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Abstract. We prove sectorial extension theorems for ultraholomorphic function
classes of Beurling type defined by weight functions with a controlled loss of reg-
ularity. The proofs are based on a reduction lemma, due to the second author,
which allows to extract the Beurling from the Roumieu case, which was treated
recently by Jiménez-Garrido, Sanz, and the third author. In order to have con-
trol on the opening of the sectors, where the extensions exist, we use the (mixed)
growth index and the order of quasianalyticity of weight functions. As a conse-
quence we obtain corresponding extension results for classes defined by weight
sequences. Additionally, we give information on the existence of continuous linear
extension operators.

1. Introduction

The aim of this work is to prove sectorial extension results of Borel–Ritt type. For
a given formal power series with admissible growth behavior of the coefficients one
looks for an ultraholomorphic function defined on a sector in the Riemann surface
of the logarithm and asymptotic to the given series. Ultraholomorphic functions
are holomorphic functions which satisfy certain growth conditions imposed on its
iterated derivatives. In this paper we are primarily interested in the case that the
growth conditions are defined by a weight function; in the spirit of Braun–Meise–
Taylor classes [4]. We allow for a controlled loss of regularity in the passage from
formal power series to ultraholomorphic function. This manifests itself by the use of
two weight functions and their mixed growth index which gives an upper bound on the
opening of the sector on which the ultraholomorphic extension exists; abbreviating,
we call this the mixed setting. Specifically, we treat the mixed Beurling case (for
precise definitions see Section 3) by reducing it to the mixed Roumieu case which was
investigated by Jiménez-Garrido, Sanz, and the third author in [11]. This reduction
procedure is based on a recent lemma proved and applied in a related context by the
second author in [18].

Let us briefly recall the historic background on ultraholomorphic sectorial exten-
sions. Classically, the problem was studied for Gevrey regularity, see Ramis [23].
Thilliez [30] generalized the results to suitable weight sequences M and associated
with M a growth index γ(M) which provides an upper bound for the opening of the
sector on which the extension is defined. The paper of Thilliez also extends earlier re-
sults of Schmets and Valdivia [28]. A different approach is pursued by Lastra, Malek,
and Sanz [14, 15].

In the recent papers [8, 9] Jiménez-Garrido, Sanz, and the third author obtained
analogous ultraholomorphic extension results for weight functions, by transferring the
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“complex” method of [14, 15] as well as the “real” method of [30], respectively, and by
exploiting the technique of associating a weight matrix with the given weight function,
introduced in our article [19]. In analogy to γ(M), a growth index γ(ω) with similar
properties was associated with a weight function ω.

In all these works no loss of regularity occurs in the extension procedure. The
growth index γ(ω) is always dominated by the order of quasianalyticity µ(ω); in
general, one has the strict inequality γ(ω) < µ(ω), and the gap can be made arbitrarily
large in individual examples. While γ(ω) is connected to the existence of extensions
(on sectors of opening smaller than πγ(ω)), the parameter µ(ω) seems to be tied to
the uniqueness of extensions (on sectors of opening larger than πµ(ω)). (The latter
statement is confirmed for certain ω which admit a weight sequence description of the
associated classes, but we conjecture that it holds in general.)

So, in order to have extensions on sectors of opening beyond πγ(ω), one is led to
allow for a controlled loss of regularity: one weight function σ measures the regularity
of the formal power series, a second weight function ω that of its extension. The
connection between σ and ω is encoded in the mixed growth index γ(σ, ω), a natural
generalization of γ(ω). In fact, extensions exist on all sectors of opening smaller
than πγ(σ, ω). Since γ(ω) ≤ γ(σ, ω) ≤ µ(ω), with generally strict inequalities, this
means an improvement on the size of the sectors where extensions exist. Moreover,
extensions on sectors of all openings smaller than πµ(ω) exist if σ is allowed to depend
on the opening. These results were obtained in the Roumieu case by Jiménez-Garrido,
Sanz, and the third author [11]; analogous statements hold for weight sequences. It
should be noted that, for technical reasons, the results involve a uniform shift of all
weights (i.e., a multiplication by the sequence (p!) on the level of weight matrices)
which here we ignored for simplicity. For a detailed study and comparison of the
mentioned parameters we refer to [6].

The approach in [11] was the “complex” one of [8], since the “real” techniques of [9]
failed in a crucial step. At the time of writing [11] the mixed Beurling case could not be
handled. This changed thanks to a new reduction lemma proved by the second author
in [18] in order to deal with a similar situation concerning the ultradifferentiable
Whitney extension problem. Actually, this circle of ideas is intimately related to the
problem at hand and was studied extensively in the literature. We refer the interested
reader to the (by no means exhaustive) list of papers [1], [3], [5], [13], [28], [29], [10],
[21], [22], [18].

In the setting of the present paper a weaker version of the aforementioned reduction
lemma (namely, Lemma 4.4) suffices to fully reduce the Beurling to the Roumieu
case. Thus it turns out that, again, the parameters γ(σ, ω) and µ(ω) regulate the
opening of the sectors on which extensions exist; see Theorem 4.1 and Theorem 4.6.
In addition, we provide sufficient conditions for the existence of continuous linear
extension operators on suitable subspaces.

We point out that the reduction procedure in [18] involves a small loss of infor-
mation, since it leads to a stronger condition in the Beurling case. Thanks to the
ramified nature of the mixed strong non-quasianalyticity condition defining the index
γ(σ, ω), there is no loss of information in the ultraholomorphic sectorial extension
problem.

