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PERTURBATION THEORY FOR NORMAL OPERATORS

ARMIN RAINER

Abstract. Let E 3 x 7→ A(x) be a C -mapping with its values being un-

bounded normal operators with common domain of definition and compact
resolvent. Here C stands for C∞, Cω (real analytic), C[M ] (Denjoy–Carleman

of Beurling or Roumieu type), C0,1 (locally Lipschitz), or Ck,α. The param-
eter domain E is either R or Rn or an infinite dimensional convenient vector

space. We completely describe the C -dependence on x of the eigenvalues and

the eigenvectors of A(x). Thereby we extend previously known results for self-
adjoint operators to normal operators, partly improve them, and show that

they are best possible. For normal matrices A(x) we obtain partly stronger

results.

1. Introduction and main results

The purpose of this paper is to prove the following theorem.

1.1. Theorem. Let x 7→ A(x) be a parameterized family of unbounded normal
operators in a Hilbert space H with common domain of definition and with compact
resolvent.

(A) If A(x) is C∞ (resp. C [M ]) in x ∈ R and if the order of contact of any two
unequal eigenvalues is finite at each x ∈ R, then the eigenvalues and the
eigenvectors of A(x) admit global C∞ (resp. C [M ]) parameterizations in x.
The latter condition is trivially satisfied if C [M ] is quasianalytic.

(B) Assume that C [M ] is quasianalytic. If A(x) is C [M ] in x ∈ Rn, then for each
x0 ∈ Rn and for each eigenvalue z of A(x0), there exist a neighborhood D of
z in C, a neighborhood W of x0 in Rn, and a finite covering {πk : Uk →W}
of W by composites of finitely many local blow-ups, such that the eigenvalues
of A(πk(y)) in D and the corresponding eigenvectors can be chosen C [M ]

in y.
(C) Assume that C [M ] is quasianalytic. If A(x) is C [M ] in x ∈ Rn, then for each

x0 ∈ Rn and for each eigenvalue z of A(x0), there exists a neighborhood D
of z in C, such that the eigenvalues of A(x) in D can be parameterized by
functions which are locally ‘piecewise Lipschitz continuous’, i.e., belong to

LC[M]

loc (cf. 6.18). In particular, they are SBVloc-functions whose classical
gradient exists almost everywhere and is locally bounded.

(D) If x 7→ A(x) is C0,1 in x ∈ E, where E is a convenient vector space, then
each continuous eigenvalue E ⊇ U 3 x 7→ λ(x), for c∞-open U ⊆ E, of
A(x) is C0,1 in x. If x0 ∈ E ∩ U and c : R → E is a C∞-curve with
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2 A. RAINER

c(0) = x0 and c((0, 1]) ⊆ U , then λ ◦ c|(0,1] is globally Lipschitz on (0, 1]. If

E = R, then the eigenvalues admit a C0,1-parameterization in x.
(E) If x 7→ A(x) is C1,α in x ∈ R, for some α > 0, then the eigenvalues admit

a C1-parameterization in x.
(F) If x 7→ A(x) is C2,α in x ∈ R, for some α > 0, then the eigenvalues admit

a twice differentiable parameterization in x.

Let us define the involved notions and explain the results.

1.2. Definitions and remarks. For a sequence M = (Mk)k∈N of positive real
numbers, U ⊆ Rn open, K ⊆ U compact, and ρ > 0, consider the set

(1.3)
{ ∂αf(x)

ρ|α| |α|!M|α|
: x ∈ K,α ∈ Nn

}
,

and define the Denjoy–Carleman classes

C(M)(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∀ρ > 0 : (1.3) is bounded},

C{M}(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∃ρ > 0 : (1.3) is bounded}.

The elements of C(M)(U) are said to be of Beurling type; those of C{M}(U) of
Roumieu type. If Mk = 1, for all k, then C(M)(U) consists of the restrictions to
U of the real and imaginary parts of all entire functions, while C{M}(U) coincides
with the ring Cω(U) of real analytic functions on U .

We use the notation C [M ] for either C(M) or C{M} with the following restriction:
Statements that involve more than one C [M ] symbol must not be interpreted by
mixing C(M) and C{M}.

We shall always assume that M = (Mk) has the following regularity properties:

(M1) Log-convexity: M2
k ≤Mk−1Mk+1 for all k.

(M2) Stability under derivation: supk
(Mk+1

Mk

)1/k
<∞.

Then C [M ] is stable under composition and derivation. Moreover, C{M} ⊇ Cω,
the C{M} inverse function theorem holds, and C{M} is closed under solving ODEs.
The C(M) inverse function theorem is valid and C(M) is closed under solving ODEs
if additionally Mk+1/Mk →∞. This is satisfied if

(M3) M
1/k
k →∞

which will always be assumed in the Beurling case. Condition (M3) is equivalent
to Cω ⊆ C(M) and in turn to Cω ( C{M}. The classes C [M ] are quasianalytic, i.e.,
infinite Taylor expansion is injective, if and only if the following condition holds:

(M4) Quasianalyticity:
∑
k

Mk

(k+1)Mk+1
=∞.

For more details on Denjoy–Carleman classes see [39], [25], [27], [26], and references
therein.

A convenient vector space is a real locally convex vector space E satisfying the
following equivalent conditions: Mackey Cauchy sequences converge; C∞-curves in
E are locally integrable in E; a curve c : R→ E is C∞ if and only if ` ◦ c is C∞ for
all continuous linear functionals `. The c∞-topology on E is the final topology with
respect to all C∞-curves. Functions f defined on c∞-open subsets of convenient
vector spaces E are called Ck,α if f ◦ c is Ck,α for every C∞-curve c. If E is a
Banach space, then a Ck,α-function is Ck and the kth derivative is locally Hölder
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continuous of order α in the usual sense. This has been proved in [16], see also the
lemma in [29]. For the Lipschitz case see [17] and [23, 12.7 and 12.8].

That A(x) is a C∞, C [M ], or a Ck,α-family of unbounded normal operators
means the following: There is a dense subspace V of the Hilbert space H so that
V is the domain of definition of each A(x), A(x) has closed graph, and we have
A(x)A(x)∗ = A(x)∗A(x) wherever defined. Moreover, we require that x 7→ 〈A(x)u |
v〉 is C∞, C [M ], or Ck,α, for each u ∈ V and v ∈ H. This implies that x 7→ A(x)u
is of the same class as a mapping E → H (where E is either R or Rn or an infinite
dimensional convenient vector space) for each u ∈ V , by [23, 2.3] for C∞, by [26,
4.3, 4.4, 4.5, and 5.1] for C [M ], and by [23, 2.3], [17, 2.6.2] or [16, 4.14.4] for Ck,α,
because Ck,α can be described by boundedness conditions only and for these the
uniform boundedness principle is valid. Note that the real analytic case is included
since Cω = C{(1)k}.

If A depends on a single real parameter x, then the eigenvalues of A may be
chosen continuously near each (x0, z), where z is an eigenvalue of A(x0), see [20, II
Thm. 5.2]. The order of vanishing of a continuous function germ f at 0 ∈ R is the
supremum of all integers p such that f(x) = xpg(x), where g is continuous; likewise
at any x0 ∈ R. The order of contact of two continuous function germs is the order
of vanishing of their difference.

A local blow-up Φ over an open subset U of a C [M ]-manifold X means the com-
posite Φ = ι ◦ ϕ of a blow-up ϕ : U ′ → U with center a C [M ]-submanifold and of
the inclusion ι : U → X.

A sequence of functions λi is said to parameterize the eigenvalues of A, if, for
each z ∈ C, the cardinality |{i : λi(x) = z}| equals the multiplicity of z as an
eigenvalue of A(x).

An SBV -function is a special function of bounded variation, i.e., a function
having bounded variation whose distributional derivative has trivial Cantor part,
see [14] and [3].

1.4. Explanation of the results and background. The novelty of the results
in Theorem 1.1 and of the partly stronger finite dimensional versions of (A)–(F)
for normal matrices which will be shown in the course of the proof of Theorem 1.1
is threefold:

• The results are well-known if all operators A(x) are self-adjoint; at least in
some weaker formulation. We show that the assumption of self-adjointness
can be replaced by normality, essentially without changing the conclusions
(only in (D) we additionally have to assume continuity if dimE > 1).

• We achieve utmost generality, at least for matrices, by working in abstractly
defined quasianalytic subclasses of C∞ which present a minimal setting for
our method of proof. For unbounded operators we restrict to C [M ].

• We partly even improve the results for self-adjoint operators and show that
they are then best possible.

Let us briefly describe what was previously known. If all operators A(x) are
self-adjoint, then (A) is due to Rellich [36] in 1942 for Cω, to [2] for C∞, and to
[28] for C{M} (with special M = (Mk)); the normal case follows for Cω from an
observation due to Butler, see [20, II Thm. 1.10] and [5, 3.5.1]. Part (B) is due to
[30] for Cω-families of symmetric matrices and to [28] for unbounded self-adjoint
operators; in [28] (see also [34] and [35]) the normal case is treated, but there in
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addition we had to use local power substitutions. In the self-adjoint case, part (C)
and part (D) are consequences of [35, 9.6] and [29], and part (E) was proved in [24].
Part (F) was shown in [24] under the assumption that R 3 x→ A(x) is a C∞-curve
(or, more precisely, C3n,α, if the multiplicity of an eigenvalues does never exceed
n) of self-adjoint operators. Our proof of (F) works for normal A and needs only
the assumption C2,α.

It is somewhat surprising that these results carry over to normal operators. For
Hermitian matrices the characteristic polynomial is hyperbolic, i.e., all its roots are
real, and the roots of families of hyperbolic polynomials admit ‘nice’ parameteri-
zations, which are reflected by the regularity properties of the eigenvalues and the
eigenvectors. For instance, the roots of a hyperbolic polynomial with coefficients
in some quasianalytic class of functions admit parameterizations in the same class
after desingularization by means of local blow-ups (of the parameter space), see [35]
and [30] for Cω; and the (increasingly ordered) roots are locally Lipschitz, provided
that the coefficients are in Cn, where n is the degree, see [12]. The perturbation
theory for complex polynomials is considerably weaker: In general, local power
substitutions are needed in order to desingularize, and the roots cannot satisfy a
local Lipschitz condition, e.g., z2 − x = 0, x ∈ R, see [35]. However, not every
quasianalytic family of polynomials appears as the characteristic polynomial of a
quasianalytic family of normal matrices. In fact, the set of normal complex n × n
matrices forms a real n2 + n dimensional stratified submanifold of R2n2

(the set of
all complex n × n matrices), see e.g. [19]. So the normality condition implies per-
turbation results for operators stronger than predicted by the perturbation theory
for polynomials.

The results in (B) and (C) seem to be new even in the real analytic setting. How-
ever, we shall work in a minimal setting making the proofs (in particular desingu-
larization) work, namely subclasses of C∞ which are quasianalytic and have certain
stability properties, see Section 2. Only when passing to infinite dimensions we will
restrict to the framework of Denjoy–Carleman classes for which we have developed
the required principles of calculus beyond Banach spaces in [25, 27, 26]. One may
expect analogous results for any suitable quasianalytic function class.

In (D) we need to assume continuity of x 7→ λ(x) if dimE > 1, since in gen-
eral there will not exist continuous parameterizations of the single eigenvalues, see
Example 8.2. However, it might be that the supplement in (C) is still true with-
out that assumption, i.e., that a C0,1-family Rn 3 x 7→ A(x) of normal complex
matrices admits a parameterization of its eigenvalues by SBVloc-functions whose
classical gradient exists a.e. and is locally bounded, see Question 6.21.

The conclusions in (E) and (F) are optimal in the following sense: There exist
C∞-curves (even non-quasianalytic C [M ]) of real symmetric 2 × 2 matrices whose
eigenvalues do not admit a parameterization in C1,α for any α > 0, see the examples
in [24] and [28]. We also want to stress that (A), (E), and (F) are no longer true if

the parameter domain has more than one dimension: The eigenvalues ±
√
x2 + y2 of

the real analytic family
( x y
y −x

)
, x, y ∈ R, are not C1 at the origin, see Example 8.1.

We point out that the assumptions in Theorem 1.1 may be slightly relaxed, if all
A(x) are m-sectorial operators. In that case it suffices to assume that the associated
quadratic forms a(x) have common domain of definition V and x 7→ a(x)(u) is of
the respective class for each u ∈ V , see Remark 7.5.
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The paper is organized as follows: We introduce and describe the classes of
smooth functions we shall be working with in Section 2 and polynomials with
coefficients in these classes in Section 3. In Section 4 we show that a quasianalytic
polynomial is solvable (i.e., admits roots in the same class as the coefficients) along
quasianalytic arcs if and only if it is solvable after blowing up (the parameter
space). This will be used in the proof of (B). We shall prove (partly stronger)
finite dimensional versions of (A)–(F) for normal matrices in Section 5 and 6. The
proof of the Theorem 1.1 will finally be completed in Section 7. Several examples
in Section 8 will show that the results are best possible in the sense that, generally,
the assumptions cannot be weakened and the conclusions cannot be strengthened.
In particular, the results are no longer true if A is a family of merely diagonalizable
matrices.

