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Plan

— remind and compare Nurowski—Sparling and Dunajski—Tod
construction,

— generalities on Fefferman-type constructions and intro to the
parabolic-geometric view,

— some natural questions, especially, on higher dim analogies,

— some answers, especially, on the model situation and the target
space in general,

— various remarks, especially, on the feedback to the initial
material.



Nurowski—Sparling co.

Rough content of [NS'03]":

— 2-order ODE y” = Q(X, y, y’) mod point transf ~»> conformal
metric of signature (2, 2),

— treated via Cartan’s equivalence method as a different real form
of the Fefferman metric co.

"Nurowski—Sparling, 3-dim CR structures and 2-order ODEs, 2003



Nurowski—Sparling co. (detail)

Some detail:
— writetheegnas p=y’, p’ = Q(x,y, p),
— 1-dim subdistribution in the contact distribution on J'

dp—Qdx=0,dy—-pdx =0,

— assoc (normal) Cartan connection on a principal bundle G

%(292 + Qg) _ng —%94
w = 91 %(Qg - Qg) —_%Qg .
2¢° 2i6? —3(2Q2 + Q)

where i is a non-zero real constant, ......
— in this frame, the metric on a 4-dim quotient G/ ~ given by

2 _
gF = 20'¢? + 593(92 — Qg),



Nurowski—Sparling co. (detail cont.)

— by construction, gr is expressible in terms of Q, Qp, ...
— gF has signature (2, 2),

— essential curvature invariants on both sides, are nicely
proportional one another, in particular,

Corollary

(Half-)trivial eqns <~ (half-)flat Fefferman metrics.



Dunajski—Tod co.

Rough content of [DT’10]?:

— general necessary conditions,

— equivalent condition in the ASD case,

— “Riemannian extension” from projective str and link to the
metrizability problem.

2Dunajski—Tod, 4-dim metrics conformal to K&hler, 2010



Dunajski—Tod co. (ASD case)

Prolongation and Thm 2.3. ..

Theorem

4-dim conformal ASD str contains a Kéhler metric iff there is a
non-zero section of the tractor bundle /\?r T whose injective part is
non-degenerate and which is parallel with respect to an
non-normal tractor connection.



Dunajski—Tod co. (Riemannian extension)

Given 2-dim projective str [I'] on U and local coords (x', z/) on TU.

Riemannian extension of [I'] is the conformal str on TU given by
gr = dzjdx' — I'If-j‘- z dx'dx/,

k _rk _ 1plsk _ 1l sk e
where |'|,-j = Fij SF,,.(S]. 3r,l.<5,. are Thomas projective

parameters. (sl. 26)

Fact

Riemannian extension has signature (2,2), is ASD, and admits a
null conformal Killing vector. . .

The characterization by Prop 4.2... (sl. 24)



Dunajski—Tod co. (metrizability)

Thm 4.1. states:
Theorem

Projective str on U is metrizable iff its Riemannian extension
contains a (para-)Kéhler metric.

(sl. 24)



Comparing

Projective structure [ on U? <~ geodesic egn

y// :A0+A1y/ +A1y12 +A3y/3,

where Ag = -T2, Ay =T1, —2r2,, A, =2, -3, and Az =T},
Correspondlng Thomas parameters are

I'I2 = ——A2
Subs into gr and ggr from [NS’03] and [DT’10], respectively:

Claim

gr and gr are conformal.



Fefferman extension (revised)

Original Fefferman co., interpreted as an extension of Cartan
geometries, is fully determined by the embedding
SuU(2,1) —» SO(4,2)...

Further generalized to any dim and sign, powered by the )
embedding G = SU(p+ 1,9+ 1) = SO(2p+ 2,29+ 2) = G:

— start with (G — M, w), the normal Cartan geometry of type G/P
assoc. to the CR stron M,

— let P the Poincaré subgroup in G and Q := G N P,
—observe Q c Pand G/Q = G/P,

— denote M := G/Q, the Fefferman space,

— def G := G xq P and extend equivariantly w to & € Q'(G. §),
— altogether, (G — M, ) is a Cartan geometry of type G/P.



Fefferman extension (normality)

Necessary control of the normality condition [CG’07]°:

Theorem
Let w be the normal. Then & is normal iff w is torsion-free.

Note that
— torsion-freeness of w «v» integrability of the CR str,
— automatically satisfied if dim M = 3,

— curvature of @ is fully determined by the curvature of w, in
particular (and in general), @ is flat iff w is flat. (sl 22)

3Cap—Gover, CR tractors and the Fefferman space, 2007



Fefferman extension (characterization)

Fefferman metrics from CR str’s are nicely characterized [CG’10]*:

Theorem

If M admits a parallel and OG complex structure J on the standard
tractor bundle, then M is locally conf. equivalent to the Fefferman
space of a CR mfld. ..

Note that

— orthogonality ~» skew-symmetry of J ~» parallel section of the
adjoint tractor bundle ~» null conformal Killing vector on M which
inserts trivially into the curvature tensors,

— these (and consequences of J o J = —id) yield the Sparling’s
characterization,

— all the study starts with a good understanding of the model (s1. 22)
situation!

4Cap—Gover, A holonomy characterization of Fefferman spaces, 2010



Natural ideas and questions

[NS’03] provides a split real form of the classical Fefferman co. in
3-dim case; a natural analogy in general dim starts with
Lagrangean contact structures.

— May also this version be treated in similarly nice manner as the
classical one?

— If yes, what is the proper interpretation of the Fefferman space?
— In particular, how to deal in model situation?

[DT’10] provides a characterization of Riemannian/Fefferman
extensions from projective structures in 2-dim case.

