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CONFORMAL VECTOR FIELDS

(M, g) always denotes a pseudo-Riemannian manifold of
dimension n ≥ 3.

A vector field v on M is called conformal if its local flow consists
of conformal diffeomorphisms. Equivalently, for some φ : M → IR,

2∇v = A + φ Id, with A∗ = −A. (1)

Here ∇v is treated as a bundle morphism TM → TM (which
sends each vector field w to ∇wv), and A = ∇v − [∇v ]∗ is twice
the skew-adjoint part of ∇v .

Note that div v = nφ/2.

Example: Killing fields v , characterized by φ = 0.
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THE SIMULTANEOUS KERNEL

Manifolds need not be connected. A submanifold is always
endowed with the subset topology.

Z denotes the zero set of a given conformal field v .

If x ∈ Z , we use the symbol

Hx = Ker∇vx ∩ Ker dφx

for the simultaneous kernel, at x , of the differential dφ and the
bundle morphism ∇v : TM → TM.

When x is fixed, we also write H instead of Hx .
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(NON)ESSENTIAL AND (NON)SINGULAR ZEROS

x ∈ Z is an essential zero of v if no conformal change of g on
any neighborhood U of x turns v into a Killing field for the new
metric on U.

Otherwise, x ∈ Z is a nonessential zero of v .

A nonsingular zero of v is any x ∈ Z such that, for some
neighborhood U of x in M, the intersection Z ∩ U is a
submanifold of M.

Zeros of v not having a neighborhood with this property are from
now on called singular.
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BEIG’S THEOREM (1992)

x ∈ Z is nonessential if and only if

φ(x) = 0 and ∇φx ∈ ∇vx(TxM). (2)

In other words: x ∈ Z is essential if and only if

either φ(x) 6= 0, or φ(x) = 0 and ∇φx /∈ ∇vx(TxM). (3)

For a proof, see a 1999 paper by Capocci.
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ESSENTIAL/NONESSENTIAL COMPONENTS OF Z

Z is always locally pathwise connected. Thus, the connected
components of Z are pathwise connected, closed subsets of M.

From now on they are simply called the components of Z .

A component of Z is referred to as essential if all of its points are
essential zeros of v .

Otherwise, the component is said to be nonessential.

This definition allows a nonessential component N to contain some
essential zeros of v . We’ll see, however, that essential zeros in N
then form a closed subset of N without relatively-interior points.
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GEOMETRY OF AN ESSENTIAL COMPONENT Σ

Let Σ be an essential component. Then

(i) Σ is a null totally geodesic submanifold of (M, g), closed as
a subset of M.

In addition, for any x ∈ Σ, with Hx = Ker∇vx ∩ Ker dφx ,

(ii) TxΣ = Hx ∩H⊥x ,

(iii) the metric gx restricted to Hx is semidefinite.

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.6

Andrzej Derdzinski (The Ohio State University) TWO-JETS OF CONFORMAL FIELDS



GEOMETRY OF A NONESSENTIAL COMPONENT N

Assume N to be nonessential, and let Σ denote the set of all
essential zeros of Z lying in N. Then

(a) Σ, if nonempty, is a null totally geodesic submanifold of
(M, g), closed as a subset of M,

(b) N rΣ is a totally umbilical submanifold of M, with
dim(N rΣ) > dim Σ, and g restricted to N rΣ has
the same sign pattern (including rank) at all points,

(c) Σ consists of singular, N rΣ of nonsingular zeros of v .

For any x ∈ Σ and y ∈ N rΣ, with Hx = Ker∇vx ∩ Ker dφx ,

(d) Ty (N rΣ) = Ker∇vy and TxΣ = Hx ∩H⊥x ,

(e) rank∇vy = 2 + rank∇vx ,

(f) the metric gx restricted to Hx is not semidefinite.
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MORE ON NONESSENTIAL COMPONENTS N

Again, N is nonessential, Σ is the set of essential zeros of Z
lying in N, and x ∈ Σ.

Let C = {u ∈ TxM : gx(u, u) = 0} be the null cone, and H = Hx

the simultaneous kernel at x , that is, H = Ker∇vx ∩ Ker dφx .