Notation. The notation C [M ] stands for either C(M) or C{M} with the follow-
ing restriction: Statements that involve more than one C [M ] symbol must not be
interpreted by mixing C(M) and C{M}.

Let N = N>0∪{0}. For α = (α1, . . . , αq) ∈ Nq and x = (x1, . . . , xq) ∈ Rq we write

α! = α1! · · ·αq!, |α| = α1 + · · ·+αq, x
α = xα1

1 · · ·x
αq
q , and ∂α = ∂|α|/∂xα1

1 · · · ∂x
αq
q .

We shall also use ∂i = ∂/∂xi, d for the Fréchet derivative, and dv for the directional
derivative in direction v. If α, β ∈ Nq, then α ≤ β means αi ≤ βi for all i.

For a C∞ function germ f at a ∈ Rq we denote by f̂a ∈ Fq its Taylor series
at a, where Fq is the ring of formal power series in q variables. We write FK

q =
K[[x1, . . . , xq]] if we want to stress that the coefficients belong to K (where K = R
or K = C) and the variables are x1, . . . , xq. We also use f̂ = f̂0. We write ω(F ) for
the order of F ∈ Fq, i.e., the lowest degree of non-zero monomials in F , with the

convention ω(0) = +∞. For a C∞ function germ f at 0 we set ω(f) := ω(f̂ ).
Sn denotes the symmetric group on {1, 2, . . . , n}. It acts on Cn by permuting

the coordinates: σ.z = (zσ(1), . . . , zσ(n)) for z = (z1, . . . , zn) ∈ Cn and σ ∈ Sn.
This action is denoted by Sn : Cn. The isotropy subgroup that fixes z is de-
noted by (Sn)z = {σ ∈ Sn : σ.z = z}. The elementary symmetric functions
σj =

∑
i1<···<ij zi1 · · · zij generate the algebra of symmetric polynomials C[Cn]Sn .

We write |S| for the cardinality of a finite set S and denote by Hq the q-
dimensional Hausdorff measure.
L(E,F ) is the space of bounded linear mappings E → F .

2. Smooth function classes

2.1. Classes of C∞-functions. Let us assume that for every open U ⊆ Rq, q ∈ N,
we have a subalgebra C(U) of C∞(U) = C∞(U,R) so that the following assumptions
(C1)–(C5) are satisfied.

(C1) C contains the restrictions of polynomial functions. The algebra of restric-
tions to U of polynomial functions on Rq is contained in C(U).

(C2) C is closed under composition. If V ⊆ Rp is open and ϕ = (ϕ1, . . . , ϕp) :
U → V is a mapping with each ϕi ∈ C(U), then f ◦ ϕ ∈ C(U), for all
f ∈ C(V ).

(C3) C is closed under derivation. If f ∈ C(U) and 1 ≤ i ≤ q, then ∂if ∈ C(U).
(C4) C is closed under division by a coordinate. If f ∈ C(U) is identically 0 along

a hyperplane {x : xi = ai}, then f(x) = (xi − ai)h(x), where h ∈ C(U).
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(C5) C is closed under taking the inverse. Let ϕ : U → V be a C-mapping be-
tween open subsets U and V in Rq. Let a ∈ U , ϕ(a) = b, and suppose that
the Jacobian matrix (∂ϕ/∂x)(a) is invertible. Then there exist neighbor-
hoods U ′ of a, V ′ of b, and a C-mapping ψ : V ′ → U ′ such that ψ(b) = a
and ϕ ◦ ψ = idV ′ .

A mapping ϕ : U → V between open subsets U ⊆ Rq and V ⊆ Rp is called a
C-mapping if f ◦ ϕ ∈ C(U), for every f ∈ C(V ). It follows from (C1) and (C2) that
ϕ = (ϕ1, . . . , ϕp) is a C-mapping if and only if ϕi ∈ C(U), for all 1 ≤ i ≤ p.

Property (C5) is equivalent to the implicit function theorem in C: Let U ⊆ Rq×Rp
be open. Suppose that f1, . . . , fp ∈ C(U), (a, b) ∈ U , f(a, b) = 0, and (∂f/∂y)(a, b)
is invertible, where f = (f1, . . . , fp). Then there is a neighborhood V ×W of (a, b)
in U and a C-mapping g : V →W such that g(a) = b and f(x, g(x)) = 0, for x ∈ V .

It follows from (C5) that C is closed under taking the reciprocal: If f ∈ C(U)
vanishes nowhere in U , then 1/f ∈ C(U).

Frequently, we shall also require the following condition.

(Q) C is quasianalytic. If f ∈ C(U) and for a ∈ U the Taylor series of f at a

vanishes (i.e., f̂a = 0) then f vanishes in a neighborhood of a.

Since {x : f̂x = 0} is closed in U , condition (Q) is equivalent to the following
property: If U is connected, then, for each a ∈ U , the Taylor series homomorphism

C(U)→ Fq, f 7→ f̂a, is injective.
Occasionally, we will need a further condition.

(C6) C is closed under solving ODEs. Let I ⊆ R be an open interval and let
U ⊆ Rq be open. Consider the initial value problem

x′ = f(t, x), x(0) = y,

where f : I×U → Rq is a C-mapping. Then the smooth solution x = x(t, y)
is of class C wherever it exists.

A complex-valued function f : U → C is said to be a C-function, or to belong
to C(U,C), if (Ref, Imf) : U → R2 is a C-mapping. It is immediately verified that
(C3) and (C4) also hold for complex-valued functions f ∈ C(U,C); as well as (Q) if
assumed.

Convention. From now on, C shall denote a fixed, but arbitrary, class of C∞-
functions satisfying the conditions (C1)–(C5). We shall write CQ for a class C which
is required to satisfy (Q). It will be explicitly stated when (C6) is assumed.

Note that C might be C∞ and CQ might be Cω. Here are some more examples.

2.2. Examples (Denjoy–Carleman classes ([39], [25], [26], and references therein)).
(1) Denjoy–Carleman classes of Roumieu type: If M = (Mk) is a positive log-
convex sequence which is stable under derivation (see (M1) and (M2)), then the
Denjoy–Carleman class of Roumieu type C{M} has the properties (C1)–(C6); see
[11, Section 4] for (C1)–(C5) and [21] for (C6). In particular, this is true for all
Gevrey classes G1+s = C{(k!s)k}, s ≥ 0. If M = (Mk) additionally satisfies (M4),
then C{M} is quasianalytic (Q). Among the Gevrey classes only G1 = Cω has this
property. However, by setting

Mδ,n
k :=

1

k!

(
k · log(k) · · · · · logn−1(k) · (logn(k))δ

)k
,
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where logn denotes the n-fold composition of log, we obtain for each 0 < δ ≤ 1 and

each n ∈ N>0 a quasianalytic class C{M
δ,n} satisfying all required conditions, and

C{M
δ,n} 6= C{M

δ′,n′} if (δ, n) 6= (δ′, n′); see [27, 1.9].
(2) Denjoy–Carleman classes of Beurling type: If M = (Mk) is a positive log-

convex sequence which is stable under derivation (see (M1) and (M2)), then the
Denjoy–Carleman class of Beurling type C(M) has the properties (C1)–(C4). Prop-
erties (C5) and (C6) are satisfied if additionally Mk+1/Mk →∞ (which follows from
(M3)). See [26, 2.1] for references. Again the non-quasianalytic classes C((k!s)k),

s > 0, and the quasianalytic classes C(Mδ,n) have all required properties.
If C [M ] has all properties (Ci) but (C3), i.e., it is not closed under derivations, then⋃
j∈N C

[M+j ], where M+j
k := Mk+j , has the properties (C1)–(C6), and, moreover, it

satisfies (Q) if and only if C [M ] does.

2.3. Resolution of singularities in CQ. A C-manifold is a C∞-manifold such that
all chart change mappings are of class C. This provides a category C of C-manifolds
and C-mappings.

The implicit function property (C5) implies that a smooth (i.e., not singular)
subset of a C-manifold is a C-submanifold: Let M be a C-manifold. Suppose that U
is open in M , g1, . . . , gp ∈ C(U), and the gradients ∇gi are linearly independent at
every point of the zero set X := {x ∈ U : gi(x) = 0 for all i}. Then X is a closed
C-submanifold of U of codimension p.

The category C is closed under blowing up with center a closed C-submanifold.
We shall use a simple version of the desingularization theorem of Hironaka [18] for

CQ-function classes due to Bierstone and Milman [10, 11]. We use the terminology
therein.

2.4. Theorem ([11, 5.12]). Let M be a CQ-manifold, X a closed CQ-hypersurface
in M , and K a compact subset of M . Then, there is a neighborhood W of K and
a surjective mapping ϕ : W ′ →W of class CQ, such that:

(1) ϕ is a composite of finitely many CQ-mappings, each of which is either a
blow-up with smooth center (that is nowhere dense in the smooth points
of the strict transform of X) or a surjection of the form

⊔
j Uj →

⋃
j Uj,

where the latter is a finite covering of the target space by coordinate charts.
(2) The final strict transform X ′ of X is smooth, and ϕ−1(X) has only normal

crossings. (In fact ϕ−1(X) and det dϕ simultaneously have only normal
crossings, where dϕ is the Jacobian matrix of ϕ with respect to any local
coordinate system.)

See [11, 5.9 and 5.10] and [10] for stronger desingularization theorems in CQ.
A real- or complex-valued CQ-function on a CQ-manifold M is said to have only

normal crossings if each point in M admits a coordinate neighborhood U with
coordinates x = (x1, . . . , xq) such that

f(x) = xαg(x), x ∈ U,

where g is a non-vanishing CQ-function on U , and α ∈ Nq. Observe that, if a
product of CQ-functions has only normal crossings, then each factor has only normal
crossings.

Let f ∈ CQ(M,C) and let K ⊆M be compact. Then there exists a neighborhood
W of K and a finite covering {πk : Uk → W} of W by CQ-mappings πk, each of
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which is a composite of finitely many local blow-ups, such that, for each k, the
function f ◦ πk has only normal crossings. This follows from Theorem 2.4 applied
to the real-valued CQ-function |f |2 = ff and from the previous observation.

By a local blow-up Φ over an open subset U of a CQ-manifold M we mean the
composite Φ = ι ◦ ϕ of a blow-up ϕ : U ′ → U with smooth center and of the
inclusion ι : U →M .

We shall need the following well-known lemma.

2.5. Lemma ([11, 7.7], [8, 4.7], or [35, 6.3]). Let α, β, γ ∈ Nq and let a, b, c be
non-vanishing germs of real- or complex-valued CQ-functions at the origin of Rq. If
xαa(x)− xβb(x) = xγc(x), then either α ≤ β or β ≤ α.

The following simple observation will be used repeatedly.

2.6. Lemma. Let I ⊆ R be an open interval. Let fj , gj : I → C, 1 ≤ j ≤ n,
be C-functions such that |{j : fj(t) = z}| = |{j : gj(t) = z}| for all t ∈ I and
z ∈ C. Assume that at each t0 ∈ I the order of contact of any two elements of {fj}
(equivalently {gj}) is finite unless their germs at t0 coincide. Then {fj} and {gj}
differ by a constant permutation.

The assumption on the order of contact is trivially satisfied if the functions are
of class CQ.

Proof. Set f = (f1, . . . , fn), g = (g1, . . . , gn), and consider the set

J := {t ∈ I : |(Sn)g(t)| minimal} = {t ∈ I : |{g1(t), . . . , gn(t)}| maximal}
which is open in I. Choose t0 ∈ J . There exists a permutation σt0 ∈ Sn /(Sn)g(t0)

so that f(t0) = σt0 .g(t0). Set g̃ = σt0 .g. We claim that f = g̃. This is true locally
near t0, since J is open. Assume for contradiction that there exists t1 ∈ I so that
f(t1) 6= g̃(t1). Without loss of generality assume t0 < t1 and let

s = sup{t ∈ [t0, t1) : f |[t0,t] = g̃|[t0,t]} ∈ (t0, t1).

But then the C-curve h = f − g̃ is identically 0 on the (non-trivial) interval [t0, s]
and for each ε > 0 there exists t ∈ (s, s+ ε) with h(t) 6= 0. Thus, h must vanish of
infinite order at s, which contradicts our assumption. �

3. C-polynomials

3.1. Monic univariate complex polynomials. The space of all monic univariate
complex polynomials P of fixed degree n,

(3.2) P (z) = zn +

n∑
j=1

(−1)jajz
n−j =

n∏
j=1

(z − λj), aj , λj ∈ C,

naturally identifies with Cn (via P 7→ (a1, . . . , an)). It may also be viewed as the
orbit space Cn/ Sn with respect to the standard action Sn : Cn of the symmetric
group Sn on Cn by permuting the coordinates (the roots λj of P ). The elementary
symmetric functions

σj(λ1, . . . , λn) =
∑

i1<···<ij

λi1 · · ·λij

generate the algebra of symmetric polynomials on Cn, i.e., C[Cn]Sn = C[σ1, . . . , σn].
It follows that the orbit projection Cn → Cn/Sn identifies with the mapping σ =
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(σ1, . . . , σn) : Cn → Cn and we have aj = σj(λ1, . . . , λn) (Vieta’s formulas). The
associated polynomials

(3.3) ∆k(λ1, . . . , λn) :=
∑

i1<i2<···<ik

(λi1 − λi2)2 · · · (λi1 − λik)2 · · · (λik−1
− λik)2

are symmetric. Thus there exist unique polynomials ∆̃k such that ∆k = ∆̃k ◦ σ,
and so the ∆̃k are functions of P . The number of distinct roots of P equals the
maximal k such that ∆̃k(P ) 6= 0; it cannot decrease locally in P .

