QUASIANALYTIC ULTRADIFFERENTIABILITY CANNOT BE TESTED IN LOWER DIMENSIONS

ARMIN RAINER

ABSTRACT. We show that, in contrast to the real analytic case, quasianalytic ultradifferentiability can never be tested in lower dimensions. Our results are based on a construction due to Jaffe.

1. INTRODUCTION

In a recent paper [5] Bochnak and Kucharz proved that a function on a compact real analytic manifold is real analytic if and only if its restriction to every closed real analytic submanifold of dimension two is real analytic. A local version of this theorem can be found in [6]. It is natural to ask if a similar statements holds in quasianalytic classes of smooth functions C which are strictly bigger than the real analytic class, but share the property of analytic continuation:

Is a function defined on a C-manifold of class C provided that all its restrictions to C-submanifolds of lower dimension are of class C?

We will show in this paper that the answer to this question is negative for all standard quasianalytic *ultradifferentiable* classes defined by growth estimates for the iterated derivatives, even if we already know that the function is smooth. We shall always assume that the classes C are stable under composition and admit an inverse function theorem, consequently, manifolds of class C are well-defined.

This article is partly motivated by the development of the *convenient set*ting for ultradifferentiable function classes in [13, 14, 15] which provides an (ultra)differential calculus for mappings between infinite dimensional locally convex spaces with a mild completeness property. Typically, the convenient calculus is based on Osgood–Hartogs type theorems which describe objects by "restrictions" to certain better understood test objects (cf. [20]). While many non-quasianalytic classes can be tested along non-quasianalytic *curves* in the same class [13], the analogous statement is false for quasianalytic classes even if the function in question is smooth. This was shown by Jaffe [10] for quasianalytic Denjoy–Carleman classes of Roumieu type. In [15] we overcame this problem by testing along all *Banach plots* in the class (i.e. mappings defined in arbitrary Banach spaces) which raised the question if there is a subclass of plots sufficient for recognizing the class.

The results of this paper show that in finite dimensions quasianalytic C-plots with lower dimensional domain are never enough for testing C-regularity (even if smoothness is already known). In particular, restrictions to C-submanifolds of lower

Date: October 1, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 26E10; Secondary 30D60, 46E10, 58C25.

Key words and phrases. Quasianalytic, ultradifferentiable class, Denjoy–Carleman class, Osgood–Hartogs type problem.

The author was supported by the Austrian Science Fund (FWF) Project P 26735-N25.

A. RAINER

dimensions cannot recognize C-regularity. Actually, we will prove more: For any $n \geq 2$, any regular quasianalytic class \mathcal{C} , and any positive sequence $N = (N_k)$ there exists a function $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ such that $f \circ p \in \mathcal{C}$ for all \mathcal{C} -plots $p : \mathbb{R}^m \supseteq U \to \mathbb{R}^n$ with m < n, but

$$\sup_{\substack{x \in K \\ \alpha \in \mathbb{N}^n}} \frac{|\partial^{\alpha} f(x)|}{\rho^{|\alpha|} |\alpha|! N_{|\alpha|}} = \infty$$

for all neighborhoods K of 0 in \mathbb{R}^n and all $\rho > 0$. It will be specified in the next two subsections what we mean here by a regular quasianalytic class.

All our results follow from slight modifications of Jaffe's construction.

1.1. Denjoy-Carleman classes. Let $U \subseteq \mathbb{R}^n$ be open. Let $M = (M_k)$ be a positive sequence. For $\rho > 0$ and $K \subseteq U$ compact consider the seminorm

$$||f||_{K,\rho}^{M} := \sup_{\substack{x \in K \\ \alpha \in \mathbb{N}^{n}}} \frac{|\partial^{\alpha} f(x)|}{\rho^{|\alpha|} |\alpha|! M_{|\alpha|}}, \quad f \in \mathcal{C}^{\infty}(U).$$

The Denjoy-Carleman class of Roumieu type is defined by

$$\mathcal{E}^{\{M\}}(U) := \{ f \in \mathcal{C}^{\infty}(U) : \forall \text{ compact } K \subseteq U \exists \rho > 0 : \|f\|_{K,\rho}^{M} < \infty \},\$$

and the Denjoy-Carleman class of Beurling type by

$$\mathcal{E}^{(M)}(U) := \{ f \in \mathcal{C}^{\infty}(U) : \forall \text{ compact } K \subseteq U \ \forall \rho > 0 : \| f \|_{K,\rho}^{M} < \infty \},\$$

We shall assume that $M = (M_k)$ is

- 1. logarithmically convex, i.e. $M_k^2 \leq M_{k-1}M_{k+1}$ for all k, and satisfies
- 2. $M_0 = 1 \le M_1$ and 3. $M_k^{1/k} \to \infty$.

A positive sequence $M = (M_k)$ having these properties 1.-3. is called a regular weight sequence. The Denjoy–Carleman classes $\mathcal{E}^{\{M\}}$ and $\mathcal{E}^{(M)}$ associated with a regular weight sequence M are stable under composition and admit a version of the inverse function theorem (cf. [18]).

Let $M = (M_k)$ and $N = (N_k)$ be positive sequences. Then boundedness of the sequence $(M_k/N_k)^{1/k}$ is a sufficient condition for the inclusions $\mathcal{E}^{\{M\}} \subseteq \mathcal{E}^{\{N\}}$ and $\mathcal{E}^{(M)} \subseteq \mathcal{E}^{(N)}$ (this means that the inclusions hold on all open sets). The condition is also necessary provided that $k!M_k$ is logarithmically convex, see [21] and [8], (so in particular if M is a regular weight sequence). For instance, stability of the classes $\mathcal{E}^{\{M\}}$ and $\mathcal{E}^{(M)}$ by derivation is equivalent to boundedness of $(M_{k+1}/M_k)^{1/k}$ (for the necessity we assume that $k!M_k$ is logarithmically convex). If $(M_k/N_k)^{1/k} \to 0$ then $\mathcal{E}^{\{M\}} \subseteq \mathcal{E}^{(N)}$, and conversely provided that $k!M_k$ is logarithmically convex. Hence regular weight sequences M and N are called *equivalent* if there is a constant C > 0 such that $C^{-1} \leq (M_k/N_k)^{1/k} \leq C$.

