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Abstract. We explore the regularity of the roots of G̊arding hyperbolic poly-

nomials and real stable polynomials. As an application we obtain new regu-

larity results of Sobolev type for the eigenvalues of Hermitian matrices and for
the singular values of arbitrary matrices. These results are optimal among all

Sobolev spaces.

1. Introduction. A celebrated theorem of Bronshtein [9] (see also [26]) states that
the roots of a monic univariate real-rooted polynomial of degree d with coefficients
Cd−1,1-functions defined in some open set U ⊆ Rm can be represented by functions
that are locally Lipschitz in U . (A Ck,α-function is by definition a function that is
k-times continuously differentiable and whose partial derivatives of order k satisfy
a local α-Hölder condition.) That means, if aj ∈ Cd−1,1(U), j = 1, . . . , d, and all
roots of the monic polynomial

Pa(x)(Z) = Zd +

d∑
j=1

aj(x)Zd−j

are real for all x ∈ U , then there exist functions λj ∈ C0,1(U), j = 1, . . . , d, such
that

Pa(x)(Z) =

d∏
j=1

(Z − λj(x)), x ∈ U. (1.1)

Let us call any d-tuple of functions λ = (λ1, . . . , λd) that satisfy (1.1) a system of
the roots of Pa. One can show that any continuous system λ = (λ1, . . . , λd) of the
roots of Pa with aj ∈ Cd−1,1(U), j = 1, . . . , d, is locally Lipschitz. And there are
explicit bounds for the C0,1-norm of the λj in terms of the coefficients aj ; see [26].
We shall refer to these results as Bronshtein’s theorem.

That Bronshtein’s theorem is sharp is manifest already in dimension m = 1. If
the coefficients a = (a1, . . . , ad) are of class Cd−1,1, then generally there are no
differentiable systems of the roots of Pa; e.g. no function λ with λ2 = f , where f is
the C1,1-function f(t) = t2 sin2(log |t|) for t 6= 0 and f(0) = 0, is differentiable at
0. On the other hand, if a is of class Cd (resp. C2d) and m = 1, then there exists
a C1 (resp. twice differentiable) system of the roots of Pa; see [10] (and also [26]).
However, there are non-negative C∞-functions f on R such that no function λ with
λ2 = f is of class C1,α for any α > 0; cf. [6].
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There are various ways to generalize univariate real-rooted polynomials to multi-
variate polynomials. In this paper we will consider G̊arding hyperbolic polynomials
and real stable polynomials. These classes of polynomials are intimately related and
have important applications in many different fields including PDEs, combinatorics,
optimization, functional analysis, probability etc.

We will focus on the regularity of the roots of G̊arding hyperbolic polynomials
and real stable polynomials. By combining Bronshtein’s theorem with the observa-
tion that the roots of G̊arding hyperbolic polynomials are difference-convex func-
tions we obtain uniform regularity results for the roots of the considered classes
of real-rooted polynomials which in general are optimal among Sobolev spaces, see
Theorem 4.6.

As an application we obtain new regularity results for the eigenvalues of Hermit-
ian matrices and for the singular values of arbitrary matrices. In particular, we will
prove in Theorem 6.2 that any C1,1-curve of Hermitian d×d matrices admits a sys-
tem of its eigenvalues that is locally of Sobolev class W 2,1. This result is uniform,
in the sense explained in Theorem 6.2(3), and optimal among all Sobolev spaces
W k,p, see Remark 6.3. (A W k,p-function is by definition a p-integrable function
with p-integrable weak partial derivatives up to order k.)

As a byproduct we obtain a new simple proof of the fact that a C1-curve of
Hermitian matrices admits a C1-system of its eigenvalues. This was proved for
symmetric matrices by [30] and for normal matrices by [28] by different methods.

Acknowledgment. This note arose from a discussion with Alexander Lytchak who
introduced me to difference-convex functions.

2. Hyperbolic and real stable polynomials. We call a univariate polynomial
f(Z) ∈ C[Z] real-rooted if all roots of f are real; then also all coefficients are real
and f(Z) ∈ R[Z]. There is the following multivariate generalization.

Definition 2.1. A polynomial f(Z1, . . . , Zn) ∈ C[Z1, . . . , Zn] is said to be stable
if f(z1, . . . , zn) 6= 0 for all (z1, . . . , zn) ∈ Cn with Im(zj) > 0 for j = 1, . . . , n. A
stable polynomial with real coefficients is called a real stable polynomial.

A univariate polynomial with real coefficients is real stable if and only if it
is real-rooted. A polynomial f(Z1, . . . , Zn) ∈ C[Z1, . . . , Zn] is stable (resp. real
stable) if and only if for all x ∈ Rn and all v ∈ Rn>0 the univariate polynomial
f(x + Tv) ∈ C[T ] is stable (resp. real stable). Real stable polynomials played a
crucial role in the recent proof of the Kadison–Singer conjecture [24].