The paper is organized as follows. After discussing weight functions and sequences
in Section 2 and ultraholomorphic function and sequence spaces in Section 3, we
prove in Section 4 the main results on sectorial extension of mixed Beurling type for
weight functions. In Theorem 4.1 the opening of the sector is controlled by γ(σ, ω)
and in Theorem 4.6 by µ(ω). In the final Section 5, the results for weight functions
are applied to the case that the growth conditions are defined in terms of weight
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sequences, similarly using γ(M,N) in Theorem 5.2 and µ(N) in Theorem 5.4. In all
these theorems information on the existence of continuous linear extension operators
is provided.

2. Weights and conditions

2.1. Weight functions. A function ω : [0,∞) → [0,∞) is called weight function
if it is continuous, non-decreasing, ω(0) = 0, and limt→∞ ω(t) = ∞. If in addition
ω(t) = 0 for all t ∈ [0, 1], then ω is said to be normalized.

Let us consider the following (standardly used) conditions:

ω(2t) = O(ω(t)) as t→∞.(ω1)
ω(t) = O(t) as t→∞.(ω2)
log(t) = o(ω(t)) as t→∞.(ω3)

ϕω : t 7→ ω(et) is a convex function on R.(ω4)
ω(t) = o(t) as t→∞.(ω5)
∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.(ω6) ∫ ∞

1

ω(t)

t2
dt <∞.(ωnq)

∃C > 0 ∀y > 0 :

∫ ∞
1

ω(yt)

t2
dt ≤ Cω(y) + C.(ωsnq)

Weight functions ω satisfying (ωnq) are said to be non-quasianalytic and those satis-
fying (ωsnq) are called strongly non-quasianalytic or simply strong. Note that (ωsnq)
⇒ (ωnq) ⇒ (ω5) ⇒ (ω2).

For ease of reference we define the following sets of weight functions:

W0 := {ω : ω is a normalized weight function satisfying (ω3) and (ω4)},
W := {ω ∈ W0 : ω satisfies (ω1)}.

We remark that in [18] the elements of W (and only those) were called (normalized)
weight functions.

For any ω ∈ W0 we define the Young conjugate of ϕω by

(1) ϕ∗ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0;

it will appear in Lemma 2.3 and in the definition of the ultraholomorphic classes in
Section 3.

Given two weights σ, τ we write σ � τ if τ(t) = O(σ(t)) as t → ∞; it reflects the
inclusion relation of the corresponding ultraholomorphic classes, see Section 3.4. We
call two weights σ and τ equivalent if σ � τ and τ � σ.

2.2. Weight functions obtained by power substitutions. For any weight func-
tion ω and r > 0 we denote by ωr the weight ωr(t) := ω(tr) resulting from the power
substitution t 7→ tr. Clearly, (ωr)s = ωrs for any r, s > 0.

It is easy to see (cf. [11, p.1635]) that ωr ∈ W if and only if ω ∈ W. Furthermore,
we have σ � τ if and only if σr � τ r. In particular, σ and τ are equivalent if and
only if σr and τ r are equivalent (for some/any r > 0).

On the other hand, (ωnq), (ωsnq), and (ω5) might, in general, not be preserved
when passing from ω to ωr. In fact (cf. [11, (1)]), for r > 0 the weight function ωr is
non-quasianalytic (i.e., satisfies (ωnq)) if and only if ω fulfills

(ωnqr
)

∫ ∞
1

ω(t)

t1+1/r
dt <∞.
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2.3. Mixed growth index. For weight functions ω, σ and r > 0 we recall the con-
dition (cf. [11, Section 3.1] and also [10, (5.4)])

(σ, ω)γr ∃C > 0 ∀t ≥ 0 :

∫ ∞
1

ω(ty)

y1+1/r
dy ≤ Cσ(t) + C.

Note that, ω being non-decreasing, the integral is bounded below by rω(t) so that
this condition implies σ � ω. Clearly, (σ, ω)γr implies (σ, ω)γr′ for all 0 < r′ < r.

The mixed growth index is defined by

γ(σ, ω) := sup{r > 0 : (σ, ω)γr is satisfied}

and γ(σ, ω) := 0 if (σ, ω)γr holds for no r > 0. Putting γ(ω) := γ(ω, ω) we recover
the growth index γ(ω) introduced and studied in [6, 8, 9].

We have γ(ω) ≤ γ(σ, ω) provided that σ � ω, cf. [11, Lemma 3]. By [6, Corollary
2.14], γ(ω) > 0 if and only if (ω1) holds true. In particular, for ω ∈ W, γ(σ, ω) > 0 if
and only if σ � ω.

A weight function ω is strongly non-quasianalytic (i.e. satisfies (ωsnq)) if and only
if γ(ω) > 1; see [6, Corollary 2.13]. And, clearly, γ(σ, ω) > 1 implies that ω is
non-quasianalytic and thus satisfies (ω5).

Note that (σ, ω)γr if and only if (σr, ωr)γ1 and so (cf. [11, Remark 7 (i)])

(2) γ(σ, ω) = rγ(σr, ωr) for all r > 0.

Remark 2.1. In [18] the condition (σ, ω)γ1/r was denoted by (Sr) and the pair (ω, σ)

was called 1/r-strong.

2.4. Order of quasianalyticity. The order of quasianalyticity of a weight function
ω is defined by (cf. [11, (18)])

µ(ω) := sup
{
r > 0 :

∫ ∞
1

ω(u)

u1+1/r
du <∞

}
= sup{r > 0 : ω satisfies (ωnqr

)}

and µ(ω) := 0 if (ωnqr
) holds for no r > 0. It is preserved under equivalence of weight

functions, since the condition (ωnqr
) is preserved.

We have γ(σ, ω) ≤ µ(ω) for any weight σ � ω, cf. [11, Lemma 7]. Thus µ(ω) > 0
if ω ∈ W, by the properties of the mixed growth index, see Section 2.3.

