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Abstract. Let V be a real finite dimensional representation of a compact Lie
group G. It is well-known that the algebra R[V ]G of G-invariant polynomials
on V is finitely generated, say by σ1, . . . , σp. Schwarz [38] proved that each
G-invariant C∞-function f on V has the form f = F (σ1, . . . , σp) for a C∞-
function F on Rp. We investigate this representation within the framework
of Denjoy–Carleman classes. One can in general not expect that f and F lie
in the same Denjoy–Carleman class CM (with M = (Mk)). For finite groups
G and (more generally) for polar representations V we show that for each G-
invariant f of class CM there is an F of class CN such that f = F (σ1, . . . , σp),
if N is strongly regular and satisfies

sup
k∈N>0

“ Mkm

Nk

” 1
k

< ∞,

where m is an (explicitly known) integer depending only on the representation.
In particular, each G-invariant (1 + δ)-Gevrey function f (with δ > 0) has the
form f = F (σ1, . . . , σp) for a (1 + δm)-Gevrey function F . Applications to
equivariant functions and basic differential forms are given.

1. Introduction

Let V be a real finite dimensional representation of a compact Lie group G. By
a classical theorem due to Hilbert the algebra R[V ]G of G-invariant polynomials on
V is finitely generated. Choose a system of homogeneous generators σ1, . . . , σp of
R[V ]G and define σ := (σ1, . . . , σp) : V → Rp. Schwarz [38] proved a smooth analog
of Hilbert’s theorem for orthogonal representations V of compact Lie groups G: the
induced mapping σ∗ : C∞(Rp) → C∞(V )G is surjective. Mather [27] showed that
this mapping is even split surjective.

The finitely differentiable case was studied, too: σ∗ : Cn(Rp) → Cn(V )G is in
general not surjective, but σ∗Cn(Rp) contains Cnq(V )G for a suitable integer q.
See [1], [3], [2], [37].

In this paper we treat Schwarz’s theorem in the framework of Denjoy–Carleman
classes. These classes of smooth functions play an important role in harmonic
analysis and various branches of differential equations (especially Gevrey classes).
Let M = (Mk)k∈N be a non-decreasing sequence of real numbers with M0 = 1.
A smooth function f in an open subset U ⊆ Rn belongs to the Denjoy–Carleman
class CM (U) if for any compact subset K ⊆ U there exist positive constants C and
̺ such that

|∂αf(x)| ≤ C̺|α||α|!M|α|

for all α ∈ Nn and x ∈ K. See section 2 for more on Denjoy–Carleman classes.
As examples ([8], see also 3.3) show, one cannot expect in general that a smooth
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2 A. RAINER

G-invariant function f on V of class CM has the form f = F ◦ σ for a function F
of the same class CM .

For finite groups G and (more generally) for polar representations V we prove
that the representation f = F ◦σ holds in the context of Denjoy–Carleman classes,
where F has lower regularity than f . More precisely: Let G be a subgroup of finite
order m of GL(V ). Let M and N be sequences satisfying some mild conditions
which guarantee stability under composition and derivation for CM and CN (see
2.1). Assume that N is strongly regular (see 2.6) and that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then for any G-invariant function f ∈ CM (V ) there exists a function F ∈ CN (Rp)
such that f = F ◦ σ. In particular: Any G-invariant Gevrey function f ∈ G1+δ(V )
(with δ > 0) has the form f = F ◦ σ for a Gevrey function F ∈ G1+δm(Rp). See
theorem 3.4. The result does not depend on the choice of generators σi, since any
two choices differ only by a polynomial diffeomorphism and the involved Denjoy–
Carleman classes are stable under composition.

Note that Thilliez [40] treats a very similar problem: For a compact subset
E ⊆ Rn, an analytic mapping Φ : U → Rn on an open neighborhood U of E,
and a function f ∈ CM (U) of the form f = g ◦ Φ with g ∈ C∞(W ) for an open
neighborhood W of Φ(E), the existence of a sequence N such that g ∈ CN (W ) is
investigated. This is done by studying the complex setting: Now E is compact in
Cn, Φ is a Cn-valued holomorphic mapping defined near E, and g is C∞ on Cn and
∂̄-flat on Φ(E). However, our results are not covered by Thilliez’, since the minimal
number of generators of R[V ]G does in general not coincide with the dimension of
the representation space V .

We prove the main theorem in section 3. We shall deduce it from an analog
theorem (see 3.3) due to Bronshtein [7, 8] which treats the standard representation
of the symmetric group Sn in Rn. This method is inspired by Barbançon and Räıs
[3] deploying Weyl’s account [43] of Noether’s [30] proof of Hilbert’s theorem.

The rest of the paper is devoted to several applications of this main theorem.
In section 4 we treat the presentation in Denjoy–Carleman classes of equivariant
functions between representations of a finite group.

In section 5 the main theorem 3.4 is generalized to polar representations, i.e.,
orthogonal finite dimensional representations V of a compact Lie group G allowing
a linear subspace Σ ⊆ V which meets each orbit orthogonally (see theorem 5.2).
The trace of the G-action in Σ is the action of the generalized Weyl group W which
is a finite group. In analogy with a result due to Palais and Terng [32], which
states that restriction induces an isomorphism I1 : C∞(V )G ∼= C∞(Σ)W , we show
that each W -invariant function on Σ of class CM has a G-invariant extension to
V of class CN , where M and N are sequences with the aforementioned properties.
More generally, Michor [28, 29] proved that restriction induces an isomorphism
I2 : Ωphor(V )G ∼= Ωp(Σ)W , where Ωphor(V )G is the space of basic p-forms on V , i.e.,
G-invariant forms that kill each vector tangent to some orbit. Our main theorem
3.4 allows to conclude that each W -invariant p-form on Σ of class CM has a basic
extension to V of class CN (with M and N as above).

In [32] and [28, 29] the isomorphisms I1 and I2 are established in the more
general setting of smooth proper Riemannian G-manifolds X with sections, where
there exist closed submanifolds Σ ⊆ X meeting each orbit orthogonally. In section
6 we explain that our analog results in the framework of Denjoy–Carleman classes
generalize to real analytic proper Riemannian G-manifolds X with sections.
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2. Denjoy–Carleman classes

2.1. Denjoy–Carleman classes of differentiable functions. We mainly follow
[42] (see also the references therein). We use N = N>0 ∪ {0}. For each multi-
index α = (α1, . . . , αn) ∈ Nn, we write α! = α1! · · ·αn!, |α| = α1 + · · · + αn, and
∂α = ∂|α|/∂xα1

1 · · · ∂xαn
n .

Let M = (Mk)k∈N be an increasing sequence (Mk+1 ≥Mk) of real numbers with
M0 = 1. Let U ⊆ Rn be open. We denote by CM (U) the set of all f ∈ C∞(U)
such that, for all compact K ⊆ U , there exist positive constants C and ̺ such that

(2.1.1) |∂αf(x)| ≤ C ̺|α| |α|!M|α|

for all α ∈ Nn and x ∈ K. The set CM (U) is the Denjoy–Carleman class of
functions on U . If Mk = 1, for all k, then CM (U) coincides with the ring Cω(U)
of real analytic functions on U . In general, Cω(U) ⊆ CM (U) ⊆ C∞(U).

