
ULTRADIFFERENTIABLE CHEVALLEY THEOREMS

AND ISOTROPIC FUNCTIONS

ARMIN RAINER

Abstract. We prove ultradifferentiable Chevelley restriction theorems for a

wide range of ultradifferentiable classes. As a special case we find that isotropic
functions, i.e., functions defined on the vector space of real symmetric matrices

invariant under the action of the special orthogonal group by conjugation,

possess some ultradifferentiable regularity if and only if their restriction to
diagonal matrices has the same regularity.

1. Introduction

Let the special orthogonal group SO(n) act by conjugation on the vector space
Sym(n) of real symmetric n × n matrices. Functions f : Sym(n) → R that are
invariant under this action are called isotropic, i.e.

f(SASt) = f(A) for all A ∈ Sym(n), S ∈ SO(n).

By the spectral theorem, every SO(n)-orbit SO(n) · A intersects the subspace
Diag(n) ∼= Rn of diagonal matrices orthogonally with respect to the invariant inner
product 〈A,B〉 = Tr(ABt) = Tr(AB). The intersection is the orbit of the symmet-
ric group Sn which acts by permuting the eigenvalues of A. Then f : Sym(n)→ R
is isotropic if and only if

f(A) = F (a1, . . . , an), A ∈ Sym(n),

for some unique symmetric function F : Rn → R, where a1, . . . , an are the eigenval-
ues of A repeated according to their multiplicity. Isotropic functions are important
in continuum mechanics, in particular, elasticity.

It is well-known that the map that assigns to a real symmetric matrix A its n-
tuple of eigenvalues (e.g. in decreasing order) is Lipschitz (even difference-convex)
but not C1. Thus it is surprising that f is smooth if and only if F is smooth.
This follows from a result of Glaeser [14] (see also Schwarz [24] and Mather [19] for
generalizations): every symmetric F ∈ C∞(Rn) can be written in the form

F (x) = G(σ1(x), . . . , σn(x)),

where G ∈ C∞(Rn) and σi are the elementary symmetric functions in n variables.
Consequently,

f(A) = G((−1)1 Tr(∧1A), . . . , (−1)n Tr(∧nA))
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2 A. RAINER

is the composite of two C∞-maps. Glaeser’s theorem for finite differentiability
involves an unavoidable loss of regularity and can hence not be used to determine
the regularity of f . Indeed, for a symmetric Cnr-function F the function G is in
general only of class Cr; see Barbançon [3] and Rumberger [22]. Nevertheless it is
true that, for any r ∈ N, an isotropic function f(A) = F (a1, . . . , an) is Cr if and
only if F is Cr. This was proved by Ball [1] for r = 0, 1, 2,∞ and by Sylvester
[26] for all r = 0, 1, 2, · · · ,∞. Later Šilhavý [25] gave a simple elementary proof of
Sylvester’s result and an inductive formula for the derivatives of f ; see also Scheuer
[23]. The simpler Hölder case Cr,α for 0 < α < 1 is already contained in [1].
For applications in elasticity see the discussion of the stored energy function in [1,
Section 6].

In this paper we will show that the same phenomenon “permanence of regularity”
between an isotropic function f and its symmetric companion F holds for ultra-
differentiable functions. These are C∞-function with certain growth restrictions for
their iterated derivatives which define the ultradifferentiable class. For instance, the
real analytic class is defined by the Cauchy estimates. Modification of the Cauchy
estimates in terms of a weight sequence gives rise to the classical Denjoy–Carleman
classes (among them the Gevrey classes which are important in PDEs). Braun–
Meise–Taylor classes arose from measuring the regularity in terms of prescribing
the decay of the Fourier transform.

We will work in a very general framework for ultradifferentiable analysis which
comprises all classically studied classes (notably, the aforementioned ones). Sim-
ilarly as for finite differentiability the corresponding Glaeser theorem involves a
strict loss of regularity and is hence not applicable; see Bronshtein[9, 10] and [20].
It is worth mentioning that for Denjoy–Carleman classes we require that the weight
sequence has moderate growth whereas in the case of Braun–Meise–Taylor classes
our results apply for all standard weight functions. (Precise definitions are given in
Section 2.) It does not matter for the problem whether the class is quasianalytic or
not. In particular, we get as a corollary that an isotropic function f is real analytic
if and only if its symmetric companion F is real analytic. Furthermore we shall
also deduce a version of the result for Gelfand–Shilov classes, i.e., ultradifferentiable
rapidly decreasing functions for which the defining bounds are global in contrast to
the aforementioned regularity classes.