If P is any monic polynomial, we denote by aj(P ) its coefficients so that P takes
the form (3.2) with aj = aj(P ).

The inverse function property (C5) and (C1) imply the following lemma.

3.4. Lemma (Splitting lemma in C, see [35, 3.2]). Let P0 be a complex polynomial
satisfying P0 = P1 · P2, where P1 and P2 are monic polynomials without common
root. Then for P near P0 we have P = P1(P ) · P2(P ) for C-mappings of monic
polynomials P 7→ P1(P ) and P 7→ P2(P ), defined for P near P0, with the given
initial values. (Here P 7→ Pi(P ) is understood as a mapping R2n → R2 degPi .)

3.5. C-families of polynomials. By a C-family of polynomials we mean a poly-
nomial

(3.6) P (x)(z) = zn +

n∑
j=1

(−1)jaj(x)zn−j ,

where the coefficients aj are complex-valued C-functions defined in a C-manifold
M . Let x0 ∈ M . If P (x0) has distinct roots ν1, . . . , νm, the Splitting Lemma 3.4
provides a C-factorization P (x) = P1(x) · · ·Pm(x) near x0 such that no two factors
have common roots and all roots of Ph(x0) are equal to νh, for 1 ≤ h ≤ m. This
factorization amounts to a reduction of Sn : Cn to Sn1

× · · ·×Snm : Cn1⊕· · ·⊕Cnm ,
where nh is the multiplicity of νh. In this situation we shall write

S(P (x0)) := Sn1
× · · · × Snm .

In other words, S(P (x0)) is the stabilizer of the ordered n-tuple consisting of the
roots of P (x0) with multiplicities.

Furthermore, we will remove fixed points of Sn1 × · · · × Snm : Cn1 ⊕ · · · ⊕ Cnm
or, equivalently, reduce each factor Ph to the case a1(Ph) = 0 by replacing z by
z − a1(Ph)/nh. The effect on the roots of Ph is a shift by a C-function.

For later reference we state the following result.

3.7. Proposition ([20, II Thm. 5.2]). The roots of a polynomial (3.6) with contin-
uous coefficients aj : R→ C admit a continuous parameterization.

3.8. Normal nonflatness. Let I ⊆ R be an open interval and let I 3 t 7→ P (t)
be a C-family of polynomials (3.6). We say that P is normally nonflat at t0 ∈ I if
it has the following property:

(N) Let k be maximal with the property that the germ at t0 of t 7→ ∆̃k(P (t))

is not 0. Then t 7→ ∆̃k(P (t)) is not infinitely flat at t0.

By (3.3), condition (N) is equivalent to the following: Let λj denote the germs at
t0 of a continuous parameterization of the roots of P ; such exist by Proposition 3.7.
Then the order of contact at t0 of any two unequal λj is finite. Evidently, (N) is
satisfied if P is a CQ-polynomial.

We shall say that P is normally nonflat if (N) holds at each t0 ∈ I.
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3.9. Lemma ([34, 2.1]). Let P be a polynomial (3.6) with coefficients aj : R, 0→ C
germs at 0 of C-functions, and a1 = 0. Then, for integers r, the following conditions
are equivalent:

(1) ω(aj) ≥ jr, for all 2 ≤ j ≤ n;

(2) ω(∆̃j) ≥ j(j − 1)r, for all 2 ≤ j ≤ n.

Consequently, if P is normally nonflat at 0 and ω(aj) = ∞ for all j, then aj = 0
for all j.

3.10. Proposition (Puiseux’s theorem in C). Let P be a polynomial (3.6) with
coefficients aj : R, 0→ C germs at 0 of C-functions. If P is normally nonflat at 0,
then there exists a positive integer γ and germs λj : R, 0 → C of C-functions such
that P (tγ)(z) =

∏n
j=1(z − λj(t)).

Proof. For C = C∞ this was proved in [34, 3.2]. The same proof works for general
C. See also [31]. �

3.11. Lemma (Glueing local choices of roots). Let R 3 t 7→ P (t) be a C-curve of
polynomials (3.6). If P is normally nonflat and locally admits C-parameterizations
of its roots, i.e., for each t0 ∈ R there exist an open interval It0 3 t0 and C-functions
which represent the roots of P on It0 , then there exists a global C-parameterization
of the roots.

Proof. Let I ⊆ R be a proper open subinterval and let λj , 1 ≤ j ≤ n, be C-functions
which represent the roots of P on I. We show that the C-parameterization λj can
be extended to a larger domain. Let the right (say) endpoint b of I be finite.
There exists a C-parameterization µj of the roots on some open interval Ib 3 b. By
Lemma 2.6, we may renumber the µj so that for all j, λj = µj on their common
domain I ∩ Ib. So together the λj and the µj form a C-parameterization of the
roots on I ∪ Ib. �

4. CQ-polynomials solvable along CQ-arcs

We have shown in [35, 6.7] that a CQ-polynomial P admits a CQ-parameterization
of its roots after desingularization by means of local blow-ups and local power
substitutions. In this section we shall prove that local blow-ups suffice if P is
solvable along CQ-arcs. This will be applied to the characteristic polynomial of
normal CQ-matrices in Section 5. It might also be of independent interest.

We say that a CQ-family M 3 x 7→ P (x) of polynomials is solvable along CQ-arcs
if, for all CQ-curves c : R→M , the roots of P ◦ c admit CQ-parameterizations.

4.1. Theorem. Let M be a CQ-manifold and let M 3 x 7→ P (x) be a CQ-family
of polynomials (3.6) solvable along CQ-arcs. Let K ⊆ M be compact. Then there
exists a finite covering {πk : Uk → W} of a neighborhood W of K, where each πk
is a composite of finitely many local blow-ups, such that, for all k, the family of
polynomials P ◦ πk allows a CQ-parameterization of its roots on Uk.

Proof. Since the statement is local, we may assume without loss of generality
that M is an open neighborhood of 0 ∈ Rq. We use induction on the cardinality
|S(P (0))| of S(P (0)).

If |S(P (0))| = 1, all roots of P (0) are pairwise different. So the statement follows
from the CQ-implicit function theorem (C5) or from the Splitting Lemma 3.4.
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Suppose that |S(P (0))| > 1. Let ν1, . . . , νm denote the distinct roots of P (0);
some of them are multiple (m = 1 is allowed). The Splitting Lemma 3.4 provides
a CQ-factorization P (x) = P1(x) · · ·Pm(x) near 0 such that the roots of distinct
factors remain separated and Ph(0)(z) = (z − νh)nh for 1 ≤ h ≤ m. We reduce
to Sn1

× · · · × Snm : Cn1 ⊕ · · · ⊕ Cnm and we remove fixed points (see 3.5), which
preserves solvability along CQ-arcs. So, if ah,j := aj(Ph) denote the coefficients of
Ph, we may assume that ah,1 = 0 for all h. Then all roots of Ph(0) are equal to
0, and hence ah,j(0) = 0, for all 1 ≤ h ≤ m and 1 ≤ j ≤ nh. If all coefficients
ah,j of Ph are identically 0, so are all its roots, and we remove the factor Ph from
the product P1 · · ·Pm. Thus we can assume that for each 1 ≤ h ≤ m there is a
2 ≤ j ≤ nh such that ah,j 6= 0.

Let us define the CQ-functions

(4.2) Ah,j(x) = ah,j(x)
n!
j (for 1 ≤ h ≤ m and 2 ≤ j ≤ nh).

By Theorem 2.4, we find a finite covering {πk : Uk → U} of a neighborhood U of 0
by CQ-mappings πk, each of which is a composite of finitely many local blow-ups,
such that, for each k, the non-zero Ah,j ◦ πk (for 1 ≤ h ≤ m and 2 ≤ j ≤ nh) and
its pairwise non-zero differences Ah,i ◦πk−Al,j ◦πk (for 1 ≤ h ≤ l ≤ m, 1 ≤ i ≤ nh,
and 1 ≤ j ≤ nl) simultaneously have only normal crossings.

Let k be fixed and let x0 ∈ Uk. Then x0 admits a neighborhood Wk with suitable
coordinates in which x0 = 0 and so that either Ah,j ◦ πk = 0 or

(Ah,j ◦ πk)(x) = xαh,jAkh,j(x),

where Akh,j is a non-vanishing CQ-function on Wk, and αh,j ∈ Nq. The collection

of exponents {αh,j : Ah,j ◦ πk 6= 0, 1 ≤ h ≤ m, 2 ≤ j ≤ nh} is totally ordered, by
Lemma 2.5. Let α denote its minimum.

If α = 0, then (Ah,j◦πk)(x0) = Akh,j(x0) 6= 0 for some 1 ≤ h ≤ m and 2 ≤ j ≤ nh.

So, by (4.2), not all roots of (Ph ◦ πk)(x0) coincide (since ah,1 ◦ πk = 0), and, thus,
|S((P ◦ πk)(x0))| < |S(P (0))|. Obviously, P ◦ πk is again solvable along CQ-arcs.
By the induction hypothesis, there exists a finite covering {πkl : Wkl → Wk} of
Wk (possibly shrinking Wk) of the required type such that, for all l, the family of
polynomials P ◦ πk ◦ πkl allows a CQ-parameterization of its roots on Wkl.

Let us assume that α 6= 0. Then there exist CQ-functions Ãkh,j on Wk (maybe

some of them 0) such that, for all 1 ≤ h ≤ m and 2 ≤ j ≤ nh,

(Ah,j ◦ πk)(x) = xαÃkh,j(x), and,(4.3)

Ãkh,j = Akh,j is non-vanishing, for some 1 ≤ h ≤ m and 2 ≤ j ≤ nh.(4.4)

Let us write
α

n!
=
(α1

n!
, . . . ,

αq
n!

)
=

(
β1

γ1
, . . . ,

βq
γq

)
,

where βi, γi ∈ N are relatively prime (and γi > 0), for all 1 ≤ i ≤ q.

4.5. Claim. γi = 1 for all 1 ≤ i ≤ q.

We have to prove that α/n! ∈ Nq. Assume for contradiction that there is an i0
such that αi0/n! 6∈ N. Let u ∈ Wk be such that ui0 = 0 and ui 6= 0, for i 6= i0,
and let ei0 denote the i0th standard unit vector in Rq. Since Ph is solvable along
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CQ-arcs, we have

Qh(t)(z) := Ph(πk(u+ tei0))(z) =

nh∏
j=1

(z − λh,j(t))

for CQ-functions λh,j near t = 0. By (4.4), there exist h0 and 2 ≤ j0 ≤ nh0
so that

Ãkh0,j0
is non-vanishing. By (4.2) and (4.3), we have

ω(aj(Qh0)
n!
j ) ≥ αi0 , for all j, and,(4.6)

ω(aj0(Qh0
)
n!
j0 ) = αi0 .(4.7)

Since αi0 > 0, (4.6) implies that λh0,j(0) = 0 for all 1 ≤ j ≤ nh0 . Set

rh0
:= min

1≤j≤nh0
ω(λh0,j).

There exist CQ-functions µh0,j such that λh0,j(t) = trh0µh0,j(t) for all j, by (C4).
Then

(4.8) ω(aj(Qh0
)) ≥ jrh0

, for all j,

and the µh0,j parameterize the roots of the polynomial Q̃h0 with coefficients

aj(Q̃h0
(t)) := t−jrh0aj(Qh0

(t)). Since µh0,j(0) 6= 0 for some j, not all coefficients

of Q̃h0
(0) vanish. So, for some j1, we have

(4.9) ω(aj1(Qh0)) = j1rh0 .

Combining (4.6) and (4.9) we find αi0/n! ≤ r0, and (4.7) and (4.8) together imply
αi0/n! ≥ r0. Hence αi0/n! = rh0

∈ N, a contradiction. Thus Claim 4.5 is shown.

By (4.2), (4.3), and Claim 4.5, each ah,j ◦ πk is divisible by xjβ where β =
(β1, . . . , βq), and, by (C4), there exist CQ-functions akh,j on Wk such that

(4.10) (ah,j ◦ πk)(x) = xjβakh,j(x) (for 1 ≤ h ≤ m and 2 ≤ j ≤ nh).

