LIFTING DIFFERENTIABLE CURVES FROM ORBIT SPACES

ADAM PARUSIŃSKI AND ARMIN RAINER
Dedicated to the memory of Mark Losik

Abstract

Let $\rho: G \rightarrow \mathrm{O}(V)$ be a real finite dimensional orthogonal representation of a compact Lie group, let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right): V \rightarrow \mathbb{R}^{n}$, where $\sigma_{1}, \ldots, \sigma_{n}$ form a minimal system of homogeneous generators of the G-invariant polynomials on V, and set $d=\max _{i} \operatorname{deg} \sigma_{i}$. We prove that for each $C^{d-1,1}$-curve c in $\sigma(V) \subseteq \mathbb{R}^{n}$ there exits a locally Lipschitz lift over σ, i.e., a locally Lipschitz curve \bar{c} in V so that $c=\sigma \circ \bar{c}$, and we obtain explicit bounds for the Lipschitz constant of \bar{c} in terms of c. Moreover, we show that each C^{d}-curve in $\sigma(V)$ admits a C^{1}-lift. For finite groups G we deduce a multivariable version and some further results.

1. Introduction and main results

1.1. Differentiable roots of hyperbolic polynomials. Let us begin by describing the most important special case of our main theorem.

Example 1 (Choosing differentiable roots of hyperbolic polynomials). Let the symmetric group S_{n} act on \mathbb{R}^{n} by permuting the coordinates. The algebra of invariant polynomials $\mathbb{R}\left[\mathbb{R}^{n}\right]^{\mathrm{S}_{n}}$ is generated by the elementary symmetric functions $\sigma_{i}=\sum_{j_{1}<\ldots<j_{i}} x_{j_{1}} \cdots x_{j_{i}}$. Considering the mapping $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we may identify, in view of Vieta's formulas, each point p of the image $\sigma\left(\mathbb{R}^{n}\right)$ uniquely with the monic polynomial $P_{a}=z^{n}+\sum_{j=1}^{n} a_{j} z^{n-j}$ whose unordered n-tuple of roots constitutes the fiber of σ over p; two points in the fiber differ by a permutation. So the semialgebraic subset $\sigma\left(\mathbb{R}^{n}\right) \subseteq \mathbb{R}^{n}$ can be identified with the space of hyperbolic polynomials of degree n, i.e., monic polynomials with all roots real.

Suppose that the coefficients $a=\left(a_{j}\right)_{j=1}^{n}$ are functions depending in a smooth way on a real parameter t, i.e., $a: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a smooth curve with $a(\mathbb{R}) \subseteq \sigma\left(\mathbb{R}^{n}\right)$. Then we may ask how regular the roots of P_{a} can be parameterized. This is a classical much studied problem with important applications in partial differential equations. We shall just mention three results which will be of interest in this paper.
(1) If a is $C^{n-1,1}$ then any continuous parameterization of the roots of P_{a} is locally Lipschitz with uniform Lipschitz constant.

[^0](2) If a is C^{n} then there exists a C^{1}-parameterization of the roots; actually any differentiable parameterization is C^{1}.
(3) If a is $C^{2 n}$ then there exists a twice differentiable parameterization of the roots.

The first result is a version of Bronshtein's theorem due to [6]; a different proof was given by Wakabayashi [38]. In our recent note [26] we presented another independent proof of (1) the method of which works in the general situation considered in the present paper; see below. For the second and third result we refer to [9]; see also [26] for a different proof, and [22] and [17] for the same conclusions under stronger assumptions. The results (1), (2), and (3) are optimal. Most notably, there are C^{∞}-curves a so that the roots of P_{a} do not admit a $C^{1, \omega}$-parameterization for any modulus of continuity ω.

Let V be any finite dimensional Euclidean vector space. For an open subset $U \subseteq \mathbb{R}^{m}$ and $p \in \mathbb{N}_{\geq 1}$, we denote by $C^{p-1,1}(U, V)$ the space of all mappings $f \in C^{p-1}(U, V)$ so that each partial derivative $\partial^{\alpha} f$ of order $|\alpha|=p-1$ is locally Lipschitz. It is a Fréchet space with the following system of seminorms,

$$
\|f\|_{C^{p-1,1}(K, V)}=\|f\|_{C^{p-1}(K, V)}+\sup _{|\alpha|=p-1} \operatorname{Lip}_{K}\left(\partial^{\alpha} f\right), \quad \operatorname{Lip}_{K}(f)=\sup _{\substack{x, y \in K \\ x \neq y}} \frac{\|f(x)-f(y)\|}{\|x-y\|}
$$

where K ranges over (a countable exhaustion of) the compact subsets of U; on \mathbb{R}^{m} we consider the 2-norm $\|\|=\|\|_{2}$. By Rademacher's theorem, the partial derivatives of order p of a function $f \in C^{p-1,1}(U, V)$ exist almost everywhere.
1.2. The general setup. Let G be a compact Lie group and let $\rho: G \rightarrow \mathrm{O}(V)$ be an orthogonal representation in a real finite dimensional Euclidean vector space V with inner product $\langle\mid\rangle$. For short we shall write $G \circlearrowleft V$. By a classical theorem of Hilbert and Nagata, the algebra $\mathbb{R}[V]^{G}$ of invariant polynomials on V is finitely generated. So let $\left\{\sigma_{i}\right\}_{i=1}^{n}$ be a system of homogeneous generators of $\mathbb{R}[V]^{G}$ which we shall also call a system of basic invariants.

A system of basic invariants $\left\{\sigma_{i}\right\}_{i=1}^{n}$ is called minimal if there is no polynomial relation of the form $\sigma_{i}=P\left(\sigma_{1}, \ldots, \widehat{\sigma}_{i}, \ldots, \sigma_{n}\right)$, or equivalently, $\left\{\sigma_{i}\right\}_{i=1}^{n}$ induces a basis of the real vector space $\mathbb{R}[V]_{+}^{G} /\left(\mathbb{R}[V]_{+}^{G}\right)^{2}$, where $\mathbb{R}[V]_{+}^{G}=\left\{f \in \mathbb{R}[V]^{G}: f(0)=0\right\}$; cf. [12, Section 3.6]. The elements in a minimal system of basic invariants may not be unique but its number and its degrees $d_{i}:=\operatorname{deg} \sigma_{i}$ are unique. Let us set

$$
d:=\max _{i=1, \ldots, n} d_{i} .
$$

Given a system of basic invariants $\left\{\sigma_{i}\right\}_{i=1}^{n}$, we consider the orbit mapping $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$: $V \rightarrow \mathbb{R}^{n}$. The image $\sigma(V)$ is a semialgebraic set in the categorical quotient $V / / G:=\{y \in$ $\mathbb{R}^{n}: P(y)=0$ for all $\left.P \in \mathscr{I}\right\}$, where \mathscr{I} is the ideal of relations between $\sigma_{1}, \ldots, \sigma_{n}$. Since G is compact, σ is proper and separates orbits of G, and it thus induces a homeomorphism $\tilde{\sigma}$ between the orbit space V / G and $\sigma(V)$.

Let $H=G_{v}=\{g \in G: g v=v\}$ be the isotropy group of $v \in V$ and (H) its conjugacy class in $G ;(H)$ is called the type of the orbit $G v=\{g v: g \in G\}$. Let $V_{(H)}$ be the union of all orbits of type (H). Then $V_{(H)} / G$ is a smooth manifold and the collection of connected components of the manifolds $V_{(H)} / G$ forms a stratification of V / G by orbit type; cf. [33]. Due to [2], $\tilde{\sigma}$ is
an isomorphism between the orbit type stratification of V / G and the natural stratification of $\sigma(V)$ as a semialgebraic set; it is analytically locally trivial and thus satisfies Whitney's conditions (A) and (B). The inclusion relation on the set of subgroups of G induces a partial ordering on the family of orbit types. There is a unique minimal orbit type, the principal orbit type, corresponding to the open and dense submanifold $V_{\text {reg }}$ consisting of points v, where the slice representation $G_{v} \circlearrowleft N_{v}$ is trivial; see Subsection 2.3 below. The projection $V_{\text {reg }} \rightarrow V_{\text {reg }} / G$ is a locally trivial fiber bundle. There are only finitely many isomorphism classes of slice representations.

A representation $G \circlearrowleft V$ is called polar, if there exists a linear subspace $\Sigma \subseteq V$, called a section, which meets each orbit orthogonally; cf. [10], [11]. The trace of the G-action on Σ is the action of the generalized Weyl group $W(\Sigma)=N_{G}(\Sigma) / Z_{G}(\Sigma)$ on Σ, where $N_{G}(\Sigma):=\{g \in G: g \Sigma=\Sigma\}$ and $Z_{G}(\Sigma):=\{g \in G: g s=s$ for all $s \in \Sigma\}$. This group is finite, and it is a reflection group if G is connected. The algebras $\mathbb{R}[V]^{G}$ and $\mathbb{R}[\Sigma]^{W(\Sigma)}$ are isomorphic via restriction, by a generalization of Chevalley's restriction theorem due to [11] and independently [36], and thus the orbit spaces V / G and $\Sigma / W(\Sigma)$ are isomorphic.

We shall fix a minimal system of basic invariants $\left\{\sigma_{i}\right\}_{i=1}^{n}$ and the corresponding orbit mapping σ. The given data will be abbreviated by the tuple ($G \circlearrowleft V, d, \sigma$).
1.3. Smooth structures on orbit spaces. We review some ways to endow the orbit space V / G with a smooth structure and stress the connection to the lifting problem studied in this paper. The results and constructions mentioned in this subsection will not be used later in the paper.

A smooth structure on a non-empty set X can be introduced by specifying any of the following families of mappings together with some compatibility conditions:

- the smooth functions on X (differential space)
- the smooth mappings into X (diffeological space)
- the smooth curves in X and the smooth functions on X (Frölicher space)

More precisely: A differential structure on X is a family \mathcal{F}_{X} of functions $X \rightarrow \mathbb{R}$, along with the associated initial topology on X, so that

- if $f_{1}, \ldots, f_{n} \in \mathcal{F}_{X}$ and $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ then $g \circ\left(f_{1}, \ldots, f_{n}\right) \in \mathcal{F}_{X}$
- if $f: X \rightarrow \mathbb{R}$ is locally the restriction of a function in \mathcal{F}_{X} then $f \in \mathcal{F}_{X}$.

The pair $\left(X, \mathcal{F}_{X}\right)$ is called a differential space.
A diffeology on X is a family \mathcal{D}_{X} of mappings $U \rightarrow X$, where U is any domain, i.e., open in some \mathbb{R}^{n}, so that

- \mathcal{D}_{X} contains all constant mappings $\mathbb{R}^{n} \rightarrow X$ (for all n)
- for each $p: U \rightarrow X \in \mathcal{D}_{X}$, each domain V, and each $q \in C^{\infty}(V, U)$, also $p \circ q \in \mathcal{D}_{X}$
- if $p: U \rightarrow X$ is locally in \mathcal{D}_{X} then $p \in \mathcal{D}_{X}$.

The pair $\left(X, \mathcal{D}_{X}\right)$ is called a diffeological space.
A Frölicher structure on X is a pair $\left(\mathcal{C}_{X}, \mathcal{F}_{X}\right)$ consisting of a subset $\mathcal{C}_{X} \subseteq X^{\mathbb{R}}$ and a subset $\mathcal{F}_{X} \subseteq \mathbb{R}^{X}$ so that

- $f \in \mathcal{F}_{X}$ if and only if $f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R})$ for all $c \in \mathcal{C}_{X}$
- $c \in \mathcal{C}_{X}$ if and only if $f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R})$ for all $f \in \mathcal{F}_{X}$.

The triple $\left(X, \mathcal{C}_{X}, \mathcal{F}_{X}\right)$ is called a Frölicher space. The Frölicher structure on X generated by a subset $\mathcal{C} \subseteq X^{\mathbb{R}}$ (respectively $\mathcal{F} \subseteq \mathbb{R}^{X}$) is the finest (respectively coarsest) Frölicher structure $\left(\mathcal{C}_{X}, \mathcal{F}_{X}\right)$ on X with $\mathcal{C} \subseteq \mathcal{C}_{X}$ (respectively $\mathcal{F} \subseteq \mathcal{F}_{X}$).

A mapping $\phi: X \rightarrow Y$ between two spaces of the same kind is called smooth if

- $\phi^{*} \mathcal{F}_{Y} \subseteq \mathcal{F}_{X}$ in the case of differential spaces
- $\phi_{*} \mathcal{D}_{X} \subseteq \mathcal{D}_{Y}$ in the case of diffeological spaces
- $\phi_{*} \mathcal{C}_{X} \subseteq \mathcal{C}_{Y}$, equivalently $\phi^{*} \mathcal{F}_{Y} \subseteq \mathcal{F}_{X}$, equivalently $\mathcal{F}_{Y} \circ \phi \circ \mathcal{C}_{X} \in C^{\infty}$ in the case of Frölicher spaces.

Any of the above forms a category, and the category of smooth finite dimensional manifolds with smooth mappings in the usual sense forms a full subcategory in each of them.