The results for isotropic functions (Theorem 10) will be special cases of the
ultradifferentiable Chevalley restriction theorems (Theorem 5 and Theorem 9) that
we shall prove in Section 3. The latter are formulated for Cartan decompositions of
real semisimple Lie algebras of noncompact type; see the setting in Section 3. The
proof follows closely the one given by Dadok [13] for the C∞-case which is based
on the analysis of the Laplace operator on invariant functions and a weak elliptic
regularity result. We shall combine this analysis with lacunary regularity results
for ultradifferentiable classes. These lacunary regularity results are reviewed and
adapted to our general ultradifferentiable setting in Section 2.3. For the Chevalley
theorem in Gelfand–Shilov classes we will use their invariance under the Fourier
transform.

Notation. We will use multiindex notation with Dj = −i∂j , where i =
√
−1, and

Dα = Dα1
1 Dα2

2 · · ·Dαn
n such that the Fourier transform

f̂(ξ) =

∫
f(x)e−i〈x,ξ〉 dx
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on the Schwartz class S(Rn) satisfies D̂jf(ξ) = ξj f̂(ξ) and x̂jf(x) = −Dj f̂ .

2. Ultradifferentiable functions

2.1. Denjoy–Carleman classes. Let U ⊆ Rn be open. Let M = (Mk) be a
positive sequence. For ρ > 0 and compact K ⊆ U consider the seminorm

‖f‖MK,ρ := sup
x∈K
α∈Nn

|Dαf(x)|
ρ|α|M|α|

, f ∈ C∞(U).

The Denjoy–Carleman class of Roumieu type E{M} is defined by

E{M}(U) :=
{
f ∈ C∞(U) : ∀K b U ∃ρ > 0 : ‖f‖MK,ρ <∞

}
and the Denjoy–Carleman class of Beurling type E(M) by

E(M)(U) :=
{
f ∈ C∞(U) : ∀K b U ∀ρ > 0 : ‖f‖MK,ρ <∞

}
,

We endow these spaces with their natural locally convex topologies. The study of
Denjoy–Carleman classes started around 1900 with the work of E. Borel.

We shall assume that the sequence M = (Mk) is

(1) logarithmically convex, i.e. M2
k ≤Mk−1Mk+1 for all k, and satisfies

(2) M0 = 1 ≤M1 and

(3) M
1/k
k →∞.

In that case we say that M is a weight sequence. It is easy to see that for a weight

sequence M the sequence M
1/k
k (and thus also M) is increasing and MkM` ≤Mk+`

for all k, `.
Let M = (Mk) and N = (Nk) be positive sequences. Then boundedness of the

sequence (Mk/Nk)1/k is a sufficient condition for the inclusions E{M} ⊆ E{N} and
E(M) ⊆ E(N) (this means that the inclusions hold on all open sets). The condition
is also necessary provided that M satisfies (1), see [27] and [11]. For instance,
stability of the classes E{M} and E(M) by derivation is equivalent to boundedness
of the sequence (Mk+1/Mk)1/k (for the necessity we assume that M satisfies (1)).
If (Mk/Nk)1/k → 0 then E{M} ⊆ E(N), and the converse implication holds provided
that M satisfies (1). Hence sequences M and N satisfying (1) are called equivalent
if there is a constant C > 0 such that C−1 ≤ (Mk/Nk)1/k ≤ C; this is precisely the
case if they defined the same Denjoy–Carleman classes.

Of particular importance in the theory of differential equations are the Gevrey
classes Gs, for s ≥ 1. These are by definition the Roumieu type classes associated
with the weight sequence Mk = k!s, i.e., Gs = E{(k!s)k}. For s = 1 we get the
class of real analytic functions G1 = E{(k!)k} = Cω in the Roumieu case and the
restrictions of entire functions E((k!)k) in the Beurling case.