For the constant sequence $\mathbf{1} = (1, 1, 1, ...)$ we get the class of real analytic functions $\mathcal{E}^{\{1\}} = \mathcal{C}^{\omega}$ in the Roumieu case and the restrictions of entire functions $\mathcal{E}^{(1)}$ in the Beurling case. Note that the conditions 1. and 2. imply that the sequence $M_k^{1/k}$ is increasing. Thus, if M satisfies 1. and 2. then the strict inclusions $\mathcal{C}^{\omega} \subseteq$ $\mathcal{E}^{\{M\}}$ and $\mathcal{C}^{\omega} \subsetneq \tilde{\mathcal{E}}^{(M)}$ are both equivalent to 3. (for the latter observe that 3. and $\mathcal{C}^{\omega} = \mathcal{E}^{(M)}$ would imply that all classes $\mathcal{C}^{\omega} \subseteq \mathcal{E}^{(\sqrt{M})} \subseteq \mathcal{E}^{\{\sqrt{M}\}} \subseteq \mathcal{E}^{(M)}$ actually coincide, a contradiction).

A regular weight sequence $M = (M_k)$ is called *quasianalytic* if

$$\sum_{k} \frac{M_k}{(k+1)M_{k+1}} = \infty.$$
(1)

By the Denjoy–Carleman theorem, this is the case if and only if the class $\mathcal{E}^{\{M\}}$ is quasianalytic, or equivalently $\mathcal{E}^{(M)}$ is quasianalytic. See e.g. [9, Theorem 1.3.8] and [11, Theorem 4.2].

A class \mathcal{C} of \mathcal{C}^{∞} -functions is called *quasianalytic* if the restriction to $\mathcal{C}(U)$ of the map $\mathcal{C}^{\infty}(U) \ni f \mapsto T_a f$ which takes f to its infinite Taylor series at a is injective for any connected open $U \ni a$. For example, the real analytic class \mathcal{C}^{ω} has this property and indeed (1) reduces to $\sum_k \frac{1}{k+1} = \infty$ in this case. Further examples of quasianalytic classes $\mathcal{E}^{\{M\}}$ and $\mathcal{E}^{(M)}$ that strictly contain \mathcal{C}^{ω} are given by $M_k := (\log(k+e))^{\delta k}$ for any $0 < \delta \leq 1$.

Let $V \subseteq \mathbb{R}^m$ be open. A mapping $p: V \to U$ of class $\mathcal{E}^{\{M\}}$ (which means that the component functions p_j are of class $\mathcal{E}^{\{M\}}$) is called a $\mathcal{E}^{\{M\}}$ -plot in U of dimension m. If m < n we say that p is lower dimensional.

Now we are ready to state our first results.

Theorem 1. Let $M = (M_k)$ be a quasianalytic regular weight sequence. For any $n \geq 2$ and any positive sequence $N = (N_k)$ there exists a \mathcal{C}^{∞} -function f on \mathbb{R}^n of class $\mathcal{E}^{\{M\}}$ on $\mathbb{R}^n \setminus \{0\}$ which does not belong to $\mathcal{E}^{\{N\}}(\mathbb{R}^n)$, but $f \circ p \in \mathcal{E}^{\{M\}}$ for all lower dimensional $\mathcal{E}^{\{M\}}$ -plots p in \mathbb{R}^n .

The following Beurling version is an easy consequence; $\mathcal{E}^{(M)}$ -plots are defined in analogy to $\mathcal{E}^{\{M\}}$ -plots.

Theorem 2. Let $M = (M_k)$ be a quasianalytic regular weight sequence. For any $n \ge 2$ and any positive sequence $N = (N_k)$ there exists a \mathcal{C}^{∞} -function f on \mathbb{R}^n of class $\mathcal{E}^{(M)}$ on $\mathbb{R}^n \setminus \{0\}$ which does not belong to $\mathcal{E}^{\{N\}}(\mathbb{R}^n)$, but $f \circ p \in \mathcal{E}^{(M)}$ for all lower dimensional $\mathcal{E}^{(M)}$ -plots p in \mathbb{R}^n .

The proofs can be found in Section 2.

Remark. The theorems also show that *non-quasianalytic* ultradifferentiability cannot be tested on lower dimensional quasianalytic plots: Suppose that L is a nonquasianalytic regular weight sequence, $M \leq L$ is a quasianalytic regular weight sequence, and N is an arbitrary positive sequence. By Theorem 1 there is a \mathcal{C}^{∞} function f on \mathbb{R}^n of class $\mathcal{E}^{\{M\}}$ off 0 not in $\mathcal{E}^{\{N\}}(\mathbb{R}^n)$, but of class $\mathcal{E}^{\{M\}} \subseteq \mathcal{E}^{\{L\}}$ along every $\mathcal{E}^{\{M\}}$ -plot.

1.2. **Braun–Meise–Taylor classes.** Another way to define ultradifferentiable classes which goes back to Beurling [2] and Björck [4] and was generalized by Braun, Meise, and Taylor [7] is to use weight functions instead of weight sequences. By a *weight function* we mean a continuous increasing function $\omega : [0, \infty) \to [0, \infty)$ with $\omega(0) = 0$ and $\lim_{t\to\infty} \omega(t) = \infty$ that satisfies

- 1. $\omega(2t) = O(\omega(t))$ as $t \to \infty$, 2. $\omega(t) = O(t)$ as $t \to \infty$, 3. $\log t = o(\omega(t))$ as $t \to \infty$, and
- 4. $\varphi(t) := \omega(e^t)$ is convex.