The orbit space V / G can be given a differential structure by defining a function on V / G to be smooth if its composite with the projection $V \rightarrow V / G$ is smooth, i.e., $\mathcal{F}_{V / G}=C^{\infty}(V / G) \cong$ $C^{\infty}(V)^{G}$. On the other hand $\sigma(V)$ has a differential structure defined by restriction of the smooth functions on \mathbb{R}^{n}, i.e., $\mathcal{F}_{\sigma(V)}=\left\{\left.f\right|_{\sigma(V)}: f \in C^{\infty}\left(\mathbb{R}^{n}\right)\right\}$. By Schwarz' theorem [32], $\sigma^{*} C^{\infty}\left(\mathbb{R}^{n}\right)=C^{\infty}(V)^{G}$ and so $\tilde{\sigma}$ is an isomorphism of V / G and $\sigma(V)$ together with their differential structures. In other words quotient and subspace differential structure coincide. We have

$$
\begin{aligned}
C^{\infty}(\mathbb{R}, \sigma(V)) & :=\left\{c \in C^{\infty}\left(\mathbb{R}, \mathbb{R}^{n}\right): c(\mathbb{R}) \subseteq \sigma(V)\right\} \\
& =\left\{c \in \sigma(V)^{\mathbb{R}}: f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R}) \text { for all } f \in C^{\infty}(V)^{G}\right\}
\end{aligned}
$$

We may also consider the curves in $\sigma(V)$ that admit a smooth lift over σ,

$$
\sigma_{*} C^{\infty}(\mathbb{R}, V)=\left\{\sigma \circ c: c \in C^{\infty}(\mathbb{R}, V)\right\}
$$

In general the inclusion $\sigma_{*} C^{\infty}(\mathbb{R}, V) \subseteq C^{\infty}(\mathbb{R}, \sigma(V))$ is strict (cf. Example 11). The set of functions $C^{\infty}(V)^{G}$ on the one hand and the set of curves $\sigma_{*} C^{\infty}(\mathbb{R}, V)$ on the other hand give rise to Frölicher space structures on the orbit space $V / G=\sigma(V)$ that turn out to coincide: The Frölicher structure on $\sigma(V)$ generated by $C^{\infty}(V)^{G}$ as well as that generated by $\sigma_{*} C^{\infty}(\mathbb{R}, V)$ is $\left(C^{\infty}(\mathbb{R}, \sigma(V)), C^{\infty}(V)^{G}\right)$. Indeed, we have

$$
C^{\infty}(V)^{G} \cong\left\{f \in \mathbb{R}^{\sigma(V)}: f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R}) \text { for all } c \in \sigma_{*} C^{\infty}(\mathbb{R}, V)\right\}
$$

for if $f \circ c \in C^{\infty}$ for all $c \in \sigma_{*} C^{\infty}(\mathbb{R}, V)$ then $f \circ \sigma$ is C^{∞}, by Boman's theorem [3]. It follows that the quotient and the subspace Frölicher structure coincide on $\sigma(V)$.

However, the quotient diffeology \mathcal{D}_{q} and the subspace diffeology \mathcal{D}_{s} on $\sigma(V)$ fall apart. The quotient diffeology \mathcal{D}_{q} with respect to the orbit mapping $\sigma: V \rightarrow \sigma(V)$ is the finest diffeology of $\sigma(V)$ such that $\sigma: V \rightarrow \sigma(V)$ is smooth. A mapping $f: U \rightarrow \sigma(V)$ belongs to \mathcal{D}_{q} if and only if it lifts locally over σ, i.e., for each $x \in U$ there is a neighborhood U_{0} and a C^{∞}-mapping $\bar{f}: U_{0} \rightarrow V$ so that $f=\sigma \circ \bar{f}$ on U_{0}. The subspace diffeology \mathcal{D}_{s} on $\sigma(V)$ is the coarsest diffeology of $\sigma(V)$ such that the inclusion $\sigma(V) \hookrightarrow \mathbb{R}^{n}$ is smooth. A mapping $U \rightarrow \sigma(V)$ belongs to \mathcal{D}_{s} if and only if the composite $U \rightarrow \sigma(V) \hookrightarrow \mathbb{R}^{n}$ is smooth. Evidently, $\mathcal{D}_{q} \subseteq \mathcal{D}_{s}$, and the inclusion is strict (cf. Example 11).

The orbit space as a differentiable space. Let us finally consider V / G as a differentiable space in the sense of Spallek [34]. We follow the presentation in [25].

An \mathbb{R}-algebra A is called a differentiable algebra if it is isomorphic to $C^{\infty}\left(\mathbb{R}^{n}\right) / \mathfrak{a}$ for some positive integer n and some closed ideal \mathfrak{a} in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Any differentiable algebra A has a unique Fréchet topology such that the algebra isomorphism $A \cong C^{\infty}\left(\mathbb{R}^{n}\right) / \mathfrak{a}$ is a homeomorphism, cf. [25, Theorem 2.23]. The real spectrum $\operatorname{Spec}_{r} A$ of $A=C^{\infty}\left(\mathbb{R}^{n}\right) / \mathfrak{a}$ is homeomorphic to $\left\{x \in \mathbb{R}^{n}: f(x)=0, \forall f \in \mathfrak{a}\right\}$, cf. [25, Proposition 2.13].

A locally ringed space $\left(X, \mathcal{O}_{X}\right)$ is said to be an affine differentiable space if it is isomorphic to the real spectrum $\left(\operatorname{Spec}_{r} A, \tilde{A}\right)$ of some differential algebra A. Here \tilde{A} is the sheaf associated to the presheaf $U \leadsto A_{U}$, where $A_{U}=\{a / b: a, b \in A, b(x) \neq 0, \forall x \in U\}$ denotes the localization. A locally ringed space $\left(X, \mathcal{O}_{X}\right)$ is said to be a differentiable space if each point $x \in X$ has an open neighborhood U in X such that $\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$ is an affine differentiable space. Sections of \mathcal{O}_{X} on an open set $U \subseteq X$ are called differentiable functions on U. A differentiable space $\left(X, \mathcal{O}_{X}\right)$ is said to be reduced if for each open set $U \subseteq X$ and every differentiable function $f \in \mathcal{O}_{X}(U)$, we have $f=0$ if and only if $f(x)=0$ for all $x \in U$.

The space \mathbb{R}^{n} is a reduced affine differentiable space: let $C_{\mathbb{R}^{n}}^{\infty}$ denote the sheaf of C^{∞} functions on \mathbb{R}^{n}, then $\left(\operatorname{Spec}_{r} C^{\infty}\left(\mathbb{R}^{n}\right), C_{\mathbb{R}^{n}}^{\infty}\right) \cong\left(\mathbb{R}^{n}, C_{\mathbb{R}^{n}}^{\infty}\right)$, cf. [25, Example 3.15].

Let Z be a topological subspace of \mathbb{R}^{n}. A continuous function $f: Z \rightarrow \mathbb{R}$ is said to be of class C^{∞} if each point $z \in Z$ has an open neighborhood U_{z} in \mathbb{R}^{n} and there exists $F \in C^{\infty}\left(U_{z}\right)$ such that $\left.f\right|_{Z \cap U_{z}}=\left.F\right|_{Z}$. Thus we obtain a sheaf C_{Z}^{∞} of continuous functions on Z, and $\left(Z, C_{Z}^{\infty}\right)$ is a reduced affine differentiable space; cf. [25, Corollary 5.8]. The category of reduced differentiable spaces is equivalent to the category of reduced ringed spaces $\left(X, \mathcal{O}_{X}\right)$ with the property that each $x \in X$ has an open neighborhood U such that $\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$ is isomorphic to $\left(Z, C_{Z}^{\infty}\right)$ for some closed subset Z of an affine space \mathbb{R}^{n}; cf. [25, Theorem 3.23].

Let us turn to our situation. We equip the orbit space V / G (with the quotient topology and) with the structural sheaf $\mathcal{O}_{V / G}$, where $\mathcal{O}_{V / G}(U):=\left\{f \in C^{0}(U, \mathbb{R}): f \circ \pi \in\right.$ $\left.C^{\infty}\left(\pi^{-1}(U)\right)\right\} \cong C^{\infty}\left(\pi^{-1}(U)\right)^{G}$ and $\pi: V \rightarrow V / G$ denotes the quotient mapping. On the closed subset $\sigma(V)$ of \mathbb{R}^{n} we consider the structure of reduced affine differentiable space induced by \mathbb{R}^{n}, i.e., $\left(\sigma(V), C_{\sigma(V)}^{\infty}\right)$. It follows from Schwarz's theorem and the localization theorem for smooth functions (see [25, p. 28]) that σ induces an isomorphism of the differentiable spaces $\left(V / G, \mathcal{O}_{V / G}\right)$ and $\left(\sigma(V), C_{\sigma(V)}^{\infty}\right)$; see [25, Theorem 11.14]. Note that the reduced affine differentiable space $\left(V / G, \mathcal{O}_{V / G}\right)$ is the differential space $\left(V / G, \mathcal{F}_{V / G}\right)$ considered above.
1.4. The main results. In this paper we shall be concerned with the lifting properties of arbitrary elements in $C^{\infty}(\mathbb{R}, \sigma(V))$ (or in \mathcal{D}_{s}).

Let $I \subseteq \mathbb{R}$ be an open interval and let $c: I \rightarrow V / G=\sigma(V) \subseteq \mathbb{R}^{n}$ be a curve in the orbit space V / G of $(G \circlearrowleft V, d, \sigma)$. A curve $\bar{c}: I \rightarrow V$ is called a lift of c over σ, if $c=\sigma \circ \bar{c}$ holds. We will consider curves c in $V / G=\sigma(V)$ that are in some Hölder class $C^{k, \alpha}$, this means that c is $C^{k, \alpha}$ as curve in \mathbb{R}^{n} with the image contained in $\sigma(V)$, and it will be denoted by $c \in C^{k, \alpha}(I, \sigma(V))$. Note that any $c \in C^{0}(I, \sigma(V))$ admits a lift $\bar{c} \in C^{0}(I, V)$, by [24] or [18, Proposition 3.1]. The problem of lifting curves over invariants is independent of the choice of a system of basic invariants as any two such choices differ by a polynomial diffeomorphism.

This problem was considered in this generality for the first time in [1]; it was shown that $\sigma_{*} C^{\infty}(\mathbb{R}, V)$ contains all elements in $C^{\infty}(\mathbb{R}, \sigma(V))$ that do not meet lower dimensional strata of $\sigma(V)$ with infinite order of flatness. A C^{d}-curve in $\sigma(V)$ admits a differentiable lift, due to [18]. In [19] and [20] the following generalization of Example 1 was obtained: Let G be finite, write $V=V_{1} \oplus \cdots \oplus V_{l}$ as an orthogonal direct sum of irreducible subspaces V_{i}, and set

$$
k=\max \left\{d, k_{1}, \ldots, k_{l}\right\}
$$

where k_{i} is the minimal cardinality of non-zero orbits in V_{i}. Then C^{k} (resp. C^{k+d}) curves in V / G admit C^{1} (resp. twice differentiable) lifts. This result was achieved by reducing the general case $G \circlearrowleft V$ to the case of the standard action of the symmetric group $\mathrm{S}_{n} \circlearrowleft \mathbb{R}^{n}$ and then applying Bronshtein's theorem. This technique works only for finite groups and it yields a corresponding result for polar representations (since the associated Weyl group is finite).

The ideas of our new proof of Bronshtein's theorem in [26] led us to the main results of this paper:

- We show that $C^{d-1,1}$-curves in the orbit space of any representation $(G \circlearrowleft V, d, \sigma)$ admit $C^{0,1}$-lifts and we obtain explicit bounds for the Lipschitz constants (Theorem 1).
- We prove that C^{d}-curves in the orbit space of any representation $(G \circlearrowleft V, d, \sigma)$ admit C^{1}-lifts (Theorem 2).
- If G is a finite group we find that
- each continuous lift of a $C^{d-1,1}$-curve is $C^{0,1}$ (Corollary 11,
- each differentiable lift of a C^{d}-curve is C^{1} (Corollary 3),
- each $C^{2 d}$-curve admits a twice differentiable lift (Corollary 3).
- If G is a finite group we also obtain that each continuous lift of a $C^{d-1,1}$ - mapping of several variables into the orbit space is $C^{0,1}$ with uniform Lipschitz constants (Corollary 2).
- As a by-product of the problem of gluing together local lifts (see Section 5) we show that real analytic curves in the orbit space of any representation $(G \circlearrowleft V, d, \sigma)$ can be lifted globally (Theorem 4). This extends a result of [1] who proved the existence of local real analytic lifts, and global ones if $G \circlearrowleft V$ is polar.
Our proofs do not rely on Bronshtein's result but we reprove it.
Theorem 1. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a compact Lie group. Then any $c \in C^{d-1,1}(I, \sigma(V))$ admits a lift $\bar{c} \in C^{0,1}(I, V)$. More precisely, for any relatively compact subset $I_{0} \Subset I$, there is a neighborhood I_{1} with $I_{0} \Subset I_{1} \Subset I$ so that

$$
\begin{align*}
\operatorname{Lip}_{I_{0}}(\bar{c}) & \leq C\left(\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(\bar{I}_{1}\right)}^{\frac{1}{d_{i}}}\right) \tag{1.1}\\
& \leq \tilde{C}\left(1+\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(\bar{I}_{1}\right)}\right)
\end{align*}
$$

for constants C and \tilde{C} depending only on the intervals I_{0}, I_{1} and on the isomorphism classes of the slice representations of $G \circlearrowleft V$ and respective minimal systems of basic invariants. (More precise bounds are stated in Subsection 4.5.)

Remark 1. The statement of Theorem 1 reads "there is a $C^{0,1}$-lift \bar{c} on the whole interval I so that for all $I_{0} \Subset I$ there is a neighborhood I_{1} such that (1.1) holds". Our proof also yields "for all intervals I_{0} and I_{1} with $I_{0} \Subset I_{1} \Subset I$ there is a Lipschitz lift \bar{c} on I_{0} satisfying (1.1)".