The inclusion Cω ⊆ E{M} (as well as the inclusion E((k!)k) ⊆ E(M)) is equivalent
to the condition

(4) (k!/Mk)1/k is bounded.

The inclusion Cω ⊆ E(M) is equivalent to the stronger condition

(4′) (k!/Mk)1/k → 0 as k →∞.

A positive sequence M = (Mk) is said to have moderate growth if

(5) ∃C > 0 ∀k, ` ∈ N : Mk+` ≤ Ck+`MkM`.
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This condition entails that the corresponding classes E{M} and E(M) are stable by
derivation.

Note that the Gevrey classes Gs, for s ≥ 1, satisfy all of the conditions (1)–(5),
if s > 0 also (4′) is satisfied.

2.2. General ultradifferentiable classes. By a weight matrix we mean a family
M of weight sequences M which is totally ordered with respect to the pointwise
order relation on sequences. For a weight matrix M and an open subset U ⊆ Rn
we consider the Roumieu class

E{M}(U) :=
{
f ∈ C∞(U) : ∀K b U ∃M ∈M ∃ρ > 0 : ‖f‖MK,ρ <∞

}
and the Beurling class

E(M)(U) :=
{
f ∈ C∞(U) : ∀K b U ∀M ∈M ∀ρ > 0 : ‖f‖MK,ρ <∞

}
with their natural locally convex topologies. Clearly every Denjoy–Carleman class
E{M} and E(M) is a ultradifferentiable class of this kind (then M consists just of
the weight sequence M).

In the following we will consider weight matrices M with additional properties
which will depend on the type, i.e. Beurling or Roumieu, of the class:

(B) (Beurling case) For all M ∈M we have

(k!/Mk)1/k → 0 as k →∞, (B1)

∀M ∈M ∃L ∈M ∃C > 0 ∀k, ` ∈ N : Lk+` ≤ Ck+`MkM`. (B2)

(R) (Roumieu case) For all M ∈M we have

(k!/Mk)1/k is bounded, (R1)

∀M ∈M ∃N ∈M ∃C > 0 ∀k, ` ∈ N : Mk+` ≤ Ck+`NkN`. (R2)

We will call a weight matrix M [regular ] if it satisfies (B) in the Beurling case
and (R) in the Roumieu case. Under these conditions the classes E [M] contain the
class of real analytic functions and are stable under differentiation. We use square
brackets [ ] in statements that hold in the Beurling case ( ) as well as in the Roumieu
case { } under the respective assumptions.

For Denjoy–Carleman classes either of the conditions (B2) and (R2) reduces to
the moderate growth condition 2.1(5).

All our results will apply for Braun–Meise–Taylor classes E [ω]. Here ω is a weight
function, i.e., a continuous increasing functions ω : [0,∞) → [0,∞) with ω(0) = 0
and limt→∞ ω(t) =∞ such that

(1) ω(2t) = O(ω(t)) as t→∞,
(2) log t = o(ω(t)) as t→∞, and
(3) ϕ(t) := ω(et) is convex.

The classes E [ω] are defined by

E{ω}(U) := {f ∈ C∞(U) : ∀K b U ∃ρ > 0 : ‖f‖ωK,ρ <∞}
and

E(ω)(U) := {f ∈ C∞(U) : ∀K b U ∀ρ > 0 : ‖f‖ωK,ρ <∞}
by means of the seminorms

‖f‖ωK,ρ := sup
x∈K,α∈Nn

|Dαf(x)| exp(− 1
ρϕ
∗(ρ|α|)), f ∈ C∞(U),
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where ϕ∗(t) := sups≥0

(
st− ϕ(s)

)
, for t > 0, is the Young conjugate of ϕ.

These classes were originally introduced by Beurling [4] and Björck [5] in terms
of decay properties of the Fourier transform. The description that we used above
is due to Braun, Meise, and Taylor [8].