A different but related multivariate generalization of real-rootedness is G̊arding
hyperbolicity.

Definition 2.2. A homogeneous polynomial f(Z1, . . . , Zn) ∈ R[Z1, . . . , Zn] is said
to be G̊arding hyperbolic with respect to a given vector v ∈ Rn if f(v) 6= 0 and for
all x ∈ Rn the univariate polynomial f(x− Tv) ∈ R[T ] is real-rooted.

This notion was introduced by G̊arding [12] in the 1950s. He showed that f being
hyperbolic with respect to a direction v is a necessary and sufficient condition for
local well-posedness of the Cauchy problem with principal symbol f and initial data
on a hyperplane with normal vector v. Hyperbolic polynomials have found many
applications ever since, for instance, in Gurvits’ proof [14] of the van der Waerden
conjecture.
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Example 2.3. The determinant on the real vector space of d×d Hermitian matrices
is G̊arding hyperbolic with respect to the identity matrix I.

The relation between real stable and G̊arding hyperbolic polynomials is captured
in the following

Proposition 2.4 ([7, Proposition 1.1]). Let f ∈ R[Z1, . . . , Zn] be of degree d and
let fH ∈ R[Z1, . . . , Zn,W ] be the unique homogeneous polynomial of degree d such
that

fH(Z1, . . . , Zn, 1) = f(Z1, . . . , Zn).

Then f is real stable if and only if fH is G̊arding hyperbolic with respect to every
vector v ∈ Rn>0 × {0}.

Interesting examples of real stable polynomials (and hence of hyperbolic poly-
nomials) are generated as follows (see [7, Proposition 1.12]): Let A1, . . . , An be
positive semidefinite m×m matrices and B a (complex) Hermitian m×m matrix.
Then the polynomial

f(Z1, . . . , Zn) = det
( n∑
j=1

ZjAj +B
)

is either real stable or identically zero. Conversely, any real stable polynomial in
two variables Z1 and Z2 can be written as ±det(Z1A1 + Z2A2 + B), where Aj
are positive semidefinite and B is symmetric [7, Theorem 1.13]. The latter result
is based on (and corresponds to) the Lax conjecture [21] for G̊arding hyperbolic
polynomials which was recently established by [23] relying on work by [17], [34];
see also Remark 6.4.

We refer to the survey article [5] for background on G̊arding hyperbolic polyno-
mials and more ways to generate examples.

3. Difference-convex functions. We shall work with the the class of difference-
convex functions. This is a subclass of the class of locally Lipschitz functions which
arises as the smallest vector space that contains all continuous convex functions on
a given set. We follow the survey article [4]; see also [18].

Definition 3.1. Let U ⊆ Rn be a convex set. A function f : U → R is said to
be difference-convex (DC) if it can be written as the difference of two continuous
convex functions on U . A function f is called locally difference-convex if each point
in the domain of f has a convex neighborhood on which f is difference-convex.

Let us denote by DC(U) the space of all difference-convex functions on U and use
the obvious notation DCloc(U) for the local class. We have DCloc(U) ⊆ C0,1(U),
by the local Lipschitz properties of locally bounded convex functions.

Next we collect some basic properties of difference-convex functions.

Lemma 3.2 ([4]). Let U ⊆ Rn be an open convex set. Then:

(1) DC(U) is an algebra.
(2) Each DC-function on U is the difference of two non-negative convex con-

tinuous functions on U .
(3) If f ∈ DC(U) then positive and negative parts f± of f as well as |f | belong

to DC(U).

For us the following properties will be crucial.
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Lemma 3.3 ([15]). We have:

(1) f ∈ DC(Rn) if and only if f ∈ DCloc(Rn).
(2) Let A ⊆ Rm be convex and either open or closed. Let B ⊆ Rn be convex and

open. If f : A→ B is DC (that is each component is DC) and g : B → R
is DC, then g ◦ f is locally DC.

(3) Let A ⊆ Rm be convex and either open or closed. If a DC-function f is
nowhere vanishing on A, then 1/f is DC on A.

We shall also need

Lemma 3.4 ([33, Lemma 4.8]). Let U ⊆ Rn be an open convex set and let fj ∈
DC(U), j = 1, . . . , d. If f : U → R is continuous and f(x) ∈ {f1(x), . . . , fd(x)} for
all x ∈ U , then f ∈ DC(U).

Note that, if U ⊆ Rn is open, then C1,1(U) ⊆ DCloc(U), cf. [32, Theorem 11]
and [18, Section II]. In particular, all real polynomials on Rn belong to DC(Rn);
see also [4, Section 3.3] for a direct argument.