2.5. Weight sequences. Any positive sequence M = (Mp) ∈ RN
>0 is called weight

sequence. With M we associate the sequences m = (mp) and µ = (µp) defined by
mp :=

Mp

p! and µp :=
Mp

Mp−1
, µ0 := 1, respectively. A weight sequence M is called

normalized if 1 = M0 ≤ M1. For any weight sequence M and r > 0 we define the
power Mr := ((Mp)

r)p∈N.
A weight sequence M is called log-convex if

(lc) ∀p ∈ N>0 : M2
p ≤Mp−1Mp+1,

which is equivalent to µ being non-decreasing. It is called strongly log-convex if (lc)
holds for the associated sequence m. We say that M has moderate growth if

(mg) ∃C ≥ 1 ∀p, q ∈ N : Mp+q ≤ Cp+qMpMq.

Replacing M by m or by Mr (for arbitrary r > 0) gives an equivalent condition. A
weight sequence M is called non-quasianalytic, if

(nq)
∞∑
p=1

1

µp
<∞.
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Note that M1/r is non-quasianalytic if and only if M satisfies

(nqr)
∞∑
p=1

( 1

µp

)1/r

<∞.

For later reference we consider the conditions (cf. [25], [17] and [2])

sup
p∈N>0

µp
p

∑
k≥p

1

µk
<∞,(γ1)

∃Q ∈ N>0 : lim inf
p→∞

µQp
µp

> 1.(β3)

Two weight sequences M and N are said to be equivalent if C−1 ≤
(Mp

Np

)1/p ≤ C for
some C > 0 (cf. Section 3.4).

For ease of reference we introduce the set of weight sequences

LC :=
{
M ∈ RN

>0 : M is normalized, log-convex, lim
p→∞

(Mp)
1/p =∞

}
.

We shall recall the (mixed) growth index and the order of quasianalyticity for weight
sequences in Section 5.

2.6. Associated function. With M ∈ LC one associates (cf. [16, Chapitre I] and
[12, Definition 3.1]) the function ωM : [0,∞)→ [0,∞) defined by

ωM (t) := sup
p∈N

log
( tp

Mp

)
for t > 0, ωM (0) := 0.

An easy calculation shows that, for all r > 0,

(3) ωrM = rωM1/r .

We collect some well-known properties for ωM .

Lemma 2.2 (Cf. [8, Lem. 2.4] and [9, Lem. 3.1]). Let M ∈ LC. Then:
(i) ωM belongs to W0.
(ii) If M satisfies (γ1), then ωM fulfills (ωsnq) (which in turn implies (ω1)).
(iii) M has moderate growth if and only if ωM satisfies (ω6).

2.7. Weight matrices. Cf. [19, Section 4]. A weight matrix M is a (one parameter)
family of weight sequencesM := {M [x] : x ∈ R>0} such that each M [x] is normalized
and non-decreasing, and M [x] ≤ M [y] if x ≤ y. We call a weight matrixM standard
log-convex, abbreviated by (Msc), if M [x] ∈ LC for all x > 0.

Weight matrices are a convenient technical tool for working with weight functions:

Lemma 2.3 ([19, Section 5]). With every ω ∈ W0 one can associate an (Msc) weight
matrix Ω := {W [l] : l > 0} by setting

W
[l]
j := exp

(1

l
ϕ∗ω(lj)

)
.

If ω additionally satisfies (ω1), then

(4) ∀h ≥ 1 ∃A ≥ 1 ∀l > 0 ∃D ≥ 1 ∀j ∈ N : hjW
[l]
j ≤ DW

[Al]
j .

Moreover, ω ∈ W0 is non-quasianalytic if and only if some/each W [l] is non-
quasianalytic. All weight sequences W [l] are equivalent if and only if ω satisfies (ω6)
which in turn is equivalent to some/each W [l] having moderate growth.
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3. Ultraholomorphic function classes and the Borel map

We recall definitions and basic facts on ultraholomorphic classes; cf. [9, Section
2.5], [11, Section 2.7], [28], [30], and references therein.

3.1. Sectors. Let R be the Riemann surface of the logarithm. We wish to work in
general unbounded open sectors in R with vertex at 0, but all our results will be
unchanged under rotation. So it suffices to consider unbounded open sectors

Sγ :=
{
z ∈ R : | arg(z)| < γπ

2

}
, γ > 0,

of opening γπ bisected by the positive real axis; we refer to them simply as sectors.

3.2. Ultraholomorphic classes associated with a weight sequence. Let M be
a weight sequence, S a sector, and h > 0. We consider the Banach space

AM,h(S) :=
{
f ∈ H(S) : sup

z∈S,p∈N

|f (p)(z)|
hpMp

<∞
}
,

where H(S) is the space of holomorphic functions on S. We define the spaces

A(M)(S) :=
⋂
h>0

AM,h(S) and A{M}(S) :=
⋃
h>0

AM,h(S)

and equip them with their natural locally convex topologies. The Fréchet space
A(M)(S) is the ultraholomorphic class of Beurling type, the (LB) space A{M}(S) the
ultraholomorphic class of Roumieu type associated with M in the sector S.

Analogously we introduce the sequence spaces

ΛM,h :=
{
a = (ap) ∈ CN : sup

p∈N

|ap|
hpMp

<∞
}
,

Λ(M) :=
⋂
h>0

ΛM,h, and Λ{M} :=
⋃
h>0

ΛM,h.

We have the (asymptotic) Borel maps B : A(M)(S)→ Λ(M) and B : A{M}(S)→ Λ{M}
given by f 7→ (f (p)(0))p∈N, where f (p)(0) := limz∈S,z→0 f

(p)(z).

3.3. Ultraholomorphic classes associated with a weight function. Let ω be
a normalized weight function satisfying (ω3). For a sector S and l > 0, we have the
Banach space

Aω,l(S) :=
{
f ∈ H(S) : sup

z∈S,p∈N

|f (p)(z)|
exp( 1

lϕ
∗
ω(lp))

<∞
}
.