We assume that M = (Mk) is logarithmically convex, i.e.,

(2.1.2) M2
k ≤Mk−1Mk+1 for all k,

or, equivalently, Mk+1/Mk is increasing. Considering M0 = 1, we obtain that also
(Mk)

1/k is increasing and

(2.1.3) MlMk ≤Ml+k for all l, k ∈ N.

Hypothesis (2.1.2) implies that CM (U) is a ring, for all open subsets U ⊆ Rn,
which can easily be derived from (2.1.3) by means of Leibniz’s rule. Note that
definition (2.1.1) makes sense also for functions U → Rp. For CM -mappings, (2.1.2)
guarantees stability under composition ([35], see also [4, 4.7]).

A further consequence of (2.1.2) is the inverse function theorem for CM ([22];
for a proof see also [4, 4.10]): Let f : U → V be a CM -mapping between open
subsets U, V ⊆ Rn. Let x0 ∈ U . Suppose that the Jacobian matrix (∂f/∂x)(x0)
is invertible. Then there are neighborhoods U ′ of x0, V

′ of y0 := f(x0) such that
f : U ′ → V ′ is a CM -diffeomorphism.

Moreover, (2.1.2) implies that CM is closed under solving ODEs (due to [23]).
Suppose that M = (Mk) and N = (Nk) satisfy Mk ≤ CkNk, for all k and a

constant C, or equivalently,

(2.1.4) sup
k∈N>0

(Mk

Nk

) 1
k

<∞.

Then, evidently CM (U) ⊆ CN (U). The converse is true as well (if (2.1.2) is
assumed): One can prove that there exists f ∈ CM (R) such that |f (k)(0)| ≥ k!Mk

for all k (see [42, Theorem 1]). So the inclusion CM (U) ⊆ CN (U) implies (2.1.4).
Setting Nk = 1 in (2.1.4) yields that Cω(U) = CM (U) if and only if

sup
k∈N>0

(Mk)
1
k <∞.

Since (Mk)
1/k is increasing (by logarithmic convexity), the strict inclusion Cω(U) (

CM (U) is equivalent to

lim
k→∞

(Mk)
1
k =∞.

We shall also assume that CM is stable under derivation, which is equivalent to
the following condition

(2.1.5) sup
k∈N>0

(Mk+1

Mk

) 1
k

<∞.
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Note that the first order partial derivatives of elements in CM (U) belong to

CM
+1

(U), where M+1 denotes the shifted sequence M+1 = (Mk+1)k∈N. So the
equivalence follows from (2.1.4), by replacing M with M+1 and N with M .

Definition. By a DC-weight sequence we mean a sequence M = (Mk)k∈N of pos-
itive numbers with M0 = 1 which is monotone increasing (Mk+1 ≥ Mk), logarith-
mically convex (2.1.2), and satisfies (2.1.5). Then CM (U,R) is a differential ring,
and the class of CM -functions is stable under compositions, as above.

2.2. Quasianalytic function classes. Let Fn denote the ring of formal power
series in n variables (with real or complex coefficients). We denote by FMn the set
of elements F =

∑
α∈Nn Fα x

α of Fn for which there exist positive constants C and
̺ such that

|Fα| ≤ C ̺|α|M|α|

for all α ∈ Nn. A class CM is called quasianalytic if, for open connected U ⊆ Rn

and all a ∈ U , the Taylor series homomorphism

Ta : CM (U)→ FMn , f 7→ Taf(x) =
∑

α∈Nn

1

α!
∂αf(a)xα

is injective. By the Denjoy–Carleman theorem ([14], [10]), CM is quasianalytic if
and only if

(2.2.1)

∞∑

k=0

Mk

(k + 1)Mk+1
=∞, or, equivalently,

∞∑

k=1

( 1

k!Mk

) 1
k

=∞.

For contemporary proofs see for instance [19, 1.3.8] or [36, 19.11].
Suppose that Cω(U) ( CM (U) and CM (U) is quasianalytic. Then Ta :

CM (U) → FMn is not surjective. This is due to Carleman [10]; an elementary
proof can be found in [42, Theorem 3].

2.3. Non-quasianalytic function classes. If M is a DC-weight sequence which
is not quasianalytic, then there are CM partitions of unity. Namely, there exists
a CM function f on R which does not vanish in any neighborhood of 0 but which
has vanishing Taylor series at 0. Let g(t) = 0 for t ≤ 0 and g(t) = f(t) for t > 0.
From g we can construct CM bump functions as usual.

2.4. Strong non-quasianalytic function classes. Let M be a DC-weight se-
quence with Cω(U,R) ( CM (U,R). Then the mapping Ta : CM (U,R) → FMn is
surjective, for all a ∈ U , if and only if there is a constant C such that

(2.4.1)
∞∑

k=j

Mk

(k + 1)Mk+1
≤ C Mj

Mj+1
for any integer j ≥ 0.

See [34] and references therein. (2.4.1) is called strong non-quasianalyticity condi-
tion.

2.5. Moderate growth. A DC-weight sequence M has moderate growth if

(2.5.1) sup
j,k∈N>0

( Mj+k

MjMk

) 1
j+k

<∞.

2.6. Strong regularity. Moderate growth (2.5.1) together with strong non-quasi-
analyticity (2.4.1) is called strong regularity: Then a version of Whitney’s extension
theorem holds for the corresponding function classes.
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2.7. Whitney’s extension theorem. Let K ⊆ Rn be compact. Denote by
J∞(K) the C∞ Whitney jets on K. We say that F = (Fα)α∈Nn ∈ J∞(K) is
a CM -jet on K, or belongs to JM (K), if there exist positive constants C and ̺
such that

(2.7.1) |Fα(x)| ≤ C̺|α||α|!M|α|

for all α ∈ Nn and x ∈ K and

(2.7.2) |Fβ(x) − ∂βT paF (x)| ≤ C̺p|β|!Mp+1|x− a|p+1−|β|

for all p ∈ N, all β ∈ Nn with |β| ≤ p and all x ∈ K, where

T paF (x) =
∑

|β|≤p

1

β!
Fβ(a)(x− a)β .

If M is strongly regular then a version of Whitney’s extension theorem holds (see
[9], [5], and [11]): the mapping JK : CM (Rn) → JM (K), f 7→ (∂αf |K)α∈Nn is
surjective.

Note that, if f ∈ C∞(Rn) such that F = JKf satisfies (2.7.1) and if K is
Whitney 1-regular, then (2.7.2) is automatically fulfilled (see [5, 3.12]). Recall that
K is Whitney 1-regular if any two points x and y in K can be connected by a path
in K of length ≤ C|x− y|, where the constant C depends only on K.

2.8. Gevrey functions. Let δ > 0 and put Mk = (k!)δ, for k ∈ N. Then M =
(Mk) is strongly regular. The corresponding class CM of functions is the Gevrey
class G1+δ.

2.9. More examples. Let δ > 0 and put Mk = (log(k + e))δ k, for k ∈ N. Then
M = (Mk) is quasianalytic for 0 < δ ≤ 1 and non-quasianalytic (but not strongly)
for δ > 1.