On the other hand the first order partial derivatives of a difference-convex func-
tion f : U → R have bounded variation, i.e., the weak second order partial deriva-
tives of f are signed Radon measures. This follows from Dudley’s result [11] that
a Schwartz distribution is a convex function if and only if its second derivative
is a non-negative matrix-valued Radon measure. In one dimension, a real-valued
function f on a compact interval is difference-convex if and only if f is absolutely
continuous and f ′ has bounded variation.

4. Roots of G̊arding hyperbolic polynomials. Let f(Z1, . . . , Zn) ∈
R[Z1, . . . , Zn] be a homogeneous polynomial of degree d which is G̊arding hyperbolic
with respect to a direction v ∈ Rn. We may factorize

f(x+ Tv) = f(v)

d∏
j=1

(T + λ↓j (x)),

where
λ↓1(x) ≥ . . . ≥ λ↓d(x)

are the decreasingly ordered roots of f(x− Tv) ∈ R[T ]. We call

λ↓ = (λ↓1, . . . , λ
↓
d) : Rn → Rd

the characteristic map of f with respect to v and λ↓1, . . . , λ
↓
d (in no particular order)

the characteristic roots. The polynomial f is recovered by f(x) = f(v)
∏d
j=1 λ

↓
j (x).

We see that being G̊arding hyperbolic with respect to a direction v geometrically
means that any affine line with direction v meets the real hypersurface {x ∈ Rn :
f(x) = 0} in d points (with multiplicities).

Note that for all j = 1, . . . , d, r ∈ R≥0, and s ∈ R we have

λ↓j (rx+ sv) = rλ↓j (x) + s, and

λ↓j (−x) = −λ↓d+1−j(x).
(4.1)

Indeed, f(rx+sv+Tv) = rdf(x+r−1(s+T )v) = rdf(v)
∏d
j=1(r−1(s+T )+λ↓j (x)) =

f(v)
∏d
j=1(T + (s + rλ↓j (x))), by homogeneity. The case r = 0 is even simpler:

f(Tv) = T df(v). The second assertion can be seen analogously; the negative factor
reverses the order of the roots.
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G̊arding [13, Theorem 2] proved that λ↓d is concave which, by (4.1), is equiv-

alent to λ↓1 being convex. In view of (4.1) the largest root λ↓1 is also positively
homogeneous and thus sublinear. Recall that a function ϕ on Rn is sublinear if
ϕ(rx + sy) ≤ rϕ(x) + sϕ(y) for all x, y ∈ Rn and r, s ≥ 0; it is easy to see that
a positively homogeneous function ϕ is convex if and only if it is sublinear. The
connected component Cf of the set Rn\{f = 0} which contains v is an open convex

cone, one has Cf = {x ∈ Rn : λ↓d(x) > 0}, and f is G̊arding hyperbolic with respect
to each w ∈ Cf .

In [5, Theorem 3.1] a method for generating G̊arding hyperbolic polynomials
from a given one was presented. Suppose that f is a homogeneous polynomial of
degree d which is G̊arding hyperbolic with respect to v and has characteristic map
λ↓. If g is a homogeneous symmetric polynomial of degree e on Rd which is G̊arding
hyperbolic with respect to e1 + e2 + · · · + ed and has characteristic map µ↓, then
g ◦λ↓ is G̊arding hyperbolic of degree e with respect to v and its characteristic map
is µ↓ ◦ λ↓. (Here and below ei denotes the i-th standard unit vector in Rd.)

For instance, the homogeneous symmetric polynomial

gk(Y1, . . . , Yd) :=
∏

I⊆{1,...,d}
|I|=k

∑
i∈I

Yi.

of degree
(
d
k

)
is G̊arding hyperbolic with respect to e1+e2+· · ·+ed and has the char-

acteristic roots µI(Y ) = 1
k

∑
i∈I Yi, where I ranges over the subsets of {1, . . . , d}

with k elements. On the set {Y1 ≥ Y2 ≥ · · · ≥ Yd} we have µI(Y ) ≥ µJ(Y ) if and
only if

∑
i∈I i ≤

∑
j∈J j, in particular, µ{1,...,k} is the largest characteristic root.

Then gk ◦λ↓ is G̊arding hyperbolic with respect to v and has the largest character-

istic root µ{1,...,k} ◦ λ↓ = 1
k

∑k
i=1 λ

↓
i . From G̊arding’s result we may conclude that,

for all k = 1, . . . , d, the sum of the k largest roots

σk :=

k∑
i=1

λ↓i

is a sublinear function on Rn. We immediately obtain

Proposition 4.1. Let f(Z1, . . . , Zn) ∈ R[Z1, . . . , Zn] be a homogeneous polynomial
of degree d which is G̊arding hyperbolic with respect to a direction v ∈ Rn. The
characteristic map λ↓ : Rn → Rd is globally Lipschitz and difference-convex on Rn.

