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Abstract. If u 7→ A(u) is a C0,α-mapping, for 0 < α ≤ 1, having as values

unbounded self-adjoint operators with compact resolvents and common do-
main of definition, parametrized by u in an (even infinite dimensional) space,

then any continuous (in u) arrangement of the eigenvalues of A(u) is indeed

C0,α in u.

Theorem. Let U ⊆ E be a c∞-open subset in a convenient vector space E, and
0 < α ≤ 1. Let u 7→ A(u), for u ∈ U , be a C0,α-mapping with values unbounded
self-adjoint operators in a Hilbert space H with common domain of definition and
with compact resolvent. Then any (in u) continuous eigenvalue λ(u) of A(u) is
C0,α in u.

Remarks and definitions. This paper is a complement to [9] and builds upon

it. A function f : R→ R is called C0,α if f(t)−f(s)
|t−s|α is locally bounded in t 6= s. For

α = 1 this is Lipschitz.
Due to [2] a mapping f : Rn → R is C0,α if and only if f ◦ c is C0,α for each

smooth (i.e. C∞) curve c. [4] has shown that this holds for even more general
concepts of Hölder differentiable maps.

A convenient vector space (see [8]) is a locally convex vector space E satisfying
the following equivalent conditions: Mackey Cauchy sequences converge; C∞-curves
in E are locally integrable in E; a curve c : R→ E is C∞ (locally Lipschitz, short
Lipschitz) if and only if ` ◦ c is C∞ (Lipschitz) for all continuous linear functionals
`. The c∞-topology on E is the final topology with respect to all smooth curves
(Lipschitz curves). Mappings f defined on open (or even c∞-open) subsets of
convenient vector spaces E are called C0,α (Lipschitz) if f ◦c is C0,α (Lipschitz) for
every smooth curve c. A C0,α-mapping f between Banach spaces is locally Hölder-
continuous of order α in the usual sense. This has been proved in [5], which is not
easily accessible, thus we include a proof in the lemma below. For the Lipschitz
case see [7] and [8, 12.7].

That a mapping t 7→ A(t) defined on a c∞-open subset U of a convenient vector
space E is C0,α with values in unbounded self-adjoint operators means the following:
There is a dense subspace V of the Hilbert space H such that V is the domain
of definition of each A(t), and such that A(t)∗ = A(t). And furthermore, t 7→
〈A(t)u, v〉 is C0,α for each u ∈ V and v ∈ H in the sense of the definition given
above.

This implies that t 7→ A(t)u is of the same class U → H for each u ∈ V by
[8, 2.3], [7, 2.6.2], or [5, 4.1.14]. This is true because C0,α can be described by
boundedness conditions only; and for these the uniform boundedness principle is
valid.
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Lemma ([5]). Let E and F be Banach spaces, U open in E. Then, a mapping

f : U → F is C0,α if and only if f is locally Hölder of order α, i.e., ‖f(x)−f(y)‖‖x−y‖α is

locally bounded.

Proof. If f is C0,α but not locally Hölder near z ∈ U , then there are xn 6= yn in U
with ‖xn−z‖ ≤ 1/4n and ‖yn−z‖ ≤ 1/4n, such that ‖f(yn)−f(xn)‖ ≥ n.2n.‖yn−
xn‖α. Now we apply the general curve lemma [8, 12.2] with sn := 2n.‖yn−xn‖ and
cn(t) := xn − z + t yn−xn

2n‖yn−xn‖ to get a smooth curve c with c(t+ tn)− z = cn(t) for

0 ≤ t ≤ sn. Then 1
sαn
‖(f ◦c)(tn+sn)−(f ◦c)(tn)‖ = 1

2nα.‖yn−xn‖α ‖f(yn)−f(xn)‖ ≥
n. The converse is obvious. �

The theorem holds for E = R. Let t 7→ A(t) be a C0,α-curve. Going through
the proof of the resolvent lemma in [9] carefully, we find that t 7→ A(t) is a C0,α-
mapping U → L(V,H), and thus the resolvent (A(t) − z)−1 is C0,α into L(H,H)
in t and z jointly. There the exponential law for Lip0 = C0,1 is invoked, but one
only needs that the evaluation map is bounded multilinear.