For any sufficiently small neighborhoods U of 0 in TxM and U ′

of x in M such that expx is a diffeomorphism U → U ′,

(g) Z ∩ U ′ corresponds under expx to C ∩ H ∩ U,

(h) Σ ∩ U ′ corresponds under expx to H ∩ H⊥∩ U.
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INDUCED STRUCTURES ON Σ AND N rΣ

Let Σ be either an essential component, or the set of essential
points (assumed nonempty) in a nonessential component N.

N rΣ is endowed with a possibly-degenerate conformal structure,
or, in other words, a symmetric 2-tensor field, defined only up to
multiplications by functions without zeros, and having the same
sign pattern at all points (see (b) on p. 7).

Σ carries a natural projective structure – a class of torsion-free
connections having the same family of nonparametrized geodesics
(see (i) on p. 6 and (a) on p. 7), as well as a distinguished
codimension-zero-or-one distribution, which means: a 1-form ξ
defined only up to multiplications by functions without zeros.
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HOW g DETERMINES THE ONE-FORM ξ on Σ

Σ is again either an essential component, or the singular subset,
assumed nonempty, of a nonessential component N.

φ = (2/n) div v is constant along every component of Z (more
on this later).

If φ = 0 on Σ, then Σ 3 x 7→ Hx = Ker∇vx ∩ Ker dφx is, in
both cases, a parallel subbundle of TΣM contained in Ker∇v as a
codimension-one subbundle, and we set ξ = g(w , · ), on Σ, for
any section w of Ker∇v over Σ with dwφ = 1.

If φ 6= 0 on Σ, we set ξ = 0 (consistent with the above).

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.10
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MORE ON THE ONE-FORM ξ ON Σ

In both cases, Σ the natural projective structure, and the
codimension-zero-or-one distribution corresponding to ξ is
geodesic (although not necessarily integrable): if Γ ⊆ Σ is a
geodesic segment and TxΓ ⊆ Ker ξx for some x ∈ Γ, then the
same is true for every x ∈ Γ.

Equivalently: for any (torsion-free) connection D within the
projective structure,

sym∇ξ = µ� ξ for some 1 form µ on Σ. (4)

In coordinates: ξ j ,k + ξk, j = µjξk + µkξ j .
Note the invariance under changing the connection within the
projective structure, and multiplications by functions without zeros.
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A UNIQUE CONTINUATION PROPERTY OF ξ

Due to the “geodesic” property, if ξ vanishes on a nonempty open
subset of a connected component of Σ, then it must vanish on the
whole connected component.

This remains true also if one replaces the words ‘nonempty open
subset’ by ’codimension-one submanifold’.
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EXAMPLE: RIEMANN EXTENSIONS

Let D be a connection on a manifold Σ (of any dimension).

We denote by π : T ∗Σ → Σ the bundle projection of the
cotangent bundle of Σ.

The Patterson-Walker Riemann extension metric on M = T ∗Σ
is the neutral-signature metric gD defined by requiring that

• all vertical and all D-horizontal vectors be gD-null, while

• g y
D(ζ,w) = ζ(dπyw) for any y ∈ M, any vertical vector
ζ ∈ Ker dπy = T ∗xΣ, with x = π(y), and any w ∈ TyM.
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THE RADIAL VECTOR FIELD v ON T ∗Σ
T∗
x Σ

↑

↑

↑
↑
↑

x Σ↓
↓
↓

↓

↓
The radial field v is conformal for any Riemann extension metric.

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.14
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THE EXAMPLE, CONTINUED

If the original manifold Σ is connected, the zero section Σ ⊆ M
is an essential component with φ 6= 0.
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Andrzej Derdzinski (The Ohio State University) TWO-JETS OF CONFORMAL FIELDS



CONFORMAL EQUIVALENCE OF ONE-JETS OF v

For x ∈ Z , the endomorphism ∇vx of TxM, independent of the
choice of ∇, is also known as the linear part, or Jacobian, or
derivative, or differential of v at the zero x . It coincides with the
infinitesimal generator of the local flow of v acting in TxM.