Proof. Any finite sublinear function on Rn is globally Lipschitz; this follows from
[31, Corollary 10.5.1]. By the above discussion, the functions σk, k = 1, . . . , d, are

convex and globally Lipschitz. Thus each λ↓k = σk − σk−1 is difference-convex and
globally Lipschitz. �

Combined with Lemma 3.4 this leads to

Corollary 4.2. In the setting of Proposition 4.1 every continuous function λ :
Rn → R satisfying f(x − λ(x)v) = 0 for all x ∈ Rn is globally Lipschitz and
difference-convex on Rn.

Proof. That λ ∈ DC(Rn) is an immediate consequence of Lemma 3.4 and Proposi-
tion 4.1. For arbitrary x, y ∈ Rn consider the set [x, y] := {(1− t)x+ ty : t ∈ [0, 1]}
equipped with the linear order induced by [0, 1]. By assumption, there is a finite
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sequence of points x =: x0 < x1 < · · · < xk := y with k ≤ d such that for each

i = 1, . . . , k there exists ji such that λ(xi−1) = λ↓ji(xi−1) and λ(xi) = λ↓ji(xi). Then

|λ(y)− λ(x)|
|y − x|

≤
k∑
i=1

|λ(xi)− λ(xi−1)|
|xi − xi−1|

· |xi − xi−1|
|y − x|

≤
k∑
i=1

|λ↓ji(xi)− λ
↓
ji

(xi−1)|
|xi − xi−1|

which implies that λ is globally Lipschitz, by Proposition 4.1. �

Let Hypdn(v) denote the space of all homogeneous polynomials f(Z1, . . . , Zn) ∈
R[Z1, . . . , Zn] of degree d which are G̊arding hyperbolic with respect to a fixed

vector v ∈ Rn. By identifying f ∈ Hypdn(v) with the sequence of its coefficients

(with respect to a fixed order of the monomials) we view Hypdn(v) as a subset of RN

where N =
(
n+d−1

d

)
. Then the subset H̊yp

d

n(v), consisting of all those f ∈ Hypdn(v)
for which the roots of f(x − Tv) are simple for every x not proportional to v, is

open. And Hypdn(v) is the part of the closure of H̊yp
d

n(v) where f(v) 6= 0. See [25]
in which also the connectivity properties of these spaces are discussed.

By a Ck,α-mapping f : Rm → Hypdn(v) we mean a mapping with values in

Hypdn(v) which is of class Ck,α when considered as mapping to RN . For each
y ∈ Rm we have the characteristic map λ↓(y)(·) of f(y). By slight abuse of notation
we write

λ↓ : Rm × Rn → Rd

and call it the characteristic map of f with respect to v. Its regularity properties
are stated in the following

Proposition 4.3. If f : Rm → Hypdn(v) is a mapping of class Cd−1,1, then its
characteristic map λ↓ : Rm × Rn → Rd is locally Lipschitz.

Proof. Bronshtein’s theorem [9] (see also [26]) implies that the roots λ↓j (y, x), j =
1, . . . , d of the univariate real-rooted polynomial

Rm × Rn 3 (y, x) 7→ f(y)(x− Tv) ∈ R[T ] (4.2)

are locally Lipschitz in (y, x). �

Note that in Proposition 4.3 we need the assumption that the coefficients of f
are of class Cd−1,1, since the assumptions of Bronshtein’s theorem are sharp.

By Proposition 4.1 the behavior of the characteristic map λ↓ : Rm × Rn →
Rd, (y, x) 7→ λ↓(y, x) is essentially better in the x variables. This will be further
investigated in the next theorem, that is Theorem 4.6. To this end we need the
following

Lemma 4.4. Let λ = (λ1, . . . , λd) : R → Rd be of class C1 and assume that the

coefficients of the polynomial P (t)(Z) =
∏d
j=1(Z − λj(t)) are of class W 2,1

loc . Then

each derivative λ′j, j = 1, . . . , d, has the Luzin (N) property (i.e. sets of Lebesgue
measure zero are mapped to sets of Lebesgue measure zero).

Proof. Note that it is enough to show the Luzin (N) property on bounded intervals,
since R can be covered by countably many of them. We proceed by induction on d.
The case d = 1 is clear, since in this case the derivative of the only root is locally
absolutely continuous, by assumption. Let d > 1.