We define the spaces

A(ω)(S) :=
⋂
l>0

Aω,l(S) and A{ω}(S) :=
⋃
l>0

Aω,l(S)

and equip them with their natural locally convex topologies. The Fréchet space
A(ω)(S) is the ultraholomorphic class of Beurling type, the (LB) space A{ω}(S) the
ultraholomorphic class of Roumieu type associated with ω in the sector S.

Correspondingly, we have the sequence spaces

Λω,l :=
{
a = (ap) ∈ CN : sup

p∈N

|ap|
exp( 1

lϕ
∗
ω(lp))

<∞
}
,

Λ(ω) :=
⋂
l>0

Λω,l, and Λ{ω} :=
⋃
l>0

Λω,l.

We get the Borel maps B : A(ω)(S)→ Λ(ω) and B : A{ω}(S)→ Λ{ω}.
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For a weight matrixM = {M [x] : x > 0} and a sector S we define ultraholomorphic
classes of Beurling and Roumieu type

A(M)(S) :=
⋂
x>0

A(M [x])(S), A{M}(S) :=
⋃
x>0

A{M [x]}(S),

as well as sequence spaces

Λ(M) :=
⋂
x>0

Λ(M [x]), Λ{M} :=
⋃
x>0

Λ{M [x]},

and equip them with their natural locally convex topologies. Clearly, we have the
associated Borel maps.

Proposition 3.1. Let ω ∈ W and let Ω be the associated weight matrix. Then

A(ω)(S) = A(Ω)(S), A{ω}(S) = A{Ω}(S), Λ(ω) = Λ(Ω), Λ{ω} = Λ{Ω},

as locally convex vector spaces.

Proof. This is a consequence of [19, Lemma 5.9, (5.10)] (see (4)) and the way how
the seminorms are defined in these spaces. �

3.4. Inclusion relations. As an immediate consequence of the definitions we get the
following inclusion relations (on any sector):

• supp∈N>0

(Mp

Np

)1/p
< ∞ implies the inclusions A(M) ⊆ A(N), A{M} ⊆ A{N},

Λ(M) ⊆ Λ(N), and Λ{M} ⊆ Λ{N}.

•
(Mp

Np

)1/p → 0, abbreviated by M C N , implies A{M} ⊆ A(N) and Λ{M} ⊆
Λ(N).
• τ(t) = O(σ(t)) as t → ∞ (i.e. σ � τ) implies A(σ) ⊆ A(τ), A{σ} ⊆ A{τ},

Λ(σ) ⊆ Λ(τ), and Λ{σ} ⊆ Λ{τ}.
• τ(t) = o(σ(t)) as t→∞ implies A{σ} ⊆ A(τ) and Λ{σ} ⊆ Λ(τ).

Obviously, we have A∗(Sr) ⊆ A∗(Sr′) for any 0 < r′ ≤ r, where ∗ refers to any of the
specified regularity classes. All listed inclusions are continuous.

4. Ultraholomorphic sectorial extensions

In this section we prove the main Theorems 4.1 and 4.6. The proof of Theorem 4.1
is based on Lemma 4.4 which allows us to reduce the Beurling case to the Roumieu
case (treated in [11] and recalled in Theorems 4.2 and 4.3). Theorem 4.6 is a corollary
of Theorem 4.1. We work with two weight functions ω and σ allowing for a controlled
loss of regularity in the extension procedure. This generalizes the case ω = σ treated
in [9, Section 7].

In the following, by an extension operator we mean a continuous linear right-inverse
of the Borel map B; the domain and codomain will be clear from the context.

4.1. Notation for associated weights.
• For any weight function ω ∈ W0 we denote by M(ω) the weight matrix
{W [l] : l > 0} associated with ω in Lemma 2.3.

• For any weight matrix M = {M [x] : x > 0} consider the weight matrix
M̂ = {M̂ [x] : x > 0}, where M̂ [x]

p := p!M
[x]
p for all p ∈ N.

• For a weight matrixM = {M [x] : x > 0} satisfying (Msc) set ω(M̂) := ω
M̂ [1] .

Then ω(M̂) ∈ W and for all τ ∈ W equivalent to ω(M̂) we have topological isomor-
phisms A{τ}(S) ∼= A{M̂}(S) and A(τ)(S) ∼= A(M̂)

(S) for all sectors S, analogously
Λ{τ} ∼= Λ{M̂} and Λ(τ) = Λ

(M̂)
; see [8, Theorem 5.3] and [9, Theorem 6.7] (the proof
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is based on [26, Corollary 3.17 (ii)⇒ (i)]). We point out that ω
M̂ [x] is equivalent to

ω(M̂) for all x > 0; see [8, Lemma 5.1, Cor. 5.2, Thm. 5.3].
Note that for ω(M) := ωM [1] condition (ω1) and the above properties might fail.

4.2. Extensions of Beurling type controlled by the mixed growth index.
The main goal of this section is to prove the following theorem. Recall that, for
ω ∈ W, γ(σ, ω) > 0 if and only if σ � ω (see Section 2.3).

Theorem 4.1. Let ω, σ ∈ W and 0 < γ < γ(σ, ω). Consider τ1 := ω(M̂(σ)) and
τ2 := ω(M̂(ω)). Then:

(i) We have the inclusion B(A(τ2)(Sγ)) ⊇ Λ(τ1).
(ii) If τ ∈ W satisfies σ(t) = o(τ(t)) as t → ∞, then there exists an extension

operator
Eτ3,τ2 : Λ{τ3} → A(τ2)(Sγ),

where τ3 := ω(M̂(τ)).

The proof is based on a reduction to the Roumieu case which will be now recalled.

