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Abstract. The Borel problem for Denjoy–Carleman and Braun–Meise–

Taylor classes has well-known optimal solutions. The unified treatment of
these ultradifferentiable classes by means of one-parameter families of weight

sequences allows to compare these optimal solutions. We determine the rela-

tions among them and give conditions for their equivalence in the Roumieu
case.

1. Introduction

The Borel map j∞ : C∞(R) → CN takes a smooth function f to its infinite
jet (f (n)(0))n∈N at 0. We will be concerned with the restriction of j∞ to Denjoy–
Carleman classes E{M}(R), Braun–Meise–Taylor classes E{ω}(R), and, most gener-
ally, classes E{M}(R), where M is a one-parameter family of weight sequences. We
will only treat the Roumieu case in this paper; the Beurling case will be discussed
in a separate paper. The j∞-image of any of these ultradifferentiable classes sits in
a sequence space Λ{M}, Λ{ω}, and Λ{M} defined by analogous bounds. The (mixed)
Borel problem asks for conditions for the validity of the inclusion

(1.1) Λ{weight′} ⊆ j∞E{weight}(R)

in any of the above cases, where different weights may appear on the left and on
the right.

For Denjoy–Carleman and Braun–Meise–Taylor classes the optimal solution to
this problem is well-known:

(1) Let M be a non-quasianalytic weight sequence. If M ′ is a suitable other

weight sequence, then Λ{M ′} ⊆ j∞E{M}(R) is equivalent to a condition
(namely (4.1)) purely in terms of M ′,M which we denote by M ′ ≺SV

M ; see [26]. There is an explicit positive sequence L = L(M) such that
L ≺SV M , that is Λ{L} ⊆ j∞E{M}(R), and L is optimal with respect to
this property; see [24].

(2) The condition M ′ ≺γ1
M (see (4.4)) is generally stronger than M ′ ≺SV M ;

it plays a crucial role in the more general Whitney problem [5, 7, 13, 20, 18].
In many important cases the conditions are equivalent. There is an explicit
weight sequence S = S(M) such that S ≺γ1

M and S is optimal with
respect to this property; see [20].
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(3) Let ω be a non-quasianalytic weight function. If ω′ is a suitable other weight

function, then Λ{ω′} ⊆ j∞E{ω}(R) is equivalent to a condition (namely
(2.2)) purely in terms of ω′, ω which we denote by ω′ ≺st ω. There is
an explicit weight function κ = κ(ω) such that κ ≺st ω, that is Λ{κ} ⊆
j∞E{ω}(R), and κ is optimal with respect to this property; see [3]. The
condition ω′ ≺st ω is also crucial in the respective Whitney problem [1, 22,
23, 17, 18].

(4) Beside these optimal solutions there is Carleson’s solution [6] based on a
universal moment problem. It gives a sequence Q = Q(M) (but is also
intimately related with (3)) such that Λ{Q} ⊆ j∞E{M}(R).

The assumption that the weight on the right-hand side of (1.1) is non-quasianalytic
is no restriction: it is a necessary consequence of the inclusion (1.1) (for germs at
0) if the involved classes strictly contain the real analytic class; see [21] and [18,
Section 5].

The use of one-parameter families M of weight sequences admits an efficient
unified treatment of Denjoy–Carleman and Braun–Meise–Taylor classes alike. In
fact, for a weight function ω there is a canonical well-behaved family M = Mω such
that Λ{ω} = Λ{M} and E{ω}(R) = E{M}(R) as locally convex spaces; cf. [19]. It
also abolishes the borders between the four listed solutions and begs the question
about the relationships among them.

In this note we answer this question. Given a suitable family M we lift the
derived weights L, S, κ, and Q to the level of families of sequences L, S, K, and
Q and clarify the relations among them. While the construction of L and S is
straightforward, K and Q are obtained by a more convoluted procedure involving
the interplay between weight sequences M ∈ M and their associated functions ωM ,
κωM

, and PωM
. In summary we find, provided thatM andM′ satisfy some standard

conditions,

Λ{S} ⊆ Λ{K} = Λ{Q} ⊆ Λ{L} ⊆ Λ{L} ⊆ j∞E{M}(R),

Λ{M′} ⊆ j∞E{M}(R) =⇒ Λ{M′} ⊆ Λ{L},
(1.2)

underlining the overall optimality of L in regard of the mixed Borel problem; here
L is obtained from L by passing to the log-convex minorants of the sequences in L.

In the most important Braun–Meise–Taylor case we prove that, for each non-
quasianalytic weight function ω,

Λ{κ} = Λ{K} = Λ{Q} = Λ{L},(1.3)

where the families L, K, and Q are derived from the canonical associated family
Mω. So in this case optimality in the mixed Borel problem is achieved by all these
different approaches. In view of the inherent regularity properties of κ it is not too
surprising that we have to pass from L which might be quite irregular to L.

After recalling background on weights and function and sequence spaces in Sec-
tion 2 we review Carleson’s solution to the Borel problem in Section 3 and adapt
it to our setting. In Section 4 we prove (1.2) and give sufficient conditions for
equality everywhere in (1.2). The consequences for the classical cases of Braun–
Meise–Taylor and Denjoy–Carleman classes are discussed in Section 5. The proof
of (1.3) relies on a variant of a result of [3] which we prove in Appendix A.
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2. Weights

2.1. Weight functions. Let ω : [0,∞) → [0,∞) be a continuous increasing func-
tion satisfying ω(0) = 0 and limt→∞ ω(t) = ∞. We call ω a pre-weight function if
additionally

• log(t) = o(ω(t)) as t → ∞,
• φω : t 7→ ω(et) is convex.

A pre-weight function ω is a weight function if it also fulfills

• ω(2t) = O(ω(t)) as t → ∞.

Another important condition is

(2.1) ∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.

Given two pre-weight functions ω, σ we write σ ⪯ ω if ω(t) = O(σ(t)) as t → ∞
and call ω and σ equivalent if σ ⪯ ω and ω ⪯ σ. Note that ⪯ induces a partial order
on the set of equivalence classes. Any equivalence class [ω] contains a pre-weight
function ω̃ with ω̃|[0,1] = 0; we say that ω̃ is normalized. We will often tacitly
assume that this property is satisfied.

Also note that if one representative in [ω] is a weight function then all represen-
tatives are weight functions.

A pre-weight function ω is called non-quasianalytic if∫ ∞

0

ω(t)

1 + t2
dt < ∞

and quasianalytic otherwise. If ω is a non-quasianalytic pre-weight function, then
we may consider

κω(t) :=

∫ ∞

1

ω(ts)

s2
ds = t

∫ ∞

t

ω(s)

s2
ds, t ≥ 0,

which turns out to be a concave weight function satisfying κω(t) = o(t) as t → ∞
and ω ≤ κω (which entails κω ⪯ ω) since ω is increasing; it might be quasianalytic.
Note that if σ and ω are equivalent, then so are κσ and κω.