Let A denote the closed set of all t ∈ R such that λ1(t) = · · · = λd(t). On an open
neighborhood I of each point t0 ∈ Ac := R\A we have a splitting P (t) = P1(t)P2(t)
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into polynomials with positive degree and W 2,1
loc coefficients, by the inverse function

theorem (cf. [26, Lemma 3.2]); here we use that the superposition with a real

analytic function preserves the class W 2,1
loc , cf. [8, Theorem 2]. On I we have a

partition of {λ1, . . . , λd} into the roots of P1 and the roots of P2. By induction
hypothesis, for each j the restriction λ′j |I has the Luzin (N) property. Since Ac

can be covered by countably many open neighborhoods of type I, we see that each
λ′j |Ac has the Luzin (N) property.

Let A′ denote the set of accumulation points of A. Let a1(t) denote the coefficient
of Zd−1 in P (t). For t ∈ A we have

a1(t) = −λ1(t)− · · · − λd(t) = −d · λj(t), for all j.

And hence for t ∈ A′ and all j we have

λ′j(t) = lim
A3tn→t

λj(tn)− λj(t)
tn − t

= −1

d
lim

A3tn→t

a1(tn)− a1(t)

tn − t
= −a

′
1(t)

d
.

By assumption a′1 is absolutely continuous and hence has the Luzin (N) property.
If E ⊆ R is a set of Lebesgue measure zero, then also

λ′j(E) = λ′j(E ∩Ac) ∪ λ′j(E ∩A′) ∪ λ′j(E ∩A \A′)
= λ′j(E ∩Ac) ∪ (− 1

d )a′1(E ∩A′) ∪ λ′j(E ∩A \A′)
has Lebesgue measure zero, noting that A \A′ is discrete and thus countable. �

Let f ∈ Hypdn(v) have characteristic map λ↓ : Rn → Rd. Let x : R → Rn be a
curve. A mapping λ = (λ1, . . . , λd) : R → Rd is called a system of the roots of f
along x if λ(t) and λ↓(x(t)) coincide as unordered d-tuples for all t.

Lemma 4.5. Let f ∈ Hypdn(v) and let x : R → Rn be a C1-curve. Then there
exists a differentiable system λ = (λ1, . . . , λd) of the roots of f along x.

Proof. Let λ0 be a p-fold root of f(x(t0) − Tv). We claim that the polynomial
f(x(t)− Tv) has p roots of the form λ0 + (t− t0)µj(t), where the µj are functions
which are defined near t0 and continuous at t0.

We may assume without loss of generality that t0 = 0. In view of (4.1) we may
also assume that λ0 = 0. We consider the localization fx(0) of f at x(0) defined by

tdf(t−1x(0) + ξ) = f(x(0) + tξ) = tpfx(0)(ξ) +O(tp+1), (4.3)

where fx(0)(ξ) is the first coefficient in the above expansion which does not vanish
identically. Since

f(x(0) + tv) = f(v)

d∏
j=1

(t+ λ↓j (x(0))) = tpf(v)
∏

λ↓j (x(0)) 6=λ0

(t+ λ↓j (x(0))),

the exponent p in (4.3) is precisely the multiplicity of λ0. The homogeneous polyno-
mial fx(0) has degree p and is G̊arding hyperbolic with respect to v; see [3, Lemma
3.42].

Since x is of class C1, we have x(t) = x(0) + tx̃(t) for a continuous function x̃.
We are interested in the solutions of the equation

f(x(0) + tx̃(t)− tY v) = 0

By (4.3) we may equivalently study the equation

fx(0)(x̃(t)− Y v) +O(t) = 0.
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This is a polynomial equation in the unknown Y with coefficients which depend
continuously on t in a neighborhood of 0. It follows that there exist p solutions
µ1(t), . . . , µp(t) (since p is the degree of fx(0)) for t near 0 which are continuous at
t = 0. This implies the claim.

Let us indicate how to construct a global differentiable system λ = (λ1, . . . , λd)
of the roots of f along x from the local data provided by the claim; we follow the
argument in [1, 4.3]. We start with the continuous system ν1 ≥ ν2 ≥ · · · ≥ νd,

where νj := λ↓j ◦ x. Fix i 6= j and t0 ∈ R. If νi(t0) = νj(t0), then, by the claim,

νi(t)− νj(t) = (t− t0)νij(t) near t0, where νij is a function which is continuous at
t0. Let Eij be the closed set of t0 ∈ R such that νi(t0) = νj(t0) and νij(t0) = 0. At
the points of Eij the roots νi and νj are differentiable and the derivatives ν′i and
ν′j coincide. Let us define

λk(t) := νσt(k)(t), k = 1, . . . , d,

where σt is the permutation

σt = (1 2)ε12(t) · · · (1 d)ε1d(t)(2 3)ε23(t) · · · (2 d)ε2d(t) · · · (d− 1 d)εd−1,d(t)

and εij(t) ∈ {0, 1} are determined as follows. In each connected component I of
R \ Eij choose a point tI and set εij(tI) = 0. Going left and right from tI change
εij in each point t0 ∈ I, where νi(t0) = νj(t0) and νij(t0) 6= 0 (including tI if it
is such a point). These points accumulate only in Eij , where any choice for εij is
good. It follows that λ = (λ1, . . . , λd) is a global differentiable system of the roots
of f along x. �

We are ready to state and prove the theorem.

