LIFTING DIFFERENTIABLE CURVES FROM ORBIT SPACES

ADAM PARUSIŃSKI AND ARMIN RAINER

Dedicated to the memory of Mark Losik

ABSTRACT. Let $\rho: G \to \mathrm{O}(V)$ be a real finite dimensional orthogonal representation of a compact Lie group, let $\sigma = (\sigma_1, \ldots, \sigma_n): V \to \mathbb{R}^n$, where $\sigma_1, \ldots, \sigma_n$ form a minimal system of homogeneous generators of the G-invariant polynomials on V, and set $d = \max_i \deg \sigma_i$. We prove that for each $C^{d-1,1}$ -curve c in $\sigma(V) \subseteq \mathbb{R}^n$ there exits a locally Lipschitz lift over σ , i.e., a locally Lipschitz curve \overline{c} in V so that $c = \sigma \circ \overline{c}$, and we obtain explicit bounds for the Lipschitz constant of \overline{c} in terms of c. Moreover, we show that each C^d -curve in $\sigma(V)$ admits a C^1 -lift. For finite groups G we deduce a multivariable version and some further results.

1. Introduction and main results

1.1. **Differentiable roots of hyperbolic polynomials.** Let us begin by describing the most important special case of our main theorem.

Example 1 (Choosing differentiable roots of hyperbolic polynomials). Let the symmetric group S_n act on \mathbb{R}^n by permuting the coordinates. The algebra of invariant polynomials $\mathbb{R}[\mathbb{R}^n]^{S_n}$ is generated by the elementary symmetric functions $\sigma_i = \sum_{j_1 < \dots < j_i} x_{j_1} \cdots x_{j_i}$. Considering the mapping $\sigma = (\sigma_1, \dots, \sigma_n) : \mathbb{R}^n \to \mathbb{R}^n$, we may identify, in view of Vieta's formulas, each point p of the image $\sigma(\mathbb{R}^n)$ uniquely with the monic polynomial $P_a = z^n + \sum_{j=1}^n a_j z^{n-j}$ whose unordered p-tuple of roots constitutes the fiber of p-two points in the fiber differ by a permutation. So the semialgebraic subset $\sigma(\mathbb{R}^n) \subseteq \mathbb{R}^n$ can be identified with the space of p-tuple polynomials of degree p-tuple, i.e., monic polynomials with all roots real.

Suppose that the coefficients $a=(a_j)_{j=1}^n$ are functions depending in a smooth way on a real parameter t, i.e., $a:\mathbb{R}\to\mathbb{R}^n$ is a smooth curve with $a(\mathbb{R})\subseteq\sigma(\mathbb{R}^n)$. Then we may ask how regular the roots of P_a can be parameterized. This is a classical much studied problem with important applications in partial differential equations. We shall just mention three results which will be of interest in this paper.

(1) If a is $C^{n-1,1}$ then any continuous parameterization of the roots of P_a is locally Lipschitz with uniform Lipschitz constant.

Date: May 10, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 22E45,\ 57S15,\ 14L24,\ 26A16.$

Key words and phrases. Smooth mappings into orbit spaces, Lipschitz, C^1 , and real analytic lifts.

Supported by the Austrian Science Fund (FWF), Grant P 26735-N25, and by ANR project STAAVF (ANR-2011 BS01 009).

- (2) If a is C^n then there exists a C^1 -parameterization of the roots; actually any differentiable parameterization is C^1 .
- (3) If a is C^{2n} then there exists a twice differentiable parameterization of the roots.

The first result is a version of Bronshtein's theorem due to [6]; a different proof was given by Wakabayashi [38]. In our recent note [26] we presented another independent proof of (1) the method of which works in the general situation considered in the present paper; see below. For the second and third result we refer to [9]; see also [26] for a different proof, and [22] and [17] for the same conclusions under stronger assumptions. The results (1), (2), and (3) are optimal. Most notably, there are C^{∞} -curves a so that the roots of P_a do not admit a $C^{1,\omega}$ -parameterization for any modulus of continuity ω .

Let V be any finite dimensional Euclidean vector space. For an open subset $U \subseteq \mathbb{R}^m$ and $p \in \mathbb{N}_{\geq 1}$, we denote by $C^{p-1,1}(U,V)$ the space of all mappings $f \in C^{p-1}(U,V)$ so that each partial derivative $\partial^{\alpha} f$ of order $|\alpha| = p-1$ is locally Lipschitz. It is a Fréchet space with the following system of seminorms,

$$||f||_{C^{p-1,1}(K,V)} = ||f||_{C^{p-1}(K,V)} + \sup_{|\alpha|=p-1} \operatorname{Lip}_K(\partial^{\alpha} f), \quad \operatorname{Lip}_K(f) = \sup_{\substack{x,y \in K \\ x \neq y}} \frac{||f(x) - f(y)||}{||x - y||},$$

where K ranges over (a countable exhaustion of) the compact subsets of U; on \mathbb{R}^m we consider the 2-norm $\| \| = \| \|_2$. By Rademacher's theorem, the partial derivatives of order p of a function $f \in C^{p-1,1}(U,V)$ exist almost everywhere.

1.2. The general setup. Let G be a compact Lie group and let $\rho: G \to O(V)$ be an orthogonal representation in a real finite dimensional Euclidean vector space V with inner product $\langle \ | \ \rangle$. For short we shall write $G \circlearrowleft V$. By a classical theorem of Hilbert and Nagata, the algebra $\mathbb{R}[V]^G$ of invariant polynomials on V is finitely generated. So let $\{\sigma_i\}_{i=1}^n$ be a system of homogeneous generators of $\mathbb{R}[V]^G$ which we shall also call a system of basic invariants.

A system of basic invariants $\{\sigma_i\}_{i=1}^n$ is called *minimal* if there is no polynomial relation of the form $\sigma_i = P(\sigma_1, \dots, \widehat{\sigma_i}, \dots, \sigma_n)$, or equivalently, $\{\sigma_i\}_{i=1}^n$ induces a basis of the real vector space $\mathbb{R}[V]_+^G/(\mathbb{R}[V]_+^G)^2$, where $\mathbb{R}[V]_+^G = \{f \in \mathbb{R}[V]_+^G : f(0) = 0\}$; cf. [12, Section 3.6]. The elements in a minimal system of basic invariants may not be unique but its number and its degrees $d_i := \deg \sigma_i$ are unique. Let us set

$$d := \max_{i=1}^{n} d_i.$$

Given a system of basic invariants $\{\sigma_i\}_{i=1}^n$, we consider the *orbit mapping* $\sigma = (\sigma_1, \dots, \sigma_n)$: $V \to \mathbb{R}^n$. The image $\sigma(V)$ is a semialgebraic set in the categorical quotient $V/\!\!/ G := \{y \in \mathbb{R}^n : P(y) = 0 \text{ for all } P \in \mathscr{I}\}$, where \mathscr{I} is the ideal of relations between $\sigma_1, \dots, \sigma_n$. Since G is compact, σ is proper and separates orbits of G, and it thus induces a homeomorphism $\tilde{\sigma}$ between the orbit space V/G and $\sigma(V)$.

Let $H = G_v = \{g \in G : gv = v\}$ be the isotropy group of $v \in V$ and (H) its conjugacy class in G; (H) is called the type of the orbit $Gv = \{gv : g \in G\}$. Let $V_{(H)}$ be the union of all orbits of type (H). Then $V_{(H)}/G$ is a smooth manifold and the collection of connected components of the manifolds $V_{(H)}/G$ forms a stratification of V/G by orbit type; cf. [33]. Due to [2], $\tilde{\sigma}$ is

an isomorphism between the orbit type stratification of V/G and the natural stratification of $\sigma(V)$ as a semialgebraic set; it is analytically locally trivial and thus satisfies Whitney's conditions (A) and (B). The inclusion relation on the set of subgroups of G induces a partial ordering on the family of orbit types. There is a unique minimal orbit type, the principal orbit type, corresponding to the open and dense submanifold V_{reg} consisting of points v, where the slice representation $G_v \circlearrowleft N_v$ is trivial; see Subsection 2.3 below. The projection $V_{\text{reg}} \to V_{\text{reg}}/G$ is a locally trivial fiber bundle. There are only finitely many isomorphism classes of slice representations.

A representation $G \circlearrowleft V$ is called *polar*, if there exists a linear subspace $\Sigma \subseteq V$, called a section, which meets each orbit orthogonally; cf. [10], [11]. The trace of the G-action on Σ is the action of the generalized Weyl group $W(\Sigma) = N_G(\Sigma)/Z_G(\Sigma)$ on Σ , where $N_G(\Sigma) := \{g \in G : g\Sigma = \Sigma\}$ and $Z_G(\Sigma) := \{g \in G : gs = s \text{ for all } s \in \Sigma\}$. This group is finite, and it is a reflection group if G is connected. The algebras $\mathbb{R}[V]^G$ and $\mathbb{R}[\Sigma]^{W(\Sigma)}$ are isomorphic via restriction, by a generalization of Chevalley's restriction theorem due to [11] and independently [36], and thus the orbit spaces V/G and $\Sigma/W(\Sigma)$ are isomorphic.

We shall fix a minimal system of basic invariants $\{\sigma_i\}_{i=1}^n$ and the corresponding orbit mapping σ . The given data will be abbreviated by the tuple $(G \circlearrowleft V, d, \sigma)$.

1.3. Smooth structures on orbit spaces. We review some ways to endow the orbit space V/G with a smooth structure and stress the connection to the lifting problem studied in this paper. The results and constructions mentioned in this subsection will not be used later in the paper.

A smooth structure on a non-empty set X can be introduced by specifying any of the following families of mappings together with some compatibility conditions:

- the smooth functions on X (differential space)
- the smooth mappings into X (diffeological space)
- the smooth curves in X and the smooth functions on X (Frölicher space)

More precisely: A differential structure on X is a family \mathcal{F}_X of functions $X \to \mathbb{R}$, along with the associated initial topology on X, so that

- if $f_1, \ldots, f_n \in \mathcal{F}_X$ and $g \in C^{\infty}(\mathbb{R}^n)$ then $g \circ (f_1, \ldots, f_n) \in \mathcal{F}_X$ if $f: X \to \mathbb{R}$ is locally the restriction of a function in \mathcal{F}_X then $f \in \mathcal{F}_X$.

The pair (X, \mathcal{F}_X) is called a differential space.

A diffeology on X is a family \mathcal{D}_X of mappings $U \to X$, where U is any domain, i.e., open in some \mathbb{R}^n , so that

- \mathcal{D}_X contains all constant mappings $\mathbb{R}^n \to X$ (for all n)
- for each $p:U\to X\in\mathcal{D}_X$, each domain V, and each $q\in C^\infty(V,U)$, also $p\circ q\in\mathcal{D}_X$
- if $p: U \to X$ is locally in \mathcal{D}_X then $p \in \mathcal{D}_X$.

The pair (X, \mathcal{D}_X) is called a diffeological space.

A Frölicher structure on X is a pair $(\mathcal{C}_X, \mathcal{F}_X)$ consisting of a subset $\mathcal{C}_X \subseteq X^{\mathbb{R}}$ and a subset $\mathcal{F}_X \subseteq \mathbb{R}^X$ so that

- $f \in \mathcal{F}_X$ if and only if $f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R})$ for all $c \in \mathcal{C}_X$
- $c \in \mathcal{C}_X$ if and only if $f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R})$ for all $f \in \mathcal{F}_X$.

The triple $(X, \mathcal{C}_X, \mathcal{F}_X)$ is called a *Frölicher space*. The Frölicher structure on X generated by a subset $\mathcal{C} \subseteq X^{\mathbb{R}}$ (respectively $\mathcal{F} \subseteq \mathbb{R}^X$) is the finest (respectively coarsest) Frölicher structure $(\mathcal{C}_X, \mathcal{F}_X)$ on X with $\mathcal{C} \subseteq \mathcal{C}_X$ (respectively $\mathcal{F} \subseteq \mathcal{F}_X$).