The importance of κω relies on its optimality with respect to the Borel problem
[3]: Given that ω′, ω are weight functions, ω non-quasianalytic, ω′(t) = o(t) as

t → ∞, then Λ{ω′} ⊆ j∞E{ω}(R) if and only if ω′ ⪯ κω, i.e.,

(2.2) ∃C > 0 ∀t ≥ 0 :

∫ ∞

1

ω(ts)

s2
ds ≤ Cω′(t) + C;

we will write ω′ ≺st ω for (2.2). This induces a relation on the equivalence classes
of pre-weight functions which is antisymmetric, since ω′ ≺st ω implies ω′ ⪯ ω,
and transitive (indeed, ω1 ≺st ω0 and ω2 ≺st ω1 yield ω2 ⪯ κω1

⪯ ω1 ⪯ κω0

so that ω2 ≺st ω0). The pre-weight functions ω that satisfy ω ≺st ω, that is
Λ{ω} = j∞E{ω}(R), are often called strong weight functions; being equivalent to
κω they actually are weight functions.

For any pre-weight function ω we consider the Young conjugate of φω,

φ∗
ω(x) := sup{xy − φω(y) : y ≥ 0}, x ≥ 0.

It is convex, increasing, and satisfies (φ∗
ω)

∗ = φω, φ
∗
ω(t)/t ↗ ∞ as t → ∞, and

φ∗
ω(0) = 0 (provided that ω is normalized).



4 D.N. NENNING, A. RAINER, AND G. SCHINDL

2.2. Weight sequences. A positive sequence M = (Mk)k≥0 is called a weight
sequence if Mk = µ0µ1 · · ·µk, where 1 = µ0 ≤ µ1 ≤ · · · ≤ µk−1 ≤ µk ↗ ∞. That µ

is increasing amounts to log-convexity of M . We have M
1/k
k ↗ ∞. If even µk/k is

increasing, we say that M is strongly log-convex.
For two positive sequences M,N we write M ⪯ N if

sup
k≥1

(Mk

Nk

)1/k

< ∞,

and we call M and N equivalent, if M ⪯ N and N ⪯ M . The relation M ⪯ N
induces a partial order on the set of equivalence classes.

Note that ifM is log-convex and µk ↗ ∞ then the equivalence class [M ] contains

a weight sequence M̃ . That means M̃ also satisfies 1 = M̃0 ≤ M̃1.
A weight sequence M is called non-quasianalytic, if

∞∑
k=1

1

µk
< ∞

and quasianalytic otherwise. We say that M has moderate growth if

∃C ≥ 1 ∀j, k ∈ N : Mj+k ≤ Cj+kMjMk.

2.3. Associated function. With a positive sequence M satisfying M
1/k
k → ∞ we

associate (cf. [14, Chapitre I] and [12, Definition 3.1]) the function ωM : [0,∞) →
[0,∞) defined by

ωM (t) := sup
k∈N

log
( tkM0

Mk

)
, for t > 0, ωM (0) := 0.

Lemma 2.1 (Cf. [8, Lemma 2.4] and [9, Lemma 3.1]). For a weight sequence M :

(1) ωM is a pre-weight function.
(2) M has moderate growth if and only if ωM satisfies (2.1).
(3) (Mk/k!)

1/k → ∞ if and only if ωM (t) = o(t) as t → ∞.

The log-convex minorant M of a positive sequence M satisfying M
1/k
k → ∞ is

given by

(2.3) Mk := M0 sup
t≥0

tk

eωM (t)
, k ∈ N.

We have M
1/k
k → ∞ and if L ≤ M is log-convex then L ≤ M ≤ M .

2.4. Weight matrices. Cf. [19, Section 4]. A weight matrix M = {M (x) : x ∈
R>0} is a one parameter family of weight sequences M (x) such that M (x) ≤ M (y)

if x ≤ y. Weight matrices are a convenient technical tool for working with weight
functions:

Lemma 2.2 ([19, Section 5]). With every normalized pre-weight function ω one
can associate a weight matrix M = Mω := {M (x) : x > 0} by setting

(2.4) M
(x)
k := exp

( 1

x
φ∗
ω(xk)

)
.

ω is non-quasianalytic if and only if some/each M (x) is non-quasianalytic. All
weight sequences M (x) are equivalent if and only if ω satisfies (2.1) which in turn
is equivalent to some/each M (x) having moderate growth.
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If ω is even a weight function, then

(2.5) ∀h ≥ 1 ∃A ≥ 1 ∀x > 0 ∃D ≥ 1 ∀k ∈ N : hkM
(x)
k ≤ DM

(Ax)
k .

If ω is not normalized, we still define Mω by (2.4), but 1 = M
(x)
0 ≤ M

(x)
1 might

fail.

A weight matrix M is called non-quasianalytic if all M ∈ M are non-
quasianalytic.

Let M and N be weight matrices. We write M{⪯}N if

∀M ∈ M ∃N ∈ N : M ⪯ N

and say that M and N are R-equivalent if M{⪯}N and N{⪯}M. Note that if there
exists a non-quasianalytic M ∈ M, then there is a non-quasianalytic weight matrix
R-equivalent to M.

A weight matrix M is said to have R-moderate growth if

∀M ∈ M ∃N ∈ M ∃C ≥ 1 ∀j, k ∈ N : Mj+k ≤ Cj+kNjNk.

Note that Mω has R-moderate growth; see [19].
We remark that the prefix “R-” and the brackets “{·}” indicate that the no-

tions are tied to the Roumieu case; they have Beurling-relatives which will not be
discussed in this paper.

2.5. Function and sequence spaces. Let M be a positive sequence. For σ > 0
and n ∈ N we define the Banach space

EM
σ ([−n, n]) :=

{
f ∈ C∞([−n, n]) : sup

x∈[−n,n], k∈N

|f (k)(x)|
σkMk

< ∞
}

and the Denjoy–Carleman classes of Roumieu type

E{M}(R) := projn∈N indσ∈N EM
σ ([−n, n]).

Let M be a directed family of positive sequences. We set

E{M}(R) := projn∈N indσ∈N indM∈M EM
σ ([−n, n]).

Let ω be a normalized pre-weight function. We define

Eω
σ ([−n, n]) :=

{
f ∈ C∞([−n, n]) : sup

x∈[−n,n], k∈N

|f (k)(x)|
e

1
σφ∗

ω(σk)
< ∞

}
and the Braun–Meise–Taylor class of Roumieu type

E{ω}(R) := projn∈N indσ∈N Eω
σ ([−n, n]).