Given x , y ∈ Z , we say that the 1-jets of v at x and y are
conformally equivalent if, for some vertical-arrow conformal
isomorphism TxM → TyM, the following diagram commutes:

TxM
∇vx

−−−−−−→ TxMy
y

TyM
∇vy

−−−−−−→ TyM

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.16
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ONE-JETS ALONG A NONESSENTIAL COMPONENT

For a nonessential component N, with Σ ⊆ N denoting its set of
essential points:

The 1-jets of v at all points of any connected component of
N rΣ are conformally equivalent to one another, but not
conformally equivalent to the 1-jet of v at any x ∈ Σ.

In fact, ∇v is parallel along N rΣ with respect to a connection
D in TNrΣM which also preserves the conformal structure.
The claim about x ∈ Σ follows from (e) on p. 7.

Such D arises by gluing together, via a partition of unity on
N rΣ, the Levi-Civita connections of locally-defined metrics
conformal to g , for which v is a Killing field.

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.17
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CONSTANCY OF THE CHARACTERISTIC POLYNOMIAL

Denote by Pn the space of all polynomials in one real variable with
degrees not exceeding n = dim M.

Let χ : M → Pn be the function assigning to each x ∈ M the
characteristic polynomial of ∇vx : TxM → TxM.

Then χ is constant along every component of Z.

As a consequence, φ = (2/n) div v is also constant along every
component.

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.18
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ONE-JETS ALONG Σ (THE GENERIC CASE)

Again, Σ is either an essential component, or the singular subset
(assumed nonempty) of a nonessential component N.

Suppose that ξ is not identically zero on a given connected
component of Σ.

Then the 1-jets of v at all points of this connected component of
Σ are conformally equivalent to one another. (See p. 24.)
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THE GENERAL CASE

Once more, Σ denotes either an essential component, or the
singular set (assumed nonempty) in a nonessential component N,
but, this time, no assumptions are made about ξ.

Then, if Γ ⊆ Σ is any geodesic segment, ∇v restricted to Γ
descends to a parallel section of the vector bundle
conf [(TΓ )⊥/(TΓ )].

Equivalently: using the parallel transport to trivialize TΓM, we
obtain, for any x , y ∈ Γ,

∇vy − ∇vx = w ∧ u

where w , u are (variable) vectors along Γ, and u is tangent to Γ.
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THE CONFORMAL-EQUIVALENCE TYPE MAY VARY

It may change not only when one moves from Σ to N rΣ, but
also within a connected component of Σ (on which ξ is
identically zero):

For a pseudo-Euclidean space (V, 〈 , 〉) of dimension n, vectors
w , u ∈ V, a skew-adjoint endomorphism B, and c ∈ IR, setting

vx = w + Bx + cx + 2〈u, x〉x − 〈x , x〉u (5)

we define a conformal field v . Choose n even, 〈 , 〉 neutral, B
with null n-dimensional eigenspaces for eigenvalues c ,−c , and u
not lying in the −c eigenspace, along with w = 0. Then Ker∇vx
decreases when one moves from x = 0 to nearby x in the −c
eigenspace, orthogonal to u.
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CONFORMAL EQUIVALENCE OF TWO-JETS OF v

We say that the 2-jets of v at x ∈ Z and y ∈ Z are conformally
equivalent if the restrictions of dφ to Ker∇v at x and y
correspond to each other under some conformal isomorphism
TxM → TyM that, at the same time, realizes the conformal
equivalence of the 1-jets of v at x and y .

(As usual, φ = (2/n) div v .)

This happens if and only if some diffeomorphism F between
neighborhoods of x and y , with F (x) = y , sends the one 2-jet to
the other, while, at the same time, for some function τ : U → IR,
the metrics F ∗h and eτg have the same 1-jet at x .

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.22
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TWO-JETS ALONG A NONESSENTIAL COMPONENT

For a nonessential component N and its essential set Σ ⊆ N :

The 2-jets of v at all points of any connected component of
N rΣ are conformally equivalent to one another, but not
conformally equivalent to the 2-jet of v at any x ∈ Σ.

The reason is precisely the same as for 1-jets, since dφ = 0 at
every essential zero of v .

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.23
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TWO-JETS ALONG Σ, THE GENERIC CASE

For Σ as before:

Let ξ 6= 0 somewhere in a given connected component of Σ.