Let q > 1 and put Mk = qk
2

, for k ∈ N. The corresponding CM -functions are
called q-Gevrey regular. Then M = (Mk) is strongly non-quasianalytic but not of
moderate growth, thus not strongly regular.

2.10. Spaces of CM -functions. Let U ⊆ Rn be open. For any ̺ > 0 and K ⊆ U
compact with smooth boundary, define

CM̺ (K) := {f ∈ C∞(K) : ‖f‖̺,K <∞}

with

‖f‖̺,K := sup
{ |∂αf(x)|
̺|α| |α|!M|α|

: α ∈ Nn, x ∈ K
}
.

It is easy to see that CM̺ (K) is a Banach space. In the description of CM̺ (K),
instead of compact K with smooth boundary, we may also use open K ⊂ U with
K compact in U , like [42]. Or we may work with Whitney jets on compact K, like
[21].

The space CM (U) carries the projective limit topology over compact K ⊆ U of
the inductive limit over ̺ ∈ N>0:

CM (U) = lim←−
K⊆U

(
lim−→
̺∈N>0

CM̺ (K)
)
.

One can prove that, for ̺ < ̺′, the canonical injection CM̺ (K) → CM̺′ (K) is a

compact mapping (see [21]). Hence lim−→̺
CM̺ (K) is a Silva space, i.e., an inductive

limit of Banach spaces such that the canonical mappings are compact.
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2.11. Polynomials are dense in CM (U). Let M be a DC-weight sequence and
let U ⊆ Rn be open. It is proved in [20, 3.2] (see also [17, 3.2]) that the space
of entire functions H(Cn) is dense in CM (U). Since the polynomials are dense
in H(Cn) and the inclusion H(Cn) → CM (U) is continuous, we obtain that the
polynomials are dense in CM (U). For convenience we give a proof.

Lemma. Let M be a DC-weight sequence and let U ⊆ Rn be open. Then H(Cn)
is dense in CM (U).

Proof. Let f ∈ CM (U) and K ⊆ U compact. Let 0 < c < 1 such that Q =
K + Bc(0) ⊆ U , where Bc(0) = {x ∈ Rn : |x| ≤ c}. Let χ ∈ C∞(U) with
0 ≤ χ ≤ 1, χ|Q = 1, and compact support Q1 = supp(χ) ⊆ U . We define for
j ∈ N>0

fj := Ej ∗ χf ∈ H(Cn), where Ej : Cn → C, z 7→
(
j
π

)n
2 e−j〈z|z〉.

Induction shows

∂iN · · ·∂i1 (Ej∗χf)=Ej∗(χ∂iN · · · ∂i1f)+

N∑

ν=1

(∂iN · · · ∂iν+1
Ej)∗(∂iνχ)(∂iν−1

· · · ∂i1f),

for all N ∈ N and j ∈ N>0, and hence

|∂iN · · ·∂i1(f − fj)| ≤ |∂iN · · · ∂i1f − Ej ∗ (χ∂iN · · ·∂i1f)|

+

N∑

ν=1

|(∂iN · · ·∂iν+1
Ej) ∗ (∂iνχ)(∂iν−1

· · · ∂i1f)|.(2.11.1)

We have for x ∈ K and α ∈ Nn

|Ej ∗ (χ∂αf)(x)− ∂αf(x)| = |
∫
Ej(y)

(
χ(x− y)∂αf(x− y)− ∂αf(x)

)
dy|

≤
∫

Bc(0)

Ej(y)|∂αf(x− y)− ∂αf(x)|dy

+

∫

Rn\Bc(0)

Ej(y)
(
χ(x− y)|∂αf(x− y)|+ |∂αf(x)|

)
dy.

By the generalized mean value theorem we have for x ∈ K, y ∈ Bc(0), and α ∈ Nn

|∂αf(x− y)− ∂αf(x)| ≤
√
n |y| sup

1≤i≤n
0≤t≤1

|∂α+eif(x− ty)|.

Choose ̺1 > 0 such that ‖f‖̺1,Q1
<∞. Then for x ∈ K, y ∈ Bc(0), and α ∈ Nn

|∂αf(x− y)− ∂αf(x)| ≤
√
n |y|‖f‖̺1,Q1

̺
|α|+1
1 (|α| + 1)!M|α|+1

≤ 2
√
n |y|̺1‖f‖̺1,Q1

(2̺1C)|α||α|!M|α| (by (2.1.5)),

where C is a positive constant. For all j ∈ N>0 we have
∫

Rn

|y|Ej(y)dy ≤
C1√
j

and

∫

Rn\Bc(0)

Ej(y)dy ≤
C1√
j

for a constant C1 independent of j. Thus there exist positive constants C2 and ̺2

independent of x, α, and j such that

|Ej ∗ (χ∂αf)(x)− ∂αf(x)| ≤ C2√
j
̺
|α|
2 |α|!M|α|.(2.11.2)
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We have for x ∈ K
|(∂iN · · · ∂iν+1

Ej) ∗ (∂iνχ)(∂iν−1
· · ·∂i1f)(x)|

≤ |Q1| sup
1≤i≤n
y∈U

|∂iχ(y)| sup
y 6∈Bc(0)

|∂iN · · ·∂iν+1
Ej(y)| sup

u∈Q1

|∂iν−1
· · · ∂i1f(u)|,

where |Q1| denotes the Lebesgue measure of Q1. Cauchy’s inequalities imply for
each α ∈ Nn and r > 0

|∂αEj(y)| ≤
α!

r|α|
sup

z∈Dr(y)

|Ej(z)|,

where Dr(y) = {z ∈ Cn : |zi − yi| ≤ r for all i}. Choosing r = c
4
√
n

we get for

y ∈ Rn \Bc(0)

|∂αEj(y)| ≤
α!

r|α|

( j
π

) n
2

e−
jc2

2 .

Hence with C3 = |Q1|‖f‖̺1,Q1
sup1≤i≤n

y∈U
|∂iχ(y)| we obtain for x ∈ K

|(∂iN · · · ∂iν+1
Ej)∗(∂iνχ)(∂iν−1

· · · ∂i1f)(x)|

≤ C3
(N − ν)!
rN−ν

( j
π

)n
2

e−
jc2

2 ̺ν−1
1 (ν − 1)!Mν−1

≤ C3

( j
π

)n
2

e−
jc2

2 ̺N3 (N − 1)!MN ,(2.11.3)

where ̺3 = max{ 1
r , ̺1}.

It follows from (2.11.1), (2.11.2), and (2.11.3) that for ̺4 = max{̺2, ̺3}

‖f − fj‖̺4,K ≤
C2√
j

+ C3

( j
π

)n
2

e−
jc2

2 .

That implies the assertion. �

2.12. Closed ideals. Let U ⊆ Rn be open. Let ϕ ∈ Cω(U). Consider the principal
ideal ϕCM (U) generated by ϕ.

Proposition. Assume that CM is stable under derivation (2.1.5). Let ϕ be a
linear form on Rn. Then the ideal ϕCM (Rn) is closed in CM (Rn). More generally,
assume that ψ = ϕp11 · · ·ϕpl

l is a finite product of linear forms ϕi. Then ψCM (Rn)
is closed in CM (Rn).