The corresponding sequence spaces are defined as follows:

ΛM
σ :=

{
a ∈ CN : sup

k∈N

|ak|
σkMk

< ∞
}
, Λω

σ :=
{
a ∈ CN : sup

k∈N

|ak|
e

1
σφ∗

ω(σk)
< ∞

}
,

Λ{M} := indσ∈N ΛM
σ , Λ{M} := indM∈M Λ{M}, Λ{ω} := indσ∈N Λω

σ .

By Lemma 2.2 (and [19]), we always have E{ω}(R) ⊆ E{Mω}(R) and Λ{ω} ⊆ Λ{Mω}

and topological isomorphisms E{ω}(R) = E{Mω}(R) and Λ{ω} = Λ{Mω} if ω is even
a weight function.
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The order relations ⪯ and {⪯} on the weights reflect inclusion relations of the
corresponding function and sequence spaces. In particular, for positive sequences
M ′,M we have

M ′ ⪯ M ⇐⇒ Λ{M ′} ⊆ Λ{M},

M ′ ⪯ M =⇒ E{M ′}(R) ⊆ E{M}(R),

and provided that M ′ is a weight sequence

M ′ ⪯ M ⇐= E{M ′}(R) ⊆ E{M}(R).

So equivalent weights determine the same function and sequence space. For details
we refer to [19] and [18].

3. On Carleson’s solution of the Borel problem

3.1. A moment problem. Let ω be a non-quasianalytic pre-weight function
which we extend to R by setting ω(t) := ω(|t|). (It is easy to check thatW := exp ◦ω
satisfies the assumptions in [6].)

The harmonic extension

Pω(x+ iy) :=

{
|y|
π

∫∞
−∞

ω(t)
(x−t)2+y2 dt if y ̸= 0

ω(x) if y = 0

is continuous on C and harmonic in the upper and lower halfplane. By [6, (2.3)]
(see also [3, Lemma 3.3]),

max
x2+y2≤r2

Pω(x+ iy) ≤ Pω(ir) =
r

π

∫ ∞

−∞

ω(t)

t2 + r2
dt =

2

π

∫ ∞

0

ω(rs)

1 + s2
ds

≤ 2

π

(
ω(r) +

∫ ∞

1

ω(rs)

s2
ds
)
=

2

π
(ω(r) + κω(r)) ≤

4

π
κω(r).

On the other hand,

κω(r) =

∫ ∞

1

ω(rs)

s2
ds ≤ 2

∫ ∞

1

ω(rs)

1 + s2
ds ≤ 2

∫ ∞

0

ω(rs)

1 + s2
ds = πPω(ir).

We see that

(3.1) Pω(ir) ≤
4

π
κω(r) ≤ 4Pω(ir), r > 0.

We define

(3.2) Qk := sup
r>0

rk+
1
2

e
1
2Pω(ir)

, k ∈ N.

Let Fω be the space of measurable functions f : R → R such that

∥f∥2ω :=

∫ ∞

−∞
|f(t)|2e−ω(t) dt < ∞.

Fix a positive real sequence λ = (λk)k∈N and let Sλ be the space of sequences
s = (sk)k∈N such that

∥s∥2λ :=

∞∑
k=0

|sk|2

λ2
k

< ∞.
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Theorem 3.1 ([6, Theorem 1]). For each s ∈ Sλ there exists f ∈ Fω with

Lk(f) :=

∫ ∞

−∞
f(t)tke−ω(t) dt = sk, k ∈ N,

provided that
∞∑
k=0

( λk

Qk

)2

< ∞.

3.2. A solution of the Borel problem. Let M be a non-quasianalytic weight
sequence and ωM the associated function. Then

ω̃M (t) := ωM (t) + log(1 + t2)

is a non-quasianalytic pre-weight function that is equivalent to ωM .
Let M = {M (α) : α > 0} be a non-quasianalytic weight matrix. For α > 0 and

j ∈ N set

κα := κω̃
M(α)

and K
(α)
j := exp(φ∗

κα
(j)).

Then K(α) = (K
(α)
j ) is a weight sequence by the properties of the Young conjugate

and K = K(M) := {K(α) : α > 0} is a weight matrix. (Strictly speaking, we take a

normalized representative in the equivalence class of κα in order to have 1 = K
(α)
0 ≤

K
(α)
1 .) On the other hand we have the collection Q = Q(M) := {Q(α) : α > 0},

where Q(α) is the sequence defined in (3.2) with Pω replaced by

Pα := Pω̃
M(α)

.

Lemma 3.2. Let M be a non-quasianalytic weight matrix. Then K = K(M) is a

weight matrix such that (K
(α)
j /j!)1/j → ∞ and K

(α)
j /M

(α)
j is bounded for all α > 0.

Proof. That K is a weight matrix is an easy consequence of the definitions. Now
ωK(α) is equivalent to κα, by [19, Lemma 5.7], and κα(t) = o(t) as t → ∞ which

shows (K
(α)
j /j!)1/j → ∞, by Lemma 2.1. Finally, ωM(α) ≤ ω̃M(α) ≤ κα implies

K(α) ≤ M (α) in view of (2.3). □

Lemma 3.3. Let M be a non-quasianalytic weight matrix of R-moderate growth.
Then K = K(M) has R-moderate growth which is equivalent to

(3.3) ∀α > 0 ∃β > 0 ∃H ≥ 1 ∀t ≥ 0 : 2κβ(t) ≤ κα(Ht) +H.

Proof. That M has R-moderate growth is, by [25, Proposition 3.6], equivalent to

(3.4) ∀α > 0 ∃β > 0 ∃H ≥ 1 ∀t ≥ 0 : 2ωM(β)(t) ≤ ωM(α)(Ht) +H.

Since ω̃M(α) is equivalent to ωM(α) , this implies by iteration that

∀α > 0 ∃β > 0 ∃H ≥ 1 ∀t ≥ 0 : 2ω̃M(β)(t) ≤ ω̃M(α)(Ht) +H.

Thus (3.3) holds:

2κβ(r) = 2

∫ ∞

1

ω̃M(β)(rt)

t2
dt ≤

∫ ∞

1

ω̃M(α)(Hrt)

t2
dt+H

∫ ∞

1

1

t2
dt = κα(Hr) +H.

To see that (3.3) is equivalent to K having R-moderate growth observe that, for
each α > 0, κα is equivalent to ωK(α) , by [19, Lemma 5.7], and use the remark at
the beginning of the proof. □
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Proposition 3.4. Let M be a non-quasianalytic weight matrix of R-moderate
growth. Then K = K(M) and Q = Q(M) are R-equivalent.