Braun–Meise–Taylor classes E [ω] can be identified as classes E [M] for suitable
weight matrices M. In fact, by [21], setting

W x
k := exp( 1

xϕ
∗(xk)), for k ∈ N and x > 0,

defines a weight matrix W = {W x : x > 0} such that

E [ω] = E [W] algebraically and topologically.

The weight matrix W always satisfies (B2) as well as (R2); cf. [21, (5.6)]. It fulfills
(B1) (resp. (R1)) if and only if ω(t) = o(t) (resp. ω(t) = O(t)) as t → ∞; cf. [21,
Corollary 5.17].

Due to [7], E [ω] = E [M ] for some weight sequence M if and only if

∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.

This is the case if and only if some (equivalently each) W x has moderate growth,
and then E [ω] = E [Wx] for all x > 0.

2.3. Lacunary regularity. In this section we review some results of Liess [18]
which are based on earlier work by Baouendi and Metivier [2] and Bolley, Camus,
and Metivier [6]. We shall need only one direction of the characterization of Liess
(in a special case) and try to get by with the minimal assumptions on the weight
sequences, but we will otherwise not strive for utmost generality. Moreover we show
the result in the framework of weight matrices.

Let M be a weight matrix and let P be a linear partial differential operator with
analytic coefficients of order m on an open subset U of Rn. Moreover, let k = (kj)

be a strictly increasing sequence of positive integers. Then E [M]
P,k (U) denotes the

space of all f ∈ C∞(U) such that for all K b U there exist M ∈ M and C, ρ > 0
such that (resp. for all M ∈M and all ρ > 0 there is C > 0 such that)

‖P kjf‖L2(K) ≤ CρmkjMmkj for all j ∈ N.

Lemma 1. Assume that M is a [regular] weight matrix and that k = (kj) satisfies

akj ≤ kj+1 ≤ akj + b for all j, (1)

for some a ∈ N≥1 and b ∈ N. Then for f ∈ C∞(U) the following conditions are
equivalent:

(1) f ∈ E [M](U).
(2) for all K b U there exist M ∈ M and C, ρ > 0 such that (resp. for all

M ∈M and all ρ > 0 there is C > 0 such that)

‖dkjv f‖L2(K) ≤ CρkjMkj for all j ∈ N and all v ∈ Sn−1,

where dvf(x) = ∂t|t=0f(x+ tv) is the directional derivative.

Proof. Only the implication (2) ⇒ (1) requires an argument. It follows from the
following interpolation formula (see [18, (5)]): if U ′ b U ′′ b U are open subsets of
Rn and ` ≤ k, then for i = 1, . . . , n,

‖D`
iu‖L2(U ′) ≤ C(U ′, U ′′)k‖u‖1−`/kL2(U ′′)

(
k`‖u‖`/kL2(U ′′) + ‖Dk

i u‖
`/k
L2(U ′′)

)
. (2)
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For each fixed v ∈ Sn−1 we may choose a basis in which v is the first basis vector.
Now it suffices to choose j such that kj ≤ ` ≤ kj+1 and to use (2) for k = kj+1. In
the Roumieu case the conditions (1) and (R2) guarantee that there exist N,N ′ ∈M
such that

Mkj+1
≤Makj+b ≤ Cakj+bNbNakj ≤ Cakj+b+a(a+1)kj/2N ′b(N

′
kj )

a,

and hence using again (1) we conclude

M
1/kj+1

kj+1
. (N ′kj )

1/kj ≤ (N ′`)
1/`.

Moreover k`j+1 ≤ A`k`j ≤ A``` ≤ (A′)`M` for all M ∈ M and suitable constants

A,A′, since (k!/Mk)1/k is bounded by (R1). In the Beurling case we use (B)
instead of (R) in a similar way. Since (k!/Mk)1/k → 0 in this case, we find that
k`j+1 ≤ Cε`M` for all M ∈M, all ε > 0, and some C = C(M, ε).