Convention. We will denote by $C=C(G \circlearrowleft V, \ldots)$ any constant depending only on $G \circlearrowleft$ V, \ldots; its value may vary from line to line. Specific constants will bear a subscript like $C_{0}=C_{0}(\ldots)$ or $C_{1}=C_{1}(\ldots)$. The dependence on $G \circlearrowleft V$ is to be understood in the following way. For every isomorphism class $H \circlearrowleft W$ of slice representations of $G \circlearrowleft V$ fix a minimal system of basic invariants; note that there are only finitely many slice representations up to isomorphism and that $G \circlearrowleft V$ coincides with its slice representation at 0 . Writing $C=C(G \circlearrowleft V)$ we mean that the constant C only depends on the isomorphism classes of the slice representations of $G \circlearrowleft V$ and on the respective fixed minimal systems of basic invariants.

Our second main result is the following.
Theorem 2. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a compact Lie group. Then any $c \in C^{d}(I, \sigma(V))$ admits a lift $\bar{c} \in C^{1}(I, V)$.

Theorem 1 and Theorem 2 will be proved in Section 4 and Section 5, respectively.
For finite groups G we can show more:
Corollary 1. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a finite group. Then any continuous lift \bar{c} of $c \in C^{d-1,1}(I, \sigma(V))$ is locally Lipschitz and satisfies (1.1) for all intervals $I_{0} \Subset I_{1} \Subset I$.
Proof. Let \tilde{c} be any continuous lift of c, and let $I_{0} \Subset I_{1} \Subset I$. Let \bar{c} be the Lipschitz lift on I_{0} provided by Remark 1. Let $s, t \in I_{0}, s<t$. For each $g \in G$ consider the closed subset $J_{g}:=\{r \in[s, t]: \tilde{c}(r)=g \bar{c}(r)\}$ of $[s, t]$. As $[s, t]=\cup_{g \in G} J_{g}$ there exists a subset $\left\{g_{1}, \ldots, g_{\ell}\right\} \subseteq G$ and finite sequence $s=t_{0}<t_{1}<\cdots<t_{\ell}=t$ so that $t_{i-1}, t_{i} \in J_{g_{i}}$ for all $i=1, \ldots, \ell$. Then

$$
\|\tilde{c}(s)-\tilde{c}(t)\| \leq \sum_{i=1}^{\ell}\left\|g_{i} \bar{c}\left(t_{i-1}\right)-g_{i} \bar{c}\left(t_{i}\right)\right\| \leq \operatorname{Lip}_{I_{0}}(\bar{c})(t-s)
$$

which implies the assertion.
Corollary 1 readily implies the following result on lifting of mappings in several variables.
Corollary 2. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a finite group. Let $U \subseteq \mathbb{R}^{m}$ be open and let $f \in C^{d-1,1}(U, \sigma(V))$. Then any continuous lift $\bar{f}: U \supseteq \Omega \rightarrow V$ of f, on an open subset Ω of U, is locally Lipschitz. More precisely, for any pair of relatively compact open subsets $\Omega_{0} \Subset \Omega_{1} \Subset \Omega$ we have

$$
\begin{align*}
\operatorname{Lip}_{\Omega_{0}}(\bar{f}) & \leq C\left(\max _{i}\left\|f_{i}\right\|_{C^{d-1,1}\left(\bar{\Omega}_{1}\right)}^{\frac{1}{d_{i}}}\right) \tag{1.2}\\
& \leq \tilde{C}\left(1+\max _{i}\left\|f_{i}\right\|_{C^{d-1,1}\left(\bar{\Omega}_{1}\right)}\right)
\end{align*}
$$

for constants $C=C\left(G \circlearrowleft V, \Omega_{0}, \Omega_{1}, m\right)$ and $\tilde{C}=\tilde{C}\left(G \circlearrowleft V, \Omega_{0}, \Omega_{1}, m\right)$.

Remark.

(1) If G has positive dimension and \bar{f} is a $C^{0,1}$-lift of f, we may obtain a continuous lift of f that is not locally Lipschitz by simply multiplying \bar{f} by a suitable continuous mapping $g: U \rightarrow G$.
(2) In general there are representations and smooth mappings into the orbit space of such which do not admit continuous lifts. For instance, the orbit space of a finite rotation group of \mathbb{R}^{2} is homeomorphic to the set C obtained from the sector $\left\{r e^{i \varphi} \in \mathbb{C}: r \in\right.$ $\left.[0, \infty), 0 \leq \varphi \leq \varphi_{0}\right\}$ by identifying the rays that constitute its boundary. A loop on C cannot be lifted to a loop in \mathbb{R}^{2} unless it is homotopically trivial in $C \backslash\{0\}$.
Proof. Let $\bar{f}: U \supseteq \Omega \rightarrow V$ be a continuous lift of f on Ω. Without loss of generality we may assume that Ω_{0} and Ω_{1} are open boxes parallel to the coordinate axes, $\Omega_{i}=\prod_{j=1}^{m} I_{i, j}$, $i=0,1$, with $I_{0, j} \Subset I_{1, j}$ for all j. Let $x, y \in \Omega_{0}$ and set $h:=y-x$. Let $\left\{e_{i}\right\}_{i=1}^{m}$ denote the standard unit vectors in \mathbb{R}^{m}. For any z in the orthogonal projection of Ω_{0} on the hyperplane $x_{j}=0$ consider the curve $\bar{f}_{z, j}: I_{0, j} \rightarrow V$ defined by $\bar{f}_{z, j}(t):=\bar{f}\left(z+t e_{j}\right)$. By Corollary 1 , each $\bar{f}_{z, j}$ is Lipschitz and $C:=\sup _{z, j} \operatorname{Lip}_{I_{0, j}}\left(\bar{f}_{z, j}\right)<\infty$. Thus

$$
\|\bar{f}(x)-\bar{f}(y)\| \leq \sum_{j=0}^{m-1}\left\|\bar{f}\left(x+\sum_{k=1}^{j} h_{k} e_{k}\right)-\bar{f}\left(x+\sum_{k=1}^{j+1} h_{k} e_{k}\right)\right\| \leq C\|h\|_{1} \leq C \sqrt{m}\|h\|_{2}
$$

The bounds (1.2) follow from (1.1).
Corollary 3. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a finite group. Then:
(1) Any differentiable lift of $c \in C^{d}(I, \sigma(V))$ is C^{1}.
(2) Any $c \in C^{2 d}(I, \sigma(V))$ admits a twice differentiable lift.

Proof. This follows from Corollary 1. It can be proved as in [19]; see also [20].

1.5. Further examples.

Example 2 (Choosing differentiable eigenvalues of real symmetric matrices). Let the orthogonal group $\mathrm{O}(n)=\mathrm{O}\left(\mathbb{R}^{n}\right)$ act by conjugation on the real vector space $\operatorname{Sym}(n)$ of real symmetric $n \times n$ matrices, $\mathrm{O}(n) \times \operatorname{Sym}(n) \ni(S, A) \mapsto S A S^{-1}=S A S^{t} \in \operatorname{Sym}(n)$. The algebra of invariant polynomials $\mathbb{R}[\operatorname{Sym}(n)]^{\mathrm{O}(n)}$ is isomorphic to $\mathbb{R}[\operatorname{Diag}(\mathrm{n})]^{\mathrm{S}_{n}}$ by restriction, where $\operatorname{Diag}(n)$ is the vector space of real diagonal $n \times n$ matrices upon which S_{n} acts by permuting the diagonal entries. More precisely, $\mathbb{R}[\operatorname{Sym}(n)]^{\mathrm{O}(n)}=\mathbb{R}\left[\Sigma_{1}, \ldots, \Sigma_{n}\right]$, where $\Sigma_{i}(A)=\operatorname{Trace}\left(\bigwedge^{i} A: \bigwedge^{i} \mathbb{R}^{n} \rightarrow \bigwedge^{i} \mathbb{R}^{n}\right)$ is the i th characteristic coefficient of A and $\left.\Sigma_{i}\right|_{\operatorname{Diag}(n)}=\sigma_{i}$, where σ_{i} is the i th elementary symmetric polynomial and we iden$\operatorname{tify} \operatorname{Diag}(n) \cong \mathbb{R}^{n}(c f$. [23, 7.1]). This means that the representation $\mathrm{O}(n) \circlearrowleft \operatorname{Sym}(n)$ is polar and $\operatorname{Diag}(\mathrm{n})$ forms a section.

A smooth curve $A: \mathbb{R} \rightarrow \operatorname{Sym}(n)$ of symmetric matrices induces a smooth curve of hyperbolic polynomials P_{A} (the characteristic polynomial of A), i.e., a smooth curve in the semialgebraic set $\sigma(\operatorname{Diag}(n)) \cong \sigma\left(\mathbb{R}^{n}\right)$ from Example 1. Then (1), (2), and (3) in Example 1 imply regularity results for the eigenvalues of $t \mapsto \overrightarrow{A(t)}$ which however turn out to be not optimal. In fact we have the following optimal results.
(1) If A is $C^{0,1}$ then any continuous parameterization of the eigenvalues of A is locally Lipschitz with uniform Lipschitz constant.
(2) If A is C^{1} then there exists a C^{1}-parameterization of the eigenvalues; actually any differentiable parameterization is C^{1}.
(3) If A is C^{2} then there exists a twice differentiable parameterization of the eigenvalues. The first result follows from a result due to Weyl [39], the second and third were shown in [28]. Actually, these results are true for normal complex matrices and, in appropriate form, even for normal operators in Hilbert space with common domain of definition and compact resolvents; see [28].

Here the curve P_{A} in the orbit space is the projection of the curve A under $\operatorname{Sym}(n) \rightarrow$ $\operatorname{Sym}(n) / \mathrm{O}(n)$ and is then lifted over $\operatorname{Diag}(n) \rightarrow \operatorname{Diag}(n) / \mathrm{S}_{n}$.

Example 3 (Decomposing nonnegative functions into differentiable sums of squares). Let the orthogonal group $\mathrm{O}(n)$ act in the standard way on \mathbb{R}^{n}. Then the algebra of invariant polynomials $\mathbb{R}\left[\mathbb{R}^{n}\right]^{\mathrm{O}(n)}$ is generated by $\sigma=\sum_{i=1}^{n} x_{i}^{2}$. The orbit space $\mathbb{R}^{n} / \mathrm{O}(n)$ can be identified with the half-line $\mathbb{R}_{\geq 0}=[0, \infty)=\sigma\left(\mathbb{R}^{n}\right)$. Each line through the origin of \mathbb{R}^{n} forms a section of $\mathrm{O}(n) \circlearrowleft \mathbb{R}^{n}$.

Given a smooth nonnegative function f, decomposing f into sums of squares amounts to lifting f over σ. Applying Example 1(1) (actually its multiparameter analogue which follows easily; see Corollary 2) implies that:
(1) Any nonnegative $C^{1,1}$ function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the square of a $C^{0,1}$ function.

The image of this lift lies in a section of $\mathrm{O}(n) \circlearrowleft \mathbb{R}^{n}$. This does not apply to the solutions in the following stronger results which benefit from the additionally available space.
(2) Any nonnegative $C^{3,1}$ function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a sum of $n=n(m)$ squares of $C^{1,1}$ functions.
(3) Let $p \in \mathbb{N}$. Any nonnegative $C^{2 p}$ function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the sum of two squares of C^{p} functions.
Result (2) was stated by Fefferman and Phong while proving their celebrated inequality in [14]; see also [16, Lemma 4]. This is sharp in the sense that there exist C^{∞} functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, for $m \geq 4$, that are not sums of squares of C^{2} functions; see [5]. Result (3) is due to [4]; the decomposition depends on p.

2. Reduction to slice Representations

Let $(G \circlearrowleft V, d, \sigma)$ be fixed. Let $V^{G}=\{v \in V: G v=v\}$ be the linear subspace of invariant vectors.
2.1. Dominant invariant. We may assume without loss of generality that

$$
\begin{equation*}
\sigma_{1}(v)=\langle v \mid v\rangle=\|v\|^{2} \text { for all } v \in V . \tag{2.1}
\end{equation*}
$$

Indeed, if the invariant polynomial $v \mapsto\langle v \mid v\rangle$ does not belong to the minimal system of basic invariants, we just add it. This does not change d unless $d=1$. But in the latter case $V=V^{G}$ and there is nothing to prove. In fact, if $d=1$ then the elements in a minimal system of basic invariants form a system of linear coordinates on V.

Under the assumption (2.1) the invariant σ_{1} is dominant in the following sense: for all $j=1, \ldots, n$ and all $v \in V$,

$$
\begin{equation*}
\left|\sigma_{j}(v)\right|^{\frac{1}{d_{j}}} \leq C\left|\sigma_{1}(v)\right|^{\frac{1}{d_{1}}}=C\|v\| \tag{2.2}
\end{equation*}
$$

where $C=C(\sigma)$. Indeed, $\left|\sigma_{j}(v)\right| \leq \max _{\|w\|=1}\left|\sigma_{j}(w)\right|\|v\|^{d_{j}}$, by homogeneity.
2.2. Removing fixed points. Let V^{\prime} be the orthogonal complement of V^{G} in V. Then we have $V=V^{G} \oplus V^{\prime}, \mathbb{R}[V]^{G}=\mathbb{R}\left[V^{G}\right] \otimes \mathbb{R}\left[V^{\prime}\right]^{G}$ and $V / G=V^{G} \times V^{\prime} / G$. The following lemma is obvious.

Lemma 1. Any lift \bar{c} of a curve $c=\left(c_{0}, c_{1}\right)$ in $V^{G} \times V^{\prime} / G$ has the form $\bar{c}=\left(c_{0}, \bar{c}_{1}\right)$, where \bar{c}_{1} is a lift of c_{1}.