Theorem 4.6. Let f ∈ Hypdn(v). Let x ∈ DC(R,Rn) ∩W 2,1
loc (R,Rn); this is, for

instance, fulfilled if x ∈ C1,1(R,Rn).

(1) Any differentiable system λ = (λ1, . . . , λd) of the roots of f along x is
actually of class

λ ∈ C1(R,Rd) ∩DC(R,Rd) ∩W 2,1
loc (R,Rd). (4.4)

(2) If x : R → Rn is of class C1, then there exists a differentiable (thus C1)
system λ = (λ1, . . . , λd) of the roots of f along x.

(3) The result is uniform in the following sense: Let I ⊆ R be a bounded open
interval. Let U be an open neighborhood of the closure of I1+k in R1+k.
Suppose that x : U → Rn is such that
• x is locally DC on U ,

• x(·, r) ∈ C1(I,Rn) ∩W 2,1(I,Rn) for all r ∈ Ik.

Assume that, for each r ∈ Ik, a C1-system λ(·, r) of the roots of f along

x(·, r) is fixed. Then the family λ(·, r), for r ∈ Ik, is bounded in C1(I,Rd)
and there is a non-negative L1-function m : Ik → R≥0 such that

‖λ(·, r)‖W 2,1(I,Rd) ≤ m(r), for a.e. r ∈ Ik. (4.5)

Proof. (1) Let λ = (λ1, . . . , λd) be a differentiable system of the roots of f along
x. By Lemma 3.3, λ↓ ◦ x is DC on R. Then λ is DC on R, by Corollary 4.2. A
differentiable DC-function ϕ on R is of class C1 and the difference of two convex
C1-functions (see [18, Theorem 2.1]); indeed, by Darboux’s theorem, ϕ′ has the
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intermediate value property and so ϕ′ having (locally) bounded variation implies
that ϕ′ is continuous. It follows that λ is of class C1.

In order to conclude that λ ∈W 2,1
loc (R,Rn) it suffices to show that each λ′j has the

Luzin (N) property which follows from Lemma 4.4; in fact a continuous function of
pointwise bounded variation with the Luzin (N) property is absolutely continuous,
cf. [22, Corollary 3.27].

(2) This is Lemma 4.5.

(3) The Lipschitz constant of (λ↓◦x)(·, r) on I is uniformly bounded in r ∈ Ik by
the chain rule, since λ↓ is Lipschitz, by Proposition 4.1. By an argument similar to
the one in the proof of Corollary 4.2 we may infer the boundedness of the Lipschitz

constant of λ(·, r) on I. It follows that the family λ(·, r), r ∈ I
k
, is bounded in

C1(I,Rd).
By Lemma 3.3, λ↓ ◦x is locally DC on U . In particular, the directional variation

Ve1(∂1(λ↓ ◦ x), I1+k) of ∂1(λ↓ ◦ x) on I1+k is finite, where e1 denotes the first
standard unit vector. We have, see e.g [2, (3.100)],

Ve1(∂1(λ↓ ◦ x), I1+k) =

∫
Ik
V (∂1(λ↓ ◦ x)(·, r), I) dr,

where V (∂1(λ↓ ◦ x)(·, r), I) is the variation of ∂1(λ↓ ◦ x)(·, r) on I. The variation
of ∂1(λ↓ ◦ x)(·, r) on I dominates the variation of ∂1λ(·, r) on I (up to a constant
which depends only on d), since for each j = 1, . . . , d and a.e. t we have

∂1λj(t, r) ∈ {∂1(λ↓1 ◦ x)(t, r), . . . , ∂1(λ↓d ◦ x)(t, r)},
and ∂1λj(t, r) is continuous in t. Since ∂1λj(·, r) is absolutely continuous on I, by
(1), itsW 1,1-norm coincides with itsBV -norm on I. Together with the boundedness
in C1(I,Rd) the assertion (4.5) follows easily. �

Remark 4.7. If the system λ = (λ1, . . . , λd) of the roots of f along x is not
differentiable at t0, then λ is not of class W 2,1 in any neighborhood of t0.

In several variables the characteristic roots do not admit differentiable rear-
rangements. But for real analytic families of G̊arding hyperbolic polynomials the
characteristic roots can be chosen real analytically locally after blowing up the
parameter space.