In any case we may conclude that (2) actually holds for the sequence kj = j. By
the polarization formula [17, Lemma 7.3(1)], we have

‖djf(x)‖Lj ≤ (2e)j sup
v∈Sn−1

|djvf(x)|,

where ‖djf(x)‖Lj denotes the operator norm of the Fréchet derivative of order j
of f at x. Together with the Sobolev inequality and the fact that M is stable
by derivation (in order to switch from L2- to L∞-estimates) we find that f ∈
E [M](U). �

Proposition 2. Let P be some elliptic linear partial differential operator of order
m with real analytic coefficients on an open set U ⊆ Rn. Let k = (kj) be a strictly
increasing sequence of positive integers satisfying (1). Assume that M is a [regular]
weight matrix. Then

E [M](U) = E [M]
P,k (U). (3)

Proof. The inclusion E [M](U) ⊆ E [M]
P,k (U) is clear.

For the converse inclusion we follow the arguments of [6, Proposition 3.3]. Let
U ′ b U ′′ b U be open subsets of Rn. By [2, Theorem 1.2], there is a constant
C > 0 such that for all k ∈ N there is χk ∈ C∞c (U ′′) with χk = 1 on U ′ and with
values in [0, 1] such that for all u ∈ C∞(U ′′)

|ξ|mk|(̂χku)(ξ)| ≤ Ck+1
(
‖P ku‖L2(U ′′) + k!m‖u‖L2(U ′′)

)
, ξ ∈ Rn, k ∈ N.

Thus if u ∈ E [M]
P,k (U) then there exist M ∈ M and C, ρ > 0 (resp. for all M ∈ M

and all ρ > 0 there is C) such that

|(̂χkju)(ξ)| ≤ Cρmkj |ξ|−mkjMmkj .

Fix v ∈ Sn−1. In view of

(−idv)mkj−n−1u(x) =
1

(2π)n

∫
ei〈x,ξ〉〈v, ξ〉mkj−n−1χ̂kju(ξ) dξ

we conclude that, for all j,

‖dmkj−n−1
v u‖L∞(U ′) ≤ CρmkjMmkj ≤ C̃ρ̃mkjNmkj−n−1,

where we used (R2) in the Roumieu case. In the Beurling case we use (B2) instead.

The constants C̃, ρ̃ are independent of v ∈ Sn−1. It remains to apply Lemma 1 for
the sequence j 7→ mkj − n− 1. �
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Remark 3. It is possible to just work with ∂1, . . . , ∂n instead of all directional
derivatives dv. Then the equivalence of (1) and (2) in Lemma 1 would read:

E [M](U) =

n⋂
i=1

E [M]
∂i,k

(U).

The proof is similar, but in the end one has to show the stronger statement
n⋂
i=1

E [M]
∂i,k

(U) =

n⋂
i=1

E [M]
∂i,(j)j

(U).

2.4. Gelfand–Shilov classes. Let M be a weight matrix. We consider the
Gelfand–Shilov classes S [M](Rn) consisting of all f ∈ S(Rn) such that there exist
M ∈M and ρ > 0 with (resp. for all M ∈M and all ρ > 0)

sup
k,`∈N

sup
|α|=`

‖|x|kDαf‖L∞(Rn)

ρk+`MkM`
<∞.

The next lemma is a slight generalization of [12, Theorem 2.3].

Lemma 4. Assume that M is a [regular] weight matrix. Then the following are
equivalent.

(1) f ∈ S [M](Rn).
(2) There exist M ∈ M and constants C, ρ, σ > 0 (for all M ∈ M and for all

ρ, σ > there is C > 0) such that

sup
x
|xαf(x)| ≤ Cρ|α|M|α| and sup

x
|Dβf(x)| ≤ Cσ|β|M|β|

for all α, β ∈ Nn.
(3) There exist M ∈ M and constants C, ρ, σ > 0 (for all M ∈ M and for all

ρ, σ > there is C > 0) such that

sup
x
|xαf(x)| ≤ Cρ|α|M|α| and sup

ξ
|ξβ f̂(ξ)| ≤ Cσ|β|M|β|

for all α, β ∈ Nn.

Proof. It is straightforward to adapt the proof of [12, Theorem 2.3]. �

An obvious consequence of the lemma is that S [M](Rn) is invariant under the

Fourier transform: f ∈ S [M](Rn) if and only if f̂ ∈ S [M](Rn).