For a continuous eigenvalue t 7→ λ(t) as in the theorem, let the eigenvalue λ(s)
of A(s) have multiplicity N for s fixed. Choose a simple closed curve γ in the
resolvent set of A(s) enclosing only λ(s) among all eigenvalues of A(s). Since the
global resolvent set {(t, z) ∈ R × C : (A(t) − z) : V → H is invertible} is open, no
eigenvalue of A(t) lies on γ, for t near s. Consider

t 7→ − 1

2πi

∫
γ

(A(t)− z)−1dz =: P (t),

a C0,α-curve of projections (on the direct sum of all eigenspaces corresponding to
eigenvalues in the interior of γ) with finite dimensional ranges and constant ranks.
So for t near s, there are equally many eigenvalues (repeated with multiplicity) in
the interior of γ. Let us order them by size, µ1(t) ≤ µ2(t) ≤ · · · ≤ µN (t), for all
t. The image of t 7→ P (t), for t near s, describes a finite dimensional C0,α vector
subbundle of R ×H → R, since its rank is constant. The set {µi(t) : 1 ≤ i ≤ N}
represents the eigenvalues of P (t)A(t)|P (t)(H). By the following result, it forms a

C0,α-parametrization of the eigenvalues of A(t) inside γ, for t near s.
The eigenvalue λ(t) is a continuous (in t) choice among the µi(t), and it is C0,α

in t by the proposition below.

Result ([10], see also [1, III.2.6]). Let A,B be Hermitian N × N matrices. Let
µ1(A) ≤ µ2(A) ≤ · · · ≤ µN (A) and µ1(B) ≤ µ2(B) ≤ · · · ≤ µN (B) denote the
eigenvalues of A and B, respectively. Then

max
j
|µj(A)− µj(B)| ≤ ‖A−B‖.

Here ‖.‖ is the operator norm.

Proposition. Let 0 < α ≤ 1. Let U 3 u 7→ A(u) be a C0,α-mapping of Hermitian
N × N matrices. Let u 7→ λi(u), i = 1, . . . , N , be continuous mappings which
together parametrize the eigenvalues of A(u). Then each λi is C0,α.

Proof. It suffices to check that λi is C0,α along each smooth curve in U , so we may
assume without loss that U = R. We have to show that each continuous eigenvalue
t 7→ λ(t) is a C0,α-function on each compact interval I in U . Let µ1(t) ≤ · · · ≤ µN (t)
be the increasingly ordered arrangement of eigenvalues. Then each µi is a C0,α-
function on I with a common Hölder constant C by the result above. Let t < s be
in I. Then there is an i0 such that λ(t) = µi0(t). Now let t1 be the maximum of all
r ∈ [t, s] such that λ(r) = µi0(r). If t1 < s then µi0(t1) = µi1(t1) for some i1 6= i0.
Let t2 be the maximum of all r ∈ [t1, s] such that λ(r) = µi1(r). If t2 < s then
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µi1(t2) = µi2(t2) for some i2 /∈ {i0, i1}. And so on until s = tk for some k ≤ N .
Then we have (where t0 = t)

|λ(s)− λ(t)|
(s− t)α

≤
k−1∑
j=0

|µij (tj+1)− µij (tj)|
(tj+1 − tj)α

·
(
tj+1 − tj
s− t

)α
≤ Ck ≤ CN. �

Proof of the theorem. For each smooth curve c : R → U the curve R 3 t 7→
A(c(t)) is C0,α, and by the 1-parameter case the eigenvalue λ(c(t)) is C0,α. But
then u 7→ λ(u) is C0,α. �

Remark. Let u 7→ A(u) be C0,1. Choose a fixed continuous ordering of the eigen-
values, e.g., by size. We claim that along a smooth or Lipschitz curve c(t) in U ,
none of these can accelerate to ∞ or −∞ in finite time. Thus we may denote them
as . . . λi(u) ≤ λi+1(u) ≤ . . . , for all u ∈ U . Then each λi is C0,1.

The claim can be proved as follows: Let t 7→ A(t) be a Lipschitz curve. By
reducing to the projection P (t)A(t)|P (t)(H), we may assume that t 7→ A(t) is a
Lipschitz curve of Hermitian N × N matrices. So A′(t) exists a.e. and is locally
bounded. Let t 7→ λ(t) be a continuous eigenvalue. It follows that λ satisfies [9, (6)]
a.e. and, as in the proof of [9, (7)], one shows that for each compact interval I there
is a constant C such that |λ′(t)| ≤ C+C|λ(t)| a.e. in I. Since t 7→ λ(t) is Lipschitz,
in particular, absolutely continuous, Gronwall’s lemma (e.g. [3, (10.5.1.3)]) implies
that |λ(s)− λ(t)| ≤ (1 + |λ(t)|)(ea|s−t| − 1) for a constant a depending only on I.
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