A. RAINER

Consider the Young conjugate $\varphi^*(t) := \sup_{s \ge 0} (st - \varphi(s))$, for t > 0, of φ . For compact $K \subseteq U$ and $\rho > 0$ consider the seminorm

$$\|f\|_{K,\rho}^{\omega} := \sup_{x \in K, \, \alpha \in \mathbb{N}^n} |\partial^{\alpha} f(x)| \exp(-\frac{1}{\rho} \varphi^*(\rho |\alpha|)), \quad f \in \mathcal{C}^{\infty}(U),$$

and the ultradifferentiable classes of Roumieu type

$$\mathcal{E}^{\{\omega\}}(U) := \{ f \in \mathcal{C}^{\infty}(U) : \forall \text{ compact } K \subseteq U \exists \rho > 0 : \|f\|_{K,\rho}^{\omega} < \infty \},\$$

and of *Beurling type*

$$\mathcal{E}^{(\omega)}(U) := \{ f \in \mathcal{C}^{\infty}(U) : \forall \text{ compact } K \subseteq U \ \forall \rho > 0 : \| f \|_{K,\rho}^{\omega} < \infty \}.$$

The classes $\mathcal{E}^{\{\omega\}}$ and $\mathcal{E}^{(\omega)}$ are in general not representable by any Denjoy–Carleman class, but they are representable (algebraically and topologically) by unions and intersections of Denjoy–Carleman classes defined by 1-parameter families of positive sequences associated with ω [17]. The classes $\mathcal{E}^{\{\omega\}}$ and $\mathcal{E}^{(\omega)}$ are quasianalytic if and only if

$$\int_0^\infty \frac{\omega(t)}{1+t^2}\,dt = \infty$$

If σ is another weight sequence then $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{E}^{\{\sigma\}}$ and $\mathcal{E}^{(\omega)} \subseteq \mathcal{E}^{(\sigma)}$ if and only if $\sigma(t) = O(\omega(t))$ as $t \to \infty$. The inclusion $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{E}^{(\sigma)}$ holds if and only if $\sigma(t) = o(\omega(t))$ as $t \to \infty$. For details see e.g. [17]. Thus ω and σ are called equivalent if $\sigma(t) = O(\omega(t))$ and $\omega(t) = O(\sigma(t))$ as $t \to \infty$.

We will assume that the weight function ω satisfies $\omega(t) = o(t)$ as $t \to \infty$ which is equivalent to the strict inclusion $\mathcal{C}^{\omega} = \mathcal{E}^{\{t\}} \subseteq \mathcal{E}^{(\omega)}$. If ω is equivalent to a concave weight function, then the classes $\mathcal{E}^{\{\omega\}}$ and $\mathcal{E}^{(\omega)}$ are stable under composition and admit a version of the inverse function theorem (and conversely, see [16, Theorem 11]). They are always stable by derivation.

We shall prove in Section 2:

Theorem 3. Let ω be a quasianalytic concave weight function such that $\omega(t) = o(t)$ as $t \to \infty$. For any $n \ge 2$ and any positive sequence $N = (N_k)$ there exists a \mathcal{C}^{∞} function f on \mathbb{R}^n of class $\mathcal{E}^{\{\omega\}}$ on $\mathbb{R}^n \setminus \{0\}$ which does not belong to $\mathcal{E}^{\{N\}}(\mathbb{R}^n)$, but $f \circ p \in \mathcal{E}^{\{\omega\}}$ for all lower dimensional $\mathcal{E}^{\{\omega\}}$ -plots p in \mathbb{R}^n .

Theorem 4. Let ω be a quasianalytic concave weight function such that $\omega(t) = o(t)$ as $t \to \infty$. For any $n \ge 2$ and any positive sequence $N = (N_k)$ there exists a \mathcal{C}^{∞} function f on \mathbb{R}^n of class $\mathcal{E}^{(\omega)}$ on $\mathbb{R}^n \setminus \{0\}$ which does not belong to $\mathcal{E}^{\{N\}}(\mathbb{R}^n)$, but $f \circ p \in \mathcal{E}^{(\omega)}$ for all lower dimensional $\mathcal{E}^{(\omega)}$ -plots p in \mathbb{R}^n .

 $\mathcal{E}^{\{\omega\}}$ - and $\mathcal{E}^{(\omega)}$ -plots are defined in analogy to $\mathcal{E}^{\{M\}}$ -plots.

1.3. New quasianalytic classes. Let us turn the conditions of the theorems into a definition.

Let $M = (M_k)$ be any quasianalytic regular weight sequence and let ω be any quasianalytic concave weight function with $\omega(t) = o(t)$ as $t \to \infty$. In the following \star stands for either $\{M\}, (M), \{\omega\}, \text{ or } (\omega)$.

Let $\bar{\mathcal{A}}_1^{\star}(\mathbb{R}^n)$ be the set of all \mathcal{C}^{∞} -functions f on \mathbb{R}^n such that f is of class \mathcal{E}^{\star} along all affine lines in \mathbb{R}^n . Then $\bar{\mathcal{A}}_1^{\star}(\mathbb{R}^n)$ is quasianalytic in the sense that $T_a f = 0$ implies f = 0 for any $a \in \mathbb{R}^n$. Indeed, if f is infinitely flat at a, then so is the restriction of f to any line ℓ through a. Since the class \mathcal{E}^{\star} is quasianalytic, $f|_{\ell} = 0$ for every line ℓ through a and thus f = 0 on \mathbb{R}^n . On the other hand $\bar{\mathcal{A}}_1^{\star}(\mathbb{R}^n)$

4

contains $\mathcal{E}^{\star}(\mathbb{R}^n)$ but is not contained in any Denjoy–Carleman class whatsoever, by Theorems 1 to 4.