Then the 2-jets of v at all points of this connected component of
Σ are conformally equivalent to one another.

In fact, for any geodesic segment Γ ⊆ Σ with a parametrization
t 7→ x(t), if ẋ is not in the image of ∇v , we may choose
w = w(t) ∈ Tx(t)M so that ∇wv equals ∇φ plus a function
times ẋ and dwφ = 0. Then both ∇v and the restriction of dφ
to Ker∇v are D-parallel for the metric connection D in TΓM
given by 2Dẋ = 2∇ẋ + w ∧ ẋ .

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.24

Andrzej Derdzinski (The Ohio State University) TWO-JETS OF CONFORMAL FIELDS



PROOFS: NONESSENTIAL ZEROS

If x ∈ Z is a nonessential zero of v , we may assume that v is a
Killing field (by changing the metric conformally near x).

Thus (Kobayashi, 1958): x ∈ Z has a neighborhood U ′ in M
such that, for some star-shaped neighborhood U of 0 in TxM,
the exponential mapping expx is a diffeomorphism U → U ′ and

Z ∩ U ′ = expx [H ∩ U ].

Here H = Hx = Ker∇vx , since φ = 0.
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PROOFS: ESSENTIAL ZEROS

THEOREM 1 (D., Class. Quantum Gravity 28, 2011, 075011):
Let Z be the zero set of a conformal vector field v on a pseudo-
Riemannian manifold (M, g) of dimension n ≥ 3.
If x is an essential zero of v and H = Ker∇vx ∩ Ker dφx , then

Z ∩ U ′ = expx [C ∩ H ∩ U ],

for any sufficiently small star-shaped neighborhood U of 0 in
TxM mapped by expx diffeomorphically onto a neighborhood U ′

of x in M, where C = {u ∈ TxM : gx(u, u) = 0} is the null cone.

In other words:

The zero set Z is, near any essential zero x, the expx -image of a
neighborhood of 0 in the null cone in the simultaneous kernel H.
http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.26
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THE COMPONENTS OF Z

In addition, φ is constant along each connected component of Z .

Away from singularities, the components of Z are totally umbilical
submanifolds of (M, g), and their codimensions are even unless
the component is a null totally geodesic submanifold.

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.27
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BACKGROUND

• Kobayashi (1958): for a Killing field v on a Riemannian
manifold (M, g), the connected components of the zero set of v
are mutually isolated totally geodesic submanifolds of even
codimensions.

• Blair (1974): if M is compact, this remains true for conformal
vector fields, as long as one replaces the word ‘geodesic’ by
‘umbilical’ and the codimension clause is relaxed in the case of
one-point connected components.

• Belgun, Moroianu and Ornea (J. Geom. Phys. 61, no. 3, 2011,
pp. 589–593): Blair’s conclusion holds without the compactness
hypothesis.
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LINEARIZABILITY

• The last result is also a direct consequence of the following
theorem of Frances (2009, arXiv:0909:0044v2): at any zero z , a
conformal field is linearizable unless z has a conformally flat
neighborhood.

• Frances and Melnick (2010, arXiv:1008.3781): the above
statement is true in real-analytic Lorentzian manifolds as well.

• Leitner (1999): in Lorentzian manifolds, zeros of a conformal
field with certain additional properties lie, locally, in a null geodesic.
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SINGULARITIES OF THE ZERO SET Z

Consequently:

The singular subset of Z ∩ U ′ equals expz [H ∩ H⊥∩ U ], if the
metric restricted to H is not semidefinite, and is empty otherwise.
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WHY TOTALLY UMBILICAL

Let b be the second fundamental form of a submanifold K in a
manifold M endowed with a torsionfree connection ∇.

If x ∈ M, a neighborhood U of 0 in TxM is mapped by expx
diffeomorphically onto a neighborhood of x in M, and
K = expx [V ∩ U ] for a vector subspace V of TxM, then bx = 0.
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THE CONFORMAL-FIELD CONDITION, REWRITTEN

We always denote by t 7→ x(t) a geodesic of (M, g), by ẋ = ẋ(t)
its velocity, and write ˙f = d [f (x(t))]/dt, f̈ = d 2[f (x(t))]/dt2 for
vector-valued functions f on M.