A mapping $\phi: X \to Y$ between two spaces of the same kind is called *smooth* if

- $\phi^* \mathcal{F}_Y \subseteq \mathcal{F}_X$ in the case of differential spaces
- $\phi_* \mathcal{D}_X \subseteq \mathcal{D}_Y$ in the case of diffeological spaces
- $\phi_*\mathcal{C}_X \subseteq \mathcal{C}_Y$, equivalently $\phi^*\mathcal{F}_Y \subseteq \mathcal{F}_X$, equivalently $\mathcal{F}_Y \circ \phi \circ \mathcal{C}_X \in C^{\infty}$ in the case of Frölicher spaces.

Any of the above forms a category, and the category of smooth finite dimensional manifolds with smooth mappings in the usual sense forms a full subcategory in each of them.

The orbit space V/G can be given a differential structure by defining a function on V/G to be smooth if its composite with the projection $V \to V/G$ is smooth, i.e., $\mathcal{F}_{V/G} = C^{\infty}(V/G) \cong C^{\infty}(V)^G$. On the other hand $\sigma(V)$ has a differential structure defined by restriction of the smooth functions on \mathbb{R}^n , i.e., $\mathcal{F}_{\sigma(V)} = \{f|_{\sigma(V)} : f \in C^{\infty}(\mathbb{R}^n)\}$. By Schwarz' theorem [32], $\sigma^*C^{\infty}(\mathbb{R}^n) = C^{\infty}(V)^G$ and so $\tilde{\sigma}$ is an isomorphism of V/G and $\sigma(V)$ together with their differential structures. In other words quotient and subspace differential structure coincide. We have

$$C^{\infty}(\mathbb{R}, \sigma(V)) := \{ c \in C^{\infty}(\mathbb{R}, \mathbb{R}^n) : c(\mathbb{R}) \subseteq \sigma(V) \}$$
$$= \{ c \in \sigma(V)^{\mathbb{R}} : f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R}) \text{ for all } f \in C^{\infty}(V)^G \}.$$

We may also consider the curves in $\sigma(V)$ that admit a smooth lift over σ ,

$$\sigma_* C^{\infty}(\mathbb{R}, V) = \{ \sigma \circ c : c \in C^{\infty}(\mathbb{R}, V) \}.$$

In general the inclusion $\sigma_* C^{\infty}(\mathbb{R}, V) \subseteq C^{\infty}(\mathbb{R}, \sigma(V))$ is strict (cf. Example 1). The set of functions $C^{\infty}(V)^G$ on the one hand and the set of curves $\sigma_* C^{\infty}(\mathbb{R}, V)$ on the other hand give rise to Frölicher space structures on the orbit space $V/G = \sigma(V)$ that turn out to coincide: The Frölicher structure on $\sigma(V)$ generated by $C^{\infty}(V)^G$ as well as that generated by $\sigma_* C^{\infty}(\mathbb{R}, V)$ is $(C^{\infty}(\mathbb{R}, \sigma(V)), C^{\infty}(V)^G)$. Indeed, we have

$$C^{\infty}(V)^G \cong \{ f \in \mathbb{R}^{\sigma(V)} : f \circ c \in C^{\infty}(\mathbb{R}, \mathbb{R}) \text{ for all } c \in \sigma_* C^{\infty}(\mathbb{R}, V) \},$$

for if $f \circ c \in C^{\infty}$ for all $c \in \sigma_* C^{\infty}(\mathbb{R}, V)$ then $f \circ \sigma$ is C^{∞} , by Boman's theorem [3]. It follows that the quotient and the subspace Frölicher structure coincide on $\sigma(V)$.

However, the quotient diffeology \mathcal{D}_q and the subspace diffeology \mathcal{D}_s on $\sigma(V)$ fall apart. The quotient diffeology \mathcal{D}_q with respect to the orbit mapping $\sigma: V \to \sigma(V)$ is the finest diffeology of $\sigma(V)$ such that $\sigma: V \to \sigma(V)$ is smooth. A mapping $f: U \to \sigma(V)$ belongs to \mathcal{D}_q if and only if it lifts locally over σ , i.e., for each $x \in U$ there is a neighborhood U_0 and a C^{∞} -mapping $\overline{f}: U_0 \to V$ so that $f = \sigma \circ \overline{f}$ on U_0 . The subspace diffeology \mathcal{D}_s on $\sigma(V)$ is the coarsest diffeology of $\sigma(V)$ such that the inclusion $\sigma(V) \to \mathbb{R}^n$ is smooth. A mapping $U \to \sigma(V)$ belongs to \mathcal{D}_s if and only if the composite $U \to \sigma(V) \to \mathbb{R}^n$ is smooth. Evidently, $\mathcal{D}_q \subseteq \mathcal{D}_s$, and the inclusion is strict (cf. Example 1).

The orbit space as a differentiable space. Let us finally consider V/G as a differentiable space in the sense of Spallek [34]. We follow the presentation in [25].

An \mathbb{R} -algebra A is called a differentiable algebra if it is isomorphic to $C^{\infty}(\mathbb{R}^n)/\mathfrak{a}$ for some positive integer n and some closed ideal \mathfrak{a} in $C^{\infty}(\mathbb{R}^n)$. Any differentiable algebra A has a unique Fréchet topology such that the algebra isomorphism $A \cong C^{\infty}(\mathbb{R}^n)/\mathfrak{a}$ is a homeomorphism, cf. [25, Theorem 2.23]. The real spectrum $\operatorname{Spec}_r A$ of $A = C^{\infty}(\mathbb{R}^n)/\mathfrak{a}$ is homeomorphic to $\{x \in \mathbb{R}^n : f(x) = 0, \forall f \in \mathfrak{a}\}$, cf. [25, Proposition 2.13].

A locally ringed space (X, \mathcal{O}_X) is said to be an affine differentiable space if it is isomorphic to the real spectrum (Spec_r A, \tilde{A}) of some differential algebra A. Here \tilde{A} is the sheaf associated to the presheaf $U \rightsquigarrow A_U$, where $A_U = \{a/b : a, b \in A, b(x) \neq 0, \forall x \in U\}$ denotes the localization. A locally ringed space (X, \mathcal{O}_X) is said to be a differentiable space if each point $x \in X$ has an open neighborhood U in X such that $(U, \mathcal{O}_X|_U)$ is an affine differentiable space. Sections of \mathcal{O}_X on an open set $U \subseteq X$ are called differentiable functions on U. A differentiable space (X, \mathcal{O}_X) is said to be reduced if for each open set $U \subseteq X$ and every differentiable function $f \in \mathcal{O}_X(U)$, we have f = 0 if and only if f(x) = 0 for all $x \in U$.

The space \mathbb{R}^n is a reduced affine differentiable space: let $C^{\infty}_{\mathbb{R}^n}$ denote the sheaf of C^{∞} -functions on \mathbb{R}^n , then $(\operatorname{Spec}_r C^{\infty}(\mathbb{R}^n), C^{\infty}_{\mathbb{R}^n}) \cong (\mathbb{R}^n, C^{\infty}_{\mathbb{R}^n})$, cf. [25, Example 3.15].

Let Z be a topological subspace of \mathbb{R}^n . A continuous function $f: Z \to \mathbb{R}$ is said to be of class C^{∞} if each point $z \in Z$ has an open neighborhood U_z in \mathbb{R}^n and there exists $F \in C^{\infty}(U_z)$ such that $f|_{Z \cap U_z} = F|_Z$. Thus we obtain a sheaf C_Z^{∞} of continuous functions on Z, and (Z, C_Z^{∞}) is a reduced affine differentiable space; cf. [25, Corollary 5.8]. The category of reduced differentiable spaces is equivalent to the category of reduced ringed spaces (X, \mathcal{O}_X) with the property that each $x \in X$ has an open neighborhood U such that $(U, \mathcal{O}_X|_U)$ is isomorphic to (Z, C_Z^{∞}) for some closed subset Z of an affine space \mathbb{R}^n ; cf. [25, Theorem 3.23].

Let us turn to our situation. We equip the orbit space V/G (with the quotient topology and) with the structural sheaf $\mathcal{O}_{V/G}$, where $\mathcal{O}_{V/G}(U) := \{f \in C^0(U,\mathbb{R}) : f \circ \pi \in C^{\infty}(\pi^{-1}(U))\} \cong C^{\infty}(\pi^{-1}(U))^G$ and $\pi : V \to V/G$ denotes the quotient mapping. On the closed subset $\sigma(V)$ of \mathbb{R}^n we consider the structure of reduced affine differentiable space induced by \mathbb{R}^n , i.e., $(\sigma(V), C^{\infty}_{\sigma(V)})$. It follows from Schwarz's theorem and the localization theorem for smooth functions (see [25, p. 28]) that σ induces an isomorphism of the differentiable spaces $(V/G, \mathcal{O}_{V/G})$ and $(\sigma(V), C^{\infty}_{\sigma(V)})$; see [25, Theorem 11.14]. Note that the reduced affine differentiable space $(V/G, \mathcal{O}_{V/G})$ is the differential space $(V/G, \mathcal{F}_{V/G})$ considered above.

1.4. The main results. In this paper we shall be concerned with the lifting properties of arbitrary elements in $C^{\infty}(\mathbb{R}, \sigma(V))$ (or in \mathcal{D}_s).

Let $I \subseteq \mathbb{R}$ be an open interval and let $c: I \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ be a curve in the orbit space V/G of $(G \circlearrowleft V, d, \sigma)$. A curve $\overline{c}: I \to V$ is called a *lift of c over* σ , if $c = \sigma \circ \overline{c}$ holds. We will consider curves c in $V/G = \sigma(V)$ that are in some Hölder class $C^{k,\alpha}$, this means that c is $C^{k,\alpha}$ as curve in \mathbb{R}^n with the image contained in $\sigma(V)$, and it will be denoted by $c \in C^{k,\alpha}(I,\sigma(V))$. Note that any $c \in C^0(I,\sigma(V))$ admits a lift $\overline{c} \in C^0(I,V)$, by [24] or [18, Proposition 3.1]. The problem of lifting curves over invariants is independent of the choice of a system of basic invariants as any two such choices differ by a polynomial diffeomorphism.

This problem was considered in this generality for the first time in [1]; it was shown that $\sigma_* C^{\infty}(\mathbb{R}, V)$ contains all elements in $C^{\infty}(\mathbb{R}, \sigma(V))$ that do not meet lower dimensional strata of $\sigma(V)$ with infinite order of flatness. A C^d -curve in $\sigma(V)$ admits a differentiable lift, due to [18]. In [19] and [20] the following generalization of Example 1 was obtained: Let G be finite, write $V = V_1 \oplus \cdots \oplus V_l$ as an orthogonal direct sum of irreducible subspaces V_i , and set

$$k = \max\{d, k_1, \dots, k_l\},\,$$

where k_i is the minimal cardinality of non-zero orbits in V_i . Then C^k (resp. C^{k+d}) curves in V/G admit C^1 (resp. twice differentiable) lifts. This result was achieved by reducing the general case $G \circlearrowleft V$ to the case of the standard action of the symmetric group $S_n \circlearrowleft \mathbb{R}^n$ and then applying Bronshtein's theorem. This technique works only for finite groups and it yields a corresponding result for polar representations (since the associated Weyl group is finite).

The ideas of our new proof of Bronshtein's theorem in [26] led us to the main results of this paper:

- We show that $C^{d-1,1}$ -curves in the orbit space of any representation $(G \circlearrowleft V, d, \sigma)$ admit $C^{0,1}$ -lifts and we obtain explicit bounds for the Lipschitz constants (Theorem 1).
- We prove that C^d -curves in the orbit space of any representation $(G \circlearrowleft V, d, \sigma)$ admit C^1 -lifts (Theorem 2).
- If G is a finite group we find that
 - each continuous lift of a $C^{d-1,1}$ -curve is $C^{0,1}$ (Corollary 1),
 - each differentiable lift of a C^d -curve is C^1 (Corollary 3),
 - each C^{2d} -curve admits a twice differentiable lift (Corollary 3).
- If G is a finite group we also obtain that each continuous lift of a $C^{d-1,1}$ mapping of several variables into the orbit space is $C^{0,1}$ with uniform Lipschitz constants (Corollary 2).
- As a by-product of the problem of gluing together local lifts (see Section 5) we show that real analytic curves in the orbit space of any representation $(G \circlearrowleft V, d, \sigma)$ can be lifted globally (Theorem 4). This extends a result of [1] who proved the existence of local real analytic lifts, and global ones if $G \circlearrowleft V$ is polar.