4.3. Extensions of Roumieu type controlled by the mixed growth index.

Theorem 4.2 ([11, Theorem 2]). Let σ and ω be normalized weight functions satis-
fying (ω3). Assume that γ(σ, ω) > 0 and let 0 < γ < γ(σ, ω). Consider the weight
matrices Σ = {S[x] : x > 0} := M(σ), Ω = {W [x] : x > 0} := M(ω), as well as Σ̂

and Ω̂. Then there exists a constant k0 > 0 such that for every x > 0 and every h > 0
we have an extension operator

Eσ,ωh : ΛŜ[x],h → AŴ [8x],k0h
(Sγ).

Consequently, we have the inclusion B(A{Ω̂}(Sγ)) ⊇ Λ{Σ̂}.

Theorem 4.3 ([11, Corollary 1]). Let σ, ω ∈ W and 0 < γ < γ(σ, ω). Consider
τ1 := ω(M̂(σ)) and τ2 := ω(M̂(ω)). Then for every l > 0 there exist l1 > 0 and an
extension operator

Eτ1,τ2l : Λτ1,l → Aτ2,l1(Sγ).

In particular, we have B(A{τ2}(Sγ)) ⊇ Λ{τ1}.

4.4. Reduction lemma. The reduction is based on the following variant of [18,
Lemma 13] (which in turn contains ideas from [1, Lemma 4.4]). The proof simplifies
significantly, because in contrast to [18] we need not bother about concavity of the
weights.

Lemma 4.4. Let ω, σ be (normalized) weight functions such that γ(σ, ω) > 1. Let
f : [0,∞) → [0,∞) satisfy σ(t) = o(f(t)) as t → ∞. Then there exist (normalized)
weight functions ω̃, σ̃ satisfying γ(σ̃, ω̃) > 1 and

(5) ω(t) = o(ω̃(t)), σ(t) = o(σ̃(t)), σ̃(t) = o(f(t)) as t→∞.

If ω, σ ∈ W0 (resp. ω, σ ∈ W), then we may assume that also ω̃, σ̃ ∈ W0 (resp.
ω̃, σ̃ ∈ W).

Proof. By [18, Proposition 7], the condition γ(σ, ω) > 1 is equivalent to

(6) ∃C > 0 ∃K > H > 1 ∃t0 ≥ 0 ∀t ≥ t0 ∀j ∈ N>0 : ω(Kjt) ≤ CHjσ(t).

We will construct weight functions ω̃ and σ̃ satisfying (5) and (6), i.e., γ(σ̃, ω̃) > 1.
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Note that f(t) → ∞ as t → ∞, since σ(t) → ∞ and σ(t) = o(f(t)) as t → ∞.
We consider a strictly increasing sequence (xn)n≥1 tending to infinity, with x1 := 0,
x2 ≥ 1, and satisfying the following requirements for all n ≥ 2:

xn > max{2,K}xn−1 + n,(7)

f(t) ≥ n2σ(t), for all t ≥ xn,(8)

ω(xn) ≥ 2n−iω(xi), for all 1 ≤ i ≤ n− 1,(9)

σ(xn) ≥ 2n−iσ(xi), for all 1 ≤ i ≤ n− 1.(10)

Then we define the weights ω̃ and σ̃ as follows: for n ≥ 1 and t ∈ [xn, xn+1) set

ω̃(t) := nω(t)−
n∑
i=1

ω(xi) and σ̃(t) := nσ(t)−
n∑
i=1

σ(xi).

By definition and since x2 ≥ 1, ω̃ is normalized if ω is normalized; analogously for σ̃.
Moreover, both ω̃ and σ̃ are non-decreasing, continuous, tending to infinity as t→∞,
and vanish at 0. Note that ω̃ satisfies (ω4) provided that ω does; similarly for σ̃.

As in [18, Lemma 13] one shows that, for all n ≥ 2 and all t ∈ [xn, xn+1),

(n− 2)ω(t) ≤ ω̃(t) ≤ nω(t),(11)
(n− 2)σ(t) ≤ σ̃(t) ≤ nσ(t).(12)

Consequently, ω(t) = o(ω̃(t)) and σ(t) = o(σ̃(t)) as t → ∞. In particular, ω̃ satisfies
(ω3) provided that ω does; similarly for σ̃. Hence ω̃, σ̃ ∈ W0 provided that ω, σ ∈ W0.
Combining (8) and (12) yields σ̃(t) = o(f(t)) as t→∞. So also (5) is shown.

Now γ(ω̃, σ̃) > 1 follows from (6), (7), (11), and (12) as in the proof of [18, Lemma
13]. By a similar argument (see loc. cit.), ω̃, σ̃ satisfy (ω1) if ω, σ do so. �

We also need the following observation.

Lemma 4.5. Let ω, σ ∈ W satisfy ω(t) = o(σ(t)) as t → ∞, and consider Ω =
{W [x] : x > 0} :=M(ω) and Σ = {S[x] : x > 0} :=M(σ). Then

∀H > 0 ∀x > 0 ∃C > 0 : Ŝ[x] ≤ C Ŵ [Hx].

Proof. [19, Lemma 5.16] implies

∀H > 0 ∀x > 0 ∃C > 0 : S[x] ≤ CW [Hx].

which is obviously equivalent to the assertion. �

4.5. Proof of Theorem 4.1. (i) The argument follows a well-known scheme used,
e.g., in the proofs of [1, Theorem 4.5], [9, Theorem 7.2], and [18, Theorem 2].

Fix r > 0 such that γ < r < γ(σ, ω). We consider the weight functions ωr, σr ∈ W
which satisfy γ(σr, ωr) > 1, by (2).

Set Σ :=M(σ) and Ω :=M(ω). Let â = (âp) ∈ Λ(τ1) = Λ(Σ̂) be given. Our goal
is to show that â ∈ B(A(Ω̂)(Sγ)) = B(A(τ2)(Sγ)).