Proof. Let f ∈ ϕCM (Rn). Then f |ϕ−1(0) = 0, since evaluation at points is

continuous. As CM is stable under derivation, the standard integral formula (after
suitable linear coordinate change) implies that f = ϕg for a unique g ∈ CM (Rn).
The same reasoning shows that ψCM (Rn) is closed in CM (Rn), where ψ = ϕp11 .

For the general statement it suffices to show: Let ψ1 be a polynomial and ψ2 a
power of a linear form. If ψ1 and ψ2 are relatively prime and both generate closed

ideals in CM (Rn), then ψ1ψ2C
M (Rn) is closed in CM (Rn). For f ∈ ψ1ψ2CM (Rn)

we find functions g1, g2 ∈ CM (Rn) with f = ψ1g1 = ψ2g2. Since ψ1 and ψ2 are
relatively prime, we have g1|ψ−1

2
(0) = 0. By the standard integral formula we obtain

as above g1 = ψ2h with h ∈ CM (Rn). Hence the assertion. �

Remark. Note that for any hyperbolic polynomial ϕ the principal ideal ϕCM (Rn)
is closed in ϕCM (Rn) (e.g. [42, 4.2]). This follows from the fact (due to [12]) that
Weierstrass division holds in CM for hyperbolic divisors. A polynomial ϕ(x′, xn) =

xdn +
∑d
j=1 aj(x

′)xd−jn with aj ∈ CM (Rn−1) and aj(0) = 0, for 1 ≤ j ≤ d, is called

hyperbolic if, for each x′ ∈ Rn−1, all roots of ϕ(x′, ·) are real.
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But in general the principal ideal ϕCM (U) generated by a real analytic function ϕ
need not be closed (see [41] and [42, part 4]). Compare this with the famous results
on the division of distributions due to Hörmander [18] and Lojasiewicz [25, 26].

2.13. Let M be a DC-weight sequence, and let X be a real analytic manifold. We
can define the space CM (X) of functions of Denjoy–Carleman class CM on X by
means of local coordinate systems, since CM contains the real analytic functions
and is stable under composition. Similarly, we may consider the space (ΩM )p(X)
of p-forms of class CM on X .

3. Invariant functions in Denjoy–Carleman classes

Throughout this paper we consider a compact Lie group G acting smoothly on
a manifold X . A function f on X is said to be G-invariant if f(g.x) = f(x) for all
g ∈ G and all x ∈ X . If F is a set of functions on X , then FG denotes the subset
of G-invariant elements in F .

3.1. Hilbert’s theorem. (e.g. [43]) Let G be a compact Lie group and let V be a
real finite dimensional G-module. Then, by a theorem due to Hilbert, the algebra
R[V ]G of G-invariant polynomials on V is finitely generated. The generators can
be chosen homogeneous and with positive degree.

3.2. Schwarz’s theorem. Suppose that the representation ofG in V is orthogonal.
Let σ1, . . . , σp be a system of generators of R[V ]G and put σ = (σ1, . . . , σp) : V →
Rp. Schwarz [38] proved that σ∗ : C∞(Rp) → C∞(V )G is surjective, which is the
smooth analog of 3.1. Mather [27] showed that σ∗ : C∞(Rp) → C∞(V )G is even
split surjective, i.e., it allows a continuous linear section.

3.3. Symmetric functions in Denjoy–Carleman classes. In the case that the
symmetric group Sn acts in Rn by permuting the coordinates, the statement of
Schwarz’s theorem 3.2 is due to Glaeser [16]. In that case σi is the i-th elementary
symmetric function, i.e., σi(x) =

∑
1≤j1<···<ji≤n xj1 · · ·xji , and σ = (σ1, . . . , σn) :

Rn → Rn.
The representation of symmetric functions in Denjoy–Carleman (Gevrey) classes

was treated by Bronshtein [7, 8]. Since we shall need it later, we present a more
general version and we sketch a proof. Let

∏p
j=1 Sn act in

⊕p
j=1 Rn by permuting

the coordinates. Since R[
⊕p

j=1 Rn]
Qp

j=1
Sn ∼=

⊗p
j=1 R[Rn]Sn , a

∏p
j=1 Sn-invariant

function f on Rpn has the form f = F ◦ θ with θ = (σ, . . . , σ).

Theorem. Assume that M and N are increasing logarithmically convex sequences

with M0 = N0 = 1. Then for any function f ∈ CM (Rpn)
Qp

j=1
Sn there exists a

function F ∈ CN (θ(Rpn)) such that f = F ◦ θ if and only if

(3.3.1) sup
k∈N>0

(Mkn

Nk

) 1
k

<∞.

Sketch of proof. We indicate and adapt the main steps in Bronshtein’s proof. The
necessity of (3.3.1) is shown by considering the symmetric function f ∈ CM (Rn)
(for n > 2) given by

f(x) =
∞∑

k=0

ck
(
1−

n∏

j=1

(ρkxje
−ρ2kx2

j )
)−1

,

where ρk = Mkn+1

Mkn
and ck = Mkn

2kρkn
k

. Then f = F ◦ σ with

F (σ) =

∞∑

k=0

ck
(
1− ρnkσne−ρ

2
k(σ2

1−2σ2)
)−1

,



INVARIANT FUNCTIONS IN DENJOY–CARLEMAN CLASSES 9

and hence

|(∂σn
)mF (0)| =

∞∑

k=0

ckρ
mn
k m! ≥ cmρmnm m! =

m!Mmn

2m
.

Since F ∈ CN this implies (3.3.1). For n = 2 one can find a similar example.
Without loss suppose that f ∈ CM (R2n)Sn × Sn . Instead of the elementary sym-

metric polynomials σi we use the Newton polynomials νi(x) =
∑n

j=1 x
i
j and put

ν = (ν1, . . . , νn) (see remark 3.4(3)). Then we may write f(x, y) = F (ν(x), ν(y)) =
F (u, v) where u = ν(x), v = ν(y), and (x, y) ∈ Rn × Rn. A direct computation
gives

∂uk
F (u, v) =

(−1)k+1

k

n∑

i=1

σn−k(x′i)∂xi
f(x, y)∏

j 6=i(xj − xi)
=

n∑

i=1

gki(x, y)∏
j 6=i(xj − xi)

,

∂vk
F (u, v) =

(−1)k+1

k

n∑

i=1

σn−k(y′i)∂yi
f(x, y)∏

j 6=i(yj − yi)
=

n∑

i=1

hki(x, y)∏
j 6=i(yj − yi)

,

where x′i = (x1, . . . , x̂i, . . . , xn), σj(x
′
i) is the elementary symmetric function of

degree j in n− 1 variables (σ0 = 1), respectively for y, and

gki(x, y) =
(−1)k+1

k
σn−k(x

′
i)∂xi

f(x, y),

hki(x, y) =
(−1)k+1

k
σn−k(y

′
i)∂yi

f(x, y).