Our proofs do not rely on Bronshtein's result but we reprove it.

Theorem 1. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a compact Lie group. Then any $c \in C^{d-1,1}(I, \sigma(V))$ admits a lift $\overline{c} \in C^{0,1}(I, V)$. More precisely, for any relatively compact subset $I_0 \subseteq I$, there is a neighborhood I_1 with $I_0 \subseteq I_1 \subseteq I$ so that

(1.1)
$$\operatorname{Lip}_{I_{0}}(\overline{c}) \leq C \left(\max_{i} \|c_{i}\|_{C^{d-1,1}(\overline{I}_{1})}^{\frac{1}{d_{i}}} \right) \\ \leq \tilde{C} \left(1 + \max_{i} \|c_{i}\|_{C^{d-1,1}(\overline{I}_{1})} \right)$$

for constants C and \tilde{C} depending only on the intervals I_0, I_1 and on the isomorphism classes of the slice representations of $G \circlearrowleft V$ and respective minimal systems of basic invariants. (More precise bounds are stated in Subsection 4.5.)

Remark 1. The statement of Theorem 1 reads "there is a $C^{0,1}$ -lift \overline{c} on the whole interval I so that for all $I_0 \subseteq I$ there is a neighborhood I_1 such that (1.1) holds". Our proof also yields "for all intervals I_0 and I_1 with $I_0 \subseteq I_1 \subseteq I$ there is a Lipschitz lift \overline{c} on I_0 satisfying (1.1)".

Convention. We will denote by $C = C(G \circlearrowleft V, \ldots)$ any constant depending only on $G \circlearrowleft V, \ldots$; its value may vary from line to line. Specific constants will bear a subscript like $C_0 = C_0(\ldots)$ or $C_1 = C_1(\ldots)$. The dependence on $G \circlearrowleft V$ is to be understood in the following way. For every isomorphism class $H \circlearrowleft W$ of slice representations of $G \circlearrowleft V$ fix a minimal system of basic invariants; note that there are only finitely many slice representations up to isomorphism and that $G \circlearrowleft V$ coincides with its slice representation at 0. Writing $C = C(G \circlearrowleft V)$ we mean that the constant C only depends on the isomorphism classes of the slice representations of $G \circlearrowleft V$ and on the respective fixed minimal systems of basic invariants.

Our second main result is the following.

Theorem 2. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a compact Lie group. Then any $c \in C^d(I, \sigma(V))$ admits a lift $\overline{c} \in C^1(I, V)$.

Theorem 1 and Theorem 2 will be proved in Section 4 and Section 5, respectively.

For finite groups G we can show more:

Corollary 1. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a finite group. Then any continuous lift \overline{c} of $c \in C^{d-1,1}(I, \sigma(V))$ is locally Lipschitz and satisfies (1.1) for all intervals $I_0 \subseteq I_1 \subseteq I$.

Proof. Let \tilde{c} be any continuous lift of c, and let $I_0 \in I_1 \in I$. Let \bar{c} be the Lipschitz lift on I_0 provided by Remark 1. Let $s, t \in I_0$, s < t. For each $g \in G$ consider the closed subset $J_g := \{r \in [s,t] : \tilde{c}(r) = g\bar{c}(r)\}$ of [s,t]. As $[s,t] = \bigcup_{g \in G} J_g$ there exists a subset $\{g_1, \ldots, g_\ell\} \subseteq G$ and finite sequence $s = t_0 < t_1 < \cdots < t_\ell = t$ so that $t_{i-1}, t_i \in J_{g_i}$ for all $i = 1, \ldots, \ell$. Then

$$\|\tilde{c}(s) - \tilde{c}(t)\| \le \sum_{i=1}^{\ell} \|g_i \bar{c}(t_{i-1}) - g_i \bar{c}(t_i)\| \le \operatorname{Lip}_{I_0}(\bar{c}) (t - s),$$

which implies the assertion.

Corollary 1 readily implies the following result on lifting of mappings in several variables.

Corollary 2. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a finite group. Let $U \subseteq \mathbb{R}^m$ be open and let $f \in C^{d-1,1}(U, \sigma(V))$. Then any continuous lift $\overline{f}: U \supseteq \Omega \to V$ of f, on an open subset Ω of U, is locally Lipschitz. More precisely, for any pair of relatively compact open subsets $\Omega_0 \in \Omega_1 \in \Omega$ we have

(1.2)
$$\operatorname{Lip}_{\Omega_0}(\overline{f}) \leq C\left(\max_i \|f_i\|_{C^{d-1,1}(\overline{\Omega}_1)}^{\frac{1}{d_i}}\right) \\ \leq \tilde{C}\left(1 + \max_i \|f_i\|_{C^{d-1,1}(\overline{\Omega}_1)}\right),$$

for constants $C = C(G \circlearrowleft V, \Omega_0, \Omega_1, m)$ and $\tilde{C} = \tilde{C}(G \circlearrowleft V, \Omega_0, \Omega_1, m)$.

Remark.

- (1) If G has positive dimension and \overline{f} is a $C^{0,1}$ -lift of f, we may obtain a continuous lift of f that is not locally Lipschitz by simply multiplying \overline{f} by a suitable continuous mapping $g: U \to G$.
- (2) In general there are representations and smooth mappings into the orbit space of such which do not admit continuous lifts. For instance, the orbit space of a finite rotation group of \mathbb{R}^2 is homeomorphic to the set C obtained from the sector $\{re^{i\varphi} \in \mathbb{C} : r \in [0,\infty), 0 \le \varphi \le \varphi_0\}$ by identifying the rays that constitute its boundary. A loop on C cannot be lifted to a loop in \mathbb{R}^2 unless it is homotopically trivial in $C \setminus \{0\}$.

Proof. Let $\overline{f}:U\supseteq\Omega\to V$ be a continuous lift of f on Ω . Without loss of generality we may assume that Ω_0 and Ω_1 are open boxes parallel to the coordinate axes, $\Omega_i=\prod_{j=1}^m I_{i,j},$ i=0,1, with $I_{0,j}\in I_{1,j}$ for all j. Let $x,y\in\Omega_0$ and set h:=y-x. Let $\{e_i\}_{i=1}^m$ denote the standard unit vectors in \mathbb{R}^m . For any z in the orthogonal projection of Ω_0 on the hyperplane $x_j=0$ consider the curve $\overline{f}_{z,j}:I_{0,j}\to V$ defined by $\overline{f}_{z,j}(t):=\overline{f}(z+te_j)$. By Corollary 1, each $\overline{f}_{z,j}$ is Lipschitz and $C:=\sup_{z,j}\operatorname{Lip}_{I_{0,j}}(\overline{f}_{z,j})<\infty$. Thus

$$\|\overline{f}(x) - \overline{f}(y)\| \le \sum_{j=0}^{m-1} \|\overline{f}(x + \sum_{k=1}^{j} h_k e_k) - \overline{f}(x + \sum_{k=1}^{j+1} h_k e_k)\| \le C\|h\|_1 \le C\sqrt{m}\|h\|_2.$$

The bounds (1.2) follow from (1.1).

Corollary 3. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a finite group. Then:

- (1) Any differentiable lift of $c \in C^d(I, \sigma(V))$ is C^1 .
- (2) Any $c \in C^{2d}(I, \sigma(V))$ admits a twice differentiable lift.

Proof. This follows from Corollary 1. It can be proved as in [19]; see also [20]. \Box

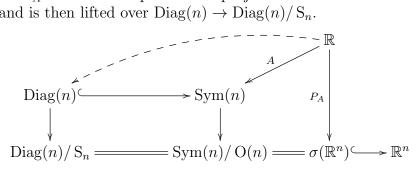
1.5. Further examples.

Example 2 (Choosing differentiable eigenvalues of real symmetric matrices). Let the orthogonal group $O(n) = O(\mathbb{R}^n)$ act by conjugation on the real vector space $\operatorname{Sym}(n)$ of real symmetric $n \times n$ matrices, $O(n) \times \operatorname{Sym}(n) \ni (S,A) \mapsto SAS^{-1} = SAS^t \in \operatorname{Sym}(n)$. The algebra of invariant polynomials $\mathbb{R}[\operatorname{Sym}(n)]^{O(n)}$ is isomorphic to $\mathbb{R}[\operatorname{Diag}(n)]^{S_n}$ by restriction, where $\operatorname{Diag}(n)$ is the vector space of real diagonal $n \times n$ matrices upon which S_n acts by permuting the diagonal entries. More precisely, $\mathbb{R}[\operatorname{Sym}(n)]^{O(n)} = \mathbb{R}[\Sigma_1, \dots, \Sigma_n]$, where $\Sigma_i(A) = \operatorname{Trace}(\bigwedge^i A : \bigwedge^i \mathbb{R}^n \to \bigwedge^i \mathbb{R}^n)$ is the *i*th characteristic coefficient of A and $\Sigma_i|_{\operatorname{Diag}(n)} = \sigma_i$, where σ_i is the *i*th elementary symmetric polynomial and we identify $\operatorname{Diag}(n) \cong \mathbb{R}^n$ (cf. [23, 7.1]). This means that the representation $O(n) \circlearrowleft \operatorname{Sym}(n)$ is polar and $\operatorname{Diag}(n)$ forms a section.

A smooth curve $A: \mathbb{R} \to \operatorname{Sym}(n)$ of symmetric matrices induces a smooth curve of hyperbolic polynomials P_A (the characteristic polynomial of A), i.e., a smooth curve in the semialgebraic set $\sigma(\operatorname{Diag}(n)) \cong \sigma(\mathbb{R}^n)$ from Example 1. Then (1), (2), and (3) in Example 1 imply regularity results for the eigenvalues of $t \mapsto A(t)$ which however turn out to be not optimal. In fact we have the following optimal results.

- (1) If A is $C^{0,1}$ then any continuous parameterization of the eigenvalues of A is locally Lipschitz with uniform Lipschitz constant.
- (2) If A is C^1 then there exists a C^1 -parameterization of the eigenvalues; actually any differentiable parameterization is C^1 .
- (3) If A is C^2 then there exists a twice differentiable parameterization of the eigenvalues. The first result follows from a result due to Weyl [39], the second and third were shown in [28]. Actually, these results are true for normal complex matrices and, in appropriate form, even for normal operators in Hilbert space with common domain of definition and compact resolvents; see [28].

Here the curve P_A in the orbit space is the projection of the curve A under $\operatorname{Sym}(n) \to \operatorname{Sym}(n)/\operatorname{O}(n)$ and is then lifted over $\operatorname{Diag}(n) \to \operatorname{Diag}(n)/\operatorname{S}_n$.



Example 3 (Decomposing nonnegative functions into differentiable sums of squares). Let the orthogonal group O(n) act in the standard way on \mathbb{R}^n . Then the algebra of invariant polynomials $\mathbb{R}[\mathbb{R}^n]^{O(n)}$ is generated by $\sigma = \sum_{i=1}^n x_i^2$. The orbit space $\mathbb{R}^n/O(n)$ can be identified with the half-line $\mathbb{R}_{\geq 0} = [0, \infty) = \sigma(\mathbb{R}^n)$. Each line through the origin of \mathbb{R}^n forms a section of $O(n) \circlearrowleft \mathbb{R}^n$.

Given a smooth nonnegative function f, decomposing f into sums of squares amounts to lifting f over σ . Applying Example 1(1) (actually its multiparameter analogue which follows easily; see Corollary 2) implies that:

- (1) Any nonnegative $C^{1,1}$ function $f: \mathbb{R}^m \to \mathbb{R}$ is the square of a $C^{0,1}$ function. The image of this lift lies in a section of $O(n) \circlearrowleft \mathbb{R}^n$. This does not apply to the solutions in the following stronger results which benefit from the additionally available space.
 - (2) Any nonnegative $C^{3,1}$ function $f: \mathbb{R}^m \to \mathbb{R}$ is a sum of n = n(m) squares of $C^{1,1}$ functions.
 - (3) Let $p \in \mathbb{N}$. Any nonnegative C^{2p} function $f : \mathbb{R} \to \mathbb{R}$ is the sum of two squares of C^p functions.