The equality 2∇v = A + φ Id with A∗ = −A, rewritten as
∇v + [∇v ]∗ = φ Id, or

vj ,k + vk, j = φgjk ,

is obviously equivalent to the requirement that, along every
geodesic,

〈v , ẋ〉˙ = φ〈ẋ , ẋ〉, (6)
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IDENTITIES RELATED TO THE CARTAN CONNECTION

If t 7→ u(t) ∈ Tx(t)M and ∇ẋu = 0, one has

2∇ẋ∇uv = 2R(v ∧ ẋ)u + [(dφ)(u)]ẋ + φ̇u − 〈ẋ , u〉∇φ,
(1− n/2)[(dφ)(u)]˙ = σ(u,∇ẋv) + σ(ẋ ,∇uv) + [∇vσ](u, ẋ),

σ = Ric− (2n − 2)−1 Scal g being the Schouten tensor. Thus,

∇ẋ∇ẋv = R(v ∧ ẋ)ẋ + φ̇ẋ − 〈ẋ , ẋ〉∇φ/2,

(1− n/2)φ̈ = 2σ(ẋ ,∇ẋv) + [∇vσ](ẋ , ẋ),

Hence: if the geodesic is null and v, ∇ẋv, φ̇ vanish for some t,
then they vanish for every t.
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ONE INCLUSION – FOR FREE

Once again: if the geodesic is null and v, ∇ẋv, φ̇ vanish for some
t, then they vanish for every t.

Therefore, for any zero x of v , essential or not,

expx [C ∩ H ∩ U ] ⊆ Z ∩ U ′,

where H = Ker∇vx ∩ Ker dφx . In other words:

The expx -image of the null cone in the simultaneous kernel H
always consists of zeros of v .

The clause about constancy of φ will now follow immediately,
once the above inclusion is shown to be an equality.
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INTERMEDIATE SUBMANIFOLDS

Given a zero x of a section ψ of a vector bundle E over a
manifold M, we denote by ∂ψx the linear operator TxM → Ex
with the components ∂jψ

a. (Thus, ∂ψx = ∇ψx if ∇ is a
connection in E .)

A trivial consequence of the rank theorem:
All zeros of ψ near x then lie in a submanifold Π ⊆ M such that
TxΠ = Ker ∂ψx and Ker ∂ψy ⊆ TyΠ for all y ∈ Π with ψy = 0.

Note that the zero set Z of ψ can, in general, be any closed
subset of M. An intermediate submanifold Π chosen as above
provides some measure of control over Z .
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CONNECTING LIMITS

Whenever M is a manifold, x ∈ M, and L ⊆ TxM is a line
through 0, while yj , zj ∈ M, j = 1, 2, . . ., are sequences
converging to x with yj 6= zj whenever j is sufficiently large, let
us call L a connecting limit for this pair of sequences if some norm
| | in TxM and some diffeomorphism Ψ of a neighborhood of 0
in TxM onto a neighborhood of x in M have the property that
Ψ(0) = x and dΨ0 = Id, while the limit of the sequence
(wj − uj)/|wj − uj | exists and spans L, the vectors uj ,wj being
characterized by Ψ(uj) = yj , Ψ(wj) = zj for large j .
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RADIAL LIMIT DIRECTIONS

For M, x and yj , zj as above, neither L itself nor the fact of its
existence depends on the choice of | | and Ψ .

In the case where Π ⊆ M is a submanifold, both sequences yj , zj
lie in Π, and L is their connecting limit, one has L ⊆ TxΠ.

By a radial limit direction of a subset Z ⊆ M at a point x ∈ M
we mean a connecting limit of for a pair of sequences as above, of
which one is constant and equal to x , and the other lies in Z .
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CASE I: φ(x) 6= 0

Choose U,U ′ so that φ 6= 0 everywhere in U ′. For
y ∈ (Z ∩ U ′) r {x}, let Ly = TxΓy be the initial tangent direction

of the geodesic segment Γy joining x to y in U ′.

Recall that

〈v , ẋ〉˙ = φ〈ẋ , ẋ〉,

and so Γy is null.
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CASE I: φ(x) 6= 0 (CONTINUED)

Next, for U,U ′ small enough, Ly ⊆ Ker∇vx .