One shows (see [7, 8]) that

(3.3.2) ∂uk
F = (

n−1∏

j=1

Axj )gkn and ∂vk
F = (

n−1∏

j=1

Ayj )hkn,

where the operators Axj and Ayj are defined by

(Axj h)(x, y) =

∫ 1

0

[(∂xj
− ∂xj+1

)h](tPj,j+1x+ (1− t)x, y)dt,

(Ayjh)(x, y) =

∫ 1

0

[(∂yj
− ∂yj+1

)h](x, tPj,j+1y + (1− t)y)dt,

with Pj,j+1 the linear operator Rn → Rn which interchanges the j-th and the
(j + 1)-st coordinate.

We consider

Lαx =

n∏

i=1

∂αi
xi

∏

1≤p<q≤n
(∂xp

− ∂xq
)αpq , α = (α1, α2) ∈ Nn × N(n

2),

and likewise Lαy . Let K,L ⊆ Rn be convex, compact, and Sn-invariant. For non-
negative m and µ we write

‖f‖m,µ̺,K×L = sup
α,β

(x,y)∈K×L

|LαxLβyf(x, y)|
̺|α|+|β|+m|α1|!|β1|!α2!β2!(|α|+ |β|+m+ 1)µM|α|+|β|+m

.

If f ∈ CM (R2n) then ‖f‖m,µ̺,K×L <∞ for sufficiently large ̺. We have the following
estimates

‖∂xi
f‖m+1,µ+1

̺,K×L ≤ ‖f‖m,µ̺,K×L and ‖∂yi
f‖m+1,µ+1

̺,K×L ≤ ‖f‖m,µ̺,K×L,(3.3.3)

‖xif‖m,µ̺,K×L ≤ C‖f‖
m,µ
̺,K×L and ‖yif‖m,µ̺,K×L ≤ C‖f‖

m,µ
̺,K×L,(3.3.4)

‖Axj f‖m+1,µ
̺,K×L ≤ C‖f‖

m,µ
̺,K×L and ‖Ayj f‖

m+1,µ
̺,K×L ≤ C‖f‖

m,µ
̺,K×L.(3.3.5)

It is easy to verify (3.3.3) and (3.3.4). For the proof of (3.3.5) we refer to [7, 8].
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It follows from (3.3.2) and from (3.3.3), (3.3.4), and (3.3.5) that

‖∂αu∂βvF‖
m+n(|α|+|β|),µ+|α|+|β|
̺,ν(K)×ν(L) ≤ C|α|+|β|

1 ‖f‖m,µ̺,K×L

for all α, β ∈ Nn. Hence for α, β ∈ Nn and (u, v) ∈ ν(K)× ν(L) we find

|∂αu∂βv F (u, v)|
≤ ‖∂αu∂βv F‖

n(|α|+|β|),|α|+|β|
̺,ν(K)×ν(L) ̺n(|α|+|β|)(n(|α|+ |β|) + 1)|α|+|β|Mn(|α|+|β|)

≤ ‖f‖0,0̺,K×LC
|α|+|β|
1 ̺n(|α|+|β|)(n(|α|+ |β|) + 1)|α|+|β|Mn(|α|+|β|)

≤ C2̺
|α|+|β|
1 (|α|+ |β|)!N|α|+|β|,

for suitable constants C2 and ̺1. That implies F ∈ CN (ν(Rn)× ν(Rn)). �

It was proved by Kostov [24] that σ(Rn) is Whitney 1-regular. Hence θ(Rpn) =
σ(Rn)× · · · × σ(Rn) is Whitney 1-regular as well. It follows that, if N is strongly
regular, then F can be extended to a function in CN (Rpn) (by Whitney’s extension
theorem; see 2.7):

Corollary. Assume that M is an increasing logarithmically convex sequences with
M0 = 1. Let N be a strongly regular DC-weight sequence. For any function f ∈
CM (Rpn)

Qp
j=1

Sn there exists a function F ∈ CN (Rpn) such that f = F ◦ θ if and
only if

sup
k∈N>0

(Mkn

Nk

) 1
k

<∞.

In particular: Any Gevrey function f ∈ G1+δ(Rpn)
Qp

j=1
Sn (with δ > 0) has the

form f = F ◦ θ with F ∈ G1+γ(Rpn), where the exponent γ = δn is minimal
possible.

3.4. Invariant functions in Denjoy–Carleman classes.

Theorem. Let G be subgroup with finite order m of GL(V ). Let σ1, . . . , σp be a
system of homogeneous generators of R[V ]G and put σ = (σ1, . . . , σp) : V → Rp.
Assume that M and N are DC-weight sequences. Suppose that N is strongly regular
and that

(3.4.1) sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then for any G-invariant function f ∈ CM (V )G there exists a function F ∈
CN (Rp) such that f = F ◦ σ. In particular: Any G-invariant Gevrey function
f ∈ G1+δ(V )G (with δ > 0) has the form f = F ◦ σ with F ∈ G1+γ(Rp), where
γ = δm.

The proof of the theorem uses 3.3 and occupies the rest of the section. It is
inspired by Barbançon and Räıs [3] deploying Weyl’s account [43] of Noether’s [30]
proof of Hilbert’s theorem.

Remarks. (1) The condition (3.4.1) implies that CM (U) ⊆ CN (U) by (2.1.4). If
additionally limk→∞(Mk/Nk)

1/k = 0 then CM (U) 6= CN (U), so there is a real loss
of regularity.

(2) The loss of regularity announced in the theorem is not minimal. For a
particular group G, one may find much better Denjoy–Carleman regularity for F .

(3) The result is independent of the choice of generators σi, since any two choices
differ by a polynomial diffeomorphism and the involved Denjoy–Carleman classes
are stable under composition.
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3.5. Reduction to the symmetric case. Let V be a real vector space of finite
dimension n and let G be a subgroup with finite order m of GL(V ). The symmetric
group Sm acts in a natural way on G by permuting the elements. This induces an
action of Sm on the space F (G,R) of functions defined in G with values in R (for
σ ∈ Sm and f ∈ F (G,R) we have σ.f = f ◦ σ−1). It can be identified with the
standard representation ρ of Sm in Rm. We obtain a natural action of Sm on
E = F (G,R)⊗V , the vector space of functions defined in G with values in V . The
corresponding representation π is given by π = nρ.

Let L : V → E be the linear injective mapping defined by L(v) : g 7→ g.v
for v ∈ V . We consider the pullback L∗ : F (E,R) → F (V,R) (where F (X,Y )
denotes the space of functions defined in X with values in Y ). It is linear and
maps Sm-invariant functions to G-invariant functions. Hence it drops to a mapping
L∗ : F (E,R)Sm → F (V,R)G. We define a linear mapping J : F (V,R) → F (E,R)
by putting

J(f)(h) =
1

m

∑

g∈G
f(h(g))

for f ∈ F (V,R) and h ∈ E = F (G,R) ⊗ V . If we denote by evg : E → V the
evaluation at g ∈ G, i.e., evg(h) = h(g) for h ∈ E, then J(f) = 1

m

∑
g∈G ev∗

g f .
Thus, J maps polynomials on V to polynomials on E. It is easy to check that
L∗ ◦ J |F (V,R)G = id, so J |F (V,R)G is a section for L∗ : F (E,R)Sm → F (V,R)G.