To this end we consider a := (ap) = (âp/p!) and the function

g(t) := log max{1, |ap|}, p ≤ t < p+ 1, p ∈ N.
Since a ∈ Λ(Σ) = Λ(σ), for each integer j ≥ 1 there exists Cj > 0 such that

g(t) ≤ jϕ∗σ(t/j) + Cj , for all t ≥ 0.

Using [1, Lemma 4.3] (for ψj := jϕ∗σ(t/j)), we conclude that there is a convex function
h : [0,∞)→ [0,∞) and a positive sequence (Dj)j such that

g ≤ h ≤ inf
j≥1

(jϕ∗σ(t/j) +Dj).
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(In this step we need (ω1) for σ in order to assume w.l.o.g. that σ, and hence ϕσ, is
of class C1, and ϕ′σ(t)→∞ as t→∞. Thus ϕ∗σ is differentiable and (ϕ∗σ)′ = (ϕ′σ)−1.
See [4, p.210], [18, Lemma 15] and also [1, Theorem 4.5].)

Then the Young conjugate h∗ of h satisfies

h∗(t) ≥ jϕσ(t)−Dj , for all t and all j,

and thus
σ(t) = ϕσ(log t) ≤ 1

j
f(t) +

Dj

j
,

where f(t) := h∗(max{0, log(t)}). Hence, σ(t) = o(f(t)) as t → ∞, and putting
fr(t) := f(tr) we have σr(t) = o(fr(t)).

Let us apply Lemma 4.4 to σr, ωr, and fr (instead of σ, ω, and f in the lemma).
We obtain weights σ̃, ω̃ ∈ W satisfying γ(σ̃, ω̃) > 1 and

ωr(t) = o(ω̃(t)), σr(t) = o(σ̃(t)), σ̃(t) = o(fr(t)) as t→∞.

Hence, in view of (2), we have weights σ̃1/r, ω̃1/r ∈ W such that

γ(σ̃1/r, ω̃1/r) > r,(13)

ω(t) = o(ω̃1/r(t)), σ(t) = o(σ̃1/r(t)), σ̃1/r(t) = o(f(t)) as t→∞.(14)

In particular, there is a constant B > 0 such that σ̃1/r ≤ f +B, whence for all t ≥ 0

ϕσ̃1/r (t) = σ̃1/r(et) ≤ f(et) +B = h∗(t) +B

and so (since h is convex)

g ≤ h = h∗∗ ≤ ϕ∗σ̃1/r +B.

By the definition of g, we find a ∈ Λ{σ̃1/r} = Λ{Σ̃1/r}, where Σ̃1/r :=M(σ̃1/r), which
is equivalent to

â ∈ Λ
{ ̂̃
Σ1/r}

.

By (13), we can apply Theorem 4.2 to ω̃1/r and σ̃1/r (and γ = r) and conclude

â ∈ B(A
{ ̂̃
Ω1/r}

(Sr)),

where Ω̃1/r := M(ω̃1/r). By (14) and Lemma 4.5, A
{ ̂̃
Ω1/r}

(Sr) ⊆ A(Ω̂)(Sr) which
gives the assertion because γ < r.

(ii) Fix r > 0 such that γ < r < γ(σ, ω). Then γ(σr, ωr) > 1 as above. The
assumption σ(t) = o(τ(t)) gives σr(t) = o(τ r(t)) as t → ∞. Applying Lemma 4.4 to
σr, ωr, and τ r (instead of σ, ω, and f in the lemma) and repeating the steps that led
to (13) and (14), yields weight functions ω̃1/r, σ̃1/r ∈ W satisfying (13) and

(15) ω(t) = o(ω̃1/r(t)), σ(t) = o(σ̃1/r(t)), σ̃1/r(t) = o(τ(t)) as t→∞.
By Theorem 4.2, there exists k0 > 0 such that for all x > 0 and h > 0 we have an
extension operator

Λ
(
̂̃
S1/r)[x],h

→ A
(
̂̃
W 1/r)[8x],k0h

(Sr),

where ̂̃
Σ1/r = {( ̂̃S1/r)[x] : x > 0} and ̂̃

Ω1/r = {(̂̃W 1/r)[x] : x > 0}. By (15),
Lemma 4.5, and Section 3.4, we have continuous inclusions

A
(
̂̃
W 1/r)[8x],k0h

(Sr) ↪→ A{ ̂̃
Ω1/r}

(Sr) ↪→ A(Ω̂)(Sr) = A(τ2)(Sr).

Let T := M(τ). We have the continuous inclusions Λ{T} = Λ{τ} ⊆ Λ(σ̃1/r) =

Λ(Σ̃1/r), again by (15). (Note that, for the first equality, (ω1) for τ is needed; cf. (4)
and Proposition 3.1). Furthermore, the linear mappings Λ{T} → Λ{T̂} and Λ(Σ̃1/r) →
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Λ
(
̂̃

Σ1/r)
given by a = (ap) 7→ â = (p! ap) are topological isomorphisms with inverse

(âp) 7→ (âp/p!). Hence, the inclusion Λ{τ3} = Λ{T̂} ⊆ Λ
(
̂̃

Σ1/r)
is continuous. Then the

composite

Λ{τ3} ↪→ Λ
(
̂̃

Σ1/r)
↪→ Λ

(
̂̃
S1/r)[x],h

→ A
(
̂̃
W 1/r)[8x],k0h

(Sr) ↪→ A(τ2)(Sr) ↪→ A(τ2)(Sγ)

is the required extension operator. The proof is complete.

4.6. Extensions controlled by the order of quasianalyticity. It is possible to
have extensions on sectors of opening up to πµ(ω), if one permits that σ depends on
the opening. We shall see that this is a consequence of Theorem 4.1. For a Roumieu
version see [11, Theorem 6].