In fact, Γy is rigid. Hence v is tangent to Γy , and

Ly ⊆ Ker (∇vx − λy Id) for some eigenvalue λy .

Now, if we had λy 6= 0 for some sequence y ∈ (Z ∩ U ′) r {x}
converging to x , passing to a suitable subsequence such that
Ly → L for some L we would get λy = λ (independent of y), and

a contradiction would ensue: L ⊆ TxΠ = Ker ∂ψx = Ker∇vx ,
where Π is an intermediate submanifold for ψ = v and x .
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CASE I: φ(x) 6= 0 (STILL)

Furthermore, as 2∇v = A + φ Id with A∗ = −A, it follows that

both Ker∇vx and H ⊆ Ker∇vx are null subspaces of TxM.

If Ker∇vx ⊆ Ker dφx , so that H = Ker∇vx , the one inclusion we
already have completes the proof.
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CASE I: φ(x) 6= 0 (FINAL STEP)

Therefore, assume that Ker∇vx is not contained in Ker dφx .
Thus, K = expx [H ∩ U ] is a codimension-one submanifold of
Π = expx [Ker∇vx ∩ U ], while the restriction of φ to Π has a
nonzero differential at x , and φ = φ(x) on K . Making U,U ′

smaller, we ensure that φ 6= φ(x) everywhere in Π r K . This
shows that no zero y of v lies in Π r K , for the existence of
one would result in a contradiction: we have

∇ẋ∇ẋ(v ∧ ẋ) = [R(v ∧ ẋ)ẋ ] ∧ ẋ (for null geodesics) and

∇ẋ∇ẋv = φ̇ẋ (for null geodesics to which v is tangent);

integrating the latter, one obtains ∇ẋv = [φ− φ(x)]ẋ .

http://www.math.ohio-state.edu/ ãndrzej/esi.pdf p.41
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CASE II: φ(x) = 0 AND ∇φx /∈ ∇vx(TxM)

SUBCASE II-a: in addition, Ker∇vx is not null.

For K = expx [H ∩ H⊥∩ U ] and any y ∈ K :

the parallel transport from x to y sends the simultaneous kernel
H = Ker∇vx ∩ Ker dφx onto Hy = Ker∇vy ∩ Ker dφy ,

while

dimHy is independent of y ∈ K , and

if φ(x) = 0, both rank ∇vy and dim Ker∇vy are constant as
functions of y ∈ K .
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SUBCASE II-a, PROOF OF THE ABOVE CLAIMS

From the “inclusion for free” and the second order identities
related to the Cartan connection:

2∇ẋ∇uv = [(dφ)(u)]ẋ , (1− n/2)[(dφ)(u)]˙ = σ(ẋ ,∇uv).

Uniqueness of solutions: the parallel transport sends H = Hx

INTO Hy . Now ‘ONTO’ follows as dimHy ≤ dimHx

(semicontinuity). Thus, for y ∈ K and py = dim Ker∇vy ,

px − 1 ≤ py ≤ px .

As φ(y) = 0, the codimension n − py is even (note that

2∇v = A + φ Id with A∗ = −A). Hence py = px .
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SETS OF CONNECTING LIMITS

Suppose that M is a manifold, Y ,Z ⊆ M, and x ∈ M.

We denote by ILx(Y ,Z ) the set of all connecting limits for pairs
yj , zj of sequences in Y and, respectively, Z, converging to x ,
with yj 6= zj for all j .

For instance:

ILx({x},Z ) is the set of all radial limit directions of a subset
Z ⊆ M at a point x ∈ M.
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INTERMEDIATE SUBMANIFOLDS REVISITED

As before: we are given a zero x of a section ψ of a vector bundle
E over a manifold M.

For r = rank ∂ψx , we choose an r -dimensional real vector space
W and a base-preserving bundle morphism G : E → M ×W such
that Gx : ∂ψx(TxM)→W is an isomorphism. Now we may set
Π = U ∩ F−1(0) for a suitable neighborhood U of x in M and
F : M →W defined by F (y) = Gyψy .