In view of Lemma 1 we may assume that

$$
\begin{equation*}
V^{G}=\{0\} \tag{2.3}
\end{equation*}
$$

2.3. The slice theorem. For a point $v \in V$ we denote by $N_{v}=T_{v}(G v)^{\perp}$ the normal subspace of the orbit $G v$ at v. It carries a natural G_{v}-action $G_{v} \circlearrowleft N_{v}$. The crossed product (or associated bundle) $G \times_{G_{v}} N_{v}$ carries the structure of an affine real algebraic variety as the categorical (and geometrical) quotient $\left(G \times N_{v}\right) / / G_{v}$ with respect to the action $G_{v} \circlearrowleft\left(G \times N_{v}\right)$ given by $h(g, x)=\left(g h^{-1}, h x\right)$. Denote by $[g, x]$ the element of $G \times_{G_{v}} N_{v}$ represented by $(g, x) \in G \times N_{v}$. The G-equivariant polynomial mapping $\phi: G \times{ }_{G_{v}} N_{v} \rightarrow V$, $[g, x] \mapsto g(v+x)$, where the action $G \circlearrowleft\left(G \times_{G_{v}} N_{v}\right)$ is by left multiplication on the first component, induces a polynomial mapping $\psi:\left(G \times_{G_{v}} N_{v}\right) / / G \rightarrow V / / G$ sending $\left(G \times_{G_{v}} N_{v}\right) / G$ into V / G.

The G_{v}-equivariant embedding $\alpha: N_{v} \hookrightarrow G \times_{G_{v}} N_{v}$ given by $x \mapsto[e, x]$ induces an isomorphism $\beta: N_{v} / / G_{v} \rightarrow\left(G \times_{G_{v}} N_{v}\right) / / G$ mapping N_{v} / G_{v} onto $\left(G \times_{G_{v}} N_{v}\right) / G$. Set $\eta=\phi \circ \alpha$ and $\theta=\psi \circ \beta$.

Theorem 3 (Cf. [21], [33]). There is an open ball $B_{v} \subseteq N_{v}$ centered at the origin such that the restriction of ϕ to $G \times_{G_{v}} B_{v}$ is an analytic G-isomorphism onto a G-invariant neighborhood of v in V. The mapping θ is a local analytic isomorphism at 0 which induces a local homeomorphism of N_{v} / G_{v} and V / G.
2.4. Reduction. Let $\left\{\tau_{i}\right\}_{i=1}^{m}$ be a system of generators of $\mathbb{R}\left[N_{v}\right]^{G_{v}}$ and let $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$: $N_{v} \rightarrow \mathbb{R}^{m}$ be the associated orbit mapping. Consider the slice

$$
\begin{equation*}
S_{v}:=v+B_{v} \tag{2.4}
\end{equation*}
$$

where B_{v} is the open ball from Theorem 3. As σ_{i} is G_{v}-invariant there exists $\pi_{i} \in \mathbb{R}\left[\mathbb{R}^{m}\right]$ so that

$$
\begin{equation*}
\sigma_{i}(x)-\sigma_{i}(v)=\pi_{i}(\tau(x-v)), \quad \text { for } x \in S_{v} \tag{2.5}
\end{equation*}
$$

Conversely, every G_{v}-invariant real analytic function in $x-v$ can be written as a real analytic function in $\sigma(x)-\sigma(v)$ near v, by [32, p. 67], hence there is a real analytic mapping φ defined in a neighborhood of the origin in \mathbb{R}^{n} with values in \mathbb{R}^{m} such that

$$
\begin{equation*}
\tau(x-v)=\varphi(\sigma(x)-\sigma(v)) \tag{2.6}
\end{equation*}
$$

for x in some neighborhood U_{v} of v in S_{v}.
Lemma 2. Let $c=\left(c_{1}, \ldots, c_{n}\right)$ be a curve in $\sigma(V)$ with $c_{1} \neq 0$ and such that the curve

$$
\underline{c}:=\left(1, c_{1}{ }^{-\frac{d_{2}}{d_{1}}} c_{2}, \ldots, c_{1}^{-\frac{d_{n}}{d_{1}}} c_{n}\right)
$$

lies in $\sigma\left(U_{v}\right)$. Then $\underline{c}^{*}:=\varphi(\underline{c}-\sigma(v))$ is a curve in $\tau\left(U_{v}-v\right)$ and

$$
c^{*}=\left(c_{1}^{*}, \ldots, c_{m}^{*}\right):=\left(c_{1}{ }^{\frac{e_{1}}{d_{1}}} \underline{c}_{1}^{*}, \ldots, c_{1}{ }^{\frac{e_{m}}{d_{1}}} \underline{c}_{m}^{*}\right), \quad e_{i}=\operatorname{deg} \tau_{i}
$$

is a curve in $\tau\left(N_{v}\right)$. If \bar{c}^{*} is a lift of c^{*} over τ then

$$
\begin{equation*}
c_{1}{ }^{\frac{1}{d_{1}}} v+\bar{c}^{*} \tag{2.7}
\end{equation*}
$$

is a lift of c over σ.
Proof. Only the last statement is maybe not immediately visible. The curve $c_{1}{ }^{-\frac{1}{d_{1}}} \bar{c}^{*}$ is a lift of \underline{c}^{*} over τ,

$$
\tau_{i}\left(c_{1}{ }^{-\frac{1}{d_{1}}} \bar{c}^{*}\right)=c_{1}{ }^{-\frac{e_{i}}{d_{1}}} \tau_{i}\left(\bar{c}^{*}\right)=c_{1}^{-\frac{e_{i}}{d_{1}}} c_{i}^{*}=\underline{c}_{i}^{*}
$$

and so, by (2.5) and (2.6), $c_{1}^{-\frac{1}{d_{1}}} \bar{c}^{*}+v$ is a lift of \underline{c} over σ,

$$
\sigma\left(c_{1}{ }^{-\frac{1}{d_{1}}} \bar{c}^{*}+v\right)-\sigma(v)=\pi\left(\tau\left(c_{1}{ }^{-\frac{1}{d_{1}}} \bar{c}^{*}+v-v\right)\right)=\pi\left(\underline{c}^{*}\right)=\pi(\varphi(\underline{c}-\sigma(v)))=\underline{c}-\sigma(v) .
$$

By homogeneity, we find $\sigma_{i}\left(\bar{c}^{*}+c_{1}{ }^{\frac{1}{d_{1}}} v\right)=c_{1}{ }^{\frac{d_{i}}{d_{1}}} c_{i}=c_{i}$ as required.
We can assume that φ and all its partial derivatives are separately bounded. In analogy to (2.1) we may assume that $\tau_{1}(x)=\|x\|^{2}$ for all $x \in N_{v}$, thus $e_{1}=2$. Then the following corollary is evident.

Corollary 4. We have $\left|c_{1}^{*}\right| \leq C_{0}\left|c_{1}\right|$, where $C_{0}=\sup _{y}\left|\varphi_{1}(y)\right|$.
The set $\sigma(V)$ is closed in \mathbb{R}_{y}^{n}. Thus (2.2) implies that the set $\sigma(V) \cap\left\{y_{1}=1\right\}$ is compact. It follows that the open cover $\left\{\sigma\left(U_{v}\right)\right\}_{v \in V,\|v\|=1}$ of $\sigma(V) \cap\left\{y_{1}=1\right\}$ has a finite subcover

$$
\begin{equation*}
\left\{B_{\alpha}\right\}_{\alpha \in \Delta}=\left\{\sigma\left(U_{v_{\alpha}}\right)\right\}_{\alpha \in \Delta} . \tag{2.8}
\end{equation*}
$$

The following lemma shows that the maximal degree of the basic invariants does not increase by passing to a slice representation. This was shown in [19, Lemma 2.4]; for convenience of the reader we include a short proof.
Lemma 3. Assume that $\left\{\tau_{i}\right\}_{i=1}^{m}$ is minimal and set $e:=\max _{i} e_{i}=\max _{i} \operatorname{deg} \tau_{i}$. Then $e \leq d$.
Proof. We may assume without loss of generality that the basic invariants τ_{i} are ordered so that $e_{1} \leq e_{2} \leq \cdots \leq e_{m}=e$. Assume that $e_{m}>d$. We will show that this assumption contradicts minimality of $\left\{\tau_{i}\right\}_{i=1}^{m}$. It fact, in view of 2.5 it implies that each polynomial π_{i} is independent of its last entry. Thus, by (2.5) and (2.6), we have for $y \in U_{v}-v$,

$$
\tau_{m}(y)=\psi_{m}\left(\tau^{\prime}(y)\right),
$$

where $\tau^{\prime}:=\left(\tau_{1}, \ldots, \tau_{m-1}\right)$ and $\psi_{m}:=\varphi_{m} \circ \pi$. Expanding into Taylor series at 0 ,

$$
\tau_{m}=T_{0}^{\infty} \psi_{m} \circ \tau^{\prime}=T_{0}^{e} \psi_{m} \circ \tau^{\prime}
$$

we see that τ_{m} is a polynomial in $\tau_{1}, \ldots, \tau_{m-1}$ (in a neighborhood of 0 and hence everywhere in N_{v}). This contradicts minimality of $\left\{\tau_{i}\right\}_{i=1}^{m}$.

3. Two interpolation inequalities

We recall two classical interpolation inequalities. The first is a version of Glaeser's inequality (cf. [15]).

Lemma 4. Let $I \subseteq \mathbb{R}$ be an open interval and let $f \in C^{1,1}(\bar{I})$ be nonnegative. For any $t_{0} \in I$ and $M>0$ such that $I_{t_{0}}\left(M^{-1}\right):=\left\{t:\left|t-t_{0}\right|<M^{-1}\left|f\left(t_{0}\right)\right|^{\frac{1}{2}}\right\} \subseteq I$ and $M^{2} \geq \operatorname{Lip}_{I_{t_{0}}\left(M^{-1}\right)}\left(f^{\prime}\right)$ we have

$$
\left|f^{\prime}\left(t_{0}\right)\right| \leq\left(M+M^{-1} \operatorname{Lip}_{I_{t_{0}}\left(M^{-1}\right)}\left(f^{\prime}\right)\right)\left|f\left(t_{0}\right)\right|^{\frac{1}{2}} \leq 2 M\left|f\left(t_{0}\right)\right|^{\frac{1}{2}}
$$

Proof. The inequality holds true at zeros of f. Let us assume that $f\left(t_{0}\right)>0$. The statement follows from

$$
0 \leq f\left(t_{0}+h\right)=f\left(t_{0}\right)+f^{\prime}\left(t_{0}\right) h+\int_{0}^{1}(1-s) f^{\prime \prime}\left(t_{0}+h s\right) d s h^{2}
$$

with $h= \pm M^{-1}\left|f\left(t_{0}\right)\right|^{\frac{1}{2}}$.

Lemma 5. Let $f \in C^{m-1,1}(\bar{I})$. There is a universal constant $C=C(m)$ such that for all $t \in I$ and $k=1, \ldots, m$,

$$
\begin{equation*}
\left|f^{(k)}(t)\right| \leq C|I|^{-k}\left(\|f\|_{L^{\infty}(I)}+\operatorname{Lip}_{I}\left(f^{(m-1)}\right)|I|^{m}\right) \tag{3.1}
\end{equation*}
$$

Proof. We may suppose $I=(-\delta, \delta)$. If $t \in I$ then at least one of the two intervals $[t, t \pm \delta)$, say $[t, t+\delta)$, is included in I. By Taylor's formula, for $t_{1} \in[t, t+\delta)$,

$$
\begin{aligned}
\left|\sum_{k=0}^{m-1} \frac{f^{(k)}(t)}{k!}\left(t_{1}-t\right)^{k}\right| & \leq\left|f\left(t_{1}\right)\right|+\int_{0}^{1} \frac{(1-s)^{m-1}}{(m-1)!}\left|f^{(m)}\left(t+s\left(t_{1}-t\right)\right)\right| d s\left(t_{1}-t\right)^{m} \\
& \leq\|f\|_{L^{\infty}(I)}+\operatorname{Lip}_{I}\left(f^{(m-1)}\right) \delta^{m}
\end{aligned}
$$

and for $k \leq m-1$ we may conclude by Proposition 1 below. For $k=m$, (3.1) is trivially satisfied.

Proposition 1. Let $P(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \mathbb{C}[x]$ satisfy $|P(x)| \leq A$ for $x \in[0, B] \subseteq$ \mathbb{R}. Then, for $j=0, \ldots, m$,

$$
\left|a_{j}\right| \leq(2 m)^{m+1} A B^{-j}
$$

Proof. We show the lemma for $A=B=1$. The general statement follows by applying this special case to the polynomial $A^{-1} P(B y), y=B^{-1} x$. Let $0=x_{0}<x_{1}<\cdots<x_{m}=1$ be equidistant points. By Lagrange's interpolation formula (e.g. [27, (1.2.5)]),

$$
P(x)=\sum_{k=0}^{m} P\left(x_{k}\right) \prod_{\substack{j=0 \\ j \neq k}}^{m} \frac{x-x_{j}}{x_{k}-x_{j}},
$$

and therefore

$$
a_{j}=\sum_{k=0}^{m} P\left(x_{k}\right) \prod_{\substack{j=0 \\ j \neq k}}^{m}\left(x_{k}-x_{j}\right)^{-1}(-1)^{m-j} \sigma_{m-j}^{k}
$$

where σ_{j}^{k} is the j th elementary symmetric polynomial in $\left(x_{\ell}\right)_{\ell \neq k}$. The statement follows.
A better constant can be obtained using Chebyshev polynomials; cf. [27, Theorems 16.3.1$2]$.