Consider the CQ-family of polynomials P kh with coefficients aj(P
k
h ) := akh,j . By

(4.4), there exist 1 ≤ h ≤ m and 2 ≤ j ≤ nh such that akh,j(x0) 6= 0, and, hence,

not all roots of P kh (x0) coincide. So for P k := P k1 · · ·P km we have |S(P k(x0))| <
|S(P (0))|.

4.11. Claim. P k is solvable along CQ-arcs.

Let c : R→Wk be a CQ-curve. By Lemma 3.11, it suffices to show that the roots
of P k ◦ c locally admit CQ-parameterizations, and without loss of generality it is
enough to show this locally near 0 ∈ R. By Proposition 3.10, there exists γ ∈ N>0

such that t 7→ P k(c(tγ)) admits a CQ-parameterization λj of its roots near t = 0 ∈
R. Let γ be minimal with that property. For contradiction assume that γ > 1. By
(4.10), the roots of P k and P ◦πk differ by the monomial factor m(x) := xβ . Thus,
the functions µj(t) := m(c(tγ)) · λj(t) form a CQ-parameterization of the roots of
t 7→ P (πk(c(tγ))). Since P ◦ πk is solvable along CQ-arcs, there exist CQ-functions
νj which parameterize the roots of P ◦ πk ◦ c. Hence, both collections {µj} and
{t 7→ νj(t

γ)} parametrize the roots of t 7→ P (πk(c(tγ))), and, after renumbering,
we may assume that νj(t

γ) = m(c(tγ))λj(t) for all j, by Lemma 2.6. By (Q) and
(C4), the quotients νj/(m ◦ c) are CQ-functions. As they parameterize the roots of
P k ◦ c, the choice of γ was not minimal, a contradiction. This proves Claim 4.11.
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Now, by the induction hypothesis, there exists a finite covering {πkl : Wkl →Wk}
of Wk (possibly shrinking Wk) of the required type such that, for all l, the family
of polynomials P k ◦πkl admits a CQ-parameterization λklj of its roots on Wkl. Then

the CQ-functions x 7→ m(πkl(x)) · λklj (x) form a choice of the roots of the family
x 7→ (P ◦ πk ◦ πkl)(x) for x ∈Wkl.

Since k and x0 were arbitrary, the assertion of the theorem follows. �

Let us call a CQ-family M 3 x 7→ P (x) of polynomials (3.6) solvable after blowing
up if the conclusion of Theorem 4.1 holds, i.e., for K ⊆ M compact, there exists
a finite covering {πk : Uk → W} of a neighborhood W of K, where each πk is
a composite of finitely many local blow-ups, such that, for all k, P ◦ πk allows a
CQ-parameterization of its roots.

4.12. Corollary (Solvability along CQ-arcs and after blowing up are equivalent).
A CQ-family M 3 x 7→ P (x) of polynomials (3.6) is solvable along CQ-arcs if and
only if it is solvable after blowing up.

Proof. One direction is shown in Theorem 4.1. For the converse direction let
c : R → M be a CQ-curve. By Lemma 3.11, it suffices to prove that P ◦ c admits
CQ-parameterizations of its roots, locally. Let t0 ∈ R, set K := {c(t0)}, and apply
the assumption that P is solvable after blowing up. Denote by c : R, t0 → M the
germ of c at t0.

Uk //

πk

��

Cn

σ

��
R, t0 c

//

77

W
P |W

// Cn/ Sn Cn

Since CQ-curves admit a lifting over blow-ups, all arrows in the diagram are of class
CQ. This implies the statement. �

Remarks. (1) Compare with the interrelation between arc-analyticity and blow-
analyticity, see [9] and [32].

(2) Hyperbolic CQ-polynomials are solvable along CQ-arcs, see [35, 6.11]. Hyper-
bolic means all roots are real at each parameter value. In the next section will meet
another class of polynomials solvable along CQ-arcs.

5. Smooth perturbation theory for normal matrices

5.1. Lemma. Let P be a polynomial (3.6) with coefficients aj : R, 0 → C germs
at 0 of C-functions, and assume that P is normally nonflat at 0. If there exist

Λ1, . . . ,Λn ∈ C[[t]] which represent the roots of the formal polynomial P̂ , i.e.,

P̂ (t)(z) = zn +

n∑
j=1

(−1)j âj(t)z
n−j =

n∏
j=1

(z − Λj(t)),

then there exist germs λ1, . . . , λn : R, 0 → C of C-functions such that P (t)(z) =∏n
j=1(z − λj(t)) and λ̂j = Λj for all j.

Proof. In view of the reduction procedure described in 3.5 (which preserves normal
nonflatness) we may assume that all roots of P (0) equal 0 and a1 = 0. Let r :=
min1≤j≤n ω(Λj) ≥ 1. If r = ∞ then all aj = 0, by Lemma 3.9, and by setting
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all λj = 0 we are done. So we may assume that r < ∞. For each j we have
ω(âj) ≥ jr, thus aj is divisible by tjr, and, by (C4), there exist C-germs bj such
that aj(t) = tjrbj(t). Consider the polynomial Q with coefficients aj(Q) := bj . It is
easy to see that Q is normally nonflat at 0 and that not all roots of Q(0) coincide.
Thus, induction on the cardinality of S(P (0)) proves the statement. �

Remark. It is easy to check that the ring of germs at 0 ∈ R of complex-valued
CQ-functions is a Henselian excellent discrete valuation ring with maximal ideal
m = {h : h(0) = 0} and m-adic completion C[[t]]. Thus, by [4], [33], or [37, Thm.
4.2], it has the Artin approximation property which might be used alternatively to
Lemma 5.1 in the quasianalytic case.

Let us introduce notation. We associate with a parameterized family of complex
matrices A(x) = (Aij(x))1≤i,j≤n its characteristic polynomial χ(A) := det(A− zI)
and set PA := (−1)nχ(A). Then PA is a family of polynomials (3.6) with coefficients
aj(PA) = Trace(ΛjA), i.e.,

(5.2) PA(x)(z) = (−1)nχ(A(x))(z) = zn +

n∑
j=1

(−1)j Trace(ΛjA(x))zn−j .

We say that A(x) = (Aij(x))1≤i,j≤n is a family of normal complex matrices if
A(x)A∗(x) = A∗(x)A(x) for all x.

5.3. Proposition. Let A(t) = (Aij(t))1≤i,j≤n be a C-curve of normal complex ma-
trices, i.e., the entries Aij belong to C(R,C), such that PA is normally nonflat.
Then there exists a global C-parameterization of the eigenvalues and the eigenpro-
jections of A.

In the real analytic case the local statement of this proposition is (by considering
holomorphic extensions) a direct consequence of [20, II Thm. 1.10] which exploits
the monodromy of algebraic functions; see also [5, 3.5.1]. An algebraic version
for normal matrices over so-called Hermitian discrete valuation rings is due to [1].
Actually, for CQ-curves of normal matrices, the local statement follows from [1],
since the germs at 0 ∈ R of complex-valued CQ-functions form a Hermitian discrete
valuation ring (as can be checked using Remark 5.1).

Proof. First we treat the eigenvalues. By Lemma 3.11, it suffices to show that
there exist C-parameterizations of the eigenvalues, locally near each t0. Without
loss of generality assume that t0 = 0. In view of Lemma 5.1 it is enough to prove
the following claim.

Claim. There exist Λ1, . . . ,Λn ∈ C[[t]] such that P̂A(t)(z) =
∏n
j=1(z − Λj(t)).

This claim is a consequence of [1], since C[[t]] is a Hermitian discrete valuation

ring and P̂A = PÂ, where the matrix Â(t) = (Âij(t)) is normal, since Taylor expan-

sion commutes with transposition and conjugation (note that
∑
fjtj =

∑
fjt

j).
Here is a direct proof more adapted to our situation.

Proof of claim. Let s be maximal with the property that the germ at 0 of ∆̃s(PA)

does not vanish identically. If ∆̃s(PA(0)) 6= 0, then the Splitting Lemma 3.4 implies

the assertion. So let us assume that ∆̃s(PA(0)) = 0, i.e., generically distinct roots
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of PA meet at 0. By Proposition 3.10, there exists a minimal γ ∈ N>0 such that

(5.4) PA(tγ)(z) =

s∏
j=1

(z − λj(t))mj

for generically distinct C-germs λj : R, 0 → C. Let θ be a primitive γth root of
unity and consider the formal power series

(5.5) λ̂j(θt) =
∑
k≥0

λj,k · (θt)k =
∑
k≥0

λj,kθ
k · tk (where λj,k = k!−1λ

(k)
j (0)).

By (5.4), the λ̂j(θt) represent the roots of the formal polynomial P̂A(tγ), likewise

with the λ̂j(t). Since C[[t, z]] is a unique factorization domain, we have:

(5.6) There exists σ ∈ Ss such that λ̂j(θt) = λ̂σ(j)(t) for all 1 ≤ j ≤ s.

We shall show that σ is trivial. Then, in view of (5.5), λj,k · θk = λj,k for all j and

all k ∈ N. So λj,k = 0 whenever k 6∈ γN, and, thus, λ̂j(t
1/γ) is a formal power series

in t. By (5.4), the formal power series λ̂j(t
1/γ), 1 ≤ j ≤ s, represent the distinct

roots of P̂A(t); they are pairwise distinct by normal nonflatness. The claim follows.
Suppose that σ is non-trivial. Clearly, λ1, . . . , λs parameterize the generically

distinct eigenvalues of t 7→ A(tγ). Let P1, . . . , Ps denote the respective eigenprojec-
tions:

(5.7) Pi(t) =

s∏
j=1
j 6=i

A(tγ)− λj(t)
λi(t)− λj(t)

.

Normal nonflatness implies that there exist (matrix-valued) C-germs Qi such that
Pi(t) = t−piQi(t), pi ∈ N. Since A(tγ) is normal, and, thus, ‖Pi(t)‖ = 1, each Pi is
of class C, by (C4). So we may consider the formal power series (with coefficients

n × n matrices) P̂i(θt) =
∑
k≥0 Pi,k · (θt)k =

∑
k≥0 Pi,kθ

k · tk, and (5.6) and (5.7)

imply that P̂i(θt) = P̂σ(i)(t) for all i. If σ is non-trivial, we get in particular
Pi,0 = Pj,0 for some i 6= j. The fact that Pi(t)Pj(t) = 0 off 0 implies Pi,0Pj,0 = 0
and, since Pi is idempotent, we have (Pi,0)2 = Pi,0. Therefore,

Pi,0 = (Pi,0)2 = Pi,0Pj,0 = 0,

which contradicts ‖Pi(t)‖ = 1. Hence σ = id and the claim is shown.

Now we treat the eigenprojections. Let λj : R → C, 1 ≤ j ≤ s, be a global C-
parameterizations of the generically distinct eigenvalues of A and let Pj , 1 ≤ j ≤ s,
be the respective eigenprojections. Then each Pi is expressed by (5.7) with γ = 1,
and we may conclude similarly as above that each eigenprojection is globally of
class C. Normal nonflatness implies that points where distinct eigenvalues meet
cannot accumulate. �

5.8. Theorem. Let M be a CQ-manifold and let A(x) = (Aij(x))1≤i,j≤n be a family
of normal complex matrices with entries Aij in CQ(M,C). Let K ⊆M be compact.
Then there exists a finite covering {πk : Uk → W} of a neighborhood W of K,
where each πk is a composite of finitely many local blow-ups, such that, for all k,
the family of normal complex matrices A ◦ πk allows a CQ-parameterization of its
eigenvalues and its eigenvectors on Uk.
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If M = R, A is of class C, and PA is normally nonflat, then there exist
global C-parameterizations of the eigenvalues and local C-parameterizations of the
eigenvectors of A. If we assume (C6), also the eigenvectors admit a global C-
parameterization.

Proof. The proof is subdivided into several claims.

5.9. Claim. The statements about the eigenvalues are true.

For M = R this was shown in Proposition 5.3. Let M be a general CQ-manifold.
Proposition 5.3 implies that the associated CQ-family of polynomials PA is solvable
along CQ-arcs. So Theorem 4.1 implies Claim 5.9.

5.10. Claim. Let A = A(x) be a family of normal complex n×n matrices, where the
entries Aij are CQ-functions and the eigenvalues of A admit a CQ-parameterization
λj in a neighborhood of 0 ∈ Rq. Then there exists a finite covering {πk : Uk → U} of
a neighborhood U of 0, where each πk is a composite of finitely many local blow-ups,
such that, for all k, A ◦ πk admits a CQ-parameterization of its eigenvectors.

We prove Claim 5.10 using induction on |S(PA(0))|.
First consider the following reduction: Let ν1, . . . , νm denote the pairwise distinct

eigenvalues of A(0) with respective multiplicities n1, . . . , nm. The sets

Λh := {λi : λi(0) = νh}, 1 ≤ h ≤ m,

form a partition of the λi such that λi(x) 6= λj(x), for x near 0, if λi and λj belong
to different Λh. Consider

V (h)
x :=

⊕
λ∈Λh

ker(A(x)− λ(x)) = ker
(
◦λ∈Λh (A(x)− λ(x))

)
, 1 ≤ h ≤ m.