There are many ways to modify the definition: Let U be an open subset of an Euclidean space. If $\mathcal{A}_m^{\star}(U)$ is the set of all \mathcal{C}^{∞} -functions f on U such that f is of class \mathcal{E}^{\star} along all \mathcal{E}^{\star} -plots in U of dimension m, then $\mathcal{A}_m^{\star}(U)$ is quasianalytic and stable under composition. Thus \mathcal{A}_m^{\star} -mappings between open subsets of Euclidean spaces form a quasianalytic category askew to all Denjoy–Carleman classes. We have strict inclusions

$$\mathcal{E}^{\star}(\mathbb{R}^n) = \mathcal{A}^{\star}_n(\mathbb{R}^n) \subsetneq \mathcal{A}^{\star}_{n-1}(\mathbb{R}^n) \subsetneq \cdots \subsetneq \mathcal{A}^{\star}_1(\mathbb{R}^n).$$

Indeed the first inclusion is strict by the theorems proved in this paper. That the other inclusions are strict follows immediately: if $f \in \mathcal{A}_{n-1}^{\star}(\mathbb{R}^n) \setminus \mathcal{A}_n^{\star}(\mathbb{R}^n)$ then $\tilde{f}(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+k}) := f(x_1, \ldots, x_n) \in \mathcal{A}_{n-1}^{\star}(\mathbb{R}^{n+k}) \setminus \mathcal{A}_n^{\star}(\mathbb{R}^{n+k})$ for all $k \geq 1$.

None of the categories \mathcal{A}_m^{\star} is cartesian closed:

 $\mathcal{A}_m^{\star}(\mathbb{R}^m, \mathcal{A}_m^{\star}(\mathbb{R}^m)) \neq \mathcal{A}_m^{\star}(\mathbb{R}^m \times \mathbb{R}^m) \quad (\text{via } f(x)(y) \mapsto f^{\wedge}(x, y)).$

In fact, the left-hand side equals $\mathcal{E}^{\star}(\mathbb{R}^m, \mathcal{E}^{\star}(\mathbb{R}^m))$ and is contained in $\mathcal{E}^{\star}(\mathbb{R}^m \times \mathbb{R}^m)$, by [15, Theorem 5.2] and [19], which in turn is strictly included in the right-hand side.

Each \mathcal{A}_m^{\star} is closed under reciprocals: if $f \in \mathcal{A}_m^{\star}$ and $f(0) \neq 0$ then $1/f \in \mathcal{A}_m^{\star}$ on a neighborhood of 0. This follows from stability under composition and the fact that $x \mapsto 1/x$ is real analytic off 0.

Suppose that \mathcal{E}^* is stable under differentiation. If $f \in \mathcal{A}_m^*$ then $d_v^k f \in \mathcal{A}_{m-1}^*$ for all $m \geq 2$, all vectors v, and all k, thus also $\partial^{\alpha} f \in \mathcal{A}_{m-1}^*$ for all multi-indices α . Indeed, if p is a \mathcal{E}^* -plot of dimension m-1, then

$$d_v^k f(p(s) + tv) = \partial_t^k (f(p(s) + tv))$$

is of class \mathcal{E}^* in s for all t, since $(s,t) \mapsto p(s) + tv$ is an \mathcal{E}^* -plot of dimension m and \mathcal{E}^* is stable under differentiation.

Another interesting stability property of \mathcal{A}_1^* and $\overline{\mathcal{A}}_1^*$, under the assumption that \mathcal{E}^* is stable under differentiation, is the following: Assume that the coefficients of a polynomial

$$\varphi(x,y) = y^d + a_1(x)y^{d-1} + \dots + a_d(x)$$

are germs of \mathcal{A}_1^{\star} (resp. $\bar{\mathcal{A}}_1^{\star}$) functions at 0 in \mathbb{R}^n and h is germ of a \mathcal{C}^{∞} -function at 0 such that $\varphi(x, h(x)) = 0$. Then h is actually also a germ of a \mathcal{A}_1^{\star} (resp. $\bar{\mathcal{A}}_1^{\star}$) function. This follows immediately from the case n = 1 due to [22]; in this reference only the case $\star = \{M\}$ was treated, but the arguments apply to all cases. It seems to be unknown whether a similar result holds for \mathcal{E}^{\star} and n > 1, but see [1].

2. Proofs

2.1. **Proof of Theorem 1.** The proof is based on a construction due to Jaffe [10].

Lemma 5 ([10, Proposition 5.2]). Let M be a regular weight sequence. For any integer $n \ge 2$ there exists a function $f \in \mathcal{E}^{\{M\}}(\mathbb{R}^n)$ with the following properties: there is a constant B = B(n) such that for all compact $K \subseteq \mathbb{R}^n$ and all $\alpha \in \mathbb{N}^n$

$$\begin{aligned} |\partial^{\alpha} f(x)| &\leq B^{|\alpha|} (|K|+1)^{|\alpha|} |\alpha|! M_{|\alpha|} \quad \text{for all } x \in K, \\ |\partial^{\alpha} f(x)| &\leq B^{|\alpha|} (|K|+1)^{|\alpha|} |\alpha|! (1+|x|^{-2(|\alpha|+1)}) \quad \text{for all } x \in K \setminus \{0\}, \end{aligned}$$

and for all $k \geq 1$ and $i = 1, \ldots, n$

$$\left|\frac{\partial^{2k} f}{\partial x_i^{2k}}(0)\right| \ge \frac{(2k)!M_k}{2^k}$$

Here $|K| := \sup_{x \in K} |x|$.

