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Recognizing (ultra)differentiable functions on open sets. Let f : U → R
be a function defined in an open set U ⊆ Rd. Then f induces a map f∗ : UR → RR,
f∗(c) = f ◦ c, whose invariance properties encode the regularity of f :

(i) f is smooth (C∞) if and only if f∗C∞(R, U) ⊆ C∞(R,R); due to [1].
(ii) f is Ck,α if and only if f∗C∞(R, U) ⊆ Ck,α(R,R); see [5], [4], [8].
(iii) f is CM if and only if f∗CM (R, U) ⊆ CM (R,R), where M is a non-

quasianalytic weight sequence; see [9].

By Ck,α (k ∈ N, α ∈ (0, 1]) we denote the class of Ck-functions whose partial
derivatives of order k satisfy a local α-Hölder condition. Let us now define CM .

Ultradifferentiable functions of class CM . Let M = (Mk) be a positive se-
quence. The Denjoy–Carleman class CM (U,Rm) is the set of all f ∈ C∞(U,Rm)
such that for all compact K ⊆ U ,

(1) ∃C, ρ > 0 ∀n ∈ N∀x ∈ K : ‖f (n)(x)‖Ln(Rd,Rm) ≤ Cρnn!Mn.

For the constant sequence Mk = 1, we recover the real analytic class Cω(U,Rm).
We will impose some regularity properties on M : An increasing log-convex

sequence M = (Mk) with M0 = 1 is called a weight sequence. A weight sequence
M is called non-quasianalytic if

(2)
∑
k

Mk

(k + 1)Mk+1
<∞;

otherwise it is said to be quasianalytic. We say that M has moderate growth if
there is a constant C > 0 such that Mj+k ≤ Cj+kMjMk for all j, k.

If M is a weight sequence, then CM contains Cω and is stable under composition.
By the Denjoy–Carleman theorem, M is non-quasianalytic if and only if there are
CM -functions with compact support. Clearly, (iii) fails for quasianalytic weight
sequences M . The moderate growth condition will be important below.

On closed fat sets with Hölder boundary. What about (i), (ii), and (iii) for
functions defined in non-open subsets X ⊆ Rd? For arbitrary X ⊆ Rd we define

A∞(X) :=
{
f : X → R : f∗{c ∈ C∞(R,Rd) : c(R) ⊆ X} ⊆ C∞(R,R)

}
,

AM (X) :=
{
f : X → R : f∗{c ∈ CM (R,Rd) : c(R) ⊆ X} ⊆ CM (R,R)

}
,

A∞M (X) :=
{
f : X → R : f∗{c ∈ CM (R,Rd) : c(R) ⊆ X} ⊆ C∞(R,R)

}
.

If X ⊆ Rd is a non-empty open set, then (i) and (iii) amount to

(3) A∞(X) = C∞(X), AM (X) = CM (X).

Clearly, some restrictions on X are necessary if one hopes for identities as in (3)
on non-open sets X, not to mention definitions of C∞ and CM . We will say that
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a non-empty closed subset X ⊆ Rd is fat if it has dense interior, i.e., X = int(X).
For such X we define (see also Remark 2 below)

(4) C∞(X) :=

{
f : X → R

∣∣∣∣ f |int(X) ∈ C∞,
∀n ∈ N : (f |int(X))

(n) extends continuously to X

}
.

For a weight sequence M = (Mk), let

(5) CM (X) :=
{
f ∈ C∞(X) : (1) holds for all compact K ⊆ X

}
.

Question 1. When do we have A∞(X) = C∞(X) and AM (X) = CM (X)?

Interestingly, the analogue for finite differentiability (ii) fails even on the closed
half-space, which is a consequence of Glaeser’s inequality. That the identities in
Question 1 are not always true is shown by the following example.

Example 1. Let p : [0,∞) → [0,∞) be a strictly increasing C∞-function which
is infinitely flat at 0. Consider the ∞-flat cusp X = {(x, y) ∈ R2 : x ≥ 0, 0 ≤
y ≤ p(x)} and the function f : X → R defined by f(x, y) =

√
x2 + y. Then

f 6∈ C∞(X), but f ∈ A∞(X). The latter follows from a division theorem of [6].

On the positive side, [7] proved that A∞(X) = C∞(X) holds for convex sets X
with non-empty interior. We will extend this result to a larger family of sets.

Let Rd = Rd−1×R with Euclidean coordinates x = (x′, xd). Let α ∈ (0, 1], and
r, h > 0. Consider the truncated open cusp

Γα(r, h) :=
{

(x′, xd) ∈ Rd−1 × R : |x′| < r, h(|x′|/r)α < xd < h
}
.

An open set U ⊆ Rd is said to have the uniform cusp property of index α (we write
(UCPα) for short), if for each x ∈ ∂U there exist ε, r, h > 0 and A ∈ O(d) such
that for all y ∈ U ∩B(x, ε) we have y +AΓα(r, h) ⊆ U .

Remark 1. A bounded open set U ⊆ Rd has (UCPα) if and only if U has equi-α-
Hölder boundary; cf. [3]. In particular, U has (UCP1) if and only if it is a Lipschitz
domain. If α < 1 then the Hausdorff dimension of ∂U can be larger than d− 1.

Theorem 1. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd
be a closed fat set. If int(X) has (UCPα) for some α, then

(6) A∞(X) = A∞M (X) = C∞(X).

If int(X) has (UCP1), then

(7) AM (X) = CM (X).

On closed fat subanalytic sets. Using rectilinearization of subanalytic sets we
obtain the following consequences of Theorem 1.

Theorem 2. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd
be a closed fat subanalytic set. There is a locally finite collection of real analytic
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mappings ϕj : Uj → Rd, where each ϕj is the composite of a finite sequence of
local blow-ups with smooth centers and Uj is open in Rd, such that, for all j,

ϕ∗jA∞(X) ⊆ C∞(ϕ−1j (X)),(8)

ϕ∗jAM (X) ⊆ CM (ϕ−1j (X)).(9)

If f is C∞, ϕ real analytic, and the composite f ◦ϕ is CM , then in general f need
not be CM . Under suitable conditions one can however expect that f is CMa

for
some positive integer a independent of M (where (Ma)k := (Mk)a). Combining a
result of [2] (which makes this precise) with Theorem 2 we deduce the following.

Let M = (Mk) be a weight sequence. Let X ⊆ Rd be a closed fat set. We define

AM̂ (X) :=
⋂
a>0

AM
a

(X) and CM̂ (X) :=
⋂
a>0

CM
a

(X).

Theorem 3. Let M = (Mk) be a weight sequence of moderate growth such that
Ma is non-quasianalytic for all a > 0. Let X ⊆ Rd be a closed fat subanalytic set.
Then

(10) C∞(X) ∩ AM̂ (X) = CM̂ (X).

Example 2. The sequence Mk = k! satisfies the assumptions of Theorem 3. In

that case CM̂ is the intersection of all Gevrey classes.

Remark 2. Often a function on a closed set X ⊆ Rd is declared to be C∞ if it
is the restriction of a C∞-function on Rd. For general closed fat sets, this differs
from the notion of smoothness defined in (4). But in the cases considered here
(i.e., int(X) has (UCPα) for some α, or X is subanalytic) the two notions coincide.
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