Result (2) was stated by Fefferman and Phong while proving their celebrated inequality in [14]; see also [16, Lemma 4]. This is sharp in the sense that there exist C^{∞} functions $f: \mathbb{R}^m \to \mathbb{R}$, for $m \geq 4$, that are not sums of squares of C^2 functions; see [5]. Result (3) is due to [4]; the decomposition depends on p.

2. Reduction to slice representations

Let $(G \circlearrowleft V, d, \sigma)$ be fixed. Let $V^G = \{v \in V : Gv = v\}$ be the linear subspace of invariant vectors.

2.1. **Dominant invariant.** We may assume without loss of generality that

(2.1)
$$\sigma_1(v) = \langle v \mid v \rangle = ||v||^2 \text{ for all } v \in V.$$

Indeed, if the invariant polynomial $v \mapsto \langle v \mid v \rangle$ does not belong to the minimal system of basic invariants, we just add it. This does not change d unless d = 1. But in the latter case $V = V^G$ and there is nothing to prove. In fact, if d = 1 then the elements in a minimal system of basic invariants form a system of linear coordinates on V.

Under the assumption (2.1) the invariant σ_1 is dominant in the following sense: for all j = 1, ..., n and all $v \in V$,

(2.2)
$$|\sigma_j(v)|^{\frac{1}{d_j}} \le C |\sigma_1(v)|^{\frac{1}{d_1}} = C ||v||,$$

where $C = C(\sigma)$. Indeed, $|\sigma_j(v)| \leq \max_{\|w\|=1} |\sigma_j(w)| \|v\|^{d_j}$, by homogeneity.

2.2. **Removing fixed points.** Let V' be the orthogonal complement of V^G in V. Then we have $V = V^G \oplus V'$, $\mathbb{R}[V]^G = \mathbb{R}[V^G] \otimes \mathbb{R}[V']^G$ and $V/G = V^G \times V'/G$. The following lemma is obvious.

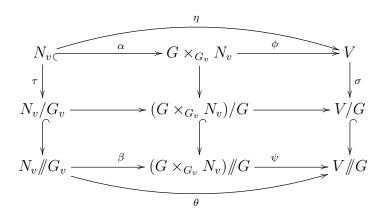
Lemma 1. Any lift \overline{c} of a curve $c = (c_0, c_1)$ in $V^G \times V'/G$ has the form $\overline{c} = (c_0, \overline{c}_1)$, where \overline{c}_1 is a lift of c_1 .

In view of Lemma 1 we may assume that

$$(2.3) V^G = \{0\}.$$

2.3. The slice theorem. For a point $v \in V$ we denote by $N_v = T_v(Gv)^{\perp}$ the normal subspace of the orbit Gv at v. It carries a natural G_v -action $G_v \circlearrowleft N_v$. The crossed product (or associated bundle) $G \times_{G_v} N_v$ carries the structure of an affine real algebraic variety as the categorical (and geometrical) quotient $(G \times N_v) /\!\!/ G_v$ with respect to the action $G_v \circlearrowleft (G \times N_v)$ given by $h(g,x) = (gh^{-1},hx)$. Denote by [g,x] the element of $G \times_{G_v} N_v$ represented by $(g,x) \in G \times N_v$. The G-equivariant polynomial mapping $\phi : G \times_{G_v} N_v \to V$, $[g,x] \mapsto g(v+x)$, where the action $G \circlearrowleft (G \times_{G_v} N_v) /\!\!/ G$ is by left multiplication on the first component, induces a polynomial mapping $\psi : (G \times_{G_v} N_v) /\!\!/ G$ sending $(G \times_{G_v} N_v) /\!\!/ G$ into V/G.

The G_v -equivariant embedding $\alpha: N_v \hookrightarrow G \times_{G_v} N_v$ given by $x \mapsto [e, x]$ induces an isomorphism $\beta: N_v /\!\!/ G_v \to (G \times_{G_v} N_v) /\!\!/ G$ mapping $N_v /\!\!/ G_v$ onto $(G \times_{G_v} N_v) /\!\!/ G$. Set $\eta = \phi \circ \alpha$ and $\theta = \psi \circ \beta$.



Theorem 3 (Cf. [21], [33]). There is an open ball $B_v \subseteq N_v$ centered at the origin such that the restriction of ϕ to $G \times_{G_v} B_v$ is an analytic G-isomorphism onto a G-invariant neighborhood of v in V. The mapping θ is a local analytic isomorphism at 0 which induces a local homeomorphism of N_v/G_v and V/G.

2.4. **Reduction.** Let $\{\tau_i\}_{i=1}^m$ be a system of generators of $\mathbb{R}[N_v]^{G_v}$ and let $\tau = (\tau_1, \dots, \tau_m)$: $N_v \to \mathbb{R}^m$ be the associated orbit mapping. Consider the slice

$$(2.4) S_v := v + B_v,$$

where B_v is the open ball from Theorem 3. As σ_i is G_v -invariant there exists $\pi_i \in \mathbb{R}[\mathbb{R}^m]$ so that

(2.5)
$$\sigma_i(x) - \sigma_i(v) = \pi_i(\tau(x - v)), \quad \text{for } x \in S_v.$$

Conversely, every G_v -invariant real analytic function in x-v can be written as a real analytic function in $\sigma(x) - \sigma(v)$ near v, by [32, p. 67], hence there is a real analytic mapping φ defined in a neighborhood of the origin in \mathbb{R}^n with values in \mathbb{R}^m such that

(2.6)
$$\tau(x-v) = \varphi(\sigma(x) - \sigma(v)),$$

for x in some neighborhood U_v of v in S_v .

Lemma 2. Let $c = (c_1, \ldots, c_n)$ be a curve in $\sigma(V)$ with $c_1 \neq 0$ and such that the curve

$$\underline{c} := \left(1, c_1^{-\frac{d_2}{d_1}} c_2, \dots, c_1^{-\frac{d_n}{d_1}} c_n\right)$$

lies in $\sigma(U_v)$. Then $\underline{c}^* := \varphi(\underline{c} - \sigma(v))$ is a curve in $\tau(U_v - v)$ and

$$c^* = (c_1^*, \dots, c_m^*) := (c_1^{\frac{e_1}{d_1}} \underline{c}_1^*, \dots, c_1^{\frac{e_m}{d_1}} \underline{c}_m^*), \quad e_i = \deg \tau_i,$$

is a curve in $\tau(N_v)$. If \overline{c}^* is a lift of c^* over τ then

$$(2.7) c_1^{\frac{1}{d_1}}v + \overline{c}^*$$

is a lift of c over σ .

Proof. Only the last statement is maybe not immediately visible. The curve $c_1^{-\frac{1}{d_1}}\overline{c}^*$ is a lift of \underline{c}^* over τ ,

$$\tau_i(c_1^{-\frac{1}{d_1}}\overline{c}^*) = c_1^{-\frac{e_i}{d_1}}\tau_i(\overline{c}^*) = c_1^{-\frac{e_i}{d_1}}c_i^* = c_i^*,$$

and so, by (2.5) and (2.6), $c_1^{-\frac{1}{d_1}} \overline{c}^* + v$ is a lift of \underline{c} over σ ,

$$\sigma(c_1^{-\frac{1}{d_1}}\overline{c}^* + v) - \sigma(v) = \pi(\tau(c_1^{-\frac{1}{d_1}}\overline{c}^* + v - v)) = \pi(\underline{c}^*) = \pi(\varphi(\underline{c} - \sigma(v))) = \underline{c} - \sigma(v).$$

By homogeneity, we find $\sigma_i(\overline{c}^* + c_1^{\frac{1}{d_1}}v) = c_1^{\frac{d_i}{d_1}}\underline{c_i} = c_i$ as required.

We can assume that φ and all its partial derivatives are separately bounded. In analogy to (2.1) we may assume that $\tau_1(x) = ||x||^2$ for all $x \in N_v$, thus $e_1 = 2$. Then the following corollary is evident.

Corollary 4. We have $|c_1^*| \leq C_0 |c_1|$, where $C_0 = \sup_y |\varphi_1(y)|$.

The set $\sigma(V)$ is closed in \mathbb{R}^n_y . Thus (2.2) implies that the set $\sigma(V) \cap \{y_1 = 1\}$ is compact. It follows that the open cover $\{\sigma(U_v)\}_{v \in V, \|v\| = 1}$ of $\sigma(V) \cap \{y_1 = 1\}$ has a finite subcover

$$\{B_{\alpha}\}_{\alpha \in \Delta} = \{\sigma(U_{v_{\alpha}})\}_{\alpha \in \Delta}.$$

The following lemma shows that the maximal degree of the basic invariants does not increase by passing to a slice representation. This was shown in [19, Lemma 2.4]; for convenience of the reader we include a short proof.

Lemma 3. Assume that $\{\tau_i\}_{i=1}^m$ is minimal and set $e := \max_i e_i = \max_i \deg \tau_i$. Then $e \leq d$.

Proof. We may assume without loss of generality that the basic invariants τ_i are ordered so that $e_1 \leq e_2 \leq \cdots \leq e_m = e$. Assume that $e_m > d$. We will show that this assumption contradicts minimality of $\{\tau_i\}_{i=1}^m$. It fact, in view of (2.5) it implies that each polynomial π_i is independent of its last entry. Thus, by (2.5) and (2.6), we have for $y \in U_v - v$,

$$\tau_m(y) = \psi_m(\tau'(y)),$$

where $\tau' := (\tau_1, \dots, \tau_{m-1})$ and $\psi_m := \varphi_m \circ \pi$. Expanding into Taylor series at 0,

$$\tau_m = T_0^\infty \psi_m \circ \tau' = T_0^e \psi_m \circ \tau',$$

we see that τ_m is a polynomial in $\tau_1, \ldots, \tau_{m-1}$ (in a neighborhood of 0 and hence everywhere in N_v). This contradicts minimality of $\{\tau_i\}_{i=1}^m$.

3. Two interpolation inequalities

We recall two classical interpolation inequalities. The first is a version of Glaeser's inequality (cf. [15]).

Lemma 4. Let $I \subseteq \mathbb{R}$ be an open interval and let $f \in C^{1,1}(\overline{I})$ be nonnegative. For any $t_0 \in I$ and M > 0 such that $I_{t_0}(M^{-1}) := \{t : |t - t_0| < M^{-1}|f(t_0)|^{\frac{1}{2}}\} \subseteq I$ and $M^2 \ge \operatorname{Lip}_{I_{t_0}(M^{-1})}(f')$ we have

$$|f'(t_0)| \le (M + M^{-1} \operatorname{Lip}_{I_{t_0}(M^{-1})}(f')) |f(t_0)|^{\frac{1}{2}} \le 2M |f(t_0)|^{\frac{1}{2}}.$$

Proof. The inequality holds true at zeros of f. Let us assume that $f(t_0) > 0$. The statement follows from

$$0 \le f(t_0 + h) = f(t_0) + f'(t_0)h + \int_0^1 (1 - s)f''(t_0 + hs) \, ds \, h^2$$

with
$$h = \pm M^{-1} |f(t_0)|^{\frac{1}{2}}$$
.

Lemma 5. Let $f \in C^{m-1,1}(\bar{I})$. There is a universal constant C = C(m) such that for all $t \in I$ and k = 1, ..., m,

$$(3.1) |f^{(k)}(t)| \le C|I|^{-k} (||f||_{L^{\infty}(I)} + \operatorname{Lip}_{I}(f^{(m-1)})|I|^{m}).$$

Proof. We may suppose $I = (-\delta, \delta)$. If $t \in I$ then at least one of the two intervals $[t, t \pm \delta)$, say $[t, t + \delta)$, is included in I. By Taylor's formula, for $t_1 \in [t, t + \delta)$,

$$\left| \sum_{k=0}^{m-1} \frac{f^{(k)}(t)}{k!} (t_1 - t)^k \right| \le |f(t_1)| + \int_0^1 \frac{(1 - s)^{m-1}}{(m-1)!} |f^{(m)}(t + s(t_1 - t))| \, ds \, (t_1 - t)^m$$

$$\le ||f||_{L^{\infty}(I)} + \operatorname{Lip}_I(f^{(m-1)}) \delta^m,$$

and for $k \leq m-1$ we may conclude by Proposition 1 below. For k=m, (3.1) is trivially satisfied.