It is not hard to see that the fact that M is logarithmically convex, or equivalently, $m_k := M_{k+1}/M_k$ is increasing, implies that

$$M_k = \frac{m_k^{k+1}}{\varphi(m_k)}, \quad \text{ where } \varphi(t) := \sup_{k \ge 0} \frac{t^{k+1}}{M_k}$$

This can be used to see that

$$f(x) := \sum_{k=1}^{\infty} 2^{-k} \varphi(m_k)^{-1} (x - i/m_k)^{-1}$$

defines a smooth function on \mathbb{R} with $||f^{(k)}||_{L^{\infty}} \leq k!M_k$, $|f^{(k)}(x)| \leq k!/|x|^{k+1}$ if $x \neq 0$ and $|f^{(k)}(0)| \geq k! M_k/2^k$ for all k. Composing f with the squared Euclidean norm in \mathbb{R}^n gives a function with the properties in the lemma. For details see [10].

Let $\varphi : [0,1] \to [0,1]$ be a strictly monotone infinitely flat smooth surjective function with $\varphi(t) \leq t$ for all $t \in [0,1]$. Let $\varphi_{[n]} := \varphi \circ \varphi_{[n-1]}, n \geq 1$, with $\varphi_{[0]} := \text{Id}$ denote the iterates of φ . Consider the arc

$$A := \left\{ \Phi(t) := (t, \varphi(t), \varphi_{[2]}(t), \cdots, \varphi_{[n-1]}(t)) : t \in (0, 1) \right\} \subseteq \mathbb{R}^n$$

Note that $t \ge \varphi(t) \ge \cdots \ge \varphi_{[n-1]}(t)$ for all t.

Without loss of generality we may assume that the sequence $M_k^{1/k}$ is strictly increasing [10, Lemma 4.3]. We define a sequence of points a_k in A by fixing the *n*-th coordinate of a_k to

$$(a_k)_n := M_k^{-1/(4k)}$$

 $(a_k)_n := M_k^{-r(M)}.$ For each $\ell \in \mathbb{N}_{\geq 1}$ define a sequence $M^{(\ell)} = (M_k^{(\ell)})$ by

$$M_k^{(\ell)} := \begin{cases} 1 & \text{if } 0 \le k < \ell, \\ c_\ell^{2k-2\ell+1} M_k & \text{if } k \ge \ell, \end{cases}$$

where $c_{\ell} \geq M_{\ell}$ are constants to be determined below. Notice that each $M^{(\ell)}$ is a regular weight sequence equivalent to M.

By Lemma 5, for each $\ell \in \mathbb{N}_{>1}$ there is a function $f_{\ell} \in \mathcal{E}^{\{M^{(\ell)}\}}(\mathbb{R}^n) = \mathcal{E}^{\{M\}}(\mathbb{R}^n)$ such that for all compact $K \subseteq \mathbb{R}^n$ and all $\alpha \in \mathbb{N}^n$ we have (for $a := 1 + \sup_{\ell} |a_{\ell}|$)

$$|\partial^{\alpha} f_{\ell}(x)| \le B^{|\alpha|} (|K|+a)^{|\alpha|} |\alpha|! M_{|\alpha|}^{(\ell)} \quad \text{for all } x \in K,$$

$$\tag{2}$$

$$|\partial^{\alpha} f_{\ell}(x)| \le B^{|\alpha|} (|K|+a)^{|\alpha|} |\alpha|! (1+|x-a_{\ell}|^{-2(|\alpha|+1)}) \quad \text{for all } x \in K \setminus \{a_{\ell}\}, \quad (3)$$

where B = B(n), and for all $k \ge 1$

$$\left|\frac{\partial^{2k} f_{\ell}}{\partial x_1^{2k}}(a_{\ell})\right| \ge \frac{(2k)! M_k^{(\ell)}}{2^k}.$$
(4)

Define

$$f := \sum_{\ell=1}^{\infty} 2^{-\ell} f_{\ell}.$$

It is easy to check that f is \mathcal{C}^{∞} on \mathbb{R}^n and of class $\mathcal{E}^{\{M\}}$ on $\mathbb{R}^n \setminus \{0\}$.

Note that f depends on the choice of the coefficients c_{ℓ} . Next we will show that, given any positive sequence $N = (N_k)$, we may choose the constants c_{ℓ} and hence f in such a way that f does not belong to $\mathcal{E}^{\{N\}}$ in any neighborhood of the origin.

Lemma 6. The constants $c_{\ell} \geq M_{\ell}$ can be chosen such that for all $k \geq 1$

$$\left. \frac{\partial^{2k} f}{\partial x_1^{2k}}(a_k) \right| \ge (2k)! M_{2k} N_{2k}.$$

Proof. Since $M_k^{(k)} = c_k M_k$, (3) and (4) give 02k c

$$\left|\frac{\partial^{2k} f}{\partial x_1^{2k}}(a_k)\right| \ge 4^{-k} (2k)! c_k M_k - \sum_{\ell \neq k} 2^{-\ell} B^{2k} (|K|+a)^{2k} (2k)! (1+|a_k-a_\ell|^{-2(2k+1)}).$$

The sum on the right-hand side is bounded by a constant (depending on k) since the sequence $M_k^{1/k}$ is strictly increasing and hence $\inf_{\ell \neq k} |a_k - a_\ell| > 0$. The assertion follows easily.

Lemma 6 implies that f cannot be of class $\mathcal{E}^{\{N\}}$ in any neighborhood of the origin. Otherwise there would be constants $C, \rho > 0$ such that, for large k,

$$(2k)!M_{2k}N_{2k} \le \left|\frac{\partial^{2k}f}{\partial x_1^{2k}}(a_k)\right| \le C\rho^{2k}(2k)!N_{2k}$$

which leads to a contradiction as $M_k^{1/k} \to \infty$. It remains to show that $f \circ p \in \mathcal{E}^{\{M\}}(V)$ for any $\mathcal{E}^{\{M\}}$ -plot $p: V \to \mathbb{R}^n$, where $V \subseteq \mathbb{R}^m$ with m < n. We will use the following lemma.