— What can one add to this point?

— In particular, what about possible generalizations and different
views?
— What about the metrizability problem?



Lagrangean contact str

= contact structure H c TM with a fixed decompositon H = E @ V
into Lagrangean subspaces (equiv. an almost para-complex str
Jod=idy)

= parabolic geometry of type PGL(n + 1,R)/P, where . ..
Model = Flag; ,(R"*") = PT*RP" where

H = canonical contact distribution,
V = vertical subbundle of PT*RP" — RP", and
E = determ. by the flat projective str on RP".

Harmonic curvatures, torsion-freeness vs. integrability, .. .

Choice G = SL(n+ 1,R) ~ an additional geom. data. ..



From projective to Lagrangean contact

More generally [T'94]°:
projective structure on X ~» Lagrangean contact str on $T*X
Correspondence space co. [C'05]°:

let (G — X, w) be normal Cartan geometry of type G/P; assoc. to
the projective str. on X and let P ¢ P; be the parabolic subgroup
as above ~» Cartan geometry (G — G/P,w) of type G/P.

Theorem

G/P =PT*X and (G — G/P,w) is the normal Cartan geometry to
the induced Lagrangean contact str; harmonic curvatures

K =TY =0 and TE « W, the projective Weyl tensor. Moreover,
this provides a local characterization.

Case n = 2 s, of course, special. ..

STakeuchi, Lagrangean contact str. on projective cotangent bundles, 1994
6Cap, Correspondence spaces and twistor spaces for parabolic geom., 2005



Para-complex vector space

Let V = R?"*2 with a real inner product h and a skew-symmetric
para-complex structure J, i.e.

JoJ=id and h(J-, =) + h(-,J-) = 0.

The compatibility of h and J yields, in particular,

— the eigenspaces V.. of J are isotropic,

— h has split signature,

— h(X, X) = 0iff h(JX, JX) = 0 iff (X, JX) is isotropic.



Embedding

Given V = R2™2 h € S2V*, and compatible J € End(V) as above.
G:=80(h)=SO(n+1,n+1),def G:={AeG:Aod=JoA}.
Hence G = GL(n + 1,R).

Appropriate matrix realization. ..

Reduce to G := SL(n+ 1,R)...

Note that

— G c G is the standard embedding,

— for n = 2, it is conjugate to [NS’03], ...



Embedding (cont.)

Denote N c V the null-cone of h,
remind V. c N, denote Ny := N\ V..

PN = G/P = conformal (n, n) sphere; consists of three G-orbit:

PN =PV, UPNo UPY_.



Para-complex (null) lines

= real (isotropic) planes of the form (X, JX); abbrev. C (null) lines.
Facts:

— X e Np = (X,JX)is a C null line in N,

— any C null line (X, JX) determined by a pair Y: := X + JX € Vy,
— that pair is orthogonal, h(Y4, Y-) = 0.

Denote M := PNy = {R-lines in Ny}, define M := {C-lines in AV}

Claim

M=G/Q, M =Flag,,(R™")=G/P,

PV, =RP"= G/P; and PV_ = RP™ = G/Po,
wherePiNnP,=PcQ...

(sl. 25)



Fefferman space

Fefferman space in general M := G/ Q.
Typical fibre of M — Mis P/Q =R \ {0}.
According to standard conventions:
Claim

M = (double cover of) the scale bundle &(1,-1) over M.
If M = PT*X then M = T*X[2] (without the zero section).



From Lagrangean contact to conformal

Now launch the extension procedure for (g — M, w) over the
embedding G = SL(n,R) c SO(n, n) = G and mimic selected
classical results:

Cf., in particular, the normality and the characterization aspects. (sl 3,4



From projective to conformal

Compose the previous two steps:

If n > 2 then normal projective X ~» normal Lagrangean contact
M = PT*X with half-torsion ~» “half-normal” conformal Cartan
connection on M, cf. [HS]".

If n = 2 then go to the next slide.

"Hammerl-Sagerschnig, A non-normal Fefferman-type construction of
split-signature conformal structures admitting twistor spinor, preprint



Backton=2

— Normal projective X ~» normal conformal M which is ASD and
admits a parallel anti-OG para-complex structure on T. (s-8)

— Both the metrizability and Kahlerity is char'd as a solution of an
ODS, cf. [BDE’10]8, [DT’10] « parallel sections of a tractor
bundle w.r. to a non-normal connection, cf. [HSSS'10]°. (sl.9)

Namely, the appropriate G-, resp. G-bundles are S2T, resp. /\§r T.
Now Gc G~ S2Tc AT, ... !

8Bryant—Dunajski—Eastwood, Metrizability of 2-dim projective structures, 2010
9HammerI—Somberg—Souéek—SiIhan, On a new normalization for tractor
covariant derivatives, 2010



Back to the model

Remind the model definitions within Vv = R"+1:0+1: (sl. 20)

M = {R-lines in Ny},
M = {C-lines in N} = PT*RP", the model Lagrangean contact str.

— In particular,

M ¢ {R-lines in N} = L™", the Lie quadric,
M ¢ {isotropic 2-planes in N} = PT*S™"~1, the model Lie contact
str.

— The correspondence RP" « Flagy ,(R™"') — RP™ is visible
within PN = G/P via (x,77) € RP" x RP™ ¢ (X, Y) € V, x V_:

x € kerniff h(X,Y) = 0.



Thomas projective parameters

Remind the definition of ﬂfj‘ which is somehow related to the

Thomas ambient connection. .. (61.8)

What about an ambient reinterpretation of all the story?
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