4. Proof of Theorem 1

Let $(G \circlearrowleft V, d, \sigma)$ satisfy (2.1) and 2.3), and let $c \in C^{d-1,1}(I, \sigma(V))$.
4.1. Reduction to $G \circlearrowleft(V \backslash\{0\})$. By (2.1) we have $c_{1} \geq 0$ and $c_{1}(t)=0$ if and only if $c(t)=0$. We shall show the following statement.

Claim 1. For any relatively compact open subinterval $I_{0} \Subset I$ and any $t_{0} \in I_{0} \backslash c_{1}{ }^{-1}(0)$, there exists a Lipschitz lift $\bar{c}_{t_{0}}$ of c on a neighborhood $I_{t_{0}}$ of t_{0} in $I_{0} \backslash c_{1}{ }^{-1}(0)$ so that

$$
\operatorname{Lip}_{I_{t_{0}}}\left(\bar{c}_{t_{0}}\right) \leq C\left(\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(\bar{I}_{1}\right)}^{\frac{1}{d_{i}}}\right)
$$

where I_{1} is any open interval satisfying $I_{0} \Subset I_{1} \Subset I$ and $C=C\left(G \circlearrowleft V, I_{0}, I_{1}\right)$.
Claim 1 will imply Theorem 1 by the following lemma.

Lemma 6. Suppose that for each $t_{0} \in I_{0} \backslash c_{1}{ }^{-1}(0)$ there exists a Lipschitz lift $\bar{c}_{t_{0}}$ of c on a neighborhood $I_{t_{0}}$ of t_{0} in $I_{0} \backslash c_{1}^{-1}(0)$ so that $L:=\sup _{t_{0} \in I_{0} \backslash c_{1}-1(0)} \operatorname{Lip}_{I_{t_{0}}}\left(\bar{c}_{t_{0}}\right)<\infty$. Then there exists a Lipschitz lift \bar{c} of c on I_{0} and $\operatorname{Lip}_{I_{0}}(\bar{c}) \leq L$.

Proof. Let J be any connected component of $I_{0} \backslash c_{1}{ }^{-1}(0)$. If $\bar{c}_{i}, i=1,2$, are local Lipschitz lifts of c defined on subintervals $\left(a_{i}, b_{i}\right), i=1,2$, of J with $a_{1}<a_{2}<b_{1}<b_{2}$ and so that $\operatorname{Lip}_{\left(a_{i}, b_{i}\right)}\left(\bar{c}_{i}\right) \leq L, i=1,2$, then there exists a Lipschitz lift \bar{c}_{12} of c on $\left(a_{1}, b_{2}\right)$ satisfying $\operatorname{Lip}_{\left(a_{1}, b_{2}\right)}\left(\bar{c}_{12}\right) \leq L$. To see this choose a point $t_{12} \in\left(a_{2}, b_{1}\right)$. Since $G \bar{c}_{1}\left(t_{12}\right)=G \bar{c}_{2}\left(t_{12}\right)$, there exists $g_{12} \in G$ so that $\bar{c}_{1}\left(t_{12}\right)=g_{12} \bar{c}_{2}\left(t_{12}\right)$. Define $\bar{c}_{12}(t):=\bar{c}_{1}(t)$ for $t \leq t_{12}$ and $\bar{c}_{12}(t):=g_{12} \bar{c}_{2}(t)$ for $t \geq t_{12}$. It is easy to see that c_{12} has the required properties (since G acts orthogonally).

These arguments imply that there exists a Lipschitz lift \bar{c}_{J} of c with $\operatorname{Lip}_{J}\left(\bar{c}_{J}\right) \leq L$ on each connected component J of $I_{0} \backslash c_{1}{ }^{-1}(0)$. Defining $\bar{c}(t):=\bar{c}_{J}(t)$ if $t \in J$ and $\bar{c}(t):=0$ if $t \in c_{1}{ }^{-1}(0)$, we obtain a continuous lift of c, since $c_{1}(t)=\|\bar{c}(t)\|^{2}$, by (2.1). It is easy to see that $\operatorname{Lip}_{I_{0}}(\bar{c}) \leq L$.

Let us prove that Claim 1 and Lemma 6 imply Theorem 1. That they imply Remark 1 is obvious. Let $J_{1} \subseteq J_{2} \subseteq \cdots$ be a countable exhaustion of I by compact intervals so that, for all k, J_{k} is contained in the interior of J_{k+1}. By Claim 1 and Lemma 6, there exist lifts $\bar{c}_{k}: J_{k} \rightarrow V, k \geq 1$, of c and compact neighborhoods $K_{k} \supseteq J_{k}$ in I so that

$$
\operatorname{Lip}_{J_{k}}\left(\bar{c}_{k}\right) \leq C\left(\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(K_{k}\right)}^{\frac{1}{d_{i}}}\right), \quad k \geq 1
$$

for $C=C\left(G \circlearrowleft V, J_{k}, K_{k}\right)$. We may construct a $C^{0,1}$-lift $\bar{c}: I \rightarrow V$ of c iteratively in the following way. If \bar{c} already exists on J_{k} we extend it on $J_{k+1} \backslash J_{k}$ by $g \bar{c}_{k+1}$ for suitable $g \in G$ left and right of J_{k} (cf. the first paragraph of the proof of Lemma 6). If $I_{0} \Subset I$ is relatively compact then $I_{0} \subseteq J_{N}$ for some N. Thus for $t, s \in I_{0}, t<s$, there is a sequence $t=: t_{0}<t_{1}<\cdots<t_{\ell}:=s$ of endpoints t_{i} of the intervals J_{k} (except possibly t_{0} and t_{ℓ}), elements $g_{i} \in G$, and $k_{i} \in\{1, \ldots, N\}$ so that

$$
\| \bar{c}(t)-\bar{c}(s))\left\|\leq \sum_{i=1}^{\ell}\right\| g_{i} \bar{c}_{k_{i}}\left(t_{i}\right)-g_{i} \bar{c}_{k_{i}}\left(t_{i-1}\right)\left\|=\sum_{i=1}^{\ell}\right\| \bar{c}_{k_{i}}\left(t_{i}\right)-\bar{c}_{k_{i}}\left(t_{i-1}\right) \| \leq \max _{1 \leq k \leq N} \operatorname{Lip}_{J_{k}}\left(\bar{c}_{k}\right)|t-s| .
$$

Setting $I_{1}:=\cup_{k=1}^{N} K_{k}$ we obtain (1.1).
4.2. Convenient assumption. The proof of Claim 1 will be carried out by induction on the size of G. If G and H are compact Lie groups we write $H<G$ if and only if $\operatorname{dim} H<\operatorname{dim} G$ or, if $\operatorname{dim} H=\operatorname{dim} G, H$ has fewer connected components than G.

We replace the assumption that $c \in C^{d-1,1}(I, \sigma(V))$ by a new (weaker) assumption that will be more convenient for the inductive step. Before stating it we need a bit of notation.

For open intervals I_{0} and I_{1} so that $I_{0} \Subset I_{1} \Subset I$, we set

$$
I_{i}^{\prime}:=I_{i} \backslash c_{1}^{-1}(0), \quad i=0,1 .
$$

For $t_{0} \in I_{0}^{\prime}$ and $r>0$ consider the interval

$$
I_{t_{0}}(r):=\left(t_{0}-r\left|c_{1}\left(t_{0}\right)\right|^{\frac{1}{2}}, t_{0}+r\left|c_{1}\left(t_{0}\right)\right|^{\frac{1}{2}}\right) .
$$

Assumption. Let $I_{0} \Subset I_{1}$ be open intervals. Suppose that $c \in C^{d-1,1}\left(\bar{I}_{1}, \sigma(V)\right)$ and assume that there is a constant $A>0$ so that for all $t_{0} \in I_{0}^{\prime}, t \in I_{t_{0}}\left(A^{-1}\right), i=1, \ldots, n, k=0, \ldots, d$,

$$
\begin{gather*}
I_{t_{0}}\left(A^{-1}\right) \subseteq I_{1} \tag{A.1}\\
2^{-1} \leq \frac{c_{1}(t)}{c_{1}\left(t_{0}\right)} \leq 2 \tag{A.2}\\
\left|c_{i}{ }^{(k)}(t)\right| \leq C A^{k}\left|c_{1}(t)\right|^{\frac{d_{i}-k}{d_{1}}} \tag{A.3}
\end{gather*}
$$

where $C=C(G \circlearrowleft V) \geq 1$. For $k=d$, A.3) is understood to hold almost everywhere, by Rademacher's theorem.

Remark. Condition A.3) implies that

$$
\begin{equation*}
\left|\partial_{t}^{k}\left(c_{1}-\frac{d_{i}}{d_{1}} c_{i}\right)(t)\right| \leq C A^{k}\left|c_{1}(t)\right|^{-\frac{k}{d_{1}}} \tag{A.4}
\end{equation*}
$$

where $C=C(G \circlearrowleft V)$. In fact, if we assign c_{i} the weight d_{i} (and $c_{1}{ }^{\frac{1}{d_{1}}}$ the weight 1) and let $L\left(x_{1}, \ldots, x_{n}, y\right) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}, y, y^{-1}\right]$ be weighted homogeneous of degree D, then

$$
\left|\partial_{t}^{k} L\left(c_{1}, \ldots, c_{n}, c_{1}^{\frac{1}{d_{1}}}\right)(t)\right| \leq C A^{k}\left|c_{1}(t)\right|^{\frac{D-k}{d_{1}}}
$$

for $C=C(G \circlearrowleft V, L)$.
The following two claims clearly imply Claim 1.
Claim 2. Any curve $c \in C^{d-1,1}\left(\bar{I}_{1}, \sigma(V)\right)$ satisfying A.1) A.3) has a Lipschitz lift on a neighborhood of any $t_{0} \in I_{0}^{\prime}$ with Lipschitz constant bounded from above by C A, where $C=C(G \circlearrowleft V)$.
Claim 3. If $c \in C^{d-1,1}(I, \sigma(V))$ then A.1) -A.3) hold for each pair of open intervals I_{0} and I_{1} satisfying $I_{0} \Subset I_{1} \Subset I$ and with $A \leq C\left(\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(\bar{I}_{1}\right)}^{\frac{1}{d_{i}}}\right)$ for $C=C\left(I_{0}, I_{1}\right)$.
4.3. Proof of Claim 2 (inductive step). Let $c, I_{0}, I_{1}, A, t_{0}$ be as in the Assumption and hence satisfy A.1)-A.3). We will show the following.

- For some constant $C_{1}=C_{1}(G \circlearrowleft V)>1$, the lifting problem for c reduces on the interval $I_{t_{0}}\left(C_{1}^{-1} A^{-1}\right)$ to the lifting problem for some associated curve c^{*} in the orbit space of some slice representation $H \circlearrowleft W$ of $G \circlearrowleft V$ with $H<G$.
- The curve c^{*} satisfies A.1 - A.3 for suitable neighborhoods J_{0}, J_{1} of t_{0} and a constant $B=C A$ in place of A, where $C=C(G \circlearrowleft V)$.
This will allow us to conclude Claim 2 by induction on the size of G.
Let us restrict c to $I_{t_{0}}\left(A^{-1}\right)$ and consider

$$
\underline{c}:=\left(1, c_{1}^{-\frac{d_{2}}{d_{1}}} c_{2}, \ldots, c_{1}^{-\frac{d_{n}}{d_{1}}} c_{n}\right): I_{t_{0}}\left(A^{-1}\right) \rightarrow \sigma(V) \subseteq \mathbb{R}_{y}^{n}
$$

Then \underline{c} is continuous, by (A.2), and bounded, by (2.2). Moreover, by (A.4) and A.2), for $t \in I_{t_{0}}\left(A^{-1}\right)$,

$$
\begin{equation*}
\left\|\underline{c}^{\prime}(t)\right\| \leq C_{1} A\left|c_{1}\left(t_{0}\right)\right|^{-\frac{1}{d_{1}}} \tag{4.1}
\end{equation*}
$$

for $C_{1}=C_{1}(G \circlearrowleft V)$. Consider the finite open cover $\left\{B_{\alpha}\right\}_{\alpha \in \Delta}=\left\{\sigma\left(U_{v_{\alpha}}\right)\right\}_{\alpha \in \Delta}$ of the compact set $\sigma(V) \cap\left\{y_{1}=1\right\}$ from 2.8). Let $2 r_{1}>0$ be a Lebesgue number of the cover $\left\{B_{\alpha}\right\}_{\alpha \in \Delta}$. Then for any $p \in \sigma(V) \cap\left\{y_{1}=1\right\}$ there is $\alpha_{p} \in \Delta$ so that

$$
B_{p}\left(r_{1}\right) \cap \sigma(V) \cap\left\{y_{1}=1\right\} \subseteq B_{\alpha_{p}}
$$

where $B_{p}\left(r_{1}\right) \subseteq \mathbb{R}^{n}$ is the open ball centered at p with radius r_{1}. If C_{1} is the constant from (4.1), then

$$
\begin{equation*}
J_{1}:=I_{t_{0}}\left(r_{1} C_{1}^{-1} A^{-1}\right) \subseteq \underline{c}^{-1}\left(B_{\underline{c}\left(t_{0}\right)}\left(r_{1}\right)\right) \tag{4.2}
\end{equation*}
$$

By Lemma 2 the lifting problem on the interval J_{1} reduces to the curve $c^{*}=\left(c_{i}^{*}\right)_{i=1}^{m}$,

$$
\begin{equation*}
c_{i}^{*}=c_{1}^{\frac{e_{i}}{d_{1}}} \varphi_{i}\left(c_{1}^{-\frac{d_{2}}{d_{1}}} c_{2}, \ldots, c_{1}^{-\frac{d_{n}}{d_{1}}} c_{n}\right), \quad e_{i}=\operatorname{deg} \tau_{i} \tag{4.3}
\end{equation*}
$$

in $\tau\left(N_{v}\right)$, where $G_{v} \circlearrowleft N_{v}$ is the slice representation at $v=v_{\alpha_{c\left(t t_{0}\right)}}$ with orbit mapping $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ and where the φ_{i} are real analytic; the first summand of (2.7) is Lipschitz with Lipschitz constant bounded from above by $C A$ with $C=C(G \circlearrowleft V)$ thanks to (A.3). Fix $r_{0}<r_{1}$ and set

$$
\begin{equation*}
J_{0}:=I_{t_{0}}\left(r_{0} C_{1}^{-1} A^{-1}\right), \tag{4.4}
\end{equation*}
$$

where C_{1} is the constant from 4.1). (Here we assume without loss of generality that $r_{1}<C_{1}$ so that $r_{0} C_{1}^{-1}<r_{1} C_{1}^{-1}<1$ and hence $J_{0} \subseteq J_{1} \subseteq I_{t_{0}}\left(A^{-1}\right)$.)