(The order of the compositions is not relevant.) Then V
(h)
x is the kernel of a CQ-

vector bundle homomorphism B(x) with constant rank (even of constant dimension
of the kernel), and thus it is a CQ-vector subbundle of the trivial bundle U×Cn → U
(where U ⊆ Rq is a neighborhood of 0) which admits a CQ-framing. This can be seen
as follows: Choose a basis of Cn such that A(0) is diagonal. By the elimination
procedure one can construct a basis for the kernel of B(0). For x near 0, the
elimination procedure (with the same choices) gives then a basis of the kernel of
B(x). This clearly involves only operations which preserve the class CQ. The
elements of this basis are then of class CQ in x near 0.

Therefore, it suffices to find CQ-eigenvectors in each subbundle V (h) separately,
expanded in the constructed CQ-frame field. But in this frame field the vector
subbundle looks again like a constant vector space. So we may treat each of these
parts (A restricted to V (h), as matrix with respect to the frame field) separately.
For simplicity of notation we suppress the index h.

Let us write aj := aj(PA). Suppose that all eigenvalues of A(0) coincide and are
equal to a1(0)/n, according to (5.2). Eigenvectors of A(x) are also eigenvectors of
A(x)− (a1(x)/n)I (and vice versa), thus we may replace A(x) by A(x)− (a1(x)/n)I
and assume that a1 = 0. So A(0) = 0.

If A = 0 identically, we choose the eigenvectors constant and we are done. Note
that this proves Claim 5.10, if |S(PA(0))| = 1.
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Assume thatA 6= 0. By Theorem 2.4, there exists a finite covering {πk : Uk → U}
of a neighborhood U of 0, where each πk is a composite of finitely many local blow-
ups, such that, for each k, the non-zero entries Aij ◦ πk of A ◦ πk and its pairwise
non-zero differences Aij ◦πk −Alm ◦πk simultaneously have only normal crossings.

Let k be fixed and let x0 ∈ Uk. Then x0 admits a neighborhood Wk with suitable
coordinates in which x0 = 0 and such that either Aij ◦ πk = 0 or

(Aij ◦ πk)(x) = xαijBkij(x),

where Bkij is a non-vanishing CQ-function on Wk, and αij ∈ Nq. The collection of
exponents {αij : Aij ◦ πk 6= 0} is totally ordered, by Lemma 2.5. Let α denote its
minimum.

If α = 0, then (Aij ◦ πk)(x0) = Bkij(x0) 6= 0 for some 1 ≤ i, j ≤ n. Since
a1 ◦ πk = 0, we may conclude that not all eigenvalues of (A ◦ πk)(x0) coincide.
Thus, |S(PA◦πk(x0))| < |S(PA(0))|, and, by the induction hypothesis, there exists
a finite covering {πkl : Wkl → Wk} of Wk (possibly shrinking Wk) of the required
type such that, for all l, the family of normal matrices A ◦ πk ◦ πkl allows a CQ-
parameterization of its eigenvectors on Wkl.

Assume that α 6= 0. Then there exist CQ-functions Akij (maybe some of them 0)
such that, for all 1 ≤ i, j ≤ n,

(Aij ◦ πk)(x) = xαAkij(x),

and Akij(x) = Bkij(x) 6= 0 for some i, j and all x ∈ Wk. So Ak(x) = (Akij(x))
forms a CQ-family of normal n × n matrices, and its eigenvalues differ from those
of (A ◦ πk)(x) by a monomial factor xα and admit a CQ-parameterization. Indeed,
the CQ-functions λj ◦ πk parameterize the eigenvalues of A ◦ πk and are divisible
by xα, otherwise x 7→ λj(πk(x))/xα would be an unbounded root of a polynomial
with bounded coefficients, a contradiction (see e.g. [35, 2.4]). In view of (5.2), the
CQ-functions x 7→ λj(πk(x))/xα represent the eigenvalues of Ak.

Eigenvectors of Ak(x) are also eigenvectors of (A ◦ πk)(x) (and vice versa). As
Akij(x0) 6= 0 for some i, j and since a1(PAk) = 0, not all eigenvalues of Ak(x0)
coincide. Hence, |S(PAk(x0)| < |S(PA(0))|, and the induction hypothesis implies
the statement. The proof of Claim 5.10 is complete.

5.11. Claim. If M = R, A is of class C, and PA is normally nonflat, then there
exist local C-parameterizations of the eigenvectors of A. If we assume (C6), there
exists a global C-parameterization of the eigenvectors.

By Claim 5.9 the eigenvalues admit global C-parameterizations λj on R, which
are unique up to a constant permutation, by Lemma 2.6. The proof of Claim 5.10
works in this case as well: Theorem 2.4 and Lemma 2.5, the only ingredients that
need quasianalyticity, are both trivially true, and normal nonflatness is preserved by
the reduction process. So there are local C-choices of the eigenvectors. The proof of
Claim 5.10 further gives us, for each eigenvalue λj : R→ C with generic multiplicity

nj , a unique nj-dimensional C-vector subbundle V
(j)
t of R × Cn whose fiber over

t ∈ R consists of eigenvectors for the eigenvalue λj(t). By Proposition 5.3, the

eigenprojection Pj corresponding to λj is C on R and Pj(t)(Cn) = V
(j)
t . It suffices

to prove that each Pj has a transformation function of class C, cf. [20, II §4.2], i.e.,
there exists a matrix-valued function R 3 t 7→ Uj(t) such that Uj(t) is invertible
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for each t, both Uj and U−1
j are C on R, and Uj(t)Pj(0)U−1

j (t) = Pj(t). If {vi} is

a basis of Pj(0)(Cn), then {Uj(t)vi} is a basis of Pj(t)(Cn).
We construct a transformation function of class C following [20, II §4.2]. Let us

suppress the index j. Differentiation of P 2 = P and applying this identity several
times yields

P ′ = [Q,P ] = QP − PQ, where Q = [P ′, P ] = P ′P − PP ′.
By (C5), Q is of class C. By (C6), the linear ODE

(5.12) X ′ = QX

with initial condition X(0) = I has a unique global solution X = U . Similarly,

(5.13) Y ′ = −Y Q
with initial condition Y (0) = I has a unique global solution Y = V . Now (V U)′ =
V ′U +V U ′ = −V QU +V QU = 0 implies that V U is a constant and, by the initial
conditions, we find that V U = I, thus U−1 = V . Since (PU)′ = P ′U+PU ′ = (P ′+
PQ)U = QPU , PU is a solution of (5.12) with initial condition X(0) = P (0). Since
the general solution of (5.12) is X(t) = U(t)X(0), we have U(t)X(0) = P (t)U(t),
hence U(t)P (0)U−1(t) = P (t). So U is a transformation function for P .

Moreover, U(t) is unitary for each t and hence the eigenvectors may be chosen
orthonormal. This is seen as follows, cf. [20, II §6.2]: Normality of A implies P ∗ = P
and (P ′)∗ = P ′, by differentiation. Thus Q = [P ′, P ] is skew-Hermitian, and, since
U solves (5.12), we find

(U∗)′ = −U∗Q
i.e., U∗ solves (5.13). Uniqueness implies that U∗ = V = U−1. �

6. Lipschitz eigenvalues of normal matrices

There is the following result.

6.1. Theorem ([7], [6, VII.4.1]). Let A,B be normal complex n × n matrices and
let λj(A) and λj(B), 1 ≤ j ≤ n, denote the respective eigenvalues. Then

min
σ∈Sn

max
1≤j≤n

|λj(A)− λσ(j)(B)| ≤ C‖A−B‖

for a universal constant C with 1 < C < 3, where ‖ ‖ is the operator norm.

In particular, the unordered n-tuple of eigenvalues λ(A) = (λ1(A), . . . , λn(A)) is
continuous (even Lipschitz) as a function of the normal matrix A. However, the
single eigenvalues do in general not allow continuous parameterizations, see Ex-
ample 8.2. Continuous parameterizations exist if A is Hermitian (e.g. ordering by
size λj(A) ≤ λj+1(A); see [2, 4.1]) or if A depends on a single real parameter (see
Proposition 3.7). We shall show in this section that, if A depends on parameters
locally in a Lipschitz way and admits continuous parameterizations λj of its eigen-
values, then the λj are locally Lipschitz. No such result is true for the eigenvectors,
see Section 8.

We will repeatedly use the following fact.

6.2. Lemma ([22, 4.3]). Let c : (a, b) → X be a continuous curve in a compact
metric space X. The set of accumulation points of c(t) as t→ a+ is connected.

Let us start with the one parameter case.
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6.3. Proposition. Let A(t) = (Aij(t))1≤i,j≤n be a curve of normal complex ma-
trices, where the entries Aij : R → C are locally Lipschitz. Then the eigenvalues
of A admit a parameterization which is locally Lipschitz. Actually, any continuous
parameterization of the eigenvalues of A is locally Lipschitz.

Proof. Let s ∈ R be fixed. Let z be an eigenvalue of A(s) of multiplicity m.
We choose a simple closed C1-curve γ in the resolvent set of A(s) enclosing only z
among all eigenvalues of A(s). By continuity, see Proposition 3.7, no eigenvalue of
A(t) lies on γ, for t near s; see also Lemma 7.1 below. Now,

t 7→ − 1

2πi

∫
γ

(A(t)− z)−1 dz =: P (t, γ) = P (t)

is a locally Lipschitz curve of projections onto the direct sum of all eigenspaces
corresponding to eigenvalues of A(t) in the interior of γ with constant rank (cf.
Section 7). For t near s, there are equally many eigenvalues in the interior of γ,
and, by Proposition 3.7, we may call them λj(t), for 1 ≤ j ≤ m, so that each λj is
continuous.

The image of t 7→ P (t, γ) describes a locally Lipschitz vector subbundle of the
trivial bundle R×Cn → R. For each t choose an orthonormal system of eigenvectors
vj(t) of A(t) corresponding to the λj(t). They form a (not necessarily continuous)
framing. By local triviality of the vector bundle, for each t near s and each sequence
tk → t there is a subsequence (again denoted by tk) such that vj(tk)→ wj(t), where
the wj(t) form an orthonormal system of eigenvectors of A(t)|P (t)(Cn). Consider

(6.4)
A(t)− λj(t)

tk − t
vj(tk) +

A(tk)−A(t)

tk − t
vj(tk)− λj(tk)− λj(t)

tk − t
vj(tk) = 0.

Now assume that A′(s) exists. For t = s take the inner product of (6.4) with
each wi(s): The first summand vanishes, since all λj(s) coincide with z and since
the wi(s) form also an orthonormal system of eigenvectors of A(s)∗ corresponding
to the eigenvalue z (cf. [20, I §6.9]). Letting k → ∞, we find that the wi(s) are a
basis of eigenvectors of P (s)A′(s)|P (s)(Cn) with eigenvalues

lim
k→∞

λi(tk)− λi(s)
tk − s

.

We may conclude, by Lemma 6.2, that the right-sided derivative λ
(+)
j (s) of each λj

exists at s. Similarly, the left-sided derivatives λ
(−)
j (s) exist and they form the same

set of numbers with correct multiplicities. Hence, applying a suitable permutation
on one side of s provides a continuous choice of the eigenvalues through z which is
differentiable at s.

If we take the inner product of (6.4) with wj(t) (for t near s) and proceed to the
limit, then (as the first summand vanishes again by the same reason) we obtain

(6.5) λ
(+)
j (t) = 〈A′(t)wj(t) | wj(t)〉 whenever A′(t) exists,

for a unit eigenvector wj(t) of A(t) with eigenvalue λj(t). A similar formula holds

for the left-sided derivatives λ
(−)
j (t).

An inspection of these arguments shows that they hold for any continuous pa-
rameterization λj of the eigenvalues of A. Hence we have shown:



20 A. RAINER

6.6. Claim. Let λj be any continuous parameterization of the eigenvalues of A.
If A′(s) exists, then the one-sided derivatives of λj exist at s, left- and right-sided
derivatives form the same set with correct multiplicities, namely, the set of eigen-
values of A′(s), and they satisfy a formula of type (6.5). Applying a suitable per-
mutation on one side of s provides a continuous choice of the eigenvalues which is
differentiable at s.

Next we claim that each λj is locally absolutely continuous. Then λj is differ-
entiable almost everywhere and its derivative is locally bounded, by (6.5). Thus λj
is locally Lipschitz.

6.7. Claim. Any continuous parameterization λj of the eigenvalues of A is locally
absolutely continuous.

Taking the inner product of (6.4) with wj(t) leads to

(6.8)
∣∣∣〈A(tk)−A(t)

tk − t
vj(tk) | wj(t)

〉∣∣∣ =
∣∣∣λj(tk)− λj(t)

tk − t

∣∣∣|〈vj(tk) | wj(t)〉|,

for unit eigenvectors vj(tk), wj(t) of A(tk), A(t) with eigenvalue λj(tk), λj(t),
respectively, and such that vj(tk)→ wj(t).