Proof. Let α > 0 be fixed. By (3.1) and (3.3), there are β > 0 and H ≥ 1 such that

1

2
Pβ(it) ≤ 2κβ(t) ≤ κα(Ht) +H, t > 0.

Then, using without loss of generality κα|[0,1] = 0,

Q(β)
n = sup

r>0

rn+
1
2

e
1
2Pβ(ir)

≥ 1

eH
sup
r>0

rn+
1
2

eκα(Hr)
=

1

Hn+ 1
2 eH

sup
s>0

sn+
1
2

eκα(s)

=
1

Hn+ 1
2 eH

sup
s≥1

sn+
1
2

eκα(s)
≥ 1

Hn+ 1
2 eH

sup
s≥1

sn

eκα(s)
=

1

Hn+ 1
2 eH

K(α)
n ,

that is K(α) ⪯ Q(β). Again by (3.1) and (3.3), there are β > 0 and H ≥ 1 such
that

κβ(t) ≤
1

8
κα(Ht) +

H

8
≤ 1

2
Pα(iHt) +

H

8
, t > 0.

Thus, using κβ |[0,1] = 0,

Q(α)
n = Hn+ 1

2 sup
r>0

rn+
1
2

e
1
2Pα(iHr)

≤ Hn+ 1
2 e

H
8 sup

r>0

rn+
1
2

eκβ(r)
= Hn+ 1

2 e
H
8 sup

r≥1

rn+
1
2

eκβ(r)

≤ Hn+ 1
2 e

H
8 sup

r≥1

rn+1

eκβ(r)
= Hn+ 1

2 e
H
8 K

(β)
n+1.

Since K has R-moderate growth we are done. □

The following theorem is a simple generalization of [6, Theorem 2].

Theorem 3.5. Let M be a non-quasianalytic weight matrix of R-moderate growth
and consider K = K(M) and Q = Q(M). Then Λ{K} = Λ{Q} ⊆ j∞E{M}(R).

Proof. The identity Λ{K} = Λ{Q} is a consequence of Proposition 3.4. Let a ∈ Λ{Q},

i.e., there exist α,C, ρ > 0 such that |an| ≤ CρnQ
(α)
n for all n. Set sn := (3ρi)−nan

and λn := 2−nQ
(α)
n . By Theorem 3.1, there exists f ∈ Fω̃

M(α)
such that Ln(f) = sn

for all n. The function

g(t) :=

∫ ∞

−∞
e3ρixtf(x)e−ω̃

M(α) (x) dx

fulfills j∞g = a and belongs to E{M}(R). Indeed,

|g(n)(t)| ≤ (3ρ)n
∫ ∞

−∞
|x|n|f(x)|e−ω̃

M(α) (x) dx

≤ (3ρ)n∥f∥ω̃
M(α)

(∫ ∞

−∞
x2ne−ω̃

M(α) (x) dx
)1/2

and

x2ne−ω̃
M(α) (x) =

x2n

exp(ωM(α)(x))

1

1 + x2
≤ 1

1 + x2
sup
x≥0

x2n

exp(ωM(α)(x))
=

M
(α)
2n

1 + x2
.
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Since M has R-moderate growth, there exist β > 0 and H ≥ 1 such that M
(α)
2n ≤

Hn(M
(β)
n )2 for all n. Thus

|g(n)(t)| ≤ (3ρ
√
H)n∥f∥ω̃

M(α)
M (β)

n

(∫ ∞

−∞

1

1 + x2
dx

)1/2

,

that is g ∈ E{M}(R). □

4. Other derived weights related to the Borel problem

4.1. Optimal solution of the Borel problem. Let M be a non-quasianalytic
weight sequence and M ′ a positive sequence. The condition that gives the optimal
solution in the Borel problem is

(4.1) ∃s ∈ N≥1 : sup
j∈N≥1

sup0≤i<j

( M ′
j

sjMi

)1/(j−i)

j

∑
k≥j

1

µk
< ∞

which we abbreviate by M ′ ≺SV M :

Theorem 4.1 ([26], [10, Theorem 3.2], [24, Theorem 2.2]). Let M be
a non-quasianalytic weight sequence and M ′ a positive sequence such that
lim infk→∞(M ′

k/k!)
1/k > 0. Then Λ{M ′} ⊆ j∞E{M}(R) if and only if M ′ ≺SV M .

In the listed references also the assumption M ′ ⪯ M (or even a stronger assump-
tion) is made. But note that, by [24, Lemma 3.2],

(4.2) M ′ ≺SV M =⇒ M ′ ⪯ M,

and clearly also Λ{M ′} ⊆ j∞E{M}(R) implies M ′ ⪯ M so that Theorem 4.1 holds
as stated without the additional assumption M ′ ⪯ M .

We remark that ≺SV induces a relation on the set of equivalence classes of weight
sequences M such that lim infk→∞(Mk/k!)

1/k > 0 which is antisymmetric and
transitive (indeed, M1 ≺SV M0 and M2 ≺SV M1 imply Λ{M2} ⊆ j∞E{M1}(R) ⊆
j∞E{M0}(R) by (4.2) and so M2 ≺SV M0 by Theorem 4.1).

Theorem 4.2. Let M be a non-quasianalytic weight matrix and M′ a one-
parameter family of positive sequences such that lim infk→∞(M ′

k/k!)
1/k > 0 for

all M ′ ∈ M′. Then the following conditions are equivalent:

(1) Λ{M′} ⊆ j∞E{M}(R).
(2) ∀M ′ ∈ M′ ∃M ∈ M : M ′ ≺SV M .

Proof. Theorem 4.1 yields that (2) is equivalent to

(3) ∀M ′ ∈ M′ ∃M ∈ M : Λ{M ′} ⊆ j∞E{M}(R).
That (3) implies (1) is clear. To see that (1) implies (3) let M ′ ∈ M′ and note

that we may assume that M = {M (n) : n ∈ N≥1}. By (1), ΛM ′

1 ⊆ j∞D{M}([−1, 1])
(by multiplication with a suitable cutoff function), where

D{M}([−1, 1]) := indn∈N≥1
DM(n)

n ([−1, 1])

and DM(n)

n ([−1, 1]) := {f ∈ EM(n)

n ([−1, 1]) : supp(f) ⊆ [−1, 1]}. By Grothendieck’s

factorization theorem [15, 24.33], ΛM ′

1 ⊆ j∞DM(n)

n ([−1, 1]) for some n. This

inclusion implies Λ{M ′} ⊆ j∞E{M(n)}(R) and hence (3) is proved. Indeed, if

a = (ak) ∈ Λ{M ′} then a ∈ ΛM ′

ρ for some ρ > 0 and hence b := (ρ−kak) ∈ ΛM ′

1 .
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There exists g ∈ DM(n)

n ([−1, 1]) with b = j∞g so that f(x) := g(ρx) ∈ E{M(n)}(R)
satisfies a = j∞f . □

Corollary 4.3. Let M be a non-quasianalytic weight matrix of R-moderate growth
and consider K = K(M). Then ∀α > 0 ∃β > 0 : K(α) ≺SV M (β).