Let us show that the curve c^{*} satisfies (A.1)-(A.3) for the intervals J_{1} and J_{0} from (4.2) and (4.4) and a suitable constant $B>0$ in place of A. To this end we set

$$
J_{i}^{\prime}:=J_{i} \backslash\left(c_{1}^{*}\right)^{-1}(0), \quad i=0,1
$$

consider, for $t_{1} \in J_{0}^{\prime}$ and $r>0$, the interval

$$
J_{t_{1}}(r):=\left(t_{1}-r\left|c_{1}^{*}\left(t_{1}\right)\right|^{\frac{1}{2}}, t_{1}+r\left|c_{1}^{*}\left(t_{1}\right)\right|^{\frac{1}{2}}\right)
$$

and prove the following lemma.
Lemma 7. There is a constant $C=C\left(G \circlearrowleft V, r_{1}, r_{0}\right)>1$ such that for $B=C A$ and for all $t_{1} \in J_{0}^{\prime}, t \in J_{t_{1}}\left(B^{-1}\right), i=1, \ldots, m, k=0, \ldots, d$,

$$
\begin{gather*}
J_{t_{1}}\left(B^{-1}\right) \subseteq J_{1} \tag{B.1}\\
2^{-1} \leq \frac{c_{1}^{*}(t)}{c_{1}^{*}\left(t_{1}\right)} \leq 2 \tag{B.2}\\
\left|\left(c_{i}^{*}\right)^{(k)}(t)\right| \leq \tilde{C} B^{k}\left|c_{1}^{*}(t)\right|^{\frac{e_{i}-k}{e_{1}}} \tag{B.3}
\end{gather*}
$$

where $\tilde{C}=\tilde{C}(G \circlearrowleft V)$.
Proof. If

$$
B \geq\left(r_{1}-r_{0}\right)^{-1} \sqrt{2 C_{0}} C_{1} A
$$

where C_{0} and C_{1} are the constants from Corollary 4 and (4.1), respectively, then by Corollary 4 and A.2 ,

$$
B^{-1}\left|c_{1}^{*}\left(t_{1}\right)\right|^{\frac{1}{2}} \leq\left(r_{1}-r_{0}\right) C_{1}^{-1} A^{-1}\left|c_{1}\left(t_{0}\right)\right|^{\frac{1}{2}}
$$

and so (B.1) follows from (4.2) and (4.4), as $t_{1} \in J_{0}$.

Next we claim that, on J_{1},

$$
\begin{equation*}
\left|\partial_{t}^{k} \varphi_{i}\left(c_{1}-\frac{d_{2}}{d_{1}} c_{2}, \ldots, c_{1}^{-\frac{d_{n}}{d_{1}}} c_{n}\right)\right| \leq C A^{k}\left|c_{1}\right|^{-\frac{k}{d_{1}}} \tag{4.5}
\end{equation*}
$$

for $C=C(G \circlearrowleft V)$. To see this we differentiate the following equation $(k-1)$ times, apply induction on k, and use (A.4),

$$
\begin{equation*}
\partial_{t} \varphi_{i}\left(c_{1}^{-\frac{d_{2}}{d_{1}}} c_{2}, \ldots, c_{1}^{-\frac{d_{n}}{d_{1}}} c_{n}\right)=\sum_{j=1}^{n}\left(\partial_{j} \varphi_{i}\right)(\underline{c}) \partial_{t}\left(c_{1}^{-\frac{d_{j}}{d_{1}}} c_{j}\right) \tag{4.6}
\end{equation*}
$$

recall that all partial derivatives of the φ_{i} 's are separately bounded on $\underline{c}\left(J_{1}\right)$ and these bounds are universal. From (4.3) and (4.5) we obtain, on J_{1} and for all $i=1, \ldots, m, k=0, \ldots, d$,

$$
\begin{equation*}
\left|\left(c_{i}^{*}\right)^{(k)}\right| \leq C A^{k}\left|c_{1}\right|^{\frac{e_{i}-k}{d_{1}}} \tag{4.7}
\end{equation*}
$$

for $C=C(G \circlearrowleft V)$, and so, by Corollary 4 and as $d_{1}=e_{1}=2$,

$$
\begin{equation*}
\left|\left(c_{i}^{*}\right)^{(k)}\right| \leq C A^{k}\left|c_{1}^{*}\right|^{\frac{e_{i}-k}{e_{1}}} \quad \text { if } e_{i}-k \leq 0 \tag{4.8}
\end{equation*}
$$

for $C=C(G \circlearrowleft V)$. This shows (B.3) for $k \geq e_{i}$, and (B.3) for $k=0$ follows from (2.2). The remaining inequalities, i.e., B.3) for $0<k<e_{i}$ as well as (B.2), follow now from Lemma 8 below (since $d \geq e=\max _{i} e_{i}$, by Lemma 3).

Lemma 8. There is a constant $C=C(G \circlearrowleft V) \geq 1$ such that the following holds. If (A.1) and (A.3) for $k=0$ and $k=d_{i}, i=1, \ldots, n$, are satisfied, then so are A.2 and A.3) for $k<d_{i}, i=1, \ldots, n$, after replacing A by $C A$.

Proof. By assumption $\operatorname{Lip}_{I_{t_{0}}\left(A^{-1}\right)}\left(c_{1}^{\prime}\right) \leq C A^{2}$, where C is the constant from A.3). Thus, by Lemma 4 for $f=c_{1}$ and $M=C^{\frac{1}{2}} A$, we get

$$
\left|c_{1}^{\prime}\left(t_{0}\right)\right| \leq 2 M\left|c_{1}\left(t_{0}\right)\right|^{\frac{1}{2}}
$$

It follows that, for $t \in I_{t_{0}}\left((6 M)^{-1}\right)$,

$$
\begin{equation*}
\frac{\left|c_{1}(t)-c_{1}\left(t_{0}\right)\right|}{\left|c_{1}\left(t_{0}\right)\right|} \leq \frac{\left|c_{1}^{\prime}\left(t_{0}\right)\right|}{\left|c_{1}\left(t_{0}\right)\right|}\left|t-t_{0}\right|+\int_{0}^{1}(1-s)\left|c_{1}^{\prime \prime}\left(t_{0}+s\left(t-t_{0}\right)\right)\right| d s \frac{\left|t-t_{0}\right|^{2}}{\left|c_{1}\left(t_{0}\right)\right|} \leq \frac{1}{2} \tag{4.9}
\end{equation*}
$$

which implies A.2). The other inequalities follow from Lemma 5.
We may now finish the proof of Claim 2. By assumption 2.3), $V^{G}=\{0\}$ and thus $G_{v}<G$. The inductive hypothesis yields a Lipschitz lift \bar{c}^{*} of c^{*} over τ with Lipschitz constant bounded from above by $C B$, for $C=C\left(G_{v} \circlearrowleft N_{v}\right)$. By Lemma 1 and (4.8) for $e_{i}=k=1$ (the basic invariants of $G_{v} \circlearrowleft N_{v}^{G_{v}}$ form a system of linear coordinates on $N_{v}^{G_{v}}$), we can assume that $N_{v}^{G_{v}}=\{0\}$. By Lemma 2 ,

$$
c_{1}{ }^{\frac{1}{d_{1}}} v+\bar{c}^{*}
$$

is a lift of c over σ. Thanks to (A.3) for $i=k=1$ and since there are only finitely many isomorphism types of slice representations, this lift is Lipschitz with Lipschitz constant bounded from above by $C A$, for $C=C(G \circlearrowleft V)$. This ends the proof of Claim 2 .
4.4. Proof of Claim 3. Let δ denote the distance between the endpoints of I_{0} and those of I_{1}. Set

$$
\begin{align*}
& A_{1}:=\max \left\{\delta^{-1}\left\|c_{1}\right\|_{L^{\infty}\left(I_{1}\right)}^{\frac{1}{2}},\left(\operatorname{Lip}_{I_{1}}\left(c_{1}^{\prime}\right)\right)^{\frac{1}{2}}\right\} \tag{4.10}\\
& A_{2}:=\max _{i}\left\{M_{i}\left\|c_{1}\right\|_{L^{\infty}\left(I_{1}\right)}^{\frac{d-d_{i}}{2}}\right\}^{\frac{1}{d}}, \quad M_{i}:=\operatorname{Lip}_{I_{1}}\left(c_{i}^{(d-1)}\right),
\end{align*}
$$

and choose

$$
\begin{equation*}
A \geq A_{0}=6 \max \left\{A_{1}, A_{2}\right\} \tag{4.11}
\end{equation*}
$$

To have (A.1) and (A.2) it suffices to assume $A \geq 6 A_{1}$. For $t_{0} \in I_{0}^{\prime}$ obviously $I_{t_{0}}\left(A_{1}{ }^{-1}\right) \subseteq I_{1}$ and thus (A.1). Then Lemma 4 implies

$$
\left|c_{1}^{\prime}\left(t_{0}\right)\right| \leq 2 A_{1}\left|c_{1}\left(t_{0}\right)\right|^{\frac{1}{2}},
$$

and so, for $t_{0} \in I_{0}^{\prime}$ and $t \in I_{t_{0}}\left(\left(6 A_{1}\right)^{-1}\right), 4.9$ and hence A.2) holds. Finally, Lemma 5 , (2.2), and A.2) imply A.3) for $t \in I_{t_{0}}\left(A^{-1}\right)$.
4.5. Bounds for the Lipschitz constant. Let $(G \circlearrowleft V, d, \sigma)$ satisfy (2.1) and (2.3), let $c \in C^{d-1,1}(I, \sigma(V))$, and let $I_{0} \Subset I$. Then there is a neighborhood I_{1} of I_{0} with $I_{0} \Subset I_{1} \Subset I$ such that the lift $\bar{c} \in C^{0,1}(I, V)$ constructed in the above proof satisfies

$$
\begin{align*}
\operatorname{Lip}_{I_{0}}(\bar{c}) & \left.\leq C(G \circlearrowleft V) \max \left\{\delta^{-1}\left\|c_{1}\right\|_{L^{\infty}\left(I_{1}\right)}^{\frac{1}{2}},\left(\operatorname{Lip}_{I_{1}}\left(c_{1}^{\prime}\right)\right)^{\frac{1}{2}}, \max _{i}\left\{M_{i}\left\|c_{1}\right\|_{L^{\infty}\left(I_{1}\right)}^{\frac{d-d_{i}}{2}}\right\}\right\}^{\frac{1}{d}}\right\} \tag{4.12}\\
& \leq C\left(G \circlearrowleft V, I_{0}, I_{1}\right)\left(\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(\bar{I}_{1}\right)}^{\frac{1}{d_{i}}}\right) \\
& \leq C\left(G \circlearrowleft V, I_{0}, I_{1}\right)\left(1+\max _{i}\left\|c_{i}\right\|_{C^{d-1,1}\left(\bar{I}_{1}\right)}\right)
\end{align*}
$$

where δ is the distance between the endpoints of I_{0} and those of I_{1}, and $M_{i}=\operatorname{Lip}_{I_{1}}\left(c_{i}{ }^{(d-1)}\right)$. This follows from Claim 2, (4.10), 4.11), and Lemma 6.

5. Proof of Theorem 2

Let $(G \circlearrowleft V, d, \sigma)$ satisfy (2.1) and (2.3), and let $c \in C^{d}(I, \sigma(V))$. In the proof of Theorem 2, induction on the size of G will provide us with local lifts of class C^{1} near points where c is not flat (in the sense that they are not of Case 2 of Subsection 5.5). Moreover, we shall see that the derivatives of these local lifts converge to 0 as t tends to flat points. This faces us with the problem of gluing these local lifts. We tackle this problem first.
5.1. Algorithm for local lifts. We choose a finite cover $\left\{G U_{v_{\alpha}}\right\}_{\alpha \in \Delta}$ of a neighborhood of the sphere $S(V)=c_{1}^{-1}(1)$ in V so that U_{v} is transverse to all the orbits in $G U_{v_{\alpha}}$ with the angle very close to $\pi / 2$. It induces a cover of $\sigma(V) \cap\left\{y_{1}=1\right\}$,

$$
\left\{B_{\alpha}\right\}_{\alpha \in \Delta}=\left\{\sigma\left(U_{v_{\alpha}}\right)\right\}_{\alpha \in \Delta}
$$

in analogy to 2.8.