Proposition 4.8. If f : Rm → Hypdn(v) is real analytic and x : R` → Rn is
real analytic, then there exists a locally finite composite of blowing-ups with smooth
centers τ = (τ1, τ2) : Y → Rm×R` such that for each y0 ∈ Y there is a neighborhood
U and a real analytic system of the roots of the univariate polynomial

U 3 y 7→ f(τ1(y))(x(τ2(y))− Tv) ∈ R[T ].

If f : R → Hypdn(v) is real analytic and x : R → Rn is a real analytic curve, then
there exists a global real analytic system of the roots of

R 3 s 7→ f(s)(x(s)− Tv) ∈ R[T ].

Proof. The statement follows from [20, Theorem 5.8] applied to the real-rooted
polynomial (4.2). The (one-dimensional) supplement follows from Rellich’s theorem
[29]; see also [1, Theorem 5.1]. �

Remark 4.9. Analogous results follow for suitable quasianalytic classes thanks to
a corresponding theorem for real-rooted polynomials, see [27].
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Remark 4.10. It is shown in [16, Theorem 4.2] that for any f ∈ Hypdn(v), x0 ∈ Rn,
and w ∈ Cf there is a system λ = (λ1, . . . , λd) : R → Rd of the roots of f along
t 7→ x0 + tw which is real analytic and such that each λj : R → R is strictly
increasing and surjective. The inverses of the λj form a system of the characteristic

roots of f ∈ Hypdn(w) along t 7→ x0 + tv.

5. Roots of real stable polynomials. The regularity results for G̊arding hy-
perbolic polynomials of the previous section immediately give regularity results for
real stable polynomials thanks to the connection presented in Proposition 2.4. Let
us denote by RStabdn the set of real stable polynomials of degree d in n variables.
Then Proposition 2.4 defines a bijection

RStabdn →
⋂

v∈Rn
>0×{0}

Hypdn(v), f 7→ fH .

Suppose that f ∈ RStabdn. For all v ∈ Rn>0×{0} we may consider the characteristic

map λ↓v : Rn+1 → Rd of fH with respect to v. Then the mapping λ↓v|{xn+1=1} is
globally Lipschitz and difference-convex and its components represent the roots
of f(x′ − Tv′) ∈ R[T ], where x′ = (x1, . . . , xn) and v′ = (v1, . . . , vn). It is then
straightforward to transfer the regularity results for G̊arding hyperbolic polynomials
of the previous section.

Finally, note that we can also vary the direction v: if f : Rm → RStabdn and
v : R` → Rn>0 are Cd−1,1-mappings, then the roots of the univariate real-rooted
polynomial

Rm × R` × Rn 3 (s, t, x) 7→ f(s)(x− Tv(t)) ∈ R[T ]

are locally Lipschitz in (s, t, x), by Bronshtein’s theorem [9] (see also [26]).

6. Eigenvalues of Hermitian matrices. Let Herm(d) denote the real vector
space of complex d×d Hermitian matrices. The determinant det is G̊arding hyper-
bolic with respect to the identity matrix I ∈ Herm(d). The characteristic map λ↓

of det with respect to I assigns to a Hermitian matrix A ∈ Herm(d) its eigenvalues
in decreasing order

λ↓1(A) ≥ . . . ≥ λ↓d(A).

As a direct consequence of Proposition 4.1 and the discussion preceding it we get

Corollary 6.1. The characteristic map λ↓ : Herm(d) → Rd is globally Lipschitz

and difference-convex on Herm(d). The sum
∑k
i=1 λ

↓
i , for k = 1, . . . , d, of the k

largest eigenvalues is sublinear.

The following result is a special case of Theorem 4.6.

Theorem 6.2. Let A : R → Herm(d) be a curve of d × d Hermitian matrices of

class DC ∩W 2,1
loc on R.

(1) Any differentiable system λ = (λ1, . . . , λd) of the eigenvalues of A is actu-
ally of class

λ ∈ C1(R,Rd) ∩DC(R,Rd) ∩W 2,1
loc (R,Rd).

(2) If A additionally is of class C1, then there exists a differentiable (thus C1)
system λ = (λ1, . . . , λd) of the eigenvalues of A.

(3) The result is uniform in the following sense: Let I ⊆ R be a bounded open
interval. Let U be an open neighborhood of the closure of I1+k in R1+k.
Suppose that A : U → Herm(d) is such that
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• A is locally DC on U ,

• A(·, r) is of class C1 ∩W 2,1 on I for all r ∈ Ik.

Assume that, for each r ∈ I
k
, a C1-system λ(·, r) of the eigenvalues of

A(·, r) is fixed. Then the family λ(·, r), for r ∈ Ik, is bounded in C1(I,Rd)
and there is a non-negative L1-function m : Ik → R≥0 such that

‖λ(·, r)‖W 2,1(I,Rd) ≤ m(r), for a.e. r ∈ Ik.

