of hyperbolic polynomials is subdued to at the
boundary of Hyp(d). In this section, we collect some interesting topological and
geometric properties of Hyp(d).

The following results are due to Kostov [54]; see also Arnol’d [6] and Givental’
[38]. Let p = (p1, . . . , pd) be a probability vector, i.e., pi > 0 and p1 + · · ·+ pd = 1.
The Vandermonde mapping W =W (p) : Rd → Rd is defined by

Wj(x) := p1x
j
1 + · · ·+ pdx

j
d, 1 ≤ j ≤ d.

If pi = 1/d for 1 ≤ j ≤ d, then Wj , 1 ≤ j ≤ d, are the Newton polynomials (up to
a constant factor) which generate the algebra of symmetric polynomials on Rd and
consequently the image W (Rd) is isomorphic to Hyp(d) in this case.

The set K := {x ∈ Rd : x1 ≤ x2 ≤ · · · ≤ xd} is a fundamental domain for
the action of the symmetric group Sd on Rd by permuting the coordinates. Every
set of the form {x ∈ K : Wj(x) = cj , 1 ≤ j ≤ k} is called a (d − k)-dimensional
Vandermonde manifold.

Theorem 8.1 ([54]). Every Vandermonde manifold is either contractible or empty.
The mapW : K →W (K) is a homeomorphism. Every set of the form {y ∈W (K) :
yj = cj , 1 ≤ j ≤ k} is either contractible or empty.

As a consequence, W k := (W1, . . . ,Wk), k ≤ d, is a homeomorphism of the
closure of every k-dimensional stratum of the polyhedron K onto its image; indeed,
the restriction ofW k to such a stratum is the k-dimensional Vandermonde mapping
for some probability vector.

Let K0 := {x ∈ K :W1(x) = 0, W2(x) ≤ 1}.

Theorem 8.2 ([54]). The setsW (K0) andW
k(K0), 1 ≤ k ≤ d−1, are quasiconvex,

i.e., there is a constant C > 0 such that any two points can be joint by a piecewise
smooth curve in the set of length not exceeding C times the Euclidean distance of
the two points.

In particular, the space of monic hyperbolic polynomials of degree d in Tschirn-
hausen form with |ã2| ≤ 1 is quasiconvex. We refer to [54] for additional information
on the stratification of W (K).

The semialgebraic set Hyp(d) ⊆ Rd can be described by explicit inequalities. Let

sj = xj1 + · · ·+ xjd, j ≥ 0, be the Newton polynomials and consider the Bezoutiant
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matrix

B :=


s0 s1 · · · sd−1

s1 s2 · · · sd
...

...
. . .

...
sd−1 sd · · · s2d−2

 .

We have B = B̃(σ1, . . . , σd) for a unique matrix valued polynomial B̃, where the σi
are the elementary symmetric functions. The following result is Hermite’s [47] and
Sylvester’s [107] version of Sturm’s theorem; the indicated references give a modern
account and a far reaching generalization.

Theorem 8.3 ([89, 90]). The space Hyp(d) of monic hyperbolic polynomials of

degree d can be identified with {y ∈ Rd : B̃(y) ≥ 0}. The rank of B̃ equals the
number of distinct roots and its signature equals the number of distinct real roots.

Since a real symmetric matrix is positive semidefinite if and only if the deter-
minants of the principal minors are nonnegative, this description yields explicit
inequalities that determine Hyp(d).

Recall that HypT (d) = Hyp(d)∩{y1 = 0} is the space of monic hyperbolic poly-
nomials of degree d in Tschirnhausen form. Then HypT (1) is the origin, HypT (2) is
(−∞, 0], HypT (3) is the closure of the inside of a cusp, and HypT (4) is the closure
of the inside of the swallowtail.

In [75] Meguerditchian studies the “escape” from the set Hyp(d): roughly speak-
ing, for a polynomial P in Hyp(d) an integer sP , which depends only on the multi-
plicity vector of P , is introduced such that one can decide whether P +Q belongs
to Hyp(d) or not in terms of how the degree of Q relates to sP .

By Nuij [79], for P ∈ Hyp(d) also P + sP ′ ∈ Hyp(d), for all s ∈ R. A general-
ization of this result is due to Kurdyka and Păunescu [65].
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[7] M. Bačák and J. M. Borwein, On difference convexity of locally Lipschitz functions, Opti-
mization 60 (2011), no. 8-9, 961–978.

[8] C. Bär, Zero sets of solutions to semilinear elliptic systems of first order, Invent. Math. 138

(1999), no. 1, 183–202.
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