Lemma 2 provides an algorithm for the construction of a lift of c. After removing the fixed points, see Subsection 2.2, we lift c restricted to $I^{\prime}:=\left\{t \in I: c_{1}(t) \neq 0\right\}$ and then extend it trivially to $\left\{t \in I: c_{1}(t)=0\right\}$. For this we consider

$$
\underline{c}:=\left(1, c_{1}^{-\frac{d_{2}}{d_{1}}} c_{2}, \ldots, c_{1}^{-\frac{d_{n}}{d_{1}}} c_{n}\right) .
$$

For each connected component I_{1} of the induced cover $\left\{\underline{c}^{-1}\left(B_{\alpha}\right)\right\}_{\alpha \in \Delta}$ of I^{\prime} we lift $\left.c\right|_{I_{1}}$ to the slice $N_{v}, v=v_{\alpha}$, using Lemma 2 and hence the induction. This reduction ends when $\underline{c}(I) \subseteq B_{\alpha}$ with B_{α} in the open stratum (where we keep the notation \underline{c}, I, and B_{α} for the respective reduced objects).

Thus for any $t_{0} \in I$ there is a neighborhood $I_{t_{0}}$ and a lift \bar{c} of c on $I_{t_{0}}$ that is entirely contained in an affine transverse slice to the orbit over $c\left(t_{0}\right)$ that is close to the normal slice $S_{\bar{c}\left(t_{0}\right)}$ from (2.4). (Note that the orbit over $0 \in \sigma(V)$ is just the origin in V and every slice is a neighborhood of the origin.)

This picture is not complete. One needs to make precise how these local lifts are glued together.
5.2. Change of slice diffeomorphisms. Fix $v \in V$ and let S_{v} be the normal slice of the orbit $G v$ at v; see (2.4). Let $H=G_{v}$ and fix a local analytic section $\varphi_{H}: G / H \rightarrow G$ of the principal bundle $G \rightarrow G / H$ such that $\varphi_{H}([e])=e$. Then

$$
\begin{equation*}
\Phi_{v}: G / H \times S_{v} \rightarrow V, \quad \Phi_{v}([g], x)=\varphi_{H}([g]) x \tag{5.1}
\end{equation*}
$$

is a local diffeomorphism and $\Phi_{v}([e], v)=v$. Indeed, Φ_{v} equals the following composition

$$
G / H \times S_{v} \xrightarrow{\alpha} G \times_{G_{v}} S_{v} \xrightarrow{\phi} V
$$

where $\phi: G \times_{G_{v}} S_{v} \rightarrow V,[g, x] \mapsto g x$, is the slice mapping from Theorem 3 , and $\alpha([g], x)$ is the class of $\left(\varphi_{H}([g]), x\right)$. Then α is a diffeomorphism with the inverse

$$
\alpha^{-1}([g, x])=\alpha^{-1}\left(\left[g g^{-1} \varphi_{H}([g]),\left(\varphi_{H}([g])\right)^{-1} g x\right]\right)=\left([g],\left(\varphi_{H}([g])\right)^{-1} g x\right) .
$$

Let M_{v} be another affine transverse slice at v, and we suppose that the angle between N_{v} and M_{v} is small. The second coordinate of the inverse of Φ_{v} restricted to M_{v} gives a local diffeomorphism

$$
h_{M_{v}}: M_{v} \rightarrow S_{v} .
$$

The first coordinate of the inverse of Φ_{v} composed with φ_{H} gives a mapping

$$
s_{M_{v}}: M_{v} \rightarrow G
$$

such that

$$
h_{M_{v}}(x)=\left(s_{M_{v}}(x)\right)^{-1} x .
$$

By (5.1) the partial derivatives of $s_{M_{v}}$ and $h_{M_{v}}$ can be bounded in terms of the partial derivatives of φ_{H} and the angle between N_{v} and M_{v}.

Remark 2. The above construction is uniform in the following sense. If $v^{\prime}=g_{0} v$ then $H=G_{v}$ and $H^{\prime}=G_{v^{\prime}}$ are conjugate, $H^{\prime}=g_{0} H g_{0}^{-1}$. Conjugation by g_{0} on G induces an
isomorphism $G / H \rightarrow G / H^{\prime},[g]_{H} \mapsto\left[g_{0} g g_{0}^{-1}\right]_{H^{\prime}}$. Given φ_{H} we define $\varphi_{H^{\prime}}$ by the following diagram.

Thus if we fix φ_{H} for each conjugacy class and suppose the angle between N_{v} and M_{v} is small we obtain bounds on the derivatives of $s_{M_{v}}$ and $h_{M_{v}}$ independent of v (valid in a neighborhood of v whose size depends on the orbit $G v$).
5.3. Gluing the local lifts. Suppose that there are local lifts \bar{c}_{1} and \bar{c}_{2} of c resulting from the algorithm described in Subsection 5.1 such that the respective domains of definition I_{1} and I_{2} have nontrivial intersection. Fix $t_{0} \in I_{1} \cap I_{2}$. We may assume that $\bar{c}_{1}\left(t_{0}\right)=\bar{c}_{2}\left(t_{0}\right)$ and denote this vector by v. Then, by construction, there exist a neighborhood $I_{t_{0}}$ of t_{0} in $I_{1} \cap I_{2}$ and slices M_{v}^{1} and M_{v}^{2} transverse to $G v$ containing $\bar{c}_{1}\left(I_{t_{0}}\right)$ and $\bar{c}_{2}\left(I_{t_{0}}\right)$, respectively. Then, by Subsection 5.2,

$$
I_{t_{0}} \ni t \mapsto h_{M_{v}^{i}}\left(\bar{c}_{i}(t)\right), \quad i=1,2,
$$

are two lifts of c on $I_{t_{0}}$ contained in S_{v}. If we moreover assume that $c\left(I_{t_{0}}\right)$ belongs to a single stratum, then these two lifts coincide (since all orbits of type (G_{v}) meet S_{v} in a single point), and thus, for $t \in I_{t_{0}}$,

$$
\begin{equation*}
s_{M_{v}^{1}}\left(\bar{c}_{1}(t)\right)^{-1} \bar{c}_{1}(t)=s_{M_{v}^{2}}\left(\bar{c}_{2}(t)\right)^{-1} \bar{c}_{2}(t) . \tag{5.2}
\end{equation*}
$$

Then, there is a universal constant $C>0$ such that for $i=1,2$ and $t \in I_{t_{0}}$

$$
\begin{equation*}
\left|\partial_{t} s_{M_{v}^{i}}\left(\bar{c}_{i}(t)\right)\right| \leq C \max \left\|\bar{c}_{i}^{\prime}(t)\right\| . \tag{5.3}
\end{equation*}
$$

Lemma 9. Let $K \Subset J \Subset I$ be intervals and let $s: J \rightarrow G$ be of class C^{1}. Then there is $\tilde{s}: I \rightarrow G$ of class C^{1} such that
(i) $\left.s\right|_{K}=\left.\tilde{s}\right|_{K}$.
(ii) $\left\|s^{\prime}\right\|_{L^{\infty}(K)}=\left\|\tilde{s}^{\prime}\right\|_{L^{\infty}(I)}$.
(iii) \tilde{s} is constant on each component of $I \backslash J$.

Proof. We may extend $\left.s\right|_{K}$ through the endpoints of $K=\left(t_{-}, t_{+}\right)$using the exponential mapping in the direction $s^{\prime}\left(t_{ \pm}\right)$. More precisely, for the right endpoint t_{+}set $g=s\left(t_{+}\right) \in G$ and $s^{\prime}\left(t_{+}\right)=T_{e} \mu_{g} . X$ for $X \in \mathfrak{g}$ (where $\mu_{g}(h)=g h$ denotes left translation on G), and define

$$
\tilde{s}(t)=g \exp \left(\varphi\left(t-t_{+}\right) X\right)
$$

where $\varphi(t)=\int_{0}^{t} \psi(u) d u$ for

$$
\psi(t)= \begin{cases}1 & t \leq 0 \\ 1-\frac{t}{\delta} & 0 \leq t \leq \delta \\ 0 & t \geq \delta\end{cases}
$$

and where δ denotes the distance of the right endpoints of K and J.

Fix an open interval $K \Subset I_{t_{0}}, t_{0} \in K$. By Lemma 9, we may extend each $s_{M_{v}^{i}}\left(\bar{c}_{i}(t)\right)$ to a C^{1} map $s_{i}: I_{i} \rightarrow G$ that coincides with $s_{M_{v}^{i}}\left(\bar{c}_{i}(t)\right)$ on K and is constant in the complement of $I_{t_{0}}$. Let us then shrink I_{1} and I_{2} so that their union $I_{1} \cup I_{2}$ does not change but $I_{1} \cap I_{2}=K$. Then we set

$$
\bar{c}(t):=s_{M_{v}^{i}}\left(\bar{c}_{i}(t)\right)^{-1} \bar{c}_{i}(t), \quad \text { if } t \in I_{i}, \quad i=1,2,
$$

which is well-defined by (5.2). Moreover,

$$
\begin{equation*}
\left\|\bar{c}^{\prime}(t)\right\| \leq C \max \left\{\left\|\bar{c}_{1}^{\prime}(t)\right\|,\left\|\bar{c}_{2}^{\prime}(t)\right\|\right\}, \quad t \in I_{1} \cup I_{2} \tag{5.4}
\end{equation*}
$$

for a universal constant $C>0$, where we set $\bar{c}_{i}^{\prime}(t):=0$ if $t \notin I_{i}$.
5.4. ${ }^{p} C^{m}$-functions. Later in the proof we shall need a result on functions defined near $0 \in \mathbb{R}$ that become C^{m} when multiplied with the monomial t^{p}.

Definition. Let $p, m \in \mathbb{N}$ with $p \leq m$. A continuous complex valued function f defined near $0 \in \mathbb{R}$ is called a ${ }^{p} C^{m}$-function if $t \mapsto t^{p} f(t)$ belongs to C^{m}.

Let $I \subseteq \mathbb{R}$ be an open interval containing 0 . Then $f: I \rightarrow \mathbb{C}$ is ${ }^{p} C^{m}$ if and only if it has the following properties, cf. [35, 4.1], [30, Satz 3], or [31, Theorem 4]:

- $f \in C^{m-p}(I)$.
- $\left.f\right|_{I \backslash\{0\}} \in C^{m}(I \backslash\{0\})$.
- $\lim _{t \rightarrow 0} t^{k} f^{(m-p+k)}(t)$ exists as a finite number for all $0 \leq k \leq p$.

Proposition 2. If $g=\left(g_{1}, \ldots, g_{n}\right)$ is ${ }^{p} C^{m}$ and F is C^{m} near $g(0) \in \mathbb{C}^{n}$, then $F \circ g$ is ${ }^{p} C^{m}$.
Proof. Cf. [31, Theorem 9] or [29, Proposition 3.2]. Clearly g and $F \circ g$ are C^{m-p} near 0 and C^{m} off 0 . By Faà di Bruno's formula [13], for $1 \leq k \leq p$ and $t \neq 0$,

$$
\begin{aligned}
\frac{t^{k}(F \circ g)^{(m-p+k)}(t)}{(m-p+k)!} & =\sum_{\ell \geq 1} \sum_{\alpha \in A} \frac{t^{k-|\beta|}}{\ell!} d^{\ell} F(g(t))\left(\frac{t^{\beta_{1}} g^{\left(\alpha_{1}\right)}(t)}{\alpha_{1}!}, \ldots, \frac{t^{\beta_{\ell}} g^{\left(\alpha_{\ell}\right)}(t)}{\alpha_{\ell}!}\right) \\
A & :=\left\{\alpha \in \mathbb{N}_{>0}^{\ell}: \alpha_{1}+\cdots+\alpha_{\ell}=m-p+k\right\} \\
\beta_{i} & :=\max \left\{\alpha_{i}-m+p, 0\right\}, \quad|\beta|=\beta_{1}+\cdots+\beta_{\ell} \leq k,
\end{aligned}
$$

whose limit as $t \rightarrow 0$ exists as a finite number by assumption.
5.5. End of proof. We distinguish three kinds of points $t_{0} \in I$:

Case 0: $c_{1}\left(t_{0}\right) \neq 0$, or
Case 1: $c_{1}\left(t_{0}\right)=0$, thus $c_{1}^{\prime}\left(t_{0}\right)=0$ by (2.1), and $c_{1}^{\prime \prime}\left(t_{0}\right) \neq 0$, or
Case 2: $c_{1}\left(t_{0}\right)=c_{1}^{\prime}\left(t_{0}\right)=c_{1}^{\prime \prime}\left(t_{0}\right)=0$.
Near points of Case 0 there are local C^{1}-lifts, by the algorithm in Subsection 5.1.
Let us prove that we also have local C^{1}-lifts near points t_{0} of Case 1. For simplicity of notation let $t_{0}=0$. Then $c_{1}(t) \sim t^{2}$ and hence $c_{i}(t)=O\left(t^{d_{i}}\right)$. Therefore,

$$
\underline{c}(t):=\left(t^{-2} c_{1}(t), t^{-d_{2}} c_{2}(t), \ldots, t^{-d_{n}} c_{n}(t)\right): I_{1} \rightarrow \sigma(V) \subseteq \mathbb{R}^{n}
$$

defined on a neighborhood I_{1} of 0 , is continuous. By Lemma 2 the lifting problem reduces to the curve $c^{*}=\left(c_{i}^{*}\right)_{i=1}^{m}$,

$$
\begin{equation*}
c_{i}^{*}(t)=t^{e_{i}} \varphi_{i}\left(t^{-2} c_{1}(t), t^{-d_{2}} c_{2}(t), \ldots, t^{-d_{n}} c_{n}(t)\right), \quad e_{i}=\operatorname{deg} \tau_{i}, \tag{5.5}
\end{equation*}
$$

in the orbit space $\tau\left(N_{v}\right)$ of any slice representation $G_{v} \circlearrowleft N_{v}$ so that $v \in \sigma^{-1}(\underline{c}(0))$. Then c_{i}^{*} is of class $C^{e_{i}}$ at 0 , by Proposition 2, and of class C^{d} in the complement of 0 . After removing fixed points of $G_{v} \circlearrowleft N_{v}$, we may assume that the curve

$$
\underline{c}^{*}(t):=\left(t^{-e_{1}} c_{1}^{*}(t), t^{-e_{2}} c_{2}^{*}(t), \ldots, t^{-e_{m}} c_{m}^{*}(t)\right)
$$

in $\tau\left(N_{v}\right)$ vanishes at $t=0$, since $\underline{c}(0)=\sigma(v)$ (cf. (2.6)). Thus $c_{i}^{*}(t)=o\left(t^{e_{i}}\right)$, for all i.
Lemma 10. In this situation, for any $\varepsilon>0$ there is a neighborhood I_{ε} of 0 in I such that for every $t_{0} \in I_{\varepsilon} \backslash\{0\}$ the assumptions A.1 A.3) are satisfied for the reduced curve c^{*} from (5.5) with $A \leq \varepsilon$.