Proposition 1. Let $P(x) = a_0 + a_1x + \cdots + a_mx^m \in \mathbb{C}[x]$ satisfy $|P(x)| \leq A$ for $x \in [0, B] \subseteq \mathbb{R}$. Then, for $j = 0, \ldots, m$,

$$|a_j| \le (2m)^{m+1} A B^{-j}$$
.

Proof. We show the lemma for A = B = 1. The general statement follows by applying this special case to the polynomial $A^{-1}P(By)$, $y = B^{-1}x$. Let $0 = x_0 < x_1 < \cdots < x_m = 1$ be equidistant points. By Lagrange's interpolation formula (e.g. [27, (1.2.5)]),

$$P(x) = \sum_{k=0}^{m} P(x_k) \prod_{\substack{j=0 \ j \neq k}}^{m} \frac{x - x_j}{x_k - x_j},$$

and therefore

$$a_j = \sum_{k=0}^m P(x_k) \prod_{\substack{j=0\\j\neq k}}^m (x_k - x_j)^{-1} (-1)^{m-j} \sigma_{m-j}^k,$$

where σ_j^k is the jth elementary symmetric polynomial in $(x_\ell)_{\ell \neq k}$. The statement follows. \square

A better constant can be obtained using Chebyshev polynomials; cf. [27, Theorems 16.3.1-2].

4. Proof of Theorem 1

Let $(G \circlearrowleft V, d, \sigma)$ satisfy (2.1) and (2.3), and let $c \in C^{d-1,1}(I, \sigma(V))$.

4.1. **Reduction to** $G \circlearrowleft (V \setminus \{0\})$. By (2.1) we have $c_1 \geq 0$ and $c_1(t) = 0$ if and only if c(t) = 0. We shall show the following statement.

Claim 1. For any relatively compact open subinterval $I_0 \subseteq I$ and any $t_0 \in I_0 \setminus c_1^{-1}(0)$, there exists a Lipschitz lift \overline{c}_{t_0} of c on a neighborhood I_{t_0} of t_0 in $I_0 \setminus c_1^{-1}(0)$ so that

$$\operatorname{Lip}_{I_{t_0}}(\overline{c}_{t_0}) \le C \left(\max_{i} \|c_i\|_{C^{d-1,1}(\overline{I}_1)}^{\frac{1}{d_i}} \right),$$

where I_1 is any open interval satisfying $I_0 \subseteq I_1 \subseteq I$ and $C = C(G \circlearrowleft V, I_0, I_1)$.

Claim 1 will imply Theorem 1 by the following lemma.

Lemma 6. Suppose that for each $t_0 \in I_0 \setminus c_1^{-1}(0)$ there exists a Lipschitz lift \overline{c}_{t_0} of c on a neighborhood I_{t_0} of t_0 in $I_0 \setminus c_1^{-1}(0)$ so that $L := \sup_{t_0 \in I_0 \setminus c_1^{-1}(0)} \operatorname{Lip}_{I_{t_0}}(\overline{c}_{t_0}) < \infty$. Then there exists a Lipschitz lift \overline{c} of c on I_0 and $\operatorname{Lip}_{I_0}(\overline{c}) \leq L$.

Proof. Let J be any connected component of $I_0 \setminus c_1^{-1}(0)$. If \bar{c}_i , i = 1, 2, are local Lipschitz lifts of c defined on subintervals (a_i, b_i) , i = 1, 2, of J with $a_1 < a_2 < b_1 < b_2$ and so that $\operatorname{Lip}_{(a_i,b_i)}(\bar{c}_i) \leq L$, i = 1, 2, then there exists a Lipschitz lift \bar{c}_{12} of c on (a_1,b_2) satisfying $\operatorname{Lip}_{(a_1,b_2)}(\bar{c}_{12}) \leq L$. To see this choose a point $t_{12} \in (a_2,b_1)$. Since $G\bar{c}_1(t_{12}) = G\bar{c}_2(t_{12})$, there exists $g_{12} \in G$ so that $\bar{c}_1(t_{12}) = g_{12}\bar{c}_2(t_{12})$. Define $\bar{c}_{12}(t) := \bar{c}_1(t)$ for $t \leq t_{12}$ and $\bar{c}_{12}(t) := g_{12}\bar{c}_2(t)$ for $t \geq t_{12}$. It is easy to see that c_{12} has the required properties (since G acts orthogonally).

These arguments imply that there exists a Lipschitz lift \overline{c}_J of c with $\operatorname{Lip}_J(\overline{c}_J) \leq L$ on each connected component J of $I_0 \setminus c_1^{-1}(0)$. Defining $\overline{c}(t) := \overline{c}_J(t)$ if $t \in J$ and $\overline{c}(t) := 0$ if $t \in c_1^{-1}(0)$, we obtain a continuous lift of c, since $c_1(t) = ||\overline{c}(t)||^2$, by (2.1). It is easy to see that $\operatorname{Lip}_{I_0}(\overline{c}) \leq L$.

Let us prove that Claim 1 and Lemma 6 imply Theorem 1. That they imply Remark 1 is obvious. Let $J_1 \subseteq J_2 \subseteq \cdots$ be a countable exhaustion of I by compact intervals so that, for all k, J_k is contained in the interior of J_{k+1} . By Claim 1 and Lemma 6, there exist lifts $\overline{c}_k: J_k \to V$, $k \ge 1$, of c and compact neighborhoods $K_k \supseteq J_k$ in I so that

$$\operatorname{Lip}_{J_k}(\bar{c}_k) \le C \left(\max_i \|c_i\|_{C^{d-1,1}(K_k)}^{\frac{1}{d_i}} \right), \quad k \ge 1,$$

for $C = C(G \circlearrowleft V, J_k, K_k)$. We may construct a $C^{0,1}$ -lift $\overline{c}: I \to V$ of c iteratively in the following way. If \overline{c} already exists on J_k we extend it on $J_{k+1} \setminus J_k$ by $g\overline{c}_{k+1}$ for suitable $g \in G$ left and right of J_k (cf. the first paragraph of the proof of Lemma 6). If $I_0 \subseteq I$ is relatively compact then $I_0 \subseteq J_N$ for some N. Thus for $t, s \in I_0$, t < s, there is a sequence $t := t_0 < t_1 < \cdots < t_\ell := s$ of endpoints t_i of the intervals J_k (except possibly t_0 and t_ℓ), elements $g_i \in G$, and $k_i \in \{1, \ldots, N\}$ so that

$$\|\overline{c}(t) - \overline{c}(s))\| \leq \sum_{i=1}^{\ell} \|g_i \overline{c}_{k_i}(t_i) - g_i \overline{c}_{k_i}(t_{i-1})\| = \sum_{i=1}^{\ell} \|\overline{c}_{k_i}(t_i) - \overline{c}_{k_i}(t_{i-1})\| \leq \max_{1 \leq k \leq N} \operatorname{Lip}_{J_k}(\overline{c}_k) |t - s|.$$

Setting $I_1 := \bigcup_{k=1}^N K_k$ we obtain (1.1).

4.2. Convenient assumption. The proof of Claim 1 will be carried out by induction on the size of G. If G and H are compact Lie groups we write H < G if and only if $\dim H < \dim G$ or, if $\dim H = \dim G$, H has fewer connected components than G.

We replace the assumption that $c \in C^{d-1,1}(I,\sigma(V))$ by a new (weaker) assumption that will be more convenient for the inductive step. Before stating it we need a bit of notation.

For open intervals I_0 and I_1 so that $I_0 \subseteq I_1 \subseteq I$, we set

$$I_i' := I_i \setminus c_1^{-1}(0), \quad i = 0, 1.$$

For $t_0 \in I_0'$ and r > 0 consider the interval

$$I_{t_0}(r) := (t_0 - r|c_1(t_0)|^{\frac{1}{2}}, t_0 + r|c_1(t_0)|^{\frac{1}{2}}).$$

Assumption. Let $I_0 \subseteq I_1$ be open intervals. Suppose that $c \in C^{d-1,1}(\overline{I}_1, \sigma(V))$ and assume that there is a constant A > 0 so that for all $t_0 \in I'_0$, $t \in I_{t_0}(A^{-1})$, $i = 1, \ldots, n$, $k = 0, \ldots, d$,

$$(A.1) I_{t_0}(A^{-1}) \subseteq I_1$$

(A.2)
$$2^{-1} \le \frac{c_1(t)}{c_1(t_0)} \le 2$$

(A.3)
$$|c_i^{(k)}(t)| \le C A^k |c_1(t)|^{\frac{d_i - k}{d_1}}$$

where $C = C(G \circlearrowleft V) \geq 1$. For k = d, (A.3) is understood to hold almost everywhere, by Rademacher's theorem.

Remark. Condition (A.3) implies that

(A.4)
$$|\partial_t^k (c_1^{-\frac{d_i}{d_1}} c_i)(t)| \le C A^k |c_1(t)|^{-\frac{k}{d_1}},$$

where $C = C(G \circlearrowleft V)$. In fact, if we assign c_i the weight d_i (and $c_1^{\frac{1}{d_1}}$ the weight 1) and let $L(x_1, \ldots, x_n, y) \in \mathbb{R}[x_1, \ldots, x_n, y, y^{-1}]$ be weighted homogeneous of degree D, then

$$\left| \partial_t^k L(c_1, \dots, c_n, c_1^{\frac{1}{d_1}})(t) \right| \le C A^k \left| c_1(t) \right|^{\frac{D-k}{d_1}},$$

for $C = C(G \circlearrowleft V, L)$.

The following two claims clearly imply Claim 1.

Claim 2. Any curve $c \in C^{d-1,1}(\overline{I}_1, \sigma(V))$ satisfying (A.1)-(A.3) has a Lipschitz lift on a neighborhood of any $t_0 \in I'_0$ with Lipschitz constant bounded from above by CA, where $C = C(G \circlearrowleft V)$.

Claim 3. If $c \in C^{d-1,1}(I,\sigma(V))$ then (A.1)-(A.3) hold for each pair of open intervals I_0 and I_1 satisfying $I_0 \in I_1 \in I$ and with $A \leq C \left(\max_i \|c_i\|_{C^{d-1,1}(\overline{I_1})}^{\frac{1}{d_i}} \right)$ for $C = C(I_0, I_1)$.

- 4.3. **Proof of Claim 2 (inductive step).** Let c, I_0 , I_1 , A, t_0 be as in the Assumption and hence satisfy (A.1)–(A.3). We will show the following.
 - For some constant $C_1 = C_1(G \circlearrowleft V) > 1$, the lifting problem for c reduces on the interval $I_{t_0}(C_1^{-1}A^{-1})$ to the lifting problem for some associated curve c^* in the orbit space of some slice representation $H \circlearrowleft W$ of $G \circlearrowleft V$ with H < G.
 - The curve c^* satisfies (A.1)–(A.3) for suitable neighborhoods J_0 , J_1 of t_0 and a constant B = C A in place of A, where $C = C(G \circlearrowleft V)$.

This will allow us to conclude Claim 2 by induction on the size of G.