If ξ is a section of E ∗ and ∂ψx(TxM) ⊆ Ker ξx , then
Q = ξ(ψ) : Π → IR has a critical point at x with the Hessian
of Q characterized by ∂dQx(u, u) = ξ ([∇u(∇ψ)]u).
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SUBCASE II-a CONTINUED

Recall: this means that

φ(x) = 0, ∇φx /∈ ∇vx(TxM), Ker∇vx not null.

Fix a section w of the bundle Ker∇v over
K = expx [H ∩ H⊥∩ U ] lying outside the subbundle
Ker∇v ∩ Ker dφ, and apply the intermediate submanifold
construction to ψ = v , E = TM and ξ = 2g(w , · ).

Then Q = 2g(w , v) : Π → IR has, at x , the Hessian

∂dQ = dφ⊗ g(w , · ) + g(w , · )⊗ dφ − [dφ(w)]g .
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THE MORSE-BOTT LEMMA

Given a manifold Π, a submanifold K ⊆ Π, a function
Q : Π → IR, and a point x ∈ K ∩ Q−1(0), let dQ = 0
on K , and let rank ∂dQx ≥ dimΠ − dim K .

Then, for some diffeomorphism Ψ between neighborhoods
U of 0 in TxΠ and U ′ of x in Π, such that Ψ(0) = x and

dΨ0 = Id, the composition Q ◦ Ψ equals the restriction to U of
the quadratic function of ∂dQx .

Consequently, U ′ ∩ Q−1(0) = Ψ(C ∩ U) and K ∩ U ′= Ψ(V ∩ U),
where C ,V ⊆ TxM are the null cone and nullspace of ∂dQx .
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QUADRICS

Given a subset Z of a manifold Π, and a point x ∈ Z , and a
symmetric bilinear form ( , ) in TxM, we say that Z is a quadric
at x in Π modelled on ( , ) if some diffeomorphism Ψ between
neighborhoods of 0 in TxΠ and of x in Π, with Ψ(0) = x and
dΨ0 = Id, makes Z , (near x) correspond to the null cone of ( , )
(near 0). For instance:

• the conclusion of the Morse-Bott lemma states, in particular,
that Q−1(0) is a quadric at x in Π, modelled on ∂dQx ,

• our Theorem 1 implies that the zero set Z is a quadric at x
in expx [H ∩ U ], modelled on the restriction of gx to H.
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CONSEQUENCES OF THE MORSE-BOTT LEMMA

In Subcase II-a, one has the equality

Z ∩ φ−1(0) ∩ U ′ = expx [C ∩ H ∩ U ].

Secondly, lying in H but not in H ∩H⊥ is forbidden for
connecting limit between Z r φ−1(0) and K :

ILx(Z r φ−1(0),K ) ∩ IP(H) ⊆ IP(H ∩H⊥),

where IP( ) is the projective-space functor. Note:

H ∩H⊥ = TxK and Tx(Π ∩ φ−1(0)) = H is a codimension-one
subspace of Ker∇vx = TxΠ.
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PROOF OF THE FIRST RELATION

For suitably chosen w , both Q = 2g(w , v) : Π → IR and the
restriction of Q to Π ∩ φ−1(0) satisfy, along with our x and
K = expx [H ∩ H⊥∩ U ], the hypotheses of the Morse-Bott lemma.

(FINALLY, the assumption “Ker∇vx not null” is used!)

So:

Z ∩ φ−1(0) ∩ U ′ = expx [C ∩ H ∩ U ],

since two quadrics modelled on the same symmetric bilinear form,
such that one contains the other, must, essentially, coincide.
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OUTLINE OF PROOF OF THE SECOND RELATION

The Morse-Bott lemma for Q, Π and K allows us to identify Q
with the quadratic function of a direct-sum symmetric bilinear
form on W ⊕ V , where the summand form on W is
nondegenerate and that on V is zero.
If L ∈ ILx(Z r φ−1(0),K ) ∩ IP(H), we have the convergence

sj uj + yj − zj

|sj uj + yj − zj |
→ c u + x ∈ L as j →∞,

for a fixed Euclidean sphere S ⊆W , a neighborhood K of 0 in
V, some uj , u ∈ Σ, sj ∈ IR and yj , zj ∈ K with uj → u and

|sj |+ |yj |+ |zj | → 0. From the Hessian formula at the bottom of p.