Proof. Here we have to deal with the fact that c^{*} is not necessarily of class C^{e}. Let $I_{0}=$ $(-\delta, \delta)$ and $I_{1}=(-2 \delta, 2 \delta)$. Since $\left(c_{1}^{*}\right)^{\prime \prime}(0)=0$ and $c_{1}^{*}(t)$ is of class C^{2}, the constant A_{1} of (4.10) for c^{*} can be chosen arbitrarily small. This is what we need to get A.1)-(A.2) with arbitrarily small A.

We have $c_{i}^{*} \in C^{e_{i}}$ near 0 (and $c_{i}^{*} \in C^{d}$ off 0) and $\left(c_{i}^{*}\right)^{(k)}(0)=0$ for all $k \leq e_{i}$. Therefore for an arbitrary $A>0$ there is a neighborhood I_{1} in which A.3) holds for all i and $k=e_{i}$, and then, by Lemma 8, in a smaller neighborhood, for all i and all $k \leq e_{i}$.

Finally, given $A>0$ we show (A.3) for $k>e_{i}$ and δ sufficiently small. Let \hat{A} denote the constant A for which (A.1)-(A.3) holds for c. By (4.7), for some constant $C=C(G \circlearrowleft V)$,

$$
\left|\left(c_{i}^{*}\right)^{(k)}(t)\right| \leq C \hat{A}^{k}\left|c_{1}(t)\right|^{\frac{e_{i}-k}{2}} \leq C \hat{A}^{k} \psi(t)\left|c_{1}^{*}(t)\right|^{\frac{e_{i}-k}{2}},
$$

which gives the required result since $\psi(t)=\left|c_{1}^{*}(t) / c_{1}(t)\right|^{\frac{k-e_{i}}{2}}=o(1)$ for $k>e_{i}$.
By induction, we may conclude from Lemma 10 that there is a C^{1}-lift near 0 .
We may now glue the local lifts, according to Subsection 5.3. Let J be a connected component of the complement I^{\prime} of the flat points (i.e., the points in Case 2). Then there exists an open cover $\mathcal{J}=\left\{J_{i}\right\}_{i \in \mathbb{Z}}$ of J, with C^{1}-lifts \bar{c}_{i} of $\left.c\right|_{J_{i}}$, and such that $J_{i} \cap J_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. By Subsection 5.3 we may assume that there are C^{1}-maps $s_{i, \pm}: J_{i} \rightarrow G$ such that on $J_{i} \cap J_{i+1}$

$$
\begin{equation*}
s_{i,+}(t) \bar{c}_{i}(t)=s_{i+1,-}(t) \bar{c}_{i+1}(t) \tag{5.6}
\end{equation*}
$$

Moreover, by Lemma 9, we may assume that there is $t_{i} \in J_{i} \backslash\left(J_{i-1} \cup J_{i+1}\right)$ such that both $s_{i, \pm}$ are constant, say equal $g_{i, \pm}$, in a neighborhood $J_{t_{i}}$ of t_{i}. Thus we may glue $g_{i,-}^{-1} s_{i,-}$ and $g_{i,+}^{-1} s_{i,+}$ into a single map $s_{i}: J_{i} \rightarrow G$ that equals $g_{i,-}^{-1} s_{i,-}$ for $t \leq t_{i}$ and $g_{i,+}^{-1} s_{i,+}$ for $t \geq t_{i}$. Then

$$
\begin{equation*}
g_{i,+} s_{i}(t) \bar{c}_{i}(t)=g_{i+1,-} s_{i+1}(t) \bar{c}_{i+1}(t) \tag{5.7}
\end{equation*}
$$

Lemma 11. There are $h_{i} \in G$ such that

$$
\begin{equation*}
h_{i} s_{i}(t) \bar{c}_{i}(t)=h_{i+1} s_{i+1}(t) \bar{c}_{i+1}(t) \tag{5.8}
\end{equation*}
$$

Proof. In view of (5.7) it suffices to find h_{i} such that $g_{i+1,-}^{-1} g_{i,+}=h_{i+1}^{-1} h_{i}$. So we may fix $h_{0}=e$ and then define them inductively by $h_{i+1}=h_{i} g_{i,+}^{-1} g_{i+1,-}$.
(Note that the existence of such h_{i} simply means that the cocycle $g_{i+1,-}^{-1} g_{i,+}$ is a Čech coboundary, that is clear because $\check{H}^{1}(\mathcal{J} ; G)=0$.)

In this way we obtain a C^{1}-lift \bar{c} of c restricted to I^{\prime} with the property that $\left\|\bar{c}^{\prime}(t)\right\|$ is dominated (up to a universal constant) by A_{0} defined by (4.11), thanks to (5.4). The lift \bar{c} extends trivially to flat points t_{0} from Case 2. At each such point t_{0}, \bar{c} is differentiable with $\bar{c}^{\prime}\left(t_{0}\right)=0$. It remains to check that $\bar{c}^{\prime}(t) \rightarrow 0$ as $t \rightarrow t_{0}$. This is a consequence of the following lemma, where without loss of generality $t_{0}=0$.

Lemma 12. If $c_{1}(0)=c_{1}^{\prime}(0)=c_{1}^{\prime \prime}(0)=0$, then for any $\varepsilon>0$ there is $\delta>0$ such that for $I_{0}=(-\delta, \delta), I_{1}=(-2 \delta, 2 \delta)$, and A_{0} defined by 4.11) we have $A_{0} \leq \varepsilon$.

Proof. This follows immediately from the formulas (4.11) and (4.10).
The proof of Theorem 2 is complete.

6. Real analytic lifts

It was shown in [1] that a real analytic curve $c \in C^{\omega}(I, \sigma(V))$ admits local real analytic lifts near every point $t_{0} \in I$, and that the local lifts can be glued to a global real analytic lift if $G \circlearrowleft V$ is polar. We will now show that real analytic gluing is always possible.

Theorem 4. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a compact Lie group. Then any $c \in C^{\omega}(I, \sigma(V))$ admits a lift $\bar{c} \in C^{\omega}(I, V)$.

Proof. The local lifts can be glued thanks to the fact that

$$
\begin{equation*}
\check{H}^{1}\left(I, G^{a}\right)=0, \tag{6.1}
\end{equation*}
$$

where G^{a} denotes the sheaf of real analytic maps $I \supseteq U \rightarrow G$. This is a deep result, suggested by Cartan in [7], 8], and proven by Tognoli [37].

Indeed, let $\mathcal{I}=\left\{I_{i}\right\}$ be a locally finite cover of I with real analytic lifts \bar{c}_{i} of $\left.c\right|_{I_{i}}$ (which exist by the result of [1]). Then, by Lemma 3.8 of [1], we may assume that if $I_{i} \cap I_{j} \neq \emptyset$ then there is real analytic $s_{i j}: I_{i} \cap I_{j} \rightarrow G$ such that on $I_{i} \cap I_{j}$

$$
s_{i j} \bar{c}_{i}=\bar{c}_{j} .
$$

By (6.1), after replacing \mathcal{I} by its refinement if necessary, there are real analytic $h_{i}: I_{i} \rightarrow G$ such that $s_{i j}=h_{j}^{-1} h_{i}$ on $I_{i} \cap I_{j}$ and then

$$
\bar{c}(t)=h_{i}(t) \bar{c}_{i}(t), \text { if } t \in I_{i}
$$

defines a global lift.

References

[1] D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor, Lifting smooth curves over invariants for representations of compact Lie groups, Transform. Groups 5 (2000), no. 2, 103-110.
[2] E. Bierstone, Lifting isotopies from orbit spaces, Topology 14 (1975), no. 3, 245-252.
[3] J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand. 20 (1967), 249-268.
[4] J.-M. Bony, Sommes de carrés de fonctions dérivables, Bull. Soc. Math. France 133 (2005), no. 4, 619-639.
[5] J.-M. Bony, F. Broglia, F. Colombini, and L. Pernazza, Nonnegative functions as squares or sums of squares, J. Funct. Anal. 232 (2006), no. 1, 137-147.
[6] M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh. 20 (1979), no. 3, 493-501, 690, English transl. in Siberian Math. J. 20 (1980), 347-352.
[7] H. Cartan, Espaces fibrés analytiques, Séminaire Bourbaki, Vol. 4, Soc. Math. France, Paris, 1956 1958, pp. Exp. No. 137, 7-18.
[8] _ Sur les fonctions de plusieurs variables complexes: les espaces analytiques, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 33-52.
[9] F. Colombini, N. Orrù, and L. Pernazza, On the regularity of the roots of hyperbolic polynomials, Israel J. Math. 191 (2012), 923-944.
[10] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125-137.
[11] J. Dadok and V. Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504-524.
[12] H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002, Encyclopaedia of Mathematical Sciences, 130.
[13] C. F. Faà di Bruno, Note sur une nouvelle formule du calcul différentielle, Quart. J. Math. 1 (1855), 359-360.
[14] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4673-4674.
[15] G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), no. 2, 203-210.
[16] P. Guan, C^{2} a priori estimates for degenerate Monge-Ampère equations, Duke Math. J. 86 (1997), no. 2, 323-346.
[17] A. Kriegl, M. Losik, and P. W. Michor, Choosing roots of polynomials smoothly. II, Israel J. Math. 139 (2004), 183-188.
[18] A. Kriegl, M. Losik, P. W. Michor, and A. Rainer, Lifting smooth curves over invariants for representations of compact Lie groups. II, J. Lie Theory 15 (2005), no. 1, 227-234.
[19] _ Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory 16 (2006), no. 3, 579-600.
[20] , Addendum to: "Lifting smooth curves over invariants for representations of compact Lie groups. III" [J. Lie Theory 16 (2006), no. 3, 579-600], J. Lie Theory 22 (2012), no. 1, 245-249.
[21] D. Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33.
[22] T. Mandai, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. (1985), no. 21, 115-118.
[23] P. W. Michor, Topics in differential geometry, Graduate Studies in Mathematics, vol. 93, American Mathematical Society, Providence, RI, 2008.
[24] D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108-116.
[25] J. A. Navarro González and J. B. Sancho de Salas, C^{∞}-differentiable spaces, Lecture Notes in Mathematics, vol. 1824, Springer-Verlag, Berlin, 2003.
[26] A. Parusiński and A. Rainer, A new proof of Bronshtein's theorem, to appear in J. Hyperbolic Differ. Equ., arXiv:1309.2150.
[27] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press Oxford University Press, Oxford, 2002.
[28] A. Rainer, Perturbation theory for normal operators, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5545-5577.
[29]_, Differentiable roots, eigenvalues, and eigenvectors, Israel J. Math. 201 (2014), no. 1, 99-122.
[30] K. Reichard, Algebraische Beschreibung der Ableitung bei q-mal stetig-differenzierbaren Funktionen, Compositio Math. 38 (1979), no. 3, 369-379.
[31] _ Roots of differentiable functions of one real variable, J. Math. Anal. Appl. 74 (1980), no. 2, 441-445.
[32] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68.
[33] _ Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. (1980), no. 51, 37-135.
[34] K. Spallek, Differenzierbare Räume, Math. Ann. 180 (1969), 269-296.
[35] _, Abgeschlossene Garben differenzierbarer Funktionen, Manuscripta Math. 6 (1972), 147-175.
[36] C.-L. Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geom. 21 (1985), no. 1, 79-107.
[37] A. Tognoli, Sulla classificazione dei fibrati analitici reali E-principali, Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 75-86.
[38] S. Wakabayashi, Remarks on hyperbolic polynomials, Tsukuba J. Math. 10 (1986), no. 1, 17-28.
[39] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441-479 (German).

Adam Parusiński: Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06108 Nice, France

E-mail address: adam.parusinski@unice.fr
Armin Rainer: Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

E-mail address: armin.rainer@univie.ac.at

[^0]: Date: May 10, 2015.
 2010 Mathematics Subject Classification. 22E45, 57S15, 14L24, 26A16.
 Key words and phrases. Smooth mappings into orbit spaces, Lipschitz, C^{1}, and real analytic lifts.
 Supported by the Austrian Science Fund (FWF), Grant P 26735-N25, and by ANR project STAAVF (ANR-2011 BS01 009).