Lemma 7. Let $K \subseteq \mathbb{R}^n \setminus \{a_k\}_k$ be a compact set such that

$$\operatorname{list}(a_k, K) \ge M_k^{-1/(4k)} \quad \text{for all } k > k_0.$$

Then there exists $\rho > 0$ such that $\|f\|_{K,\rho}^M < \infty$. Neither ρ nor $\|f\|_{K,\rho}^M$ depend on the choice of the constants c_{ℓ} .

Proof. For $x \in K$ and $|\alpha| \ge 1$,

$$|\partial^{\alpha} f(x)| \leq \sum_{\ell=1}^{\infty} 2^{-\ell} |\partial^{\alpha} f_{\ell}(x)| = \sum_{\ell=1}^{|\alpha|} 2^{-\ell} |\partial^{\alpha} f_{\ell}(x)| + \sum_{\ell=|\alpha|+1}^{\infty} 2^{-\ell} |\partial^{\alpha} f_{\ell}(x)|.$$

By (2) and the definition of $M^{(\ell)}$, the second sum is bounded by $B^{|\alpha|}(|K|+a)^{|\alpha|}|\alpha|!$. For the first sum we have, by (3),

$$\sum_{\ell=k_0+1}^{|\alpha|} 2^{-\ell} |\partial^{\alpha} f_{\ell}(x)| \leq B^{|\alpha|} (|K|+a)^{|\alpha|} |\alpha|! \sum_{\ell=k_0+1}^{|\alpha|} 2^{-\ell} (1+|x-a_{\ell}|^{-2(|\alpha|+1)})$$
$$\leq B^{|\alpha|} (|K|+a)^{|\alpha|} |\alpha|! M_{|\alpha|} \sum_{\ell=k_0+1}^{|\alpha|} 1$$
$$\leq (eB)^{|\alpha|} (|K|+a)^{|\alpha|} |\alpha|! M_{|\alpha|}.$$

A similar estimate holds for $\sum_{\ell=1}^{k_0} 2^{-\ell} |\partial^{\alpha} f_{\ell}(x)|$ since $\operatorname{dist}(a_k, K) \geq \epsilon > 0$ for all $k \leq k_0$.

Let $p = (p_1, \ldots, p_n) : V \to \mathbb{R}^n$ be an $\mathcal{E}^{\{M\}}$ -plot, where $V \subseteq \mathbb{R}^m$ is a neighborhood of the origin and m < n.

Lemma 8. There is a compact neighborhood $L \subseteq V$ of 0 such that K := p(L) satisfies

$$\operatorname{dist}(\Phi(t), K) \ge \varphi_{[n-1]}(t) \quad \text{for all small } t > 0.$$
(5)

Proof. We may assume that no component p_j vanishes identically; indeed, if $p_j \equiv 0$ then K is contained in the coordinate plane $y_j = 0$ and hence $dist(\Phi(t), K) \geq \varphi_{[j-1]}(t) \geq \varphi_{[n-1]}(t)$ for all t.

Suppose that $p(0) \neq 0$. Then there exists a compact neighborhood L of 0 such that dist $(0, K) =: \epsilon > 0$, where K = p(L). For sufficiently small t > 0 we have $|\Phi(t)| \leq \epsilon/2$. For such t,

$$\operatorname{dist}(\Phi(t), K) \ge \operatorname{dist}(0, K) - |\Phi(t)| \ge \epsilon/2 \ge |\Phi(t)| \ge \varphi_{[n-1]}(t).$$

Assume that p(0) = 0 and that $p_j(x) = x^{\alpha_j} u_j(x)$ for $j = 1, \ldots, n$, where $x = (x_1, \ldots, x_m)$, all u_j are non-vanishing and the set of exponents $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathbb{N}^m$ is totally ordered with respect to the natural partial order of multiindices (that is, for all $1 \leq i, j \leq n$ we have $\alpha_i \leq \alpha_j$ or $\alpha_j \leq \alpha_i$). Let $\beta_1 \leq \beta_2 \leq \ldots \leq \beta_n$ be an ordered arrangement of $\{\alpha_1, \ldots, \alpha_n\}$. Let m_i be the number of zero components of β_i , for $i = 1, \ldots, n$. Since p(0) = 0, we have $m_1 \leq m - 1$. On the other hand $m_i \geq m_{i+1}$ for all $i = 1, \ldots, n - 1$. Since m < n, we must have $m_{i_0} = m_{i_0+1}$ for some i_0 . That means there exist two distinct numbers $i, j \in \{1, \ldots, n\}$ with $\alpha_i \leq \alpha_j$ such that α_i and α_j have the same number of zero components. Thus we may find a positive integer d such that $d \cdot \alpha_i \geq \alpha_j$. Consequently, there is a constant C > 0 such that for all x in a neighborhood L of $0 \in \mathbb{R}^m$,

$$|p_j(x)| \le C |p_i(x)|$$
 and $|p_i(x)|^a \le C |p_j(x)|$.

This implies that K = p(L) satisfies (5). In fact, the *i*-th component of $\Phi(t)$ is $\varphi_{[i-1]}(t)$ and the *j*-th component is $\varphi_{[j-1]}(t) = \varphi_{[j-i]}(\varphi_{[i-1]}(t))$. Since $\varphi_{[j-i]}$ is an infinitely flat function while K is contained in the set $\{C^{-1}|y_i|^d \leq |y_j| \leq C|y_i|\}$, dist $(\Phi(t), K)$ is larger than $\varphi_{[j-1]}(t)$ for all sufficiently small t > 0.

