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Cartan geometries

Let G be a Lie group, H ⊂ G a closed sub-