3. Ultradifferentiable Chevalley theorems

3.1. The setting. The following facts can be found in [15]; see also [13] whose
arguments we follow closely.

Let g be a real semisimple Lie algebra of noncompact type and let g = k⊕p be a
Cartan decomposition. Then k is a subalgebra of g which is the Lie algebra of the
maximal compact subgroup K of the adjoint group Int(g). The decomposition is
direct with respect to the Killing form. Let a ⊆ p be a maximal abelian subspace
and

g = g0 ⊕
⊕
α∈Σ

gα

the root space decomposition with respect to a, where

gα = {X ∈ g : (adH)X = α(H)X for all H ∈ a}
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and Σ is the set of roots 0 6= α ∈ a∗ with gα 6= 0. We set mα := dim gα.
Choose a Weyl chamber a+ ⊆ a, i.e., a connected component of the complement

of the union of hyperplanes in a defined by the roots α ∈ Σ. Let Σ+ denote the
collection of positive roots w.r.t. a+. The adjoint action of K on p preserves the
inner product induced by the Killing form. Every K-orbit intersects a orthogonally
in an orbit of the Weyl group. The Weyl group

W = NK(a)/ZK(a),

where

NK(a) = {k ∈ K : Ad(k)a = a}
and

ZK(a) = {k ∈ K : Ad(k)H = H for all H ∈ a},
is a finite group of linear automorphisms of a which is generated by the reflections
in the hyperplanes {H ∈ a : α(H) = 0}, for α ∈ Σ+.

If M denotes the centralizer of a in K, then

K/M × a+ 3 (kM,H) 7→ Ad(k)H

is a diffeomorphism onto an open and dense subset of p. There is the following
integral formula for f ∈ C∞c (p),∫

p

f(x) dx =

∫
a+

∫
K/M

f(Ad(k)H)
∏
α∈Σ+

α(H)mα dk dH, (4)

where dx and dH are the Lebesgue measures on p and a, respectively, and dk is
an invariant measure on K/M , all of them with suitable normalizations; see [15,
p.380].

We denote by C∞(p)K the space of C∞-functions on p which are invariant under
the adjoint action of K on p. Similarly C∞(a)W is the space of W -invariant C∞-
functions on a. By ∆p we mean the flat Euclidean Laplace operator on p. For
f ∈ C∞(p)K we have

(∆pf)|a+ = rad(∆p)(f |a+),

where rad(∆p) is a differential operator on a+ called the radial part of ∆p. Then
(see [13, Proposition 1.1])

rad(∆p) = ∆a +
∑
α∈Σ+

mα
gradα

α
, (5)

where ∆a is the Laplace operator on a and (gradα)(f) := 〈gradα, grad f〉.

3.2. Chevalley’s theorem in local ultradifferentiable classes.

Theorem 5. Let M be a [regular] weight matrix. Then the restriction mapping
E [M](p)K → E [M](a)W is an isomorphism.

Proof. Every f ∈ C∞(a)W can be extended to a continuous function f̃ on p, by

making it constant on the K-orbits. The continuity of f̃ follows from [16, Proposi-
tion 2.4]; in fact, for X,Y ∈ p one has

dist(Ad(K)X,Ad(K)Y ) = dist(Ad(K)X ∩ a+,Ad(K)Y ∩ a+).

Using (4) and (5), it is not hard to see that

∆pf̃ = (rad(∆p)f)˜ (6)
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in the sense of distributions; for details see [13, pp.124-125].
Since f is invariant with respect to the reflection through the hyperplane {α = 0},

the function (gradα)(f) vanishes on {α = 0} whence (gradα)(f)/α is smooth.
Then, by (5), we may conclude that rad(∆p)f ∈ C∞(a)W , where now rad(∆p) is
the obvious extension to a as a W -invariant differential operator (with singularities
along the hyperplanes {α = 0}, for α ∈ Σ+).

Iterating (6) yields

∆m
p f̃ = (rad(∆p)mf) ,̃ m ≥ 1. (7)

This implies that f̃ ∈ C∞(p)K by means of elliptic regularity; cf. [13, p.124].