The general situation can be reduced to these special cases by the desingularization theorem [3, Theorem 5.12] using [3, Lemma 7.7] in order to get the exponents totally ordered. Indeed, applying [3, Theorem 5.12] to the product of all nonzero p_j and all nonzero differences of any two p_i, p_j we may assume that after pullback by a suitable mapping σ the components p_j are locally a monomial times a nonvanishing factor (in suitable coordinates), and the collection of exponents of the monomials is totally ordered. Here we apply the desingularization theorem to the quasianalytic class $\mathcal{C} = \bigcup_{k \in \mathbb{N}} \mathcal{E}^{\{M^{+k}\}}$, where M^{+k} is the regular weight sequence defined by $M_j^{+k} := M_{j+k}$, which has all required properties. This is necessary since the class $\mathcal{E}^{\{M\}}$ might not be closed under differentiation.

Remark 9. For later reference we note that Lemma 8 holds for all lower dimensional C-plots, where C is any quasianalytic class of smooth functions which contains the restrictions of polynomials, is stable by composition, differentiation, division by coordinates, and admits an inverse function theorem; cf. [3].

Now we can prove that $f \circ p \in \mathcal{E}^{\{M\}}(V)$ for any lower dimensional $\mathcal{E}^{\{M\}}$ -plot $p: V \to \mathbb{R}^n$. To be of class $\mathcal{E}^{\{M\}}$ is a local condition. So we may assume without loss of generality that V is a neighborhood of 0. By Lemma 8, we may further assume that (after shrinking) V = L is a compact neighborhood of 0 such that K = p(L) satisfies (5). By Lemma 7, there exists $\rho > 0$ such that $||f||_{K,\rho}^M =: C < \infty$. Since

 $p \in \mathcal{E}^{\{M\}}$, there exists $\sigma > 0$ such that $\|p\|_{L,\sigma}^M =: D < \infty$. Logarithmic convexity of M implies $M_1^k M_k \ge M_j M_{\alpha_1} \cdots M_{\alpha_j}$ for all $\alpha_i \in \mathbb{N}_{>0}$ with $\alpha_1 + \cdots + \alpha_j = k$ (cf. [13, Lemma 2.9]). Consequently, in view of the Faá di Bruno formula, for k > 0 and $x \in L$,

$$\frac{\|(f \circ p)^{(k)}(x)\|_{L^{k}(\mathbb{R}^{m},\mathbb{R})}}{k!} \leq \sum_{j\geq 1} \sum_{\alpha_{i}} \frac{\|f^{(j)}(p(x))\|_{L^{j}(\mathbb{R}^{n},\mathbb{R})}}{j!} \prod_{i=1}^{j} \frac{\|p^{(\alpha_{i})}(x)\|_{L^{\alpha_{i}}(\mathbb{R}^{m},\mathbb{R}^{n})}}{\alpha_{i}!}$$
$$\leq \sum_{j\geq 1} \sum_{\alpha_{i}} C\rho^{j} M_{j} \prod_{i=1}^{j} D\sigma^{\alpha_{i}} M_{\alpha_{i}}$$
$$\leq C(M_{1}\sigma)^{k} M_{k} \sum_{j\geq 1} \binom{k-1}{j-1} (D\rho)^{j}$$
$$\leq CD\rho(M_{1}\sigma)^{k} (1+D\rho)^{k-1} M_{k},$$

that is, there exists $\tau > 0$ such that $||f \circ p||_{L,\tau}^M < \infty$. This ends the proof of Theorem 1.

2.2. **Proof of Theorem 2.** Set $L_k := M_k^{1/2}$. Then $L = (L_k)$ is a quasianalytic regular weight sequence satisfying $(L_k/M_k)^{1/k} \to 0$. Theorem 1 associates a function f with L which is as required. Indeed, f is of class $\mathcal{E}^{\{L\}} \subseteq \mathcal{E}^{(M)}$ along the image of lower dimensional $\mathcal{E}^{(M)}$ -plots p, by Lemma 8 and Remark 9, and thus $f \circ p$ is $\mathcal{E}^{(M)}$, since the class is stable by composition.

2.3. **Proof of Theorem 3.** By [16, Theorem 11], there is a family \mathfrak{M} of quasianalytic regular weight sequences $M = (M_k)$ such that

$$\mathcal{E}^{\{\omega\}}(U) = \{ f \in \mathcal{C}^{\infty}(U) : \forall \text{ compact } K \subseteq U \exists M \in \mathfrak{M} \exists \rho > 0 : \|f\|_{K,\rho}^{M} < \infty \}.$$

Fix $M \in \mathfrak{M}$ and a positive sequence $N = (N_k)$. Let f be the \mathcal{C}^{∞} -function associated with M and N provided by Theorem 1. Then f is not of class $\mathcal{E}^{\{N\}}$. Let p be any lower dimensional $\mathcal{E}^{\{\omega\}}$ -plot. Then $f \circ p$ is of class $\mathcal{E}^{\{\omega\}}$, by Lemma 8 and Remark 9, since $\mathcal{E}^{\{\omega\}}$ is stable under composition as ω is concave.

2.4. **Proof of Theorem 4.** By [17], there is a one-parameter family $\mathfrak{M} = \{M^x\}_{x>0}$ of quasianalytic positive sequences with $(M_k^x)^{1/k} \to \infty$ for all $x, M^x \leq M^y$ if $x \leq y$, and

$$\mathcal{E}^{(\omega)}(U) = \mathcal{E}^{(\mathfrak{M})}(U) := \bigcap_{x>0} \mathcal{E}^{(M^x)}(U).$$

The next lemma is inspired by [12, Lemma 6].

Lemma 10. There is a quasianalytic regular weight sequence L such that $(L_k/M_k^x)^{1/k} \to 0$ for all x > 0.