Proof. This follows from Lemma 3.2, Theorem 3.5, and Theorem 4.2. □

4.2. The derived sequence L. Let M be a non-quasianalytic weight sequence.
We define the sequence L = L(M) by setting

(4.3) Lk := min
0≤j<k

(( k∑
ℓ≥k µ

−1
ℓ

)k−j

Mj

)
, k ≥ 1, L0 := 1.

The importance of L relies on its optimality with respect to · ≺SV M (cf.
[24, Theorem 3.3]): We have L ≺SV M and if M ′ is a positive sequence with
lim infk→∞(M ′

k/k!)
1/k > 0 and M ′ ≺SV M then M ′ ⪯ L ⪯ M . If M ′ is log-convex

we also have M ′ ⪯ L ⪯ M , where L is the log-convex minorant of L. We remark
that (Lk/k!)

1/k → ∞; see [24, Lemma 3.2].

Lemma 4.4. If M ⪯ N are two non-quasianalytic weight sequences, then L(M) ⪯
L(N) and L(M) ⪯ L(N).

Proof. By Theorem 4.1, L(M) ≺SV M implies L(M) ≺SV N and so L(M) ⪯ L(N)
by the optimality. Passing to the log-convex minorant preserves the order relation,
see [19, Lemma 2.6]. □

4.3. The derived sequence S. Let M be a non-quasianalytic weight sequence
and M ′ a positive sequence. We consider the relation M ′ ≺γ1

M defined by

(4.4) sup
j∈N≥1

µ′
j

j

∑
k≥j

1

µk
< ∞.

Let us recall a construction (see [20, Section 4.1], [11, Remark 9], and also [16])
which yields a weight sequence that is optimal with respect to · ≺γ1

M in the
following sense. The strongly log-convex weight sequence S = S(M) defined by
Sk = σ0σ1 · · ·σk, where σ0 := 1 and

σk := τ1
k

τk
, τk :=

k

µk
+

∑
ℓ≥k

1

µℓ
, k ≥ 1,

satisfies σ ≲ µ, S ≺γ1
M , and if M ′ is another weight sequence satisfying µ′ ≲ µ

and M ′ ≺γ1
M then µ′ ≲ σ; see [20, Lemma 4.2]. Note that σ ≲ µ means that σ/µ

is bounded and implies S ⪯ M .
We have S(M) ⪯ L(M), since M ′ ≺γ1 M implies M ′ ≺SV M ; cf. [10, Lemma

2.4] and [26].
Suppose that also M ′ is a weight sequence and µ′ ≤ µ. Then M ′ ≺γ1

M implies
ωM ′ ≺st ωM , see [22, Lemma 5.7]. If M ′ additionally has moderate growth, then

M ′ ≺SV M ⇐⇒ M ′ ≺γ1
M ⇐⇒ ωM ′ ≺st ωM ;

cf. [10, Lemma 5.8] and [24, Remark 2.1]. So ≺γ1 induces a relation on equivalence
classes of positive sequences which is always antisymmetric and becomes transitive
if we restrict to weight sequences of moderate growth.
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In light of this it is important to know under which circumstances the derived
sequence S has moderate growth. This is the case if M has moderate growth and
also under the weaker condition

(4.5) lim inf
j→∞

µj

j

∑
k≥2j

1

µk
> 0;

see [11, Lemma 6]. In that case S and L are equivalent, see [24, Theorem 3.11].

4.4. Relations among the derived sequences. Let M = {M (α) : α > 0} be a
non-quasianalytic weight matrix and K = {K(α) : α > 0} the derived weight matrix
from Section 3.2. For each M (α) we consider the derived sequences S(α), L(α), and

L(α) (the log-convex minorant of L(α)) and the families

S = {S(α) : α > 0}, L = {L(α) : α > 0}, L = {L(α) : α > 0}.

Formally, these collections are not weight matrices as defined above, but their

deficiencies are minor and carry no weight. We have S(α) ⪯ L(α) ≤ L(α) for each
α > 0.

Theorem 4.5. Let M be a non-quasianalytic weight matrix of R-moderate growth.
Then the derived families satisfy S{⪯}K{⪯}L{⪯}L.

Proof. Let us first show K{⪯}L. By Corollary 4.3, for each α > 0 there is β > 0
such that K(α) ≺SV M (β) and thus K(α) ⪯ L(β) by optimality. Since K(α) is

log-convex, we also have K(α) ⪯ L(β).
For S{⪯}K observe that for each α > 0 we may assume that σ(α) ≤ µ(α) by

dividing σ(α) by a suitable constant. Then ωS(α) ≺st ωM(α) holds (cf. Section 4.3),
i.e., ωS(α) ⪯ κα, since κα and κω

M(α)
are equivalent. By [19, Lemma 5.7], ωK(α) is

equivalent to κα so that ωK(α) ≤ CωS(α) + C for some positive integer C. Then

S(α)
n = sup

t≥0

tn

exp(ωS(α)(t))
≤ e sup

t≥0

tn

exp(C−1ωK(α)(t))

= e
(
sup
t≥0

tCn

exp(ωK(α)(t))

)1/C

= e(K
(α)
Cn )

1/C .

There exists β > 0 such that S(α) ⪯ K(β), since K has R-moderate growth, by
Lemma 3.3. Since L{⪯}L is obvious, we are done. □

We may now complete the proof of (1.2): Let M be a non-quasianalytic weight
matrix of R-moderate growth. Then Proposition 3.4, Theorem 4.1, Theorem 4.2,
and Theorem 4.5 yield the sequence of inclusions in the first line of (1.2).

Suppose that M′ is a one-parameter family of positive sequences such that
lim infk→∞(M ′

k/k!)
1/k > 0 for all M ′ ∈ M′ and Λ{M′} ⊆ j∞E{M}(R). Then

for each M ′ ∈ M′ there is M ∈ M such that M ′ ≺SV M , by Theorem 4.2, and
hence M ′ ⪯ L(M), by optimality. That means M′{⪯}L and the second line in
(1.2) is proved.

4.5. Sufficient conditions for R-equivalence of the derived families S, K
and L.
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Theorem 4.6. Let M = {M (α) : α > 0} be a non-quasianalytic weight matrix of
R-moderate growth such that µ(α) ≤ µ(β) if α ≤ β and

(4.6) ∀α > 0 ∃β > 0 : lim inf
k→∞

µ
(β)
k

k

∑
j≥k

1

µ
(α)
j

> 0.

Assume that the derived family S has the property

(4.7) ∀α > 0 ∃β > 0 ∃A ≥ 1 ∀j ∈ N≥1 : σ
(α)
j ≤ A(S

(β)
j )1/j .

Then S, K, L, and L are R-equivalent.