Let I ⊆ R be an open bounded interval, J ⊇ I an open neighborhood of the
closure I, and let CJ denote the Lipschitz constant of A on J (with respect to
the operator norm). If t ∈ J and J 3 tk → t, tk 6= t, then, after passing to a
subsequence (again denoted by tk) so that vj(tk) → wj(t), there is, by (6.8), a
k0 = k0(t, (tk)) ∈ N such that

(6.9)
∣∣∣λj(tk)− λj(t)

tk − t

∣∣∣ ≤ 2CJ , for all k ≥ k0.

Let j be fixed. Consider the continuous functions

qk(t) :=
λj(t+ 1/k)− λj(t)

1/k
and set Ck := max

t∈I
|qk(t)|.

We claim that Ck is bounded in k. Otherwise there exists a subsequence (again
denoted by Ck) such that Ck ↗∞. Choose tk ∈ I such that Ck = |qk(tk)|. Since I
is compact, after passing to a subsequence, tk → t∞ ∈ I. We may also assume that
this convergence is fast, i.e., for all n ∈ N the sequence kn(tk − t∞) is bounded. If
tk = t∞ constantly, then Ck = |qk(t∞)| ≤ 2CJ for sufficiently large k, by (6.9). So
we may assume that tk 6= t∞, and consider

Ck = |qk(tk)| =
∣∣∣λj(tk + 1/k)− λj(tk)

1/k

∣∣∣
≤
∣∣∣λj(tk + 1/k)− λj(t∞)

tk + 1/k − t∞

∣∣∣ · (1 + k|tk − t∞|) +
∣∣∣λj(tk)− λj(t∞)

tk − t∞

∣∣∣ · k|tk − t∞|.

(6.10)

By (6.9), there is some k0 ∈ N such that both difference quotients on the right
hand side of (6.10) are bounded by 2CJ for all k ≥ k0. (Here we pass first to a
subsequence of tk and then in turn to a subsequence of sk := tk + 1/k, and set
k0 := max{k0(t∞, (tk)), k0(t∞, (sk))}.) This contradicts the assumption that Ck is
unbounded.

Since Ck = maxt∈I |qk(t)| is bounded, the sequence of functions qk is bounded in
Lp(I), for any p ≥ 1. Since Lp(I) is reflexive if 1 < p <∞, for such p, there exists a
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subsequence (again denoted by the full sequence) and an element λ′j ∈ Lp(I) such
that (see e.g. [13, V Thm. 4.2])

qk =
(
t 7→ λj(t+ 1/k)− λj(t)

1/k

)
−→ λ′j weakly in Lp(I).

Thus, for a test function ϕ ∈ C∞c (I),∫
I

λ′jϕdt = lim
k→∞

∫
I

(λj(t+ 1/k)− λj(t)
1/k

)
ϕ(t)dt

= lim
k→∞

∫
I

λj(t)
(ϕ(t− 1/k)− ϕ(t)

1/k

)
dt = −

∫
I

λjϕ
′dt,

where we used substitution and assumed that k is sufficiently large so that supp(ϕ)±
1/k ⊆ I. This shows that λ′j is the weak derivative of λj , and, hence, λj ∈W 1,p(I).

It follows that there is an absolutely continuous function λ̃j on I which coincides
with λj almost everywhere in I, and, thus, on a dense subset of I. By continuity,

λj = λ̃j . The proof of Claim 6.7 is complete. �

6.11. Proposition. Let A(t) = (Aij(t))1≤i,j≤n be a curve of normal complex ma-
trices, where the entries Aij : R → C are C1 (resp. C2). Then the eigenvalues of
A admit a parameterization which is C1 (resp. twice differentiable).

Proof. The proof is subdivided into several claims. We use the notation in the
proof of 6.3.

6.12. Claim. If A is C1, then the eigenvalues admit a C1-parameterization.

We use induction on n. Let λj be a continuous parameterization of the eigen-
values of A (see Proposition 3.7). If s is such that not all λj(s) coincide, then the
set {1, . . . , n} decomposes into the subsets {j : λj(s) = w}, w ∈ C. For i and j in
different (non-empty) subsets, we have λi(t) 6= λj(t) for all t in an open interval Is
containing s. As in the proof of 6.3, we may treat distinct subsets separately (by
considering A(t)|P (t,γ)(Cn), where γ encloses exactly one of the distinct eigenvalues
of A(s) at a time). By the induction hypothesis, Claim 6.12 holds on Is.

Let I be an open interval containing only points s, where not all λj(s) coincide.
Let J ⊆ I be a maximal open subinterval on which Claim 6.12 holds. We claim that
J = I. Otherwise an endpoint a of J belongs to I and there is a C1-parameterization
of the eigenvalues on an open interval Ia 3 a. Choosing s ∈ J ∩ Ia and permuting
one choice of eigenvalues on one side of s in a suitable way (see Claim 6.6), we
might extend the C1-parameterization beyond a, contradicting maximality of J .

The set E of points, where all eigenvalues coincide, is closed, and on its com-
plement (which is a disjoint union of open intervals) we may parameterize the
eigenvalues by C1-functions µj . For each isolated point s of E we apply in turn the
following arguments: Extending all µj to s by the single n-fold eigenvalue of A(s)
provides a continuous parameterization near s. By Claim 6.6, we may assume that
the µj are differentiable at s after applying a suitable permutation to the right of
s. We claim that the derivative of each µj is continuous at s. Namely, let tk → s
and apply (6.5) to tk,

(6.13) µ′j(tk) = 〈A′(tk)wj(tk) | wj(tk)〉.
Choose a subsequence such that the wj(tk) converge. Then (6.13) converges to
one of the eigenvalues of A′(s). We may conclude, by Lemma 6.2, that the limit
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limt→s+ µ
′
j(t) exists and that it equals one of the eigenvalues of A′(s) (the same for

t→ s−). By the mean value theorem, for θ ∈ (0, 1),

µ′j(s) = lim
h→0±

µj(s+ h)− µj(s)
h

= lim
h→0±

µ′j(s+ θh) = lim
t→s±

µ′j(t).

Finally, we extend each µj by the single n-fold eigenvalues of A(s) at each accu-
mulation point s of E. By Claim 6.6 and since s is an accumulation point of E, all
µ′j(s) exist and coincide. Let tk → s. By (6.13), the sequence µ′j(tk) is bounded,
and, thus, has a convergent subsequence. By passing to a subsequence again so that
the wj(tk) converge, we find, by (6.13), that µ′j(tk) converges to some eigenvalue of
A′(s). But the latter all coincide with µ′j(s), by Claim 6.6. This implies that the
µ′j are continuous at s. The proof of Claim 6.12 is complete.

6.14. Claim. Assume that A is C2. For each s there is a C1-parameterization of
the eigenvalues near s which is twice differentiable at s.

We may assume without loss of generality that s = 0. By the usual reduction
procedure (i.e., treating distinct eigenvalues of A(0) separately by restricting to
P (t, γ)(Cn) for suitable γ and in turn replacing A by A − (a1(PA)/n)I) we may
assume without loss of generality that 0 is the only eigenvalue of A(0). Then

A(t) = tÃ(t), where t 7→ Ã(t) is a C1-curve of normal matrices. By Claim 6.12,

there is a C1-parameterization µj of the eigenvalues of Ã. Then the functions
t 7→ tµj(t) are twice differentiable at 0 and represent the eigenvalues of A.

6.15. Claim. If A is C2, then the eigenvalues of A admit a parameterization which
is twice differentiable at every point.

We modify the proof of Claim 6.12 and just indicate the necessary changes.
Let I be an open interval containing only points s so that not all eigenvalues of

A(s) coincide. We show that a twice differentiable parameterization, say µj , of the
eigenvalues on an open subinterval J ⊆ I can be extended to I. Let a ∈ I denote
the right, say, endpoint of J . By induction, there exists a twice differentiable
parameterization λj of the eigenvalues on an open interval Ia 3 a. Choose s ∈
J ∩ Ia and let tk → s. For each k there is a permutation σ ∈ Sn such that
µj(tk) = λσ(j)(tk) for all j. By passing to subsequences in turn (and Claim 6.6),
we can assume that σ does not depend on k and that also µ′j(tk) = λ′σ(j)(tk) for all

j. Then

(6.16)
µ′j(tk)− µ′j(s)

tk − s
=
λ′σ(j)(tk)− λ′σ(j)(s)

tk − s
,

and, thus, µ′′j (s) = λ′′σ(j)(s) for all j. So we can extend µj beyond a.

Let E denote the set of points s so that all eigenvalues of A(s) coincide. The last
paragraph implies the existence of a twice differentiable parameterization of the
eigenvalues on the complement of E. By the arguments in the proof of Claim 6.12,
we may construct from it a C1-parameterization µj on R which is twice differen-
tiable on the complement of E. Let s ∈ E and tk → s. Let λj be the parameteriza-
tion of the eigenvalues near s provided by Claim 6.14. After passing to subsequences
as above, we have (6.16).

Assume that s is isolated in E. As λj is twice differentiable at s, we conclude,
by Lemma 6.2, that the left-sided and the right-sided second order derivatives of
µj exist at s, and they form the same set of numbers with correct multiplicities.
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By applying a permutation to the right of s, we obtain a twice differentiable pa-
rameterization of the eigenvalues near s. We treat all isolated points s ∈ E in this
way.

If s is an accumulation point of E, then all µ′j(s) coincide. Let E 3 tk → s. In
view of (6.16) and by Lemma 6.2, we find that the second order derivatives of the
µj exist at s and they all coincide, by considering second order difference quotients
on points in E. The proof is complete. �

The following is a modification of [24, Lemma] and can be shown in the same
way. For convenience of the reader, we include a proof.

6.17. Lemma (Cf. [24]). Let I be an interval, n ≤ N , and µ1, . . . , µN , λ1, . . . , λn :
I → C be continuous (resp. C1 or twice differentiable) such that |{j : λj(t) = z}| ≤
|{j : µj(t) = z}| for all t ∈ I and z ∈ C. Then there exist continuous (resp. C1

or twice differentiable) functions λn+1, . . . , λN : I → C such that |{1 ≤ j ≤ N :
λj(t) = z}| = |{j : µj(t) = z}| for all t ∈ I and z ∈ C.

Proof. We use induction on N . Certainly, the assertion is true if N = 1.
For s ∈ I such that not all µj(s) coincide, the sets {λj} and {µj} decompose

into subsets so that elements of different subsets do not meet on an open interval
Is containing s. By induction, the statement holds on Is.

Suppose that for no t ∈ I all µj(t) coincide. Let J be a maximal open subinterval
of I for which the statement of the lemma is true with λ1

j for j > n. We will show
J = I. If the right (say) endpoint b of J belongs to I, then the statement holds
on an open interval Ib 3 b with λ2

j for j > n. Choose s ∈ J ∩ Ib. We claim

that there is a permutation σ so that each λ1
j in {t ∈ J : t ≤ s} can be extended

by λ2
σ(j) in {t ∈ Ib : t ≥ s}, contradicting maximality of J . Let tk → s−. We

have λ1
j (tk) = λ2

σ(j)(tk) for a permutation σ which depends on k. By passing to

a subsequence, we may assume that σ is independent of k which shows the claim
in the continuous case. For the C1 and the twice differentiable case, we pass to
a subsequence again in order to obtain (λ1

j )
′(tk) = (λ2

σ(j))
′(tk) and we use the

arguments surrounding (6.16).
Let E denote the closed set of all points in I, where all µj coincide. The comple-

ment I \E is a disjoint union of open intervals, on each of which the lemma holds.
Extending the λj to s ∈ E by the unique value µj(s), provides a continuous exten-
sion to I. For the C1 and the twice differentiable case, we may renumber the λj
to the right of each isolated point s ∈ E so that they fit together in a C1 or twice
differentiable way (by Lemma 6.2). If s is an accumulation point of E, then all
derivatives µ′j(s) =: µ′(s) coincide. Thus, by Lemma 6.2, each λj is differentiable
at s with λ′j(s) = µ′(s), and λ′j is continuous at s:

λ′j(t) = µ′σt(j)(t)→ µ′(s) = λ′j(s), as t→ s.

If µj is twice differentiable at s, then all µ′′j (s) =: µ′′(s) coincide, by considering
second order difference quotients on points in E. By Lemma 6.2, we may conclude
that each λj is twice differentiable at s with λ′′j (s) = µ′′(s). �

6.18. The class LC. Let U be open in Rq. We denote by LC(U) the class of all
complex-valued functions f with the following properties:

(L1) f is defined and of class C on the complement U \EU,f of a closed set EU,f
with Hq(EU,f ) = 0 and Hq−1(EU,f ) <∞.
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(L2) f is bounded on U \ EU,f .
(L3) ∇f is bounded on U \ EU,f .

Hq denotes the q-dimensional Hausdorff measure.