Proof. Choose a positive sequence x_p which is strictly decreasing to 0. For every $p \ge 1$ we know that $(M_k^{x_p})^{1/k} \to \infty$ as $k \to \infty$. Thus for every p there is a constant $C_p > 0$ such that

$$\frac{1}{(M_k^{x_p})^{1/k}} \le \frac{C_p^{1/k}}{p} \quad \text{for all } k.$$

Choose a strictly increasing sequence j_p of positive integers such that $C_p \leq 2^{j_p}$ for all p. Consider the sequence L defined by $L_j := 1$ if $j < j_1$ and

$$L_j := \sqrt{M_j^{x_p}} \quad \text{if } j_p \le j < j_{p+1}.$$

First, for $j_p \leq j < j_{p+1}$,

$$L_{j}^{1/j} = \sqrt{(M_{j}^{x_{p}})^{1/j}} \ge \sqrt{\frac{p}{C_{p}^{1/j}}} \ge \sqrt{\frac{p}{2}}$$

which tends to infinity as $j \to \infty$. On the other hand, for $j_p \leq j < j_{p+1}$ and $x_p \leq x$,

$$\left(\frac{L_j}{M_j^x}\right)^{1/j} = \left(\frac{\sqrt{M_j^{x_p}}}{M_j^x}\right)^{1/j} \le \frac{1}{\sqrt{(M_j^x)^{1/j}}}$$

which tends to 0 as $j \to \infty$.

Let \underline{L} be the log-convex minorant of L. Since $L_k^{1/k} \to \infty$, there exists a sequence $k_j \to \infty$ of integers such that $\underline{L}_{k_j} = L_{k_j}$ for all j. It follows that $\underline{L}_k^{1/k} \to \infty$, since $\underline{L}_k^{1/k}$ is increasing by logarithmic convexity. Thus \underline{L} has all required properties. \Box

The proof of Theorem 4 now follows the arguments in the proof of Theorem 2. Theorem 1 associates a function f with the sequence L from Lemma 10 which is of class $\mathcal{E}^{\{L\}}$ along the image of any lower dimensional $\mathcal{E}^{(\omega)}$ -plots p (by Lemma 8 and Remark 9). Since $(L_k/M_k^x)^{1/k} \to 0$ for all x > 0, we have an inclusion of classes $\mathcal{E}^{\{L\}} \subseteq \mathcal{E}^{(\omega)}$. Since ω is concave, the class $\mathcal{E}^{(\omega)}$ is stable under composition, whence $f \circ p$ is of class $\mathcal{E}^{(\omega)}$. The proof of Theorem 4 is complete.

References

- A. Belotto da Silva, I. Biborski, and E. Bierstone, Solutions of quasianalytic equations, Selecta Math. (N.S.) 23 (2017), no. 4, 2523–2552.
- [2] A. Beurling, Quasi-analyticity and general distributions, Lecture notes, AMS Summer Institute, Stanford, 1961.
- [3] E. Bierstone and P. D. Milman, Resolution of singularities in Denjoy-Carleman classes, Selecta Math. (N.S.) 10 (2004), no. 1, 1–28.
- [4] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351–407.
- [5] J. Bochnak, J. Kollár, and W. Kucharz, *Checking real analyticity on surfaces*, J. Math. Pures Appl. (2019), doi:10.1016/j.matpur.2019.05.008.
- [6] J. Bochnak and J. Siciak, A characterization of analytic functions of several variables, Ann. Polon. Math. (2018), DOI:10.4064/ap180119-26-3.
- [7] R. W. Braun, R. Meise, and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), no. 3-4, 206–237.
- [8] J. Bruna, On inverse-closed algebras of infinitely differentiable functions, Studia Math. 69 (1980/81), no. 1, 59–68.
- [9] L. Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983, Distribution theory and Fourier analysis.
- [10] E. Y. Jaffe, Pathological phenomena in Denjoy-Carleman classes, Canad. J. Math. 68 (2016), no. 1, 88–108.
- [11] H. Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105.
- [12] _____, An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem for ultradistributions as its dual, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), no. 2, 239–254.

- [13] A. Kriegl, P. W. Michor, and A. Rainer, The convenient setting for non-quasianalytic Denjoy-Carleman differentiable mappings, J. Funct. Anal. 256 (2009), 3510–3544.
- [14] _____, The convenient setting for quasianalytic Denjoy-Carleman differentiable mappings,
 J. Funct. Anal. 261 (2011), 1799–1834.
- [15] _____, The convenient setting for Denjoy-Carleman differentiable mappings of Beurling and Roumieu type, Rev. Mat. Complut. 28 (2015), no. 3, 549–597.
- [16] A. Rainer and G. Schindl, On the extension of Whitney ultrajets, II, Studia Math. (2019), doi:10.4064/sm180903-12-11, arXiv:1808.10253.
- [17] _____, Composition in ultradifferentiable classes, Studia Math. 224 (2014), no. 2, 97–131.
- [18] _____, Equivalence of stability properties for ultradifferentiable function classes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM. 110 (2016), no. 1, 17–32.
- [19] G. Schindl, The convenient setting for ultradifferentiable mappings of Beurling- and Roumieu-type defined by a weight matrix, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 471–510.
- [20] K. Spallek, P. Tworzewski, and T. Winiarski, Osgood-Hartogs-theorems of mixed type, Math. Ann. 288 (1990), no. 1, 75–88.
- [21] V. Thilliez, On quasianalytic local rings, Expo. Math. 26 (2008), no. 1, 1–23.
- [22] _____, Smooth solutions of quasianalytic or ultraholomorphic equations, Monatsh. Math. 160 (2010), no. 4, 443–453.

UNIVERSITY OF EDUCATION LOWER AUSTRIA, CAMPUS BADEN MÜHLGASSE 67, A-2500 BADEN & FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, OSKAR-MORGENSTERN-PLATZ 1, A-1090 WIEN, AUSTRIA

Email address: armin.rainer@univie.ac.at