Proof. By Theorem 4.5, it suffices to show L{⪯}S. Let α > 0 be fixed. By (4.6),
there exist β > 0 and C ≥ 1 such that

k

µ
(β)
k

≤ C
∑
j≥k

1

µ
(α)
j

.

We may assume that α ≤ β and hence µ(α) ≤ µ(β). Thus we get

τ
(β)
k =

k

µ
(β)
k

+
∑
j≥k

1

µ
(β)
j

≤ (C + 1)
∑
ℓ≥k

1

µ
(α)
ℓ

and consequently,
k

σ
(β)
k

≤ D
∑
ℓ≥k

1

µ
(α)
ℓ

.

Then, by (4.7), there exist γ > 0 and A ≥ 1 such that

(L
(α)
k )1/k ≤ k∑

ℓ≥k(µ
(α)
ℓ )−1

≤ Dσ
(β)
k ≤ AD(S

(γ)
k )1/k

and we are done. □

The conclusion of Theorem 4.6 (invoking Theorem 3.5) means that

Λ{S} = Λ{K} = Λ{Q} = Λ{L} = Λ{L}.

So under the assumption of the theorem all presented solutions to the mixed Borel
problem coincide with the optimal one; cf. Section 4.2. We shall see in Theo-
rem 5.5 that for non-quasianalytic Braun–Meise–Taylor classes similarly optimality
is achieved by the different approaches leading to Λ{κ}, Λ{K} = Λ{Q}, and Λ{L}.

Remark 4.7. Let us discuss what R-equivalence of S, K, L, and L implies for M.
In view of Theorem 4.5, this means that for each α > 0 there exists β > 0 such

that (L
(α)
k )1/k ≲ (S

(β)
k )1/k. Since (S

(β)
k )1/k ≤ σ

(β)
k = τ

(β)
1

k

τ
(β)
k

, we may infer(( k∑
ℓ≥k(µ

(α)
ℓ )−1

)k−jk
M

(α)
jk

)1/k

≲
k

τ
(β)
k

,

where jk is an integer 0 ≤ j < k where the minimum in the definition of L
(α)
k is

attained. A simple conversion of terms gives(1
k

∑
ℓ≥k

1

µ
(α)
ℓ

)jk/k

(M
(α)
jk

)1/k ≲
1

τ
(β)
k

∑
ℓ≥k

1

µ
(α)
ℓ
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and so, by the definition of τ
(β)
k ,(1

k

∑
ℓ≥k

1

µ
(α)
ℓ

)jk/k

(M
(α)
jk

)1/k ≲
µ
(β)
k

k

∑
ℓ≥k

1

µ
(α)
ℓ

.

We see that (4.6) would follow if the left-hand side is bounded away from zero.

In the following lemma we give conditions purely for M which imply the assump-
tions of Theorem 4.6. Notice however that (4.9) seems to be quite restrictive.

Lemma 4.8. Let M = {M (α) : α > 0} be a non-quasianalytic weight matrix such
that µ(α) ≤ µ(β) if α ≤ β,

(4.8) ∀α > 0 ∃β > 0 : lim inf
k→∞

µ
(β)
k

k

∑
j≥2k

1

µ
(α)
j

> 0,

and

(4.9) ∀α > 0 ∃β > 0 ∃A ≥ 1 ∀j ∈ N : (µ
(α)
j )2 ≤ Aµ

(β)
2j .

Then (4.6) and (4.7) hold.

Proof. Obviously, (4.8) implies (4.6). Next we claim that (4.8) implies

(4.10) ∀α > 0 ∃β > 0 ∃B ≥ 1 ∀j ∈ N : τ
(β)
j ≤ Bτ

(α)
2j .

Indeed,

τ
(β)
j =

j

µ
(β)
j

+
∑
k≥2j

1

µ
(β)
k

+
∑

j≤k<2j

1

µ
(β)
k

≤ 2j

µ
(β)
j

+
∑
k≥2j

1

µ
(β)
k

≤ C
∑
k≥2j

1

µ
(α)
k

+
∑
k≥2j

1

µ
(β)
k

≤ (C + 1)
∑
k≥2j

1

µ
(α)
k

≤ (C + 1)τ
(α)
2j .

Consequently, since τ
(α)
j is decreasing,

B2j(τ
(α)
1 )j(τ

(α)
j )j ≥ B2jτ

(α)
1 · · · τ (α)2j

≥ B2j(τ
(α)
2 )2(τ

(α)
4 )2 · · · (τ (α)2j )2 ≥ (τ

(β)
1 · · · τ (β)j )2.

Now (4.9) implies that there exist γ > 0 and A ≥ 1 such that

(τ
(β)
j )2 ≥ j2

(µ
(β)
j )2

+
∑
k≥j

1

(µ
(β)
k )2

≥ 1

2A

2j

µ
(γ)
2j

+
1

A

∑
k≥j

1

µ
(γ)
2k

≥ 1

2A

( 2j

µ
(γ)
2j

+
∑
k≥2j

1

µ
(γ)
k

)
=

1

2A
τ
(γ)
2j .

In view of (4.10) there exist δ > 0 and D ≥ 1 such that τ
(γ)
2j ≥ 1

D τ
(δ)
j . Thus

B2j(τ
(α)
1 )j(τ

(α)
j )j ≥ (τ

(β)
1 · · · τ (β)j )2 ≥ (2AD)−jτ

(δ)
1 · · · τ (δ)j .

It is easy to see that σ
(α)
j ≤ A(S

(δ)
j )1/j is equivalent to

τ
(δ)
1 · · · τ (δ)j ≤ Ãj(τ

(α)
j )j

and hence the statement is proved. □
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5. Classical cases

5.1. Braun–Meise–Taylor classes. The goal of this section is to show that, for
any non-quasianalytic weight function ω,

Λ{κ} = Λ{K} = Λ{Q} = Λ{L},

where κ = κω and the families K, Q, and L are derived from M = Mω.

Proposition 5.1. Let ω be a non-quasianalytic weight function, κ = κω, and
K = K(Mω). Then Λ{κ} = Λ{K}.

Proof. Now κ and κα are equivalent for all α > 0, since ω and ωM(α) are, by [19,
Lemma 5.7]. So there is C ∈ N≥1 such that κα ≤ Cκ+ C. Let H = Hκ = {H(α) :
α > 0} be the weight matrix associated with κ (cf. Lemma 2.2). Then, for α = 1,
assuming that κ and κ1 are normalized,

H
(1)
j = exp(φ∗

κ(j)) = sup
t≥0

tj

exp(κ(t))
≤ e sup

t≥0

tj

exp( 1
Cκ1(t))

= e(K
(1)
Cj )

1/C .

For x ∈ N≥1, we conclude H
(x)
j = (H

(1)
xj )

1/x ≤ e1/x(K
(1)
Cxj)

1/(Cx) and thus H{⪯}K,
since K has R-moderate growth.