Let M be a DC-weight sequence. It is easily seen that L∗ and J are both
continuous as mappings L∗ : CM (E)Sm → CM (V )G and J : CM (V )G → CM (E)Sm .

Let (τ1, . . . , τp) be a system of generators of the algebra R[E]Sm . Let f ∈
CM (V )G. If theorem 3.4 holds for π, there exists F ∈ CN (Rp) (with suitable
strongly regular DC-weight sequence N , see 3.8) such that

J(f)(h) = F (τ1(h), . . . , τp(h))

for all h ∈ E. Then

f(v) = J(f)(L(v)) = F (σ1(v), . . . , σp(v))

for all v ∈ V , where σi = L∗τi for 1 ≤ i ≤ p. It is clear from the above that the
σi = L∗τi generate R[V ]G. This shows theorem 3.4 under the assumption that it
holds for the representation π (with suitable N).

3.6. Let W ⊆ GL(V ) be a finite reflection group. Let H be a W -invariant graded
linear subspace of R[V ] which is complementary to the ideal generated by the W -
invariant polynomials with strictly positive degree. The bilinear mapping (h, f) 7→
hf induces an isomorphism of W -modules H ⊗ R[V ]W → R[V ] (see [6, Ch. 5, 5.2,
Thm. 2]). So R[V ] is a free R[V ]W -module of rank |W |.

Choose a basis h1, . . . , h|W | of H consisting of homogeneous elements. Let

w1, . . . , w|W | denote the elements of W (in some ordering). Since R[V ] = HR[V ]W ,
we find that, for each v ∈ V , the cardinality of the orbit W.v equals the rank of the
matrix (hj(wi.v))i,j . Since there are v ∈ V with |W.v| = |W |, the polynomial

∆(v) := det(hj(wi.v))i,j

is not 0 ∈ R[V ].

Lemma. Let W = Sm1
× · · · × Smn

act in V = Rm1 ⊕ · · · ⊕Rmn by permuting the
coordinates. Then, for v = (x1,1, . . . , x1,m1

, . . . , xn,1, . . . , xn,mn
), we have

(3.6.1) ∆(v) = c
n∏

i=1

∏

1≤ji<ki≤mi

(xi,ji − xi,ki
)pi,ji,ki

for some non-zero constant c and positive integers pi,ji,ki
.
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Proof. By definition, ∆(v) = 0 if and only if v belongs to some reflecting hyper-
plane of W . It follows that each of the linear forms

(3.6.2) L := {xi,ji − xi,ki
: 1 ≤ i ≤ n, 1 ≤ ji < ki ≤ mi}

divides ∆. Since they are relatively prime, their product divides ∆. Suppose, for
contradiction, there is a non-constant polynomial P which is relatively prime with
any of the linear forms in L and divides ∆. Without loss we switch to the com-
plexification of the W -module V . By Hilbert’s Nullstellensatz, there is a positive
integer r such that (

∏
l∈L l)

r belongs to the ideal generated by ∆, a contradiction.
Hence the assertion. �

Remark. Actually, more is true: For any finite reflection group W ⊆ GL(V ) we
have ∆ = cJ |W |/2, where c is a non-zero constant and J =

∏
l∈LW

l with LW the set

of linear forms with kernel a reflection hyperplane of W . See [3, 4.2 + Appendix].
For us the above lemma will suffice.

3.7. LetH and h1, . . . , h|W | be as in 3.6. The following proposition is a modification
of [3, 3.3].

Proposition. Let M be a DC-weight sequence. Let W = Sm1
× · · · × Smn

act in
V = Rm1 ⊕ · · · ⊕ Rmn by permuting the coordinates. Then h1, . . . , h|W | constitutes

a basis of CM (V ) considered as CM (V )W -module.

Proof. Let f ∈ CM (V ). There exists a sequence (Pk) of polynomials which
converges to f in CM (V ) (by 2.11). Since h1, . . . , h|W | is a basis of R[V ] as R[V ]W -

module, we can write Pk =
∑

j hjPk,j with Pk,j ∈ R[V ]W . For each v ∈ V , we

obtain a system of |W | equations

Pk(wi.v) =
∑

j

hj(wi.v)Pk,j(v) (1 ≤ i ≤ |W |).

Cramer’s rule implies

∆(v)Pk,j(v) =
∑

i

∆ij(v)Pk(wi.v) (1 ≤ j ≤ |W |),

where the ∆ij denote the cofactors of the matrix (hj(wi.v))i,j . The right-hand side
of the single equations converges in CM (V ) to the function

v 7→
∑

i

∆ij(v)f(wi.v) (1 ≤ j ≤ |W |),

respectively (a straightforward computation shows that multiplication by a poly-
nomial is continuous). Hence, each sequence (∆Pk,j)k converges in CM (V ). By
proposition 2.12 and lemma 3.6, the ideal ∆CM (V ) generated by ∆ is closed in
CM (V ). Thus, there exist unique functions fj ∈ CM (V ) such that, for each v and
each j,

(3.7.1) ∆(v)fj(v) =
∑

i

∆ij(v)f(wi.v).

The fj are W -invariant: For each w ∈ W there is ǫw ∈ {0, 1} such that
∆(w.v) = (−1)ǫw∆(v) for all v ∈ V . Since the polynomials Pk,j are W -invariant
and evaluation at points is continuous, we find

(−1)ǫw∆(v)fj(w.v) = (−1)ǫw∆(v)fj(v)

and thus

fj(w.v) = fj(v)
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on the open dense subset {v : ∆(v) 6= 0}, and hence everywhere. From (3.7.1) we
obtain

f(v) =
∑

j

hj(v)fj(v)

on the open dense subset {v : ∆(v) 6= 0}, and hence everywhere. �

Remark. Using remark 3.6, we find that this proposition is true for any finite
reflection group W ⊆ GL(V ).

3.8. Theorem 3.4 for the representation π : Sm → GL(Rnm). Let G be a
subgroup of W = Sm1

× · · · × Smn
acting in V = Rm1 ⊕ · · · ⊕ Rmn by permuting

the coordinates. Let H be (as in 3.6) a W -invariant graded linear subspace of R[V ]
which is complementary to the ideal generated by theW -invariant polynomials with
strictly positive degree. Consider a basis (h1, . . . , hr) of HG. By proposition 3.7,
we find that (h1, . . . , hr) constitutes a basis of CM (V )G considered as CM (V )W -
module.

By the reduction in 3.5, in order to prove theorem 3.4 it suffices to consider the
representation π : Sm → GL(Rnm). Let τ1, . . . .τp and θ1, . . . , θnm be systems of

homogeneous generators of R[Rnm]Sm and R[
⊕n

j=1 Rm]
Q

n
j=1

Sm , respectively, and

consider τ = (τ1, . . . , τp) : Rnm → Rp and θ = (θ1, . . . , θnm) : Rnm → Rnm. By the
previous paragraph and corollary 3.3, each f ∈ CM (Rnm)Sm has the form

f =

r∑

j=1

hjfj =

r∑

j=1

(Hj ◦ τ)(Fj ◦Θ ◦ τ),

where hj ∈ R[Rnm]Sm , fj ∈ CM (Rnm)
Qn

j=1
Sm , Hj ∈ R[Rp], Fj ∈ CN (Rnm), and Θ

is the polynomial mapping given by θ = Θ ◦ τ . Note that N is a strongly regular
DC-weight sequence satisfying

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

This completes the proof of theorem 3.4.