Let us restrict c to $I_{t_0}(A^{-1})$ and consider

$$\underline{c} := (1, c_1^{-\frac{d_2}{d_1}} c_2, \dots, c_1^{-\frac{d_n}{d_1}} c_n) : I_{t_0}(A^{-1}) \to \sigma(V) \subseteq \mathbb{R}_{\eta}^n.$$

Then \underline{c} is continuous, by (A.2), and bounded, by (2.2). Moreover, by (A.4) and (A.2), for $t \in I_{t_0}(A^{-1})$,

$$\|\underline{c}'(t)\| \le C_1 A |c_1(t_0)|^{-\frac{1}{d_1}},$$

for $C_1 = C_1(G \circlearrowleft V)$. Consider the finite open cover $\{B_\alpha\}_{\alpha \in \Delta} = \{\sigma(U_{v_\alpha})\}_{\alpha \in \Delta}$ of the compact set $\sigma(V) \cap \{y_1 = 1\}$ from (2.8). Let $2r_1 > 0$ be a Lebesgue number of the cover $\{B_\alpha\}_{\alpha \in \Delta}$. Then for any $p \in \sigma(V) \cap \{y_1 = 1\}$ there is $\alpha_p \in \Delta$ so that

$$B_p(r_1) \cap \sigma(V) \cap \{y_1 = 1\} \subseteq B_{\alpha_p},$$

where $B_p(r_1) \subseteq \mathbb{R}^n$ is the open ball centered at p with radius r_1 . If C_1 is the constant from (4.1), then

$$J_1 := I_{t_0}(r_1 C_1^{-1} A^{-1}) \subseteq \underline{c}^{-1}(B_{c(t_0)}(r_1)).$$

By Lemma 2 the lifting problem on the interval J_1 reduces to the curve $c^* = (c_i^*)_{i=1}^m$,

(4.3)
$$c_i^* = c_1^{\frac{e_i}{d_1}} \varphi_i \left(c_1^{-\frac{d_2}{d_1}} c_2, \dots, c_1^{-\frac{d_n}{d_1}} c_n \right), \quad e_i = \deg \tau_i,$$

in $\tau(N_v)$, where $G_v \circlearrowleft N_v$ is the slice representation at $v = v_{\alpha_{g(t_0)}}$ with orbit mapping $\tau = (\tau_1, \ldots, \tau_m)$ and where the φ_i are real analytic; the first summand of (2.7) is Lipschitz with Lipschitz constant bounded from above by CA with $C = C(G \circlearrowleft V)$ thanks to (A.3). Fix $r_0 < r_1$ and set

$$J_0 := I_{t_0}(r_0 C_1^{-1} A^{-1}),$$

where C_1 is the constant from (4.1). (Here we assume without loss of generality that $r_1 < C_1$ so that $r_0 C_1^{-1} < r_1 C_1^{-1} < 1$ and hence $J_0 \subseteq J_1 \subseteq I_{t_0}(A^{-1})$.)

Let us show that the curve c^* satisfies (A.1)–(A.3) for the intervals J_1 and J_0 from (4.2) and (4.4) and a suitable constant B > 0 in place of A. To this end we set

$$J_i' := J_i \setminus (c_1^*)^{-1}(0), \quad i = 0, 1,$$

consider, for $t_1 \in J'_0$ and r > 0, the interval

$$J_{t_1}(r) := \left(t_1 - r|c_1^*(t_1)|^{\frac{1}{2}}, t_1 + r|c_1^*(t_1)|^{\frac{1}{2}}\right),\,$$

and prove the following lemma.

Lemma 7. There is a constant $C = C(G \circlearrowleft V, r_1, r_0) > 1$ such that for B = CA and for all $t_1 \in J'_0$, $t \in J_{t_1}(B^{-1})$, $i = 1, \ldots, m, k = 0, \ldots, d$,

$$(B.1) J_{t_1}(B^{-1}) \subseteq J_1$$

(B.2)
$$2^{-1} \le \frac{c_1^*(t)}{c_1^*(t_1)} \le 2$$

(B.3)
$$|(c_i^*)^{(k)}(t)| \le \tilde{C} B^k |c_1^*(t)|^{\frac{e_i - k}{e_1}}$$

where $\tilde{C} = \tilde{C}(G \circlearrowleft V)$.

Proof. If

$$B \ge (r_1 - r_0)^{-1} \sqrt{2 C_0} C_1 A$$

where C_0 and C_1 are the constants from Corollary 4 and (4.1), respectively, then by Corollary 4 and (A.2),

$$B^{-1}|c_1^*(t_1)|^{\frac{1}{2}} \le (r_1 - r_0) C_1^{-1} A^{-1} |c_1(t_0)|^{\frac{1}{2}},$$

and so (B.1) follows from (4.2) and (4.4), as $t_1 \in J_0$.

Next we claim that, on J_1 ,

$$\left| \partial_t^k \varphi_i \left(c_1^{-\frac{d_2}{d_1}} c_2, \dots, c_1^{-\frac{d_n}{d_1}} c_n \right) \right| \le C A^k \left| c_1 \right|^{-\frac{k}{d_1}},$$

for $C = C(G \circlearrowleft V)$. To see this we differentiate the following equation (k-1) times, apply induction on k, and use (A.4),

$$(4.6) \partial_t \varphi_i \left(c_1^{-\frac{d_2}{d_1}} c_2, \dots, c_1^{-\frac{d_n}{d_1}} c_n \right) = \sum_{i=1}^n (\partial_j \varphi_i) (\underline{c}) \, \partial_t \left(c_1^{-\frac{d_j}{d_1}} c_j \right);$$

recall that all partial derivatives of the φ_i 's are separately bounded on $\underline{c}(J_1)$ and these bounds are universal. From (4.3) and (4.5) we obtain, on J_1 and for all $i = 1, \ldots, m, k = 0, \ldots, d$,

$$|(c_i^*)^{(k)}| \le C A^k |c_1|^{\frac{e_i - k}{d_1}},$$

for $C = C(G \circlearrowleft V)$, and so, by Corollary 4 and as $d_1 = e_1 = 2$,

$$|(c_i^*)^{(k)}| \le C A^k |c_1^*|^{\frac{e_i - k}{e_1}} \quad \text{if } e_i - k \le 0,$$

for $C = C(G \circlearrowleft V)$. This shows (B.3) for $k \geq e_i$, and (B.3) for k = 0 follows from (2.2). The remaining inequalities, i.e., (B.3) for $0 < k < e_i$ as well as (B.2), follow now from Lemma 8 below (since $d \geq e = \max_i e_i$, by Lemma 3).

Lemma 8. There is a constant $C = C(G \circlearrowleft V) \geq 1$ such that the following holds. If (A.1) and (A.3) for k = 0 and $k = d_i$, i = 1, ..., n, are satisfied, then so are (A.2) and (A.3) for $k < d_i$, i = 1, ..., n, after replacing A by CA.

Proof. By assumption $\operatorname{Lip}_{I_{t_0}(A^{-1})}(c_1') \leq C A^2$, where C is the constant from (A.3). Thus, by Lemma 4 for $f = c_1$ and $M = C^{\frac{1}{2}}A$, we get

$$|c_1'(t_0)| \le 2M|c_1(t_0)|^{\frac{1}{2}}.$$

It follows that, for $t \in I_{t_0}((6M)^{-1})$,

$$(4.9) \qquad \frac{|c_1(t) - c_1(t_0)|}{|c_1(t_0)|} \le \frac{|c_1'(t_0)|}{|c_1(t_0)|} |t - t_0| + \int_0^1 (1 - s)|c_1''(t_0 + s(t - t_0))|ds| \frac{|t - t_0|^2}{|c_1(t_0)|} \le \frac{1}{2}$$

which implies (A.2). The other inequalities follow from Lemma 5.

We may now finish the proof of Claim 2. By assumption (2.3), $V^G = \{0\}$ and thus $G_v < G$. The inductive hypothesis yields a Lipschitz lift \overline{c}^* of c^* over τ with Lipschitz constant bounded from above by CB, for $C = C(G_v \circlearrowleft N_v)$. By Lemma 1 and (4.8) for $e_i = k = 1$ (the basic invariants of $G_v \circlearrowleft N_v^{G_v}$ form a system of linear coordinates on $N_v^{G_v}$), we can assume that $N_v^{G_v} = \{0\}$. By Lemma 2,

$$c_1^{\frac{1}{d_1}}v + \overline{c}^*$$

is a lift of c over σ . Thanks to (A.3) for i=k=1 and since there are only finitely many isomorphism types of slice representations, this lift is Lipschitz with Lipschitz constant bounded from above by CA, for $C=C(G \circlearrowleft V)$. This ends the proof of Claim 2.

4.4. **Proof of Claim 3.** Let δ denote the distance between the endpoints of I_0 and those of I_1 . Set

(4.10)
$$A_{1} := \max \left\{ \delta^{-1} \|c_{1}\|_{L^{\infty}(I_{1})}^{\frac{1}{2}}, (\operatorname{Lip}_{I_{1}}(c'_{1}))^{\frac{1}{2}} \right\}$$
$$A_{2} := \max_{i} \left\{ M_{i} \|c_{1}\|_{L^{\infty}(I_{1})}^{\frac{d-d_{i}}{2}} \right\}^{\frac{1}{d}}, \quad M_{i} := \operatorname{Lip}_{I_{1}}(c_{i}^{(d-1)}),$$

and choose

$$(4.11) A \ge A_0 = 6 \max\{A_1, A_2\}.$$

To have (A.1) and (A.2) it suffices to assume $A \ge 6A_1$. For $t_0 \in I'_0$ obviously $I_{t_0}(A_1^{-1}) \subseteq I_1$ and thus (A.1). Then Lemma 4 implies

$$|c_1'(t_0)| \le 2A_1 |c_1(t_0)|^{\frac{1}{2}},$$

and so, for $t_0 \in I_0'$ and $t \in I_{t_0}((6A_1)^{-1})$, (4.9) and hence (A.2) holds. Finally, Lemma 5, (2.2), and (A.2) imply (A.3) for $t \in I_{t_0}(A^{-1})$.

4.5. Bounds for the Lipschitz constant. Let $(G \circlearrowleft V, d, \sigma)$ satisfy (2.1) and (2.3), let $c \in C^{d-1,1}(I, \sigma(V))$, and let $I_0 \subseteq I$. Then there is a neighborhood I_1 of I_0 with $I_0 \subseteq I_1 \subseteq I$ such that the lift $\overline{c} \in C^{0,1}(I, V)$ constructed in the above proof satisfies

$$(4.12) \quad \operatorname{Lip}_{I_{0}}(\overline{c}) \leq C(G \circlearrowleft V) \max \left\{ \delta^{-1} \|c_{1}\|_{L^{\infty}(I_{1})}^{\frac{1}{2}}, \left(\operatorname{Lip}_{I_{1}}(c'_{1})\right)^{\frac{1}{2}}, \max_{i} \left\{ M_{i} \|c_{1}\|_{L^{\infty}(I_{1})}^{\frac{d-d_{i}}{2}} \right\}^{\frac{1}{d}} \right\}$$

$$\leq C(G \circlearrowleft V, I_{0}, I_{1}) \left(\max_{i} \|c_{i}\|_{C^{d-1,1}(\overline{I}_{1})}^{\frac{1}{d_{i}}} \right)$$

$$\leq C(G \circlearrowleft V, I_{0}, I_{1}) \left(1 + \max_{i} \|c_{i}\|_{C^{d-1,1}(\overline{I}_{1})} \right)$$

where δ is the distance between the endpoints of I_0 and those of I_1 , and $M_i = \text{Lip}_{I_1}(c_i^{(d-1)})$. This follows from Claim 2, (4.10), (4.11), and Lemma 6.

5. Proof of Theorem 2

Let $(G \circlearrowleft V, d, \sigma)$ satisfy (2.1) and (2.3), and let $c \in C^d(I, \sigma(V))$. In the proof of Theorem 2, induction on the size of G will provide us with local lifts of class C^1 near points where c is not flat (in the sense that they are not of Case 2 of Subsection 5.5). Moreover, we shall see that the derivatives of these local lifts converge to 0 as t tends to flat points. This faces us with the problem of gluing these local lifts. We tackle this problem first.

5.1. Algorithm for local lifts. We choose a finite cover $\{GU_{v_{\alpha}}\}_{{\alpha}\in\Delta}$ of a neighborhood of the sphere $S(V)=c_1^{-1}(1)$ in V so that U_v is transverse to all the orbits in $GU_{v_{\alpha}}$ with the angle very close to $\pi/2$. It induces a cover of $\sigma(V) \cap \{y_1=1\}$,

$$\{B_{\alpha}\}_{{\alpha}\in\Delta} = \{\sigma(U_{v_{\alpha}})\}_{{\alpha}\in\Delta},$$

in analogy to (2.8).