We also have κ ≤ Cκα+C for some C ∈ N≥1 so that an analogous computation

gives K
(α)
j ≤ e(H

(1)
Cj )

1/C and hence K{⪯}H, since H has R-moderate growth. □

As a technical tool we will associate with a weight sequence M and a positive

integer n the weight sequence M [n] defined by M
[n]
j := M

1/n
nj . Note that

µ
[n]
j :=

M
[n]
j

M
[n]
j−1

= (µn(j−1)+1 · · ·µnj)
1/n

satisfies µ2j ≤ Aµ
[4]
j for some constant A ≥ 1, which follows easily from the fact

that µ is increasing. We always have M ≤ M [n], and M [n] ⪯ M holds provided
that M has moderate growth. If M is non-quasianalytic, so is M [n].

Lemma 5.2. Let M be a non-quasianalytic weight sequence and M ′ a positive

sequence. Then M ′ ≺SV M implies M ′[n] ≺SV M [4n] for all positive integers n.

Proof. For all 0 ≤ i < j,( M ′[n]
j

sjM
[4n]
i

) 1
j−i

=
( M ′

nj

snjM
[4]
ni

) 1
n(j−i) ≤

( M ′
nj

snjMni

) 1
n(j−i) ≤ sup

0≤i<nj

( M ′
nj

snjMi

) 1
nj−i

.

Moreover,

µ
[4n]
k = (µ

[4]
n(k−1)+1 · · ·µ

[4]
nk)

1/n ≥ µ
[4]
n(k−1) ≥ A−1µ2n(k−1)

so that, for j ≥ 2, ∑
k≥j

1

µ
[4n]
k

≤ A
∑
k≥nj

1

µk
.

The assertion follows. □
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Proposition 5.3. Let M be a non-quasianalytic weight matrix of R-moderate
growth and M′ a one-parameter family of positive sequences such that
lim infk→∞(M ′

k/k!)
1/k > 0 for all M ′ ∈ M′. Assume that

(5.1) ∃M̂ ′ ∈ M′ ∀M ′ ∈ M′ ∃n ∈ N≥1 : M ′ ⪯ (M̂ ′)[n].

If there is M̂ ∈ M such that M̂ ′ ≺SV M̂ , then Λ{M′} ⊆ j∞E{M}(R).

Proof. Let a ∈ Λ{M′}. Then a ∈ Λ{M ′} for some M ′ ∈ M′. By (5.1), we find n ≥ 1

such that M ′ ⪯ (M̂ ′)[n]. Consequently, a ∈ Λ{(M̂ ′)[n]}. By Lemma 5.2, we have

(M̂ ′)[n] ≺SV M̂ [4n]. We may conclude that a ∈ j∞E{M̂ [4n]}(R); cf. Theorem 4.1.

Since M has R-moderate growth, E{M̂ [4n]}(R) ⊆ E{M}(R). □

Lemma 5.4. If ω is a pre-weight function, then M = Mω satisfies (5.1).

Proof. We have M (n) = (M (1))[n] for all positive integers n; cf. (2.4). □

Theorem 5.5. Let ω be a non-quasianalytic weight function and M = Mω. Then
the derived families K and L are R-equivalent.

Proof. By Theorem 4.5, it remains to show L{⪯}K. Fix L ∈ L and M ∈ M
such that L = L(M). We have L ⪯ M and thus there is H ≥ 1 such that
ωM (t) ≤ ωL(Ht) for all t ≥ 0. Now ωM , being equivalent to ω by [19, Lemma 5.7],
is a weight function so that, for some A ≥ 1,

ωM (t) ≤ AωM (tH−1) +A ≤ AωL(t) +A.

That means ωL ⪯ ω and thus B{⪯}M, where B = {B(α) : α > 0} = MωL
is

the weight matrix associated with ωL (cf. Lemma 2.2; we do not assume that ωL

is normalized). In general, ωL might just be a pre-weight function (not a weight

function) so that only the inclusion Λ{ωL} ⊆ Λ{B} is available. Observe that B(1)

and L are closely related: by (2.3) and (2.4),

Lk = sup
t≥0

tk

eωL(t)
, B

(1)
k = e

φ∗
ωL

(k)
= sup

t≥1

tk

eωL(t)
,

and consequently

B
(1)
k ≤ Lk = max

{
sup

0≤t≤1

tk

eωL(t)
, sup
t≥1

tk

eωL(t)

}
≤ max

{
1, sup

t≥1

tk

eωL(t)

}
= max{1, B(1)

k }.

Since B
(1)
k → ∞, we see that the sequences B(1) and L are equivalent.

By Lemma 5.4, we have B(n) = (B(1))[n]. Since L ≺SV M and thus L ≺SV M
and the sequences B(1) and L are equivalent, we find Λ{B} ⊆ j∞E{M}(R), by

Proposition 5.3. (We have ωL(t) = o(t) as t → ∞ and consequently (B
(n)
j /j!)1/j →

∞ for all n, by Lemma 2.1.) Thus Λ{ωL} ⊆ j∞E{ω}(R) which implies ωL ⪯ κ, by
Proposition A.1.

It follows that B(1) ∈ ΛB(1)

1 = Λ
ωL

1 ⊆ Λ{ωL} ⊆ Λ{κ} = Λ{K}, by Proposition 5.1,

and consequently there exists K ∈ K such that L ⪯ K, since B(1) and L are
equivalent. □
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Now (1.3) follows from Proposition 3.4, Proposition 5.1, and Theorem 5.5.
Note that a necessary and sufficient condition for ω being a strong weight func-

tion is that K, Q, L, and L are all R-equivalent to Mω.

5.2. Denjoy–Carleman classes.

Theorem 5.6. Let M be a non-quasianalytic weight sequence of moderate growth.
Then the derived sequences S, K, and L are equivalent.

Proof. We have S ⪯ K ⪯ L by Theorem 4.5. That L ⪯ S was shown in [24,
Theorem 3.10]. □

Remark 5.7. The assumption that M has moderate growth can be replaced by
the weaker condition

lim inf
k→∞

µk

k

∑
j≥2k

1

µj
> 0,

which guarantees that S has moderate growth and L ⪯ S; cf. [24, Theorem 3.10].

Appendix A.

The goal of this section is to prove the following proposition. It is due to [3] if σ
is a weight function. We will show that it is valid if σ is just a pre-weight function
by slightly modifying the proof of [3]. The proposition is used in this more general
form in the proof of Theorem 5.5.

Proposition A.1. Let ω be a non-quasianalytic weight function. Let σ be a pre-
weight function such that σ(t) = o(t) as t → ∞. Then Λ{σ} ⊆ j∞E{ω}(R) implies
σ ⪯ κω.