4. Equivariant mappings in Denjoy–Carleman classes

We give an application of theorem 3.4 to the representation of equivariant map-
pings in Denjoy–Carleman classes. We follow standard techniques.

4.1. Let V1 and V2 be real finite dimensional representations of a compact Lie group
G. It is well-known that the set Pol(V1, V2)

G of G-equivariant polynomial mappings
from V1 to V2 is finitely generated as module over R[V1]

G.
Let M be a DC-weight sequence. We denote by CM (V1, V2)

G the set of G-
equivariant CM -mappings f : V1 → V2.

Theorem. Let V1 and V2 be representations of a finite group G with order
m. Let σ1, . . . , σp be a system of homogeneous generators of R[V1]

G and put
σ = (σ1, . . . , σp). Let P1, . . . , Pl be a system of generators of the R[V1]

G-module
Pol(V1, V2)

G. Assume that M and N are DC-weight sequences. Suppose that N is
strongly regular and that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then for each f ∈ CM (V1, V2)
G there exists an L(f) ∈ (CN (Rp))l such that f =∑l

j=1(L(f)j ◦ σ)Pj .
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Proof. The dual V ∗
2 of V2 carries the dual G-action given by g.l = l ◦ g−1. Let

f ∈ CM (V1, V2)
G and consider the G-invariant function Hf : V1 × V ∗

2 → R given
by Hf (v, l) = l(f(v)). So Hf ∈ CM (V1 × V ∗

2 )G and, by theorem 3.4, there exists
Lf ∈ CN (Rq) such that Hf = Lf ◦ τ , where τ = (τ1, . . . , τq) and τ1, . . . , τq generate
R[V1 × V ∗

2 ]G. Taking the derivative with respect to the second component gives

f(v) =

q∑

i=1

∂iLf (τ(v, 0))d2τi(v, 0).

Since v 7→ d2τi(v, 0) is a G-equivariant polynomial mapping, there exist hij ∈
R[V1]

G such that d2τi(v, 0) =
∑l

j=1 hij(v)Pj(v). Since v 7→ τ(v, 0) is G-invariant,

there is a polynomial mapping θ : Rp → Rq with τ(v, 0) = θ(σ(v)). Then

L(f) :=
( q∑

i=1

(∂iLf ◦ θ)hij
)

1≤j≤l

has the required properties. �

5. Polar representations

5.1. Polar representations. [13], [33], [39] A real finite dimensional orthogonal
representation ρ : G → O(V ) of a Lie group G is called polar, if there exists a
linear subspace Σ ⊆ V , called a section, which meets each orbit orthogonally. The
trace of the G-action in Σ is the action of the generalized Weyl group W (Σ) =
NG(Σ)/ZG(Σ), where NG(Σ) := {g ∈ G : ρ(g)(Σ) = Σ} and ZG(Σ) := {g ∈ G :
ρ(g)(s) = s for all s ∈ Σ}. The generalized Weyl group is a finite group. If Σ′ is
a different section, then there is an isomorphism W (Σ) → W (Σ′) induced by an
inner automorphism of G.

The following generalization of Chevalley’s restriction theorem is due to Dadok
and Kac [13] and independently to Terng [39].

Theorem. Assume that G is a compact Lie group. Then restriction induces an
isomorphism of algebras between R[V ]G and R[Σ]W (Σ).

5.2. Invariant functions in Denjoy–Carleman classes. We generalize theorem
3.4 to polar representations..

Theorem. Let G→ O(V ) be a polar representation of a compact Lie group G, with
section Σ and generalized Weyl group W = W (Σ). Write m = |W |. Let σ1, . . . , σp
be a system of homogeneous generators of R[V ]G and put σ = (σ1, . . . , σp). Assume
that M and N are DC-weight sequences. Suppose that N is strongly regular and
that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then for any G-invariant function f ∈ CM (V )G there exists a function F ∈
CN (Rp) such that f = F ◦ σ. In particular: Any G-invariant Gevrey function
f ∈ G1+δ(V )G (with δ > 0) has the form f = F ◦ σ with F ∈ G1+γ(Rp), where
γ = δm.

Proof. Let f ∈ CM (V )G. By theorem 5.1, the restrictions σ1|Σ, . . . , σp|Σ generate
R[Σ]W and σ(V ) = σ|Σ(Σ). Since f |Σ ∈ CM (Σ)W , theorem 3.4 implies that there
is a F ∈ CN (Rp) such that f |Σ = F ◦ σ|Σ, and, hence, f = F ◦ σ. �
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5.3. In the situation of 5.2 we have:

Theorem. Each f ∈ CM (Σ)W (resp. G1+δ(Σ)W ) has an extension in CN (V )G

(resp. G1+γ(V )G).

Proof. Let f ∈ CM (Σ)W . Choose a system of homogeneous generators τ1, . . . , τp
of R[Σ]W . By theorem 3.4, there is an F ∈ CN (Rp) such that f = F ◦ (τ1, . . . , τp).

Each τi extends to a polynomial τ̃i ∈ R[V ]G, by theorem 5.1. So f̃ := F ◦(τ̃1, . . . , τ̃p)
is a G-invariant extension of f belonging to CN (V ). �

5.4. Basic differential forms in Denjoy–Carleman classes. Let G → O(V )
be a polar representation of a compact Lie group G, with section Σ and generalized
Weyl group W = W (Σ). A differential form ω ∈ Ωp(V ) is called G-invariant if
(lg)

∗ω = ω for all g ∈ G, where lg(x) = g.x, and horizontal if it kills each vector
tangent to a G-orbit, i.e., iζX

ω = 0 for all X ∈ g := Lie(G), where ζ is the
fundamental vector field mapping (ζX(x) = Te(l

x).X with lx(g) = g.x). Denote by
Ωphor(V )G the space of all horizontal G-invariant p-forms on V . Its elements are
also called basic p-forms.

It is proved in [28, 29] that the restriction of differential forms induces an iso-
morphism between Ωphor(V )G and Ωp(Σ)W .

Let M be a DC-weight sequence. We may consider p-forms ω on V of Denjoy–
Carleman class CM . Let us denote the space of such forms ω by (ΩM )p(V ). A
careful inspection of the proofs in [28, 29] shows that we can deduce the following
theorem in an analog manner:

(i) The statement in [28, 3.2] is true in Denjoy–Carleman classes CM as well:
Let l ∈ V ∗ and let f ∈ CM (V ) with f |l−1(0) = 0. Then there exists a unique

h ∈ CM (V ) such that f = l · h. See the proof of proposition 2.12.
(ii) In [28, 3.7] instead of Schwarz’s theorem we use theorem 3.4.