6.19. Theorem. Let x 7→ A(x) = (Aij(x))1≤i,j≤n be a parameterized family of
normal complex matrices. Then:

(1) If x 7→ A(x) is CQ in x ∈ U , where U is open in Rq, then for any com-
pact K ⊆ U there exists a relatively compact neighborhood W of K and a
parameterization λi of the eigenvalues of A on W which belongs to LCQ ,
thus, also to SBV . More precisely, the classical gradient ∇λi(x) exists for
all x ∈W \ EW,λi and for those x we have

‖∇λi(x)‖∞ = max
j
|∂jλi(x)| ≤ sup

y∈W
‖A′(y)‖ <∞,

where ‖ ‖ is the operator norm and A′(x) = dA(x) the Fréchet derivative.
(2) If x 7→ A(x) is C0,1 in x ∈ U , where U is c∞-open in a convenient vector

space E, then each continuous eigenvalue λ : U ⊇ V → C, V c∞-open, of
A is C0,1. If x0 ∈ U ∩ V and c : R→ U is a C∞-curve with c(0) = x0 and
c((0, 1]) ⊆ V , then λ ◦ c|(0,1] is globally Lipschitz on (0, 1].

Proof. (1) By [35, 9.6], there exists a parameterization λi of the eigenvalues of A
on W which satisfies (L1) and (L2) and such that ∇λi ∈ L1(W ); in particular, each
λi belongs to SBV , also by [35, 9.6]. For x ∈ W \ EW,λi , t ∈ R small, and ej the
jth standard unit vector in Rq, the curve t 7→ λi(x+ tej) represents an eigenvalue
of t 7→ A(x+ tej), and, by Claim 6.6, we have

|∂jλi(x)| =
∣∣∣ d
dt
|t=0λi(x+ tej)

∣∣∣ ≤ ‖A′(x)‖

which implies the statement.
(2) Suppose that λ : V → C is a continuous eigenvalue of A. Let c : R → V be

C∞. Then λ ◦ c parameterizes an eigenvalue of the C0,1-curve of normal matrices
A ◦ c. By Lemma 6.17, λ ◦ c can be completed to a continuous parameterization of
the eigenvalues of A ◦ c which is locally Lipschitz, by Proposition 6.3, and so λ ◦ c
is locally Lipschitz. Since c was arbitrary, we conclude that λ : V → C is C0,1 (see
1.2).

Let x0 ∈ U ∩ V and let c : R → U be C∞ with c(0) = x0 and c((0, 1]) ⊆ V .
We already know that λ ◦ c|(0,1] is locally Lipschitz. Its derivative exists a.e. and is
bounded by the Lipschitz constant of A◦c|[0,1] (with respect to the operator norm),
by Claim 6.6. The assertion follows. �

6.20. Remark. Suppose that Rq ⊇ U 3 x 7→ A(x) = (Aij(x))1≤i,j≤n is a C0,1-
family of normal complex matrices. Then Claim 6.6 actually implies that, whenever
a (one-sided) directional derivative of an eigenvalue of A exists, it is uniformly
bounded on compact subsets of U .

6.21. Question. Let Rq ⊇ U 3 x 7→ A(x) = (Aij(x))1≤i,j≤n be a C0,1-family of
normal complex matrices. Do the eigenvalues of A admit a parameterization by
SBVloc-functions whose classical gradient exists a.e. and is locally bounded?

6.22. Corollary. Let Hn(C) (resp. SHn(C)) denote the real vector space of n× n
Hermitian (resp. skew-Hermitian) matrices. For each A ∈ Hn(C), let λ↑(A) =
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(λ1(A), . . . , λn(A)) be the n-tuple of increasingly ordered eigenvalues of A, i.e.,
λi(A) ≤ λi+1(A). For each A ∈ SHn(C), set µ↑(A) := iλ↑(−iA). Then:

(1) Both mappings λ↑ : Hn(C) → Rn and µ↑ : SHn(C) → iRn are globally
Lipschitz; more precisely,

max
j
|λ↑j (A)− λ↑j (B)| ≤ ‖A−B‖ for all A,B ∈ Hn(C), and

max
j
|µ↑j (A)− µ↑j (B)| ≤ ‖A−B‖ for all A,B ∈ SHn(C),

where ‖ ‖ is the operator norm.
(2) Let α ∈ (0, 1]. If x 7→ A(x) ∈ Hn(C) (resp. ∈ SHn(C)) is C0,α in x ∈ U ,

where U is c∞-open in a convenient vector space E, then x 7→ λ↑(A(x))
(resp. x 7→ µ↑(A(x))) forms a C0,α-parameterization of the eigenvalues.

Note that (1) is due to [40], see also [6, III.2.6]. Compare (2) with [29].

Proof. (1) The mapping λ↑ is continuous, and, by Theorem 6.19(2), it is locally
Lipschitz, thus, differentiable a.e. Let A,B ∈ Hn(C) with ‖B‖ = 1. Then R 3 t 7→
λ↑j (A + tB), 1 ≤ j ≤ n, forms a continuous parameterization of the eigenvalues of

t 7→ A+ tB. If λ↑j is differentiable at A, then Claim 6.6 implies |dBλ↑j (A)| ≤ 1, and,

thus, ‖dλ↑j (A)‖ ≤ 1. It follows that λ↑ is globally Lipschitz with Lipschitz constant

1. The statement for µ↑ follows immediately from µ↑(A) = iλ↑(−iA).
(2) follows from (1). �

7. Perturbation theory for unbounded normal operators

Let E 3 x 7→ A(x) be a parameterized family of unbounded normal operators in a
Hilbert space H with common domain of definition V and with compact resolvent.
The parameter domain E is either R, Rn, or an infinite dimensional convenient
vector space, respectively (as specified in Theorem 1.1). Let M = (Mk) be log-
convex and stable under derivations (see (M1) and (M2)). In the Beurling case

C(M) we also assume M
1/k
k → ∞, or, equivalently C(M) ⊇ Cω (see (M3)). Let C

stand for C∞, C [M ], or Ck,α; remember that C [M ] means C(M) or C{M}.

7.1. Lemma (Resolvent lemma [28]). If x 7→ A(x) is C in x, then the resolvent
(x, z) 7→ (A(x) − z)−1 ∈ L(H,H) is C on its natural domain, the global resolvent
set {(x, z) ∈ E × C : (A(x) − z) : V → H is invertible} which is open (and even
connected).

Proof. For C∞, C{M}, with special M = (Mk), and C0,α this was proved in
[28]. The same proof works for general M = (Mk), C [M ], and Ck,α; for the latter
even with the same references. So we just sketch the proof for C [M ]: By definition
x 7→ 〈A(x)u | v〉 is C [M ] for each u ∈ V and v ∈ H and, thus, x 7→ A(x)u is of the
same class as a mapping E → H for each u ∈ V (see 1.2).

The following claim was proved in [28, Claim (1)] for C0,α.

7.2. Claim. For each x consider the norm ‖u‖2x := ‖u‖2 + ‖A(x)u‖2 on V . Since
A(x) is closed, (V, ‖ ‖x) is a Hilbert space with inner product 〈u | v〉x := 〈u |
v〉+ 〈A(x)u | A(x)v〉. All these norms ‖ ‖x on V are equivalent, locally uniformly
in x. We then equip V with one of the equivalent Hilbert norms, say ‖ ‖0, and have
A(x) ∈ L(V,H) for all x.
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By the linear uniform boundedness theorem and by [26, 5.1], we conclude that
the mapping E → L(V,H), x 7→ A(x), is C [M ]. If for some (x, z) ∈ E × C the
bounded operator A(x) − z : V → H is invertible, then this is true locally with
respect to the c∞-topology on the product which is the product topology, by [23,
4.16]. The resolvent (x, z) 7→ (A(x) − z)−1 : H → V is C [M ], since inversion is
real analytic on the Banach space L(V,H) and since C [M ] ⊇ Cω is stable under
composition [26, 4.11]. �

Proof of Theorem 1.1. Let x0 ∈ E and let z be an eigenvalue of A(x0) of
multiplicity N . We choose a simple closed C1-curve γ in the resolvent set of A(x0)
enclosing only z among all eigenvalues of A(x0). Since the global resolvent set is
open, see Lemma 7.1, no eigenvalue of A(x) lies on γ, for x near x0. By Lemma 7.1,

x 7→ − 1

2πi

∫
γ

(A(x)− z)−1 dz =: P (x, γ) = P (x)

is a C -mapping. Each P (x) is a projection, namely onto the direct sum of all
eigenspaces corresponding to eigenvalues of A(x) in the interior of γ, with finite
rank. Thus the rank must be constant: It is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H,H) of P (x) to
the subset of operators of rank ≤ N = rank(P (x0)) is continuous in x and is either
0 or 1. So, for x in a neighborhood U of x0, there are equally many eigenvalues
in the interior of γ, and we may call them λj(x) for 1 ≤ j ≤ N (repeated with
multiplicity).

The family of N -dimensional complex vector spaces U 3 x 7→ P (x)(H) ⊆ H
forms a C Hermitian vector subbundle over U of the trivial bundle U × H → U :
For given x, choose v1, . . . vN ∈ H such that the P (x)(vi) are linearly independent
and thus span P (x)(H). This remains true locally in x. We use the Gram Schmidt
orthonormalization procedure (which is Cω and preserves C ) for the P (x)(vi) to
obtain a local orthonormal C -frame of the bundle.

Now A(x) maps P (x)(H) to itself and in a local C -frame it is given by a normal
N × N matrix parameterized in a C -way by x. Then all local assertions (i.e., in
a product neighborhood of (x0, z)) of the theorem follow: (A) and (B) follow from
Theorem 5.8, (C) and (D) from Theorem 6.19, (E) and (F) from Proposition 6.11.

Let us prove (D). Let E ⊆ U 3 x→ λ(x) be a continuous eigenvalue of x 7→ A(x)
which is C0,1 in x ∈ E, where U is c∞-open in a convenient vector space E, and let
c : R → U be a C∞-curve. We first show that λ ◦ c is locally Lipschitz. Let t ∈ R
and x = c(t) ∈ U . By the local result, x ∈ U has an open neighborhood V such
that the restriction λ|V is C0,1. Thus λ|V ◦ c|I is locally Lipschitz, where I is the
connected component of c−1(V ) which contains t. This implies the statement.

For the supplements in (D) we need the following claim.

7.3. Claim. Let t→ A(t) be C0,1 in t ∈ R, let I ⊆ R be a compact interval, and let
t 7→ λj(t) be a Lipschitz eigenvalue of t 7→ A(t) defined on a subinterval of I. Then

|λj(s)− λj(t)| ≤ (1 + |λj(t)|)(eC|s−t| − 1),

for a constant C depending only on I.
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By reducing to P (t)A(t)|P (t)(H) as above, we may conclude that (6.8) holds true,

and, thus, for Vt = (V, ‖ ‖t) and ‖u‖2t = ‖u‖2H + ‖A(t)u‖2H ,∣∣∣λj(tk)− λj(t)
tk − t

∣∣∣|〈vj(tk) | wj(t)〉| ≤
∥∥∥A(tk)−A(t)

tk − t

∥∥∥
L(Vtk ,H)

‖vj(tk)‖Vtk ‖wj(t)‖H

=
∥∥∥A(tk)−A(t)

tk − t

∥∥∥
L(Vtk ,H)

√
‖vj(tk)‖2H + ‖A(tk)vj(tk)‖2H · 1

=
∥∥∥A(tk)−A(t)

tk − t

∥∥∥
L(Vtk ,H)

√
1 + |λj(tk)|2

≤ C(1 + |λj(tk)|),

for a constant C, since all norms ‖ ‖t are uniformly equivalent locally in t, by
Claim 7.2. Since t 7→ λj(t) is Lipschitz, in particular, absolutely continuous, we
obtain

|λ′j(t)| ≤ C + C|λj(t)| a.e.,

and Gronwall’s lemma (e.g. [15, (10.5.1.3)]) implies the asserted inequality.

For the first supplement in (D), let x0 ∈ E ∩ U , c : R → E, c(0) = x0, and
c((0, 1]) ⊆ U . The continuous function λ◦c|(0,1] represents an eigenvalue of A◦c|(0,1]

and is locally Lipschitz. By Claim 7.3, λ ◦ c|(0,1] is bounded on (0, 1], and, by
Lemma 6.2, the limit limt→0+ λ ◦ c|(0,1](t) =: z exists and is an eigenvalue of A(x0).
The local result (the supplement in Theorem 6.19(2)) yields that λ◦c|(0,1] is globally
Lipschitz.

Finally, it remains to extend the local choices to global ones for the cases (A),
(D) if E = R, (E), and (F):

7.4. Claim. In case (A) the eigenvalues and the eigenvectors admit global C∞ (resp.
C [M ]) parameterizations. In the cases (D) if E = R, (E), and (F) the eigenvalues
admit global C0,1, C1, and twice differentiable parameterizations, respectively.

First we treat the eigenvalues. Let E stand for C∞, C [M ], C0,1, C1, or “twice
differentiable”; according to case (A), (D), (E), or (F). Choose a numbering of the
eigenvalues of A(0) (with multiplicities).