Now suppose that f ∈ E [M](a)W . By the above, the K-invariant extension f̃ is
smooth. Let U be a relatively compact open subset of p and let V be its saturation
with respect to the K-action, i.e., the union of all K-orbits that meet U . By (7),

‖∆m
p f̃‖L∞(V ) = ‖(rad(∆p)mf)˜‖L∞(V ) = ‖ rad(∆p)mf‖L∞(V ∩a). (8)

We claim that there exist M ∈M and constants C, ρ > 0 (resp. for all M ∈M and
all ρ > 0 there is C > 0) such that

‖ rad(∆p)mf‖L∞(V ∩a) ≤ Cρ2mM2m, for all m ≥ 1. (9)

Then, by (8), we may conclude

‖∆m
p f̃‖L∞(V ) ≤ Cρ2mM2m, for all m ≥ 1.

That implies that f̃ ∈ E [M]
∆p,(j)j

(p). By Proposition 2, we find that f̃ ∈ E [M](p)K .

It remains to show the claim (9). We use that, for any f ∈ C∞(a)W , the function

F :=
(gradα)(f)

| gradα|

vanishes on the hyperplane {α = 0}. Although rad(∆p) is a differential operator
with singularities along the hyperplanes {α = 0}, for α ∈ Σ+, its action on W -
invariant functions f is well-behaved. Indeed, if we set

vα =
gradα

| gradα|

and denote by

yα(x) := x− α(x)

| gradα|
vα,

the orthogonal projection on the hyperplane {α = 0}, then since F vanishes on
{α = 0} we have for all x ∈ a,

F (x) =

∫ 1

0

d

dt
F
(
t α(x)
| gradα|vα + yα(x)

)
dt

=

∫ 1

0

dF
(
t α(x)
| gradα|vα + yα(x)

)
( α(x)
| gradα|vα) dt

=
α(x)

| gradα|

∫ 1

0

dvαF
(
t α(x)
| gradα|vα + yα(x)

)
dt.
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Since F = (gradα)(f)
| gradα| = dvαf , we obtain(gradα

α

)
(f)(x) =

∫ 1

0

dvα
(
dvαf

)(
t α(x)
| gradα|vα + yα(x)

)
dt

=

∫ 1

0

d2
vαf
(
t α(x)
| gradα|vα + yα(x)

)
dt.

By (5), we see that for f ∈ C∞(a)W we have

rad(∆p)f(x) = (∆af)(x) +
∑
α∈Σ+

mα

∫ 1

0

d2
vαf
(
t α(x)
| gradα|vα + yα(x)

)
dt.

Since rad(∆p)f ∈ C∞(a)W we can replace f in the above formula by rad(∆p)f
and iterate this procedure in order to express rad(∆p)m(f) for m ≥ 1 in terms of
combinations of powers of differential operators ∆a and dvα for α ∈ Σ+ applied to
f . Using the linearity of the operators and the linearity of α and yα and computing
L∞-norms on balls centered at the origin in a, it is then straightforward to conclude
(9). �

Corollary 6. Let M be a weight sequence with moderate growth. Then the restric-
tion mapping E [M ](p)K → E [M ](a)W is an isomorphism, if we assume (k!/Mk)1/k

is bounded in the Roumieu case and (k!/Mk)1/k → 0 as k → ∞ in the Beurling
case.

Corollary 7. Let ω be a weight function. Then the restriction mapping E [ω](p)K →
E [ω](a)W is an isomorphism, if we assume ω(t) = O(t) as t → ∞ in the Roumieu
case and ω(t) = o(t) as t→∞ in the Beurling case.

Corollary 8. The restriction mapping Cω(p)K → Cω(a)W is an isomorphism.

3.3. Chevalley’s theorem in Gelfand–Shilov classes. As a consequence of the
C∞ Chevalley theorem Dadok [13, Corollary 1.5] showed that every W -invariant

Schwartz function f ∈ S(a)W extends to a Schwartz function f̃ ∈ S(p)K ; see also
Helgason [16, Proposition 2.3] for a different proof.

Theorem 9. Let M be a [regular] weight matrix. Then the restriction mapping
S [M](p)K → S [M](a)W is an isomorphism.