Theorem 4.6. Let ω ∈ W. Then:
(i) For any 0 < r < µ(ω) there exists σ ∈ W such that for all 0 < γ < r we have

B(A(τ2)(Sγ)) ⊇ Λ(τ1),

where τ1 := ω(M̂(σ)) and τ2 := ω(M̂(ω)).
(ii) If τ ∈ W satisfies σ(t) = o(τ(t)) as t → ∞, then there exists an extension

operator
Eτ3,τ2 : Λ{τ3} −→ A(τ2)(Sγ),

where τ3 := ω(M̂(τ)).
(iii) The weight function σ is minimal (up to equivalence) among all τ ∈ W sat-

isfying τ � ω and (τ, ω)γr .

Remark 4.7. Of course, minimality refers to the relation � which induces a partial
ordering on the set of equivalence classes of weight functions. The corresponding
function (or sequence) space is then maximal; cf. Section 3.4.

Proof of Theorem 4.6. Note that µ(ω) > 0, by Section 2.4. For 0 < r < µ(ω) we
consider the weight function κ1/r

ωr (t) = κωr (t1/r), where

κω(t) :=

∫ ∞
1

ω(ty)

y2
dy = t

∫ ∞
t

ω(y)

y2
dy.

Then (κ
1/r
ωr , ω)γr is valid by definition. The weight function κ

1/r
ωr has all properties

defining W except normalization which however can be achieved by switching to an
equivalent weight, say σ, by redefining κ1/r

ωr near 0; see [1, Remark 1.2 (b)] and [3,
Remark 3.2 (b)]. Then γ(σ, ω) ≥ r > γ and so the statement follows from Theorem 4.1.
The minimality of σ is immediate from its definition and the relation (σ, ω)γr . Cf.
[11, p.1650]. �

5. Applications to the weight sequence setting

In this section we apply the extension results for weight functions to classes defined
by weight sequences.

5.1. Mixed growth index γ(M,N). Cf. [11, Section 3.1] and references therein.
For a weight sequence M and r > 0 we consider the condition

(γr) sup
p∈N>0

(µp)
1/r

p

∑
k≥p

( 1

µk

)1/r

<∞.

It is immediate that M satisfies (γr) if and only if M1/r satisfies (γ1).
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For weight sequences M,N such that µ/ν is bounded, consider the condition

(M,N)γr sup
p∈N>0

(µp)
1/r

p

∑
k≥p

( 1

νk

)1/r

<∞.

The mixed growth index is defined by

γ(M,N) := sup{r > 0 : (M,N)γr is satisfied}
and γ(M,N) := 0 if (M,N)γr holds for no r > 0. Note that γ(M) := γ(M,M) is the
growth index used in [30]; see also [6, 7].

Remark 5.1. Let M ∈ LC be given.
(i) M satisfies (β3) if and only if γ(M) > 0; this follows from [6, Theorem 3.11

(v)⇔(vii)] applied to β = 0.
(ii) We have γ(ωM ) ≥ γ(M) and equality holds if M has moderate growth; see [6,

Corollary 4.6].
(iii) ωM satisfies (ω1) if and only if γ(ωM ) > 0; see [6, Corollary 2.14]. So, if

M ∈ LC has moderate growth, then ωM satisfies (ω1) (i.e., ωM ∈ W) if and only if
M satisfies (β3). In general, for a sequence N ∈ LC (not necessarily having moderate
growth), ωN has the property (ω1) if and only if

∃L ∈ N>0 : lim inf
p→∞

(NLp)
1/(Lp)

(Np)1/p
> 1,

as it is shown in [27, Theorem 3.1].
(iv) These statements are consistent with the implication [2, Lemma 12, (2)⇒ (4)].

5.2. Extensions controlled by the mixed growth index. The following theorem
is a Beurling version of [11, Theorem 4].

Theorem 5.2. Let M,N ∈ LC be such that µ/ν is bounded, M has moderate growth,
and ωM , ωN ∈ W. Then:

(i) γ(M,N) = γ(ωM , ωN ) > 0.
(ii) For any 0 < γ < γ(M,N) we have the inclusion B(A(N̂)(Sγ)) ⊇ Λ

(M̂)
.

(iii) Let L ∈ LC satisfy L C M and assume that ωL ∈ W. Then there exists an
extension operator

EL,N : Λ{L̂} −→ A(N̂)(Sγ).

Proof. (i) By [11, Lemma 4] we have γ(M,N) = γ(ωM , ωN ). Condition (ω1) for ωN
yields γ(ωN ) > 0 (see Remark 5.1) and so γ(ωM , ωN ) ≥ γ(ωN ) > 0 (by Section 2.3).

(ii) Let Ω := M(ωN ) and Σ := M(ωM ). Since M has moderate growth, all
sequences in Σ = {S[x] : x > 0} are equivalent (see Lemmas 2.2 and 2.3), hence the
same holds for Σ̂. The proof of [26, Theorem 6.4] yields S[1] = M , hence Ŝ[1] = M̂
and so Λ

(M̂)
= Λ(Ŝ[1]) = Λ(Σ̂) = Λ(τ1) for the weight function τ1 = ω

M̂
∈ W. By

Theorem 4.1 applied to to ωM and ωN , we conclude, for τ2 = ω(Ω̂) ∈ W,

Λ
(M̂)

= Λ(τ1) ⊆ B(A(τ2)(Sγ)) = B(A(Ω̂)(Sγ)) ⊆ B(A(N̂)(Sγ));

the last inclusion is clear by the definition of the classes and since N̂ = Ŵ [1] ∈ Ω̂.
(iii) The relation L CM implies, by the definition of associated weight functions,

∀A ≥ 1 ∃C ≥ 1 ∀t ≥ 0 : ωM (At) ≤ ωL(t) + C.