The rest works without change and yields:

Theorem. Let G → O(V ) be a polar representation of a compact Lie group G,
with section Σ and generalized Weyl group W = W (Σ). Put m = |W |. Assume
that M and N are DC-weight sequences. Suppose that N is strongly regular and
that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then each ω ∈ (ΩM )p(Σ)W has an extension in (ΩN )phor(V )G. �

Remark. Obviously, restriction of differential forms does in general not map forms
in (ΩN )phor(V )G to forms in (ΩM )p(Σ)W . So we cannot expect to obtain an isomor-
phism as in the smooth case.

6. Proper G-manifolds with sections

In this section X always denotes a connected complete Riemannian G-manifold,
with effective and isometric G-action.

6.1. Sections. [33] LetX be a proper Riemannian G-manifold. A connected closed
submanifold Σ of X is called a section for the G-action, if it meets all G-orbits
orthogonally. Each section is a totally geodesic submanifold. Analogously with 5.1
we define the generalized Weyl group W (Σ) := NG(Σ)/ZG(Σ) which turns out to
be a discrete group acting properly on Σ. If Σ′ is a different section, then there is
an isomorphism W (Σ)→W (Σ′) induced by an inner automorphism of G.
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6.2. Invariant functions in Denjoy–Carleman classes. In the smooth case,
restriction induces an isomorphism C∞(X)G ∼= C∞(Σ)W (Σ), by [32]. We show
an analog result in Denjoy–Carleman classes. From now on all manifolds are real
analytic.

Theorem. Let X be a real analytic proper Riemannian G-manifold with section Σ
and Weyl group W = W (Σ). Suppose that

m := sup
x∈Σ
|Wx| <∞.

Assume that M and N are DC-weight sequences. Suppose that N is strongly regular
and that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then each f ∈ CM (Σ)W (resp. G1+δ(Σ)W ) has an extension in CN (X)G (resp.
G1+δm(X)G).

Proof. Let f ∈ CM (Σ)W . It is well-known (e.g. [33]) that each W -invariant
continuous (smooth) function in Σ has a unique continuous (smooth) G-invariant

extension. Let f̃ be the extension of f . We show that f̃ represents an element
in CN (X)G. Let x ∈ X . Without loss we may assume that x ∈ Σ (since the
action is real analytic). Let Sx be a normal slice at x. Then, by the slice theorem,
G.Sx and G×Gx

Sx are real analytically G-isomorphic and G× Sx → G×Gx
Sx is

a real analytic surjective submersion. Thus, it suffices to show that f̃ |Sx
belongs

to CN (Sx). We can choose a ball B ⊆ TxSx around 0x such that B ∼= Sx and
TxΣ∩B ∼= Σ∩ Sx. Then the Gx-action on Sx is up to a real analytic isomorphism
a polar representation with section TxΣ and Weyl group Wx (e.g. [33]). So the
assertion follows from theorem 5.3. �

6.3. Basic differential forms in Denjoy–Carleman classes. In the smooth
case, the restriction of differential forms induces an isomorphism between Ωphor(X)G

and Ωp(Σ)W , by [28, 29]. This is derived from the analog result for polar represen-
tations with the help of the slice theorem.

Let X be a real analytic proper Riemannian G-manifold with section Σ and Weyl
group W = W (Σ). Suppose that

m := sup
x∈Σ
|Wx| <∞.

Let M and N be a DC-weight sequences. Suppose that N is strongly regular and
that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

It turns out that we are able to apply the same arguments as in [28, 29] in order
to deduce a similar generalized statement from theorem 5.4. All mappings occurring
while applying the slice theorem in [28, part 4] are real analytic and may, therefore,
be taken over without change. Hence we may reduce to the slice representations
Gx → O(TxSx) which are polar with Weyl group Wx and we may apply theorem
5.4.

Following the final step of the proof [28, 4.2] we glue local differential forms
ωxn ∈ (ΩN )phor(G.Sxn

)G to a form ω̃ ∈ (ΩN )phor(X)G. This is done, using a method
of Palais [31, 4.3.1], by constructing a suitable partition of unity consisting of G-
invariant functions. More precisely: There exists a sequence (xn)n∈N of points in
Σ and open neighborhoods of xn in Σ whose projections form a locally finite open
covering of the orbit space X/G ∼= Σ/W , and there exists a partition of unity fn
consisting of G-invariant functions with supp(fn) ⊆ G.Sxn

. The construction of
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the fn is as follows: There exist neighborhoods xn ∈ Kn with compact closure in
Sxn

such that their projection forms a covering of X/G. Let fn be a non-negative
function on Sxn

positive on Kn and with compact support in Sxn
. By averaging

we may assume that fn is Gxn
-invariant. Define fn(g.s) = fn(s) for g ∈ G and

s ∈ Sxn
and fn(x) = 0 for x 6∈ G.Sxn

. Since there are CN partitions of unity (by
2.3) and since averaging over the slice representation Gxn

→ O(Txn
Sxn

) (which is
Gxn

-equivariantly real analytically isomorphic to the Gxn
-manifold Sxn

) preserves
the Denjoy–Carleman class (by lemma 6.4 below), the functions fn can be chosen
in CN (X)G. Thus ω̃ =

∑
n fnω

xn ∈ (ΩN )phor(X)G, and we obtain:

Theorem. Let X be a real analytic proper Riemannian G-manifold with section Σ
and Weyl group W = W (Σ). Suppose that

m := sup
x∈Σ
|Wx| <∞.

Let M and N be a DC-weight sequences. Suppose that N is strongly regular and
that

sup
k∈N>0

(Mkm

Nk

) 1
k

<∞.

Then each ω ∈ (ΩM )p(Σ)W has an extension in (ΩN )phor(X)G. �

Lemma 6.4. Let G→ O(V ) be a real finite dimensional representation of a com-
pact Lie group G. Let M be a DC-weight sequence. If f ∈ CM (V ) then

f̃(x) =

∫

G

f(g.x)dg

(where dg denotes Haar measure) belongs to CM (V )G.

Proof. We write lg : V → V, x 7→ g.x for the linear action of g ∈ G. By choosing
a basis we identify V = Rn. Let K ⊆ V be compact. It suffices to show that for
each positive ̺ = ̺(f,G.K) there exists a positive ¯̺ such that

(6.4.1) ‖f ◦ lg‖ ¯̺,K ≤ ‖f‖̺,G.K
for all g ∈ G. By Faà di Bruno ([15] for the 1-dimensional version)

∂γ(f ◦ lg)(x)
γ!

=
∑

βi∈N
n\{0}

α=β1+···+βn

γ=(|β1|,...,|βn|)

1

β1! · · ·βn!
∂αf(g.x) (∂1lg(x))

β1 · · · (∂nlg(x))βn ,

where ∂ilg(x) = (∂i(lg)1(x), . . . , ∂i(lg)n(x)). So we find

|∂γ(f ◦ lg)(x)|
|γ|!M|γ|

≤
∑ |α|!

β1! · · ·βn!
|∂αf(g.x)|
|α|!M|α|

‖lg‖|α|,

where ‖lg‖ denotes the operator norm of lg. Put

µ := max
g∈G
‖lg‖.

Then we obtain (6.4.1) by defining

¯̺ := n2µ̺.

This completes the proof. �



18 A. RAINER

References
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