For a pre-weight function σ we have Λ{σ} ⊆ Λ{Mσ} (and in general not equality).
But since ω is a weight function, Λ{σ} ⊆ j∞E{ω}(R) entails

(A.1) Λ{Mσ} ⊆ j∞E{ω}(R).

Indeed, let a ∈ Λ{Mσ}, i.e., |ak| ≤ CHke
1
αφ∗

σ(αk) for some C,H ≥ 1 and α > 0.
Then b = (H−kak)k belongs to Λ{σ}. If g ∈ E{ω}(R) satisfies j∞g = b, then
f(x) := g(Hx) fulfills j∞f = a and belongs to E{ω}(R) since ω is a weight function
(cf. (2.5)).

Our goal is now to show that (A.1) implies σ ⪯ κω. The one crucial task is to
identify the dual of Λ{Mσ}. Let us write S = {S(α) : α > 0} := Mσ throughout
this section.

Lemma A.2. Let Λk := ΛS(k)

k = {a ∈ CN : supj∈N
|aj |

kjS
(k)
j

< ∞} for k ∈ N≥1. Then

the inclusion
Λk ↪→ Λk+1

is compact. In particular Λ{Mσ}(= indk∈N Λk) is a (DFS)-space (cf. [15, 25.20]).

Proof. Let (a(n))n be a bounded sequence in Λk. Then
{
b
(n)
j :=

a
(n)
j

kjS
(k)
j

: n, j ∈ N
}
is

bounded. Thus the sequence (b
(n)
1 ) is bounded and after passing to a subsequence

we may assume that it is convergent. Passing to a subsequence again we may assume

that (b
(n)
2 ) converges. Iterating this procedure and taking the diagonal sequence,

we end up with a subsequence b(nj) such that b
(nj)
i → ci ∈ C for all i ∈ N. To finish
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the proof we show that a(nj) → c in Λk+1, where c = (ci). It is clear that for fixed
ε > 0 there exists i0 such that for all i ≥ i0 and all j, we have

|a(nj)
i |

(k + 1)iS
(k+1)
i

= |b(nj)
i | kiS

(k)
i

(k + 1)iS
(k+1)
i

≤ ε and
|ci|

(k + 1)iS
(k+1)
i

≤ ε.

In addition there exists j0 such that |a(nj)
i − ci| ≤ ε for j ≥ j0 and i ≤ i0. This

yields that a(nj) → c in Λk+1. □

Lemma A.3. Let σ be a pre-weight function. Then

(Λ{Mσ})′ ∼= {f ∈ H(C) : ∀n ∈ N ∃A > 0 ∀z ∈ C : |f(z)| ≤ AeωS(n) (
|z|
n )} =: A0.

The isomorphism is explicitly given by

T 7→ Φ(T ) :=
(
z 7→

∑
j

T (ej)z
j
)
,

where ej denotes the j-th unit vector.

Proof. As a consequence of the compactness of the connecting mappings
(Lemma A.2) the collection {Bn}n of closed unit balls Bn ⊆ Λn forms a funda-
mental system of bounded sets in Λ{Mσ}(cf. [15, 25.19]). So a set B is bounded in
Λ{Mσ} if and only if there exist n ∈ N and λ > 0 such that B ⊆ λBn. Therefore
a 0-neighborhood base in the (strong) dual is given by the collection of the polars
(nBn)

◦. Let T ∈ (2nB2n)
◦. Then,

|T (ej)| ≤
1

2n

1

(2n)jS
(2n)
j

and hence

|Φ(T )(z)| ≤
∑
j

|T (ej)||z|j ≤
1

2n

∑
j

|z|j

(2n)jS
(2n)
j

≤ 1

2n
sup
k∈N

|z|k

nkS
(n)
k

∑
j≥0

2−j =
1

n
eωS(n) (

|z|
n ).

Thus Φ((2nB2n)
◦) is contained in the ball of radius 1

n with respect to the weight

eωS(n) (
|z|
n ), whence Φ is continuous.

Conversely, let f(z) =
∑

j cjz
j ∈ A0 be such that

|f(z)| ≤ 1

2n
eωS(2n) (

|z|
2n ).

Then, by the Cauchy estimates,

|cj | ≤
1

2n
inf
r>0

eωS(2n) (
r
2n )

rj
=

1

2n

(
sup
r>0

rj

eωS(2n) (
r
2n )

)−1

=
1

(2n)j+1S
(2n)
j

.

Therefore, if a ∈ nBn then

|Φ−1(f)(a)| ≤
∑
j≥0

nj+1S
(n)
j

(2n)j+1S
(2n)
j

≤ 1,

and so Φ−1(f) ∈ (nBn)
◦, which shows continuity of Φ−1. □
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Now we are ready to show that (A.1) implies σ ⪯ κω. If σ ̸⪯ κω, then in view of
(3.1) we can find a sequence of positive real numbers aj → ∞ such that

6jσ(aj) ≤ Pω(iaj),(A.2)

log(1 + |z|2) ≤ 1

j
σ(|z|) for |z| ≥ aj .(A.3)

By the proof of Proposition 2.4 in [2], there exists of a sequence of polynomials hj

and constants C and m such that

|hj(z)| ≤ C(1 + a2j )
2e

m
j Pω(z), z ∈ C, and hj(iaj) = e

1
j Pω(iaj).

Now set

fj(z) := e(σ(aj)− 1
j Pω(iaj))hj(z).

Using (A.3) and (A.2), we get

|fj(z)| ≤ Ce(1+
2
j )σ(aj)− 1

j Pω(iaj)e
m
j Pω(z) ≤ Ce−

1
2jPω(iaj)e

m
j Pω(z).

Applying the estimate Pω(x+ iy) ≤ |y|+A(ω(x) + 1) (see [4, Lemma 2.2]), where
A is some absolute constant, gives

|fj(z)| ≤ CeAme−
1
2jPω(iaj)em|y|+Am

j ω(|z|).

It follows that a subsequence of (fj) tends to 0 in (E{ω}(R))′ by means of the
identification in [3, Remark 1.4]. On the other hand,

fj(iaj) = eσ(aj) ≥ eωS(n) (
aj
n ),

since σ(t) ≥ ωS(1)(t) ≥ ωS(n)(t) ≥ ωS(n)(t/n). Thus, no subsequence of (fj) con-

verges to 0 in (Λ{Mσ})′ ∼= A0; see Lemma A.3. Now [3, Corollary 2.2] gives that
Λ{Mσ} is not contained in j∞E{ω}(R) (for this we need the (DFS)-property, i.e.,
Lemma A.2). So the assumption σ ̸⪯ κω contradicts (A.1) and the proof of Propo-
sition A.1 is complete.

Remark A.4. The Beurling version of Proposition A.1 is valid, too. We omit the
proof.
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