Proof. Let f ∈ S [M](a)W . We want to show that the K-invariant extension f̃ of f

to p is of class S [M]. We already know that f̃ is smooth. Choose linear coordinates
in p such that the K-invariant inner product induced by the Killing form is given
by 〈x, y〉 = x1y1 + · · ·+ xnyn. Then |x|2 = 〈x, x〉 is a K-invariant polynomial. By
Lemma 4, it suffices to check that there exist M ∈ M and constants C, ρ, σ > 0
(resp. for all M ∈M and all ρ, σ > 0 there is C > 0) such that

sup
x
|x|2k|f̃(x)| ≤ Cρ2kM2k and sup

ξ
|ξ|2k|(f̃)∧(ξ)| ≤ Cσ2kM2k (10)

for all k. Here (f̃)∧ denotes the Fourier transform of f̃ . (We use that for any
α ∈ Nn we have |xα| ≤ |x||α| ≤ |x|2k max{1, |x|2}, where k = b|α|/2c, and that M
is [regular].)

The first estimate in (10) simply follows from the assumption f ∈ S [M](a)W and
the fact that ∥∥| · |2kf̃(·)

∥∥
L∞(p)

=
∥∥| · |2kf(·)

∥∥
L∞(a)

.
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For the second estimate in (10) we observe that for all ξ ∈ p (where n = dim p)

|ξ|2k|(f̃)∧(ξ)| ≤ |(∆k
pf̃)∧(ξ)| ≤

∫
p

(1 + |x|2n)|∆k
pf̃(x)| dx

(1 + |x|2n)

≤
∥∥(1 + | · |2n)∆k

pf̃(·)
∥∥
L∞(p)

∫
p

dx

(1 + |x|2n)

≤ C(n)
∥∥(1 + | · |2n) rad(∆p)kf(·)

∥∥
L∞(a)

,

where in the last inequality we used (7). The assumption f ∈ S [M](a)W together
with the fact that M is [regular] and the justification for (9) yields the required
estimate. �

4. Isotropic functions

Let g = sl(n,R) be the Lie algebra of n × n real matrices with trace zero and
consider the Cartan decomposition g = k⊕ p, where k = so(n,R) is the Lie algebra
of skew-symmetric matrices and p = Sym(n)0 are the symmetric matrices with
trace zero. Then K = SO(n) acts by conjugation on p and the maximal subalgebra
a = Diag(n)0 consists of the diagonal matrices with trace zero. The Weyl group
is isomorphic to the symmetric group Sn and acts on a be permuting the diagonal
entries.

Let F : Diag(n) ∼= Rn → R be a symmetric function. We extend F to an isotropic
function f : Sym(n) → R by setting f(A) = F (a1, . . . , an), where a1 ≥ a2 ≥ · · · ≥
an are the eigenvalues of A. Setting B = A − 1

n (TrA)I and bj := aj − 1
n

∑n
i=1 ai,

for j = 1, . . . , n, we have

g(B) := f(B + 1
n (TrA)I)

= f(A)

= F (a1, . . . , an)

= F
(
b1 + 1

n

n∑
i=1

ai, . . . , bn + 1
n

n∑
i=1

ai

)
=: G(b1, . . . , bn),

where g : Sym(n)0 → R is isotropic and G : Diag(n)0 → R is symmetric. Moreover,
if F is C∞, of class E [M], or of class S [M] (for a [regular] weight matrix), then G
is of the same class, since F is the composite of G with the orthogonal projection
onto Diag(n)0. Then Theorem 5 and Theorem 9 imply that g, and thus f , is of the
corresponding class. So we obtain

Theorem 10. Let M be a [regular] weight matrix. An isotropic function f :
Sym(n) → R is of class E [M] (resp. S [M]) if and only if its symmetric compan-
ion F : Rn → R is of class E [M] (resp. S [M]).

Clearly, we immediately get isotropic versions of Corollaries 6 to 8.

Remark 11. Alternatively, it is possible to use the inductive formula for the deriva-
tives of f derived in [25] in order to give a direct proof of Theorem 10.
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