In combination with the fact that ωM satisfies (ω6), since M has moderate growth
(see Lemma 2.2), we infer that ωM (t) = o(ωL(t)) as t → ∞. Now it suffices to
apply Theorem 4.1(ii) to ωL, ωM , and ωN (instead of τ , σ, and ω) and to note that
A(τ2)(Sγ) ↪→ A(N̂)(Sγ) and Λ{L̂} ↪→ Λ{M̂(ωL)}; see Section 3.4. �
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Example 5.3. Here is an explicit example of sequences which fulfill the assumptions
of Theorem 5.2 and underline its value: Let γ > γ′ > 1. By [11, Lemma 13, Theorem
7], there exist sequences M,M ′ ∈ LC having moderate growth such that

• pγ ≤ µp ≤ pγ(2γ−1) and pγ
′ ≤ µ′p ≤ pγ

′(2γ′−1) for all p ∈ N,
• γ(M) = γ(M ′) = 0.

For ε > 0 set Mε := (p!εMp) and M ′ε := (p!εM ′p). Then γ(Mε) = γ(M ′ε) = ε > 0
(see [6, Theorem 3.11]) and thus ωMε and ωM ′ε satisfy (ω1) (see Remark 5.1). By
construction, Mε and M ′ε have moderate growth. If we additionally assume that

γ′(2γ′ − 1) ≤ γ,

then µ′ε ≤ µε and (M ′ε,Mε)γr , for all 0 < r < γ, thus γ(M ′ε,Mε) ≥ γ. So Theorem 5.2
can be applied to M ′ε and Mε. Note that, by choosing γ and ε appropriately, one can
make γ(M ′ε,Mε) = γ(ωM ′ε , ωMε

) arbitrarily large and γ(Mε) = γ(M ′ε) = γ(ωMε
) =

γ(ωM ′ε) > 0 arbitrarily small.

5.3. Order of quasianalyticity µ(N). In analogy to Section 4.6 we consider the
order of quasianalyticity for a weight sequence N ∈ LC (see [11, Section 3.2]):

µ(N) := sup
{
r > 0 :

∑
k≥1

( 1

νk

)1/r

<∞
}

= sup{r > 0 : N satisfies (nqr)}

and µ(N) := 0 if (nqr) holds for no r > 0. Note that µ(N)−1 coincides with the
exponent of convergence of N ; cf. [24, Prop. 2.13, Def. 3.3, Thm. 3.4] and [7, p.145].
If M ∈ LC is equivalent to N , then µ(M) = µ(N).

5.4. Descendant construction. We recall a construction from [11, Remark 9],
based on [20, Section 4.1]. Let N ∈ LC be non-quasianalytic and r > 0. The
descendant of N1/r is the sequence S = S(N, r) defined by Sp = σ0σ1 · · ·σp, where
σ0 := 1 and

σp :=
τ1p

τp
, τp :=

p

(νp)1/r
+
∑
j≥p

( 1

νj

)1/r

, p ≥ 1.

Notice that S ∈ LC is strongly log-convex, see [20, Lemma 4.2]; for more of its
properties we refer to [11, Remark 9]. For us the sequence L = L(N, r) ∈ LC defined
by

(16) L := Sr

is crucial. We have Lp = λ0λ1 · · ·λp with λ := σr. It has the following properties
(see [11, Remark 9, Lemma 6]):

(i) (L,N)γr and thus γ(L,N) ≥ r.
(ii) λ/ν is bounded and so (L,N)γr′ for all 0 < r′ ≤ r.
(iii) If M ∈ LC satisfies (M,N)γr and µ/ν is bounded, then also µ/λ is bounded.

Consequently, L is maximal (up to multiplication of λ by a constant) among
all sequences M with (M,N)γr and µ/ν bounded.

(iv) L has moderate growth if and only if

(17) ∃C ≥ 1 ∀k ∈ N>0 :
(ν2k)1/r

(νk)1/r
≤ C + C

(ν2k)1/r

2k

∑
j≥2k

1

(νj)1/r
.

Moderate growth for N1/r (equivalently for N), implies (17). In general, the converse
implication is not true; see [11, Example 1].
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5.5. Extensions controlled by the order of quasianalyticity. Now we are ready
to prove a Beurling version of [11, Theorem 5].

Theorem 5.4. Let N ∈ LC satisfy (β3). Then µ(N) > 0. Let 0 < r < µ(N)
and suppose that (17) holds true for this value r. Then there exists L ∈ LC having
moderate growth and with the following properties:

(i) B(A(N̂)(Sγ)) ⊇ Λ(L̂) for each 0 < γ < r.
(ii) If M ∈ LC satisfies M C L and ωM ∈ W, then there is an extension operator

EM,N : Λ{M̂} → A(N̂)(Sγ).

(iii) L is maximal among all M ∈ LC with (M,N)γr and µ/ν bounded.

Proof. We have µ(N) ≥ γ(M,N) ≥ γ(N) for any sequence M ∈ LC with µ/ν
bounded, see [11, Lemmas 3, 5, Remark 8], and γ(N) > 0, by Remark 5.1. Hence
µ(N) > 0.

For r as in the assumption, let L = L(N, r) be the sequence defined in (16). Then
L has moderate growth, γ(L,N) ≥ r, λ/ν is bounded, and L satisfies (iii), by the
properties listed in Section 5.4. Furthermore, S = L1/r is strongly log-convex and
hence satisfies (β3). Consequently, by Remark 5.1(iii), ωS satisfies (ω1). In view of
(16) and (3), also ωL has the property (ω1), and so ωL ∈ W. Remark 5.1 also implies
that ωN ∈ W. Thus Theorem 5.2 shows that L satisfies (i) and (ii). �
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