Lemma 2 provides an algorithm for the construction of a lift of c. After removing the fixed points, see Subsection 2.2, we lift c restricted to $I' := \{t \in I : c_1(t) \neq 0\}$ and then extend it trivially to $\{t \in I : c_1(t) = 0\}$. For this we consider

$$\underline{c} := (1, c_1^{-\frac{d_2}{d_1}} c_2, \dots, c_1^{-\frac{d_n}{d_1}} c_n).$$

For each connected component I_1 of the induced cover $\{\underline{c}^{-1}(B_{\alpha})\}_{{\alpha}\in\Delta}$ of I' we lift $c|_{I_1}$ to the slice N_v , $v=v_{\alpha}$, using Lemma 2 and hence the induction. This reduction ends when $\underline{c}(I)\subseteq B_{\alpha}$ with B_{α} in the open stratum (where we keep the notation \underline{c} , I, and B_{α} for the respective reduced objects).

Thus for any $t_0 \in I$ there is a neighborhood I_{t_0} and a lift \bar{c} of c on I_{t_0} that is entirely contained in an affine transverse slice to the orbit over $c(t_0)$ that is close to the normal slice $S_{\bar{c}(t_0)}$ from (2.4). (Note that the orbit over $0 \in \sigma(V)$ is just the origin in V and every slice is a neighborhood of the origin.)

This picture is not complete. One needs to make precise how these local lifts are glued together.

5.2. Change of slice diffeomorphisms. Fix $v \in V$ and let S_v be the normal slice of the orbit Gv at v; see (2.4). Let $H = G_v$ and fix a local analytic section $\varphi_H : G/H \to G$ of the principal bundle $G \to G/H$ such that $\varphi_H([e]) = e$. Then

(5.1)
$$\Phi_v: G/H \times S_v \to V, \quad \Phi_v([g], x) = \varphi_H([g])x$$

is a local diffeomorphism and $\Phi_v([e], v) = v$. Indeed, Φ_v equals the following composition

$$G/H \times S_v \xrightarrow{\alpha} G \times_{G_v} S_v \xrightarrow{\phi} V,$$

where $\phi: G \times_{G_v} S_v \to V$, $[g, x] \mapsto gx$, is the slice mapping from Theorem 3, and $\alpha([g], x)$ is the class of $(\varphi_H([g]), x)$. Then α is a diffeomorphism with the inverse

$$\alpha^{-1}([q,x]) = \alpha^{-1}([qq^{-1}\varphi_H([q]), (\varphi_H([q]))^{-1}qx]) = ([q], (\varphi_H([q]))^{-1}qx).$$

Let M_v be another affine transverse slice at v, and we suppose that the angle between N_v and M_v is small. The second coordinate of the inverse of Φ_v restricted to M_v gives a local diffeomorphism

$$h_{M_v}: M_v \to S_v$$
.

The first coordinate of the inverse of Φ_v composed with φ_H gives a mapping

$$s_{M_v}: M_v \to G$$

such that

$$h_{M_n}(x) = (s_{M_n}(x))^{-1}x.$$

By (5.1) the partial derivatives of s_{M_v} and h_{M_v} can be bounded in terms of the partial derivatives of φ_H and the angle between N_v and M_v .

Remark 2. The above construction is uniform in the following sense. If $v' = g_0 v$ then $H = G_v$ and $H' = G_{v'}$ are conjugate, $H' = g_0 H g_0^{-1}$. Conjugation by g_0 on G induces an

isomorphism $G/H \to G/H'$, $[g]_H \mapsto [g_0gg_0^{-1}]_{H'}$. Given φ_H we define $\varphi_{H'}$ by the following diagram.

$$G \xrightarrow{\operatorname{conj}_{g_0}} G$$

$$\varphi_H \left(\bigvee \qquad \qquad \downarrow \right) \varphi_{H'}$$

$$G/H \xrightarrow{\cong} G/H'$$

Thus if we fix φ_H for each conjugacy class and suppose the angle between N_v and M_v is small we obtain bounds on the derivatives of s_{M_v} and h_{M_v} independent of v (valid in a neighborhood of v whose size depends on the orbit Gv).

5.3. Gluing the local lifts. Suppose that there are local lifts \bar{c}_1 and \bar{c}_2 of c resulting from the algorithm described in Subsection 5.1 such that the respective domains of definition I_1 and I_2 have nontrivial intersection. Fix $t_0 \in I_1 \cap I_2$. We may assume that $\bar{c}_1(t_0) = \bar{c}_2(t_0)$ and denote this vector by v. Then, by construction, there exist a neighborhood I_{t_0} of t_0 in $I_1 \cap I_2$ and slices M_v^1 and M_v^2 transverse to Gv containing $\bar{c}_1(I_{t_0})$ and $\bar{c}_2(I_{t_0})$, respectively. Then, by Subsection 5.2,

$$I_{t_0} \ni t \mapsto h_{M_n^i}(\overline{c}_i(t)), \quad i = 1, 2,$$

are two lifts of c on I_{t_0} contained in S_v . If we moreover assume that $c(I_{t_0})$ belongs to a single stratum, then these two lifts coincide (since all orbits of type (G_v) meet S_v in a single point), and thus, for $t \in I_{t_0}$,

$$(5.2) s_{M_v^1}(\bar{c}_1(t))^{-1} \ \bar{c}_1(t) = s_{M_v^2}(\bar{c}_2(t))^{-1} \ \bar{c}_2(t).$$

Then, there is a universal constant C > 0 such that for i = 1, 2 and $t \in I_{t_0}$

$$(5.3) |\partial_t s_{M_v^i}(\overline{c}_i(t))| \le C \max \|\overline{c}_i'(t)\|.$$

Lemma 9. Let $K \subseteq J \subseteq I$ be intervals and let $s: J \to G$ be of class C^1 . Then there is $\tilde{s}: I \to G$ of class C^1 such that

- (i) $s|_{K} = \tilde{s}|_{K}$.
- (ii) $||s'||_{L^{\infty}(K)} = ||\tilde{s}'||_{L^{\infty}(I)}$.
- (iii) \tilde{s} is constant on each component of $I \setminus J$.

Proof. We may extend $s|_K$ through the endpoints of $K=(t_-,t_+)$ using the exponential mapping in the direction $s'(t_\pm)$. More precisely, for the right endpoint t_+ set $g=s(t_+)\in G$ and $s'(t_+)=T_e\mu_g.X$ for $X\in\mathfrak{g}$ (where $\mu_g(h)=gh$ denotes left translation on G), and define

$$\tilde{s}(t) = g \exp(\varphi(t - t_+)X),$$

where $\varphi(t) = \int_0^t \psi(u) du$ for

$$\psi(t) = \begin{cases} 1 & t \le 0 \\ 1 - \frac{t}{\delta} & 0 \le t \le \delta \\ 0 & t \ge \delta \end{cases}$$

and where δ denotes the distance of the right endpoints of K and J.

Fix an open interval $K \subseteq I_{t_0}$, $t_0 \in K$. By Lemma 9, we may extend each $s_{M_i}(\bar{c}_i(t))$ to a C^1 map $s_i: I_i \to G$ that coincides with $s_{M_n^i}(\bar{c}_i(t))$ on K and is constant in the complement of I_{t_0} . Let us then shrink I_1 and I_2 so that their union $I_1 \cup I_2$ does not change but $I_1 \cap I_2 = K$. Then we set

$$\overline{c}(t) := s_{M_v^i}(\overline{c}_i(t))^{-1} \overline{c}_i(t), \quad \text{if } t \in I_i, \ i = 1, 2,$$

which is well-defined by (5.2). Moreover,

$$||\overline{c}'(t)|| \le C \max\{||\overline{c}'_1(t)||, ||\overline{c}'_2(t)||\}, \quad t \in I_1 \cup I_2,$$

for a universal constant C > 0, where we set $\overline{c}'_i(t) := 0$ if $t \notin I_i$.

5.4. pC^m-functions. Later in the proof we shall need a result on functions defined near $0 \in \mathbb{R}$ that become C^m when multiplied with the monomial t^p .

Definition. Let $p, m \in \mathbb{N}$ with $p \leq m$. A continuous complex valued function f defined near $0 \in \mathbb{R}$ is called a ${}^{p}C^{m}$ -function if $t \mapsto t^{p}f(t)$ belongs to C^{m} .

Let $I \subseteq \mathbb{R}$ be an open interval containing 0. Then $f: I \to \mathbb{C}$ is ${}^pC^m$ if and only if it has the following properties, cf. [35, 4.1], [30, Satz 3], or [31, Theorem 4]:

- $f \in C^{m-p}(I)$.
- $f|_{I\setminus\{0\}} \in C^m(I\setminus\{0\})$. $\lim_{t\to 0} t^k f^{(m-p+k)}(t)$ exists as a finite number for all $0 \le k \le p$.

Proposition 2. If $g = (g_1, \ldots, g_n)$ is ${}^pC^m$ and F is C^m near $g(0) \in \mathbb{C}^n$, then $F \circ g$ is ${}^pC^m$.

Proof. Cf. [31, Theorem 9] or [29, Proposition 3.2]. Clearly g and $F \circ g$ are C^{m-p} near 0 and C^m off 0. By Faà di Bruno's formula [13], for $1 \le k \le p$ and $t \ne 0$,

$$\frac{t^{k}(F \circ g)^{(m-p+k)}(t)}{(m-p+k)!} = \sum_{\ell \geq 1} \sum_{\alpha \in A} \frac{t^{k-|\beta|}}{\ell!} d^{\ell} F(g(t)) \left(\frac{t^{\beta_{1}} g^{(\alpha_{1})}(t)}{\alpha_{1}!}, \dots, \frac{t^{\beta_{\ell}} g^{(\alpha_{\ell})}(t)}{\alpha_{\ell}!} \right)
A := \{ \alpha \in \mathbb{N}^{\ell}_{>0} : \alpha_{1} + \dots + \alpha_{\ell} = m - p + k \}
\beta_{i} := \max\{ \alpha_{i} - m + p, 0 \}, \quad |\beta| = \beta_{1} + \dots + \beta_{\ell} \leq k,$$

whose limit as $t \to 0$ exists as a finite number by assumption.

5.5. **End of proof.** We distinguish three kinds of points $t_0 \in I$:

Case 0: $c_1(t_0) \neq 0$, or

Case 1: $c_1(t_0) = 0$, thus $c'_1(t_0) = 0$ by (2.1), and $c''_1(t_0) \neq 0$, or

Case 2: $c_1(t_0) = c'_1(t_0) = c''_1(t_0) = 0$.

Near points of Case 0 there are local C^1 -lifts, by the algorithm in Subsection 5.1.

Let us prove that we also have local C^1 -lifts near points t_0 of Case 1. For simplicity of notation let $t_0 = 0$. Then $c_1(t) \sim t^2$ and hence $c_i(t) = O(t^{d_i})$. Therefore,

$$\underline{c}(t) := \left(t^{-2}c_1(t), t^{-d_2}c_2(t), \dots, t^{-d_n}c_n(t)\right) : I_1 \to \sigma(V) \subseteq \mathbb{R}^n,$$

defined on a neighborhood I_1 of 0, is continuous. By Lemma 2 the lifting problem reduces to the curve $c^* = (c_i^*)_{i=1}^m$,

(5.5)
$$c_i^*(t) = t^{e_i} \varphi_i (t^{-2} c_1(t), t^{-d_2} c_2(t), \dots, t^{-d_n} c_n(t)), \quad e_i = \deg \tau_i,$$

in the orbit space $\tau(N_v)$ of any slice representation $G_v \circlearrowleft N_v$ so that $v \in \sigma^{-1}(\underline{c}(0))$. Then c_i^* is of class C^{e_i} at 0, by Proposition 2, and of class C^d in the complement of 0. After removing fixed points of $G_v \circlearrowleft N_v$, we may assume that the curve

$$\underline{c}^*(t) := \left(t^{-e_1}c_1^*(t), t^{-e_2}c_2^*(t), \dots, t^{-e_m}c_m^*(t)\right)$$

in $\tau(N_v)$ vanishes at t=0, since $\underline{c}(0)=\sigma(v)$ (cf. (2.6)). Thus $c_i^*(t)=o(t^{e_i})$, for all i.