Note that the assumptions on A are in particular satisfied if A is of class C1,1.

Remark 6.3. The conclusion of this theorem is best-possible among all Sobolev
spaces W k,p. Indeed, by the Sobolev inequality, W k,p-regularity with k + p > 2
would imply C1,α-regularity with some α > 0, contradicting the counter-example
of [19]: there is a C∞-curve of symmetric 2 × 2 matrices the eigenvalues of which
do not admit a C1,α-system for any α > 0.

Remark 6.4. Statement (2) in Theorem 6.2 is due to Rellich [30] in the case of
symmetric matrices, and it was proved for normal matrices in [28]. Lemma 4.5
gives an independent proof for Hermitian matrices.

Conversely, (2) in Theorem 6.2 implies Lemma 4.5 if n ≤ 3: The Lax conjecture
(posed 1958 in [21]) which by now is a theorem (as [23] discovered the conjecture
follows from a theorem of [17], [34]) states that a homogeneous polynomial f on R3

is G̊arding hyperbolic of degree d with respect to the direction e1 with f(e1) = 1 if
and only if there exist real symmetric d× d matrices A and B such that

f(x, y, z) = det(xI + yA+ zB). (6.1)

So, for n ≤ 3, Theorem 4.6 follows from Theorem 6.2. A representation of type
(6.1) is in general not possible for G̊arding hyperbolic polynomials on Rn with

n ≥ 4. Indeed, the dimension of Hypdn(v) is
(
n+d−1

d

)
while the set of polynomials

in R[X1, . . . , Xn] of the form

det(X1I +X2A2 + · · ·+XnAn), (6.2)

where Ai are real symmetric d× d matrices, is at most (n− 1) ·
(
d+1
2

)
.

A particular homogeneous polynomial of degree 2 which is G̊arding hyperbolic
with respect to e1 but cannot be represented in the form (6.2) is the Lorentzian
polynomial f(X) = X2

1 −X2
2 −· · ·−X2

n for n ≥ 4. Indeed, if x1 = 0 and xj 6= 0 for
some j ∈ 2, . . . , n then f(x) < 0. But for any choice of real symmetric matrices Ai
we may find x ∈ Rn\{0} with x1 = 0 such that the first row of x1I+x2A2+· · ·+xnAn
is zero. Cf. [23, p.2498].

7. Singular values. Let A be any m× n matrix with complex entries and let

σ↓1(A) ≥ σ↓2(A) ≥ · · · ≥ σ↓n(A) ≥ 0

be the singular values of A in decreasing order, i.e., the non-negative square roots

of the eigenvalues of A∗A. If rankA = `, then σ↓`+1(A) = · · · = σ↓n(A) = 0. Thus

we set ` := min{m,n} and consider only σ↓j (A), for j = 1, . . . , `.

We may consider the σ↓j as functions on the vector space Cm×n of complex

m × n matrices. Without loss of generality assume that m ≤ n and let Ã be the
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n× n matrix resulting from A by adding n−m rows consisting of zeros. Then the
eigenvalues of the Hermitian matrix(

0 Ã

Ã∗ 0

)
(7.1)

are precisely

σ↓1(A) ≥ · · · ≥ σ↓n(A) ≥ −σ↓n(A) ≥ · · · ≥ −σ↓1(A).

It follows from Corollary 6.1 that, for all k = 1, . . . , `, the sum

k∑
j=1

σ↓j (7.2)

of the k largest singular values is a sublinear function on Cm×n viewed as a real

vector space. In fact, the sums A 7→
∑k
j=1 σ

↓
j (A) are the so-called Ky Fan norms.

We obtain

Corollary 7.1. The mapping σ↓ = (σ↓1 , . . . , σ
↓
` ) : Cm×n → R`, where ` =

min{m,n}, is globally Lipschitz and difference-convex on Cm×n.

The following theorem is a consequence of Theorem 6.2.

Theorem 7.2. Let A : R→ Cm×n be a curve of m× n complex matrices of class
C1∩DC ∩W 2,1

loc . If rankA(t) = min{m,n} =: ` for all t, then there exists a system

σ = (σ1, . . . , σ`) of the singular values of A such that σ ∈ C1(R,R`)∩DC(R,R`)∩
W 2,1

loc (R,R`). This result is uniform in the sense explained in Theorem 6.2.

Proof. The assertions follow from Theorem 6.2 applied to the Hermitian matrix
(7.1). The condition on the rank of A guarantees that the non-trivial singular
values of A are always strictly positive and hence there exists a C1-system of them,
since there exists a C1-system of the eigenvalues of (7.1). �

The rank condition is necessary; for instance, the singular value of the symmetric
1× 1 matrix A(t) = (t) is |t| which does not admit a C1 parameterization.
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