We consider sequences of E -functions (λj)j∈α, indexed by ordinals α and defined
on open intervals Ij containing some fixed t0 ∈ R, which parameterize eigenvalues
of A. The set of all such sequences is partially ordered by inclusion of ordinals and
then by restriction of the component functions. For each increasing chain the union
is again such a sequence. By Zorn’s lemma there exists a maximal sequence (λj).

In any maximal sequence each component function λj is globally defined on R.
This is seen as follows: If b <∞ is the right (say) endpoint of Ij , then, by Claim 7.3
and by Lemma 6.2, the limit limt→b− λj(t) =: z exists and is an eigenvalue of A(b).
By the local results, there exist δ, ε > 0 such that all eigenvalues |λ− z| < ε of A(t)
for |t− b| < δ admit a parameterization by E -functions

µj : (b− δ, b+ δ)→ {λ ∈ C : |λ− z| < ε} =: Bε(z).

In case (A), λj coincides with some µj on their common domain, since unequal
eigenvalues have finite order of contact, and, hence, it admits an extension beyond
b. In the other cases consider the λj whose graph {(t, λj(t)) : t ∈ Ij} has non-
empty intersection with the vertical boundary {b − δ, b + δ} × Bε(z) of the tube
(b − δ, b + δ) × Bε(z) ⊆ R × C. The endpoints of the corresponding intervals Ij
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decompose (b− δ, b+ δ) into finitely many subintervals. We apply Lemma 6.17 on
each subinterval; in case (D) where λj ∈ C0,1 we use its continuous version. Then we
glue at the endpoints of the subintervals in a continuous, C1, or twice differentiable
way, respectively, (as before in the proof of Proposition 6.11) to obtain an extension
of at least λj . In case (D) this extension is C0,1, since we already know that any
continuous eigenvalue is C0,1. So the sequence was not maximal and the assertion
follows.

Any maximal sequence (λj) parameterizes all eigenvalues of A with the right
multiplicities. If not, there is some t0 and some eigenvalue z of A(t0) such that
|{j : λj(t0) = z}| is less than the multiplicity of z. By the local results, Lemma 6.17,
and the assumption on the order of contact in case (A), we may again conclude
that (λj) was not maximal, a contradiction.

Now let us treat the eigenvectors. Let λj : R → C be a C∞ (resp. C [M ]) eigen-
value with generic multiplicity N . By the arguments in the proof of Claim 5.11,
we obtain a unique global N -dimensional C∞ (resp. C [M ]) vector subbundle of
R×H → R whose fiber over t consists of eigenvectors for the eigenvalue λj(t). The

corresponding C∞ (resp. C [M ]) eigenprojection Pj has a transformation function,
since the arguments at the end of 5.11 work in Banach spaces, see [41] and [38, 3.4].
So we find global C∞ (resp. C [M ]) eigenvectors for each eigenvalue. This completes
the proof of Claim 7.4 and the proof of the theorem. �

7.5. Remark (m-sectorial operators). The assumptions in Theorem 1.1 may be
slightly relaxed, if all A(x) are m-sectorial operators. In that case it suffices to
assume that the associated quadratic forms a(x) have common domain of definition
V and x 7→ a(x)(u) is of the respective class for each u ∈ V . In the following
discussion we use the definitions of [20, VI].

Let E 3 x 7→ a(x) be a parameterized family of closed sectorial (possibly un-
bounded) sesquilinear forms in a Hilbert space H so that there is a dense subspace V
of H which is the domain of definition of each a(x), i.e., V (a(x)) = V . We say that
a(x) is C∞, C [M ], or Ck,α if x 7→ a(x)(u, v) is C∞, C [M ], or Ck,α for each u, v ∈ V ;
by polarization it is actually enough to require that x 7→ a(x)(u) = a(x)(u, u) is of
the respective class for all u ∈ V . Let C stand for C∞, C [M ], or Ck,α.

There is a bijective correspondence a 7→ Aa between the set of all densely defined
closed sectorial forms a and the set of all m-sectorial operatorsA, where a is bounded
if and only if Aa is bounded and a is symmetric (i.e., a(u, v) = a(v, u) for u, v ∈ V ) if
and only if Aa is self-adjoint (by the first representation theorem [20, VI Thm. 2.1]).
Note that an m-sectorial operator necessarily is densely defined and closed.

Thus with the C -family x 7→ a(x) of closed sectorial forms we associate the
family x 7→ Aa(x) = Aa(x) of m-sectorial operators. If we also assume that Aa(x) is
normal for every x and has compact resolvent for every (equivalently, some) x, then
the conclusions of Theorem 1.1 hold true for the family x 7→ Aa(x). This follows
from the following two claims which replace Lemma 7.1 and Claim 7.3.

7.6. Claim. The mapping (x, z) 7→ (Aa(x)− z)−1 ∈ L(H,H) is C .

This claim can be shown along the lines of the proof of [20, VII Thm. 4.2]: Fix
x0. Without loss of generality s = Re a(x0) ≥ 1; this can be achieved by adding a
suitable constant to a(x0). Then the associated operator S = As ≥ 1 is self-adjoint
and has a unique square root G = S1/2. Consider the forms

b(x)(u, v) = a(x)(G−1u,G−1v).
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Each form b(x) is defined everywhere on H, since G−1u ∈ V (G) = V (s) = V (by
the second representation theorem [20, VI Thm. 2.23]), closable and thus bounded.
The assumption that x 7→ a(x) is a C -family immediately gives that x 7→ b(x)(u, v)
is C for each u, v ∈ H. Consider the family of operators B(x) ∈ L(H,H) defined
by

〈B(x)u | v〉 = b(x)(u, v).

By the linear uniform boundedness principle and the fact that it suffices to use a
set of linear functionals which together recognize bounded sets instead of the whole
dual (see the references in 1.2), x 7→ B(x) ∈ L(H,H) is C . Replacing u, v by
Gu,Gv we obtain

(7.7) a(x)(u, v) = 〈B(x)Gu | Gv〉, for u, v ∈ V.
So we have

〈Aa(x)u | v〉 = 〈B(x)Gu | Gv〉, for u ∈ V (Aa(x)), v ∈ V,
whence GB(x)Gu exists and equals Aa(x)u, since G is self-adjoint. Since GB(x)G
is accretive and Aa(x) is m-accretive, we have

Aa(x) = GB(x)G, and

Aa(x)−1 = G−1B(x)−1G−1 near x0,

where G−1 ∈ L(H,H) and B(x)−1 ∈ L(H,H), since B(x0) is invertible (cf. [20, VI
Thm. 3.2]). It follows that x 7→ Aa(x)−1 ∈ L(H,H) is C near x0. Here we use that
C is preserved by composition with a real analytic mapping.

Assume that Aa(x0) − z0 is invertible. Then Aa(x) − z is invertible for (x, z)
near (x0, z0). For such (x, z) we have

(Aa(x)− z)Aa(x)−1 = 1− zAa(x)−1

and 1−zAa(x)−1 : H → H is bijective. Thus (x, z) 7→ (1−zAa(x)−1)−1 ∈ L(H,H)
is C and hence also

(x, z) 7→ (Aa(x)− z)−1 = Aa(x)−1(1− zAa(x)−1)−1 ∈ L(H,H)

is C near (x0, z0). This shows Claim 7.6.
In what follows we assume that the parameter space is E = R and t = x.

7.8. Claim. Assume that t 7→ a(t) is C0,1. A C0,1-eigenvalue t 7→ λj(t) of t 7→
Aa(t) cannot accelerate to ∞ in finite time.

Note that (7.7) implies that a(t) is locally uniformly sectorial. Thus we may
assume without loss of generality that s(t) = Re a(t) ≥ 1 near t0. Since a(t) is
closed, the inner product 〈u | v〉t := 〈u | v〉+ s(t)(u, v) makes V to a Hilbert space
Vt := (V, ‖ ‖t) (see [20, VI Thm. 1.11]). The arguments in the proof of [28, Claim
(1)] show that all these norms ‖ ‖t are locally uniformly equivalent.

By reducing to Pa(t)Aa(t)|Pa(t)(H) (where Pa(t) = − 1
2πi

∫
γ
(Aa(x) − z)−1dz) we

have (6.8) (with t replaced by t0) and hence, using (7.7),∣∣∣λj(tk)− λj(t0)

tk − t0

∣∣∣|〈vj(tk) | wj(t0)〉| =
∣∣∣〈B(tk)−B(t0)

tk − t0
Gvj(tk) | Gwj(t0)

〉∣∣∣
≤
∥∥∥B(tk)−B(t0)

tk − t0

∥∥∥
L(H,H)

‖G‖2L(Vtk ,H)‖vj(tk)‖Vtk ‖wj(t0)‖Vtk

≤ C
√

1 + s(tk)(vj(tk)) ·
√

1 + s(t0)(wj(t0)) = C
√

1 + Reλj(tk) ·
√

1 + Reλj(t0),
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for a constant C, since all norms ‖ ‖t are locally uniformly equivalent and since
s(t)(u, v) = 〈S(t)1/2u | S(t)1/2v〉 for S(t) = As(t) ≥ 1, by the second representation
theorem [20, VI Thm. 2.23]. Since t 7→ λj(t) is Lipschitz, it follows that

|Reλ′j(t)| ≤ |λ′j(t)| ≤ C + C|Reλj(t)| a.e.,

and Gronwall’s lemma implies that t 7→ Reλj(t) cannot accelerate to ∞ in finite
time. Since Aa(t) is locally uniformly m-sectorial, λj(t) lies in a sector {z ∈ C :
| arg(z − ζ)| ≤ θ}, for 0 ≤ θ < π/2 and ζ ∈ R, and the claim follows.

8. The results are best possible

The condition on the order of contact in (A) cannot be dropped: This follows
from the examples in [24] and [28] for C∞ and for non-quasianalytic C{M}. From
the latter one can also deduce a counterexample for non-quasianalytic C(M).

These examples together with Example 8.1 also show that results of type (C)–(F)
are hopeless for the eigenvectors. Moreover, (B) is wrong without desingularization,
by Example 8.1.

Result (C) is optimal, since by Example 8.2 the single eigenvalues cannot be cho-
sen continuously in general. By the example in [24], in (E) and (F) the eigenvalues
cannot be C1,β for any β > 0, even if t 7→ A(t) is C∞. On the other hand, in our
proof the assumption C1,α in (E) (resp. C2,α in (F)) cannot be weakened to C1, by
the “resolvent example” in [24], but we do not know whether there is a C1 (resp. C2)
curve of unbounded normal operators with common domain and compact resolvent
whose eigenvalues cannot be parameterized C1 (resp. twice differentiably).

Example 8.3 and Example 8.4 show that the results are generally no longer true
if A is a family of merely diagonalizable matrices.

8.1. Example (The first partials of eigenvectors cannot be locally bounded). The
real analytic family of normal (even real symmetric) matrices

A(x, y) =

(
x y
y −x

)
, x, y ∈ R,

has the eigenvalues ±
√
x2 + y2. There cannot exist a parameterization of the

eigenvectors of A with locally bounded derivatives. Namely, if
(
u
v

)
denotes an

eigenvector with norm 1 for the eigenvalue
√
x2 + y2, then the partial derivative(

ux
vx

)
(where it exists) must satisfy(
x−

√
x2 + y2 y

y −x−
√
x2 + y2

)(
ux
vx

)
=

 x√
x2+y2

− 1 0

0 x√
x2+y2

+ 1

(u
v

)
If
(
ux
vx

)
were bounded near 0, the left-hand side would converge to 0 as x, y → 0,

whereas the right-hand side does not, a contradiction.

8.2. Example (The single eigenvalues cannot be chosen continuously). The eigen-
values of the locally Lipschitz family of normal matrices

A(x) =

(
0 x
|x| 0

)
, x ∈ C ∼= R2

do not admit a parameterization which is continuous in a neighborhood of 0.
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8.3. Example (Mere diagonalizability does not guarantee Cω eigenvalues). The
eigenvalues of the real analytic curve of diagonalizable matrices

A(x) =

x 0 0
0 0 x2

0 x 0

 , x ∈ R,

are given by x, ±x3/2 if x ≥ 0 and by x, ±i|x|3/2 if x < 0.

8.4. Example (Mere diagonalizability does not guarantee C0,1 eigenvalues). See
[20, II Ex. 5.9]:

A(x) =

(
|x|α |x|α − |x|β

(
2 + sin 1

|x|
)

−|x|α −|x|α

)
, x ∈ R \ {0}, A(0) = 0,

forms a C1-curve of diagonalizable matrices if α > 1 and β > 2. The eigenvalues
of A are given by

λ±(x) = ±|x|
α+β

2

(
2 + sin

1

|x|

) 1
2

, x ∈ R \ {0}, λ±(0) = 0.

The derivatives λ′± exist everywhere, but they are discontinuous at 0 if α + β ≤ 4
and even unbounded near 0 if α+ β < 4.

Acknowledgements. I am grateful to Adam Parusiński for helpful discussions
and to the anonymous referee for pointing to m-sectorial operators.
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[16] C.-A. Faure, Théorie de la différentiation dans les espaces convenables, Ph.D. thesis, Uni-
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