Lemma 10. In this situation, for any $\varepsilon > 0$ there is a neighborhood I_{ε} of 0 in I such that for every $t_0 \in I_{\varepsilon} \setminus \{0\}$ the assumptions (A.1)–(A.3) are satisfied for the reduced curve c^* from (5.5) with $A \leq \varepsilon$.

Proof. Here we have to deal with the fact that c^* is not necessarily of class C^e . Let $I_0 = (-\delta, \delta)$ and $I_1 = (-2\delta, 2\delta)$. Since $(c_1^*)''(0) = 0$ and $c_1^*(t)$ is of class C^2 , the constant A_1 of (4.10) for c^* can be chosen arbitrarily small. This is what we need to get (A.1)–(A.2) with arbitrarily small A.

We have $c_i^* \in C^{e_i}$ near 0 (and $c_i^* \in C^d$ off 0) and $(c_i^*)^{(k)}(0) = 0$ for all $k \leq e_i$. Therefore for an arbitrary A > 0 there is a neighborhood I_1 in which (A.3) holds for all i and $k = e_i$, and then, by Lemma 8, in a smaller neighborhood, for all i and all $k \leq e_i$.

Finally, given A > 0 we show (A.3) for $k > e_i$ and δ sufficiently small. Let \hat{A} denote the constant A for which (A.1)–(A.3) holds for c. By (4.7), for some constant $C = C(G \circlearrowleft V)$,

$$|(c_i^*)^{(k)}(t)| \le C\hat{A}^k |c_1(t)|^{\frac{e_i-k}{2}} \le C\hat{A}^k \psi(t)|c_1^*(t)|^{\frac{e_i-k}{2}},$$

which gives the required result since $\psi(t) = |c_1^*(t)/c_1(t)|^{\frac{k-e_i}{2}} = o(1)$ for $k > e_i$.

By induction, we may conclude from Lemma 10 that there is a C^1 -lift near 0.

We may now glue the local lifts, according to Subsection 5.3. Let J be a connected component of the complement I' of the flat points (i.e., the points in Case 2). Then there exists an open cover $\mathcal{J} = \{J_i\}_{i \in \mathbb{Z}}$ of J, with C^1 -lifts \overline{c}_i of $c|_{J_i}$, and such that $J_i \cap J_j \neq \emptyset$ if and only if $|i-j| \leq 1$. By Subsection 5.3 we may assume that there are C^1 -maps $s_{i,\pm}: J_i \to G$ such that on $J_i \cap J_{i+1}$

(5.6)
$$s_{i,+}(t) \ \overline{c}_i(t) = s_{i+1,-}(t) \ \overline{c}_{i+1}(t).$$

Moreover, by Lemma 9, we may assume that there is $t_i \in J_i \setminus (J_{i-1} \cup J_{i+1})$ such that both $s_{i,\pm}$ are constant, say equal $g_{i,\pm}$, in a neighborhood J_{t_i} of t_i . Thus we may glue $g_{i,-}^{-1}s_{i,-}$ and $g_{i,+}^{-1}s_{i,+}$ into a single map $s_i: J_i \to G$ that equals $g_{i,-}^{-1}s_{i,-}$ for $t \leq t_i$ and $g_{i,+}^{-1}s_{i,+}$ for $t \geq t_i$. Then

(5.7)
$$g_{i,+}s_i(t) \ \overline{c}_i(t) = g_{i+1,-}s_{i+1}(t) \ \overline{c}_{i+1}(t).$$

Lemma 11. There are $h_i \in G$ such that

(5.8)
$$h_i s_i(t) \ \overline{c}_i(t) = h_{i+1} s_{i+1}(t) \ \overline{c}_{i+1}(t).$$

Proof. In view of (5.7) it suffices to find h_i such that $g_{i+1,-}^{-1}g_{i,+} = h_{i+1}^{-1}h_i$. So we may fix $h_0 = e$ and then define them inductively by $h_{i+1} = h_i g_{i+1}^{-1} g_{i+1,-}$.

(Note that the existence of such h_i simply means that the cocycle $g_{i+1,-}^{-1}g_{i,+}$ is a Čech coboundary, that is clear because $\check{H}^1(\mathcal{J};G)=0$.)

In this way we obtain a C^1 -lift \overline{c} of c restricted to I' with the property that $\|\overline{c}'(t)\|$ is dominated (up to a universal constant) by A_0 defined by (4.11), thanks to (5.4). The lift \overline{c} extends trivially to flat points t_0 from Case 2. At each such point t_0 , \overline{c} is differentiable with $\overline{c}'(t_0) = 0$. It remains to check that $\overline{c}'(t) \to 0$ as $t \to t_0$. This is a consequence of the following lemma, where without loss of generality $t_0 = 0$.

Lemma 12. If $c_1(0) = c_1'(0) = c_1''(0) = 0$, then for any $\varepsilon > 0$ there is $\delta > 0$ such that for $I_0 = (-\delta, \delta)$, $I_1 = (-2\delta, 2\delta)$, and A_0 defined by (4.11) we have $A_0 \le \varepsilon$.

Proof. This follows immediately from the formulas (4.11) and (4.10).

The proof of Theorem 2 is complete.

6. Real analytic lifts

It was shown in [1] that a real analytic curve $c \in C^{\omega}(I, \sigma(V))$ admits local real analytic lifts near every point $t_0 \in I$, and that the local lifts can be glued to a global real analytic lift if $G \circlearrowleft V$ is polar. We will now show that real analytic gluing is always possible.

Theorem 4. Let $(G \circlearrowleft V, d, \sigma)$ be a real finite dimensional orthogonal representation of a compact Lie group. Then any $c \in C^{\omega}(I, \sigma(V))$ admits a lift $\overline{c} \in C^{\omega}(I, V)$.

Proof. The local lifts can be glued thanks to the fact that

$$\check{H}^1(I, G^a) = 0,$$

where G^a denotes the sheaf of real analytic maps $I \supseteq U \to G$. This is a deep result, suggested by Cartan in [7], [8], and proven by Tognoli [37].

Indeed, let $\mathcal{I} = \{I_i\}$ be a locally finite cover of I with real analytic lifts \bar{c}_i of $c|_{I_i}$ (which exist by the result of [1]). Then, by Lemma 3.8 of [1], we may assume that if $I_i \cap I_j \neq \emptyset$ then there is real analytic $s_{ij}: I_i \cap I_j \to G$ such that on $I_i \cap I_j$

$$s_{ij}\overline{c}_i = \overline{c}_j.$$

By (6.1), after replacing \mathcal{I} by its refinement if necessary, there are real analytic $h_i: I_i \to G$ such that $s_{ij} = h_j^{-1} h_i$ on $I_i \cap I_j$ and then

$$\overline{c}(t) = h_i(t)\overline{c}_i(t), \text{ if } t \in I_i,$$

defines a global lift.

REFERENCES

- [1] D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor, *Lifting smooth curves over invariants for representations of compact Lie groups*, Transform. Groups **5** (2000), no. 2, 103–110.
- [2] E. Bierstone, Lifting isotopies from orbit spaces, Topology 14 (1975), no. 3, 245–252.
- [3] J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand. **20** (1967), 249–268.
- [4] J.-M. Bony, Sommes de carrés de fonctions dérivables, Bull. Soc. Math. France 133 (2005), no. 4, 619–639.
- [5] J.-M. Bony, F. Broglia, F. Colombini, and L. Pernazza, *Nonnegative functions as squares or sums of squares*, J. Funct. Anal. **232** (2006), no. 1, 137–147.

- [6] M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh. 20 (1979), no. 3, 493–501, 690, English transl. in Siberian Math. J. 20 (1980), 347–352.
- [7] H. Cartan, Espaces fibrés analytiques, Séminaire Bourbaki, Vol. 4, Soc. Math. France, Paris, 1956 1958, pp. Exp. No. 137, 7–18.
- [8] ______, Sur les fonctions de plusieurs variables complexes: les espaces analytiques, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 33–52.
- [9] F. Colombini, N. Orrù, and L. Pernazza, On the regularity of the roots of hyperbolic polynomials, Israel J. Math. 191 (2012), 923–944.
- [10] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125–137.
- [11] J. Dadok and V. Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504-524.
- [12] H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002, Encyclopaedia of Mathematical Sciences, 130.
- [13] C. F. Faà di Bruno, Note sur une nouvelle formule du calcul différentielle, Quart. J. Math. 1 (1855), 359–360.
- [14] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. **75** (1978), no. 10, 4673–4674.
- [15] G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), no. 2, 203–210.
- [16] P. Guan, C² a priori estimates for degenerate Monge-Ampère equations, Duke Math. J. 86 (1997), no. 2, 323–346.
- [17] A. Kriegl, M. Losik, and P. W. Michor, *Choosing roots of polynomials smoothly. II*, Israel J. Math. **139** (2004), 183–188.
- [18] A. Kriegl, M. Losik, P. W. Michor, and A. Rainer, Lifting smooth curves over invariants for representations of compact Lie groups. II, J. Lie Theory 15 (2005), no. 1, 227–234.
- [19] _____, Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory 16 (2006), no. 3, 579–600.
- [20] _____, Addendum to: "Lifting smooth curves over invariants for representations of compact Lie groups. III" [J. Lie Theory 16 (2006), no. 3, 579–600], J. Lie Theory 22 (2012), no. 1, 245–249.
- [21] D. Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81–105. Bull. Soc. Math. France, Paris, Mémoire 33.
- [22] T. Mandai, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. (1985), no. 21, 115–118.
- [23] P. W. Michor, *Topics in differential geometry*, Graduate Studies in Mathematics, vol. 93, American Mathematical Society, Providence, RI, 2008.
- [24] D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108–116.
- [25] J. A. Navarro González and J. B. Sancho de Salas, C^{∞} -differentiable spaces, Lecture Notes in Mathematics, vol. 1824, Springer-Verlag, Berlin, 2003.
- [26] A. Parusiński and A. Rainer, A new proof of Bronshtein's theorem, to appear in J. Hyperbolic Differ. Equ., arXiv:1309.2150.
- [27] Q. I. Rahman and G. Schmeisser, *Analytic theory of polynomials*, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press Oxford University Press, Oxford, 2002.
- [28] A. Rainer, Perturbation theory for normal operators, Trans. Amer. Math. Soc. **365** (2013), no. 10, 5545–5577.
- [29] _____, Differentiable roots, eigenvalues, and eigenvectors, Israel J. Math. 201 (2014), no. 1, 99–122.
- [30] K. Reichard, Algebraische Beschreibung der Ableitung bei q-mal stetig-differenzierbaren Funktionen, Compositio Math. 38 (1979), no. 3, 369–379.
- [31] _____, Roots of differentiable functions of one real variable, J. Math. Anal. Appl. **74** (1980), no. 2, 441–445.
- [32] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68.

- [33] _____, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. (1980), no. 51, 37–135.
- [34] K. Spallek, Differenzierbare Räume, Math. Ann. 180 (1969), 269–296.
- [35] _____, Abgeschlossene Garben differenzierbarer Funktionen, Manuscripta Math. 6 (1972), 147–175.
- [36] C.-L. Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geom. 21 (1985), no. 1, 79–107.
- [37] A. Tognoli, Sulla classificazione dei fibrati analitici reali E-principali, Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 75–86.
- [38] S. Wakabayashi, Remarks on hyperbolic polynomials, Tsukuba J. Math. 10 (1986), no. 1, 17–28.
- [39] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. **71** (1912), 441–479 (German).

Adam Parusiński: Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06108 Nice, France

E-mail address: adam.parusinski@unice.fr

ARMIN RAINER: FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, OSKAR-MORGENSTERN-PLATZ 1, A-1090 WIEN, AUSTRIA

E-mail address: armin.rainer@univie.ac.at