46, dφx(u) 6= 0. Hence c = 0, which proves that L ∈ IP(H ∩H⊥).
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THE CRUCIAL IMPLICATION

In Subcase II-a, the inclusion

ILx(Z r φ−1(0),K ) ∩ IP(H) ⊆ IP(H ∩H⊥)

implies, BY ITSELF, that

Z ∩ U ′ ⊆ φ−1(0).

Here is why.
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NONVANISHING OF φ

First, for a fixed positive-definite metric h, any y ∈ U ′ r K is
joined by a “rigid” g -geodesic segment Γy to a point py ∈ K is

such a way that that Γy is h-normal to K at py . Now:

if y ∈ (Z ∩U ′) r φ−1(0), then φ 6= 0 everywhere in Γy r {y , py}.

For, otherwise, a subsequence of a sequence of points y falsifying
this claim and converging to x would produce, as the limit of their
TyΓy , an element L of ILx(Z r φ−1(0),K ) ∩ IP(H), and hence of

IP(H ∩H⊥), which cannot happen as L would also be
h-orthogonal to H ∩H⊥ = TxK .
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PROOF OF THE CRUCIAL IMPLICATION, CONTINUED

Next, whenever a conformal vector field v is tangent to a null
geodesic segment Γ, so that x(0) = y and ∇ẋv = λẋ at t = 0
for some y ∈ M and λ ∈ IR, we have

• ∇ẋv = [λ+ φ− φ(y)]ẋ along Γ,

• ∇v restricted to Γ descends to a parallel section of
conf [(TΓ )⊥/(TΓ )] and has the same characteristic polynomial
at all points of Γ, if, in addition, φ is constant along Γ.

To see this, it suffices to integrate the equality ∇ẋ∇ẋv = φ̇ẋ (see
the final step of Case I), and, respectively, use the first one of the
second-order identities related to the Cartan connection.
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PROOF OF THE CRUCIAL IMPLICATION, FINAL STEP

We prove that Z ∩ U ′ ⊆ φ−1(0) by contradiction. Suppose that
some points y ∈ Z ∩ U ′ with φ(y) 6= 0 form a sequence
converging to x . Our Γy are tangent to v , so (see p. 54)

∇ẋv = [λ+ φ− φ(y)]ẋ , x(0) = y , x(1) = py , where λ may
depend on y , but not on the curve parameter t. Thus, ẋ(1) is an
eigenvector of ∇v at py for the eigenvalue λy = λ− φ(y).
Constancy of the spectrum of ∇v along Γ (see p. 54) implies
that λy is an eigenvalue of ∇vx and, as the limit L of any

convergent subsequence of the directions TyΓy must lie in

TxΠ = Ker∇vx , we eventually have λy = 0, that is, λ = φ(y).
The equality ∇ẋv = [λ+ φ− φ(y)]ẋ now becomes ∇ẋv = φẋ ,
and Rolle’s theorem contradicts the conclusion about nonvanishing
of φ on p. 53.
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SUBCASE II-a WRAPPED UP

The inclusion on p. 49 combined with the crucial implication
(p. 52) shows that φ(y) = 0 for every y ∈ Z , near x .

The equality on p. 49 now proves the assertion of Theorem 1 in
Subcase II-a.
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CASE II: φ(x) = 0 AND ∇φx /∈ ∇vx(TxM)

SUBCASE II-b: in addition, Ker∇vx is null.

Since Ker∇vx is null, so is H ⊆ Ker∇vx . Hence H = H ∩H⊥

and the inclusion on p. 31 is satisfied trivially. The crucial
implication (p. 52) now gives Z ∩ U ′ ⊆ φ−1(0).

We choose an intermediate submanifold N containing
K = expx [H ∩ H⊥∩ U ] (that is, K = expx [H ∩ U ]) as a
codimension-one submanifold.

Since TxΠ ∩ Ker dφx = TxK , it follows that U ′ ∩ φ−1(0) ⊆ K ,
and so X ∩ U ′ ⊆ K .
This completes the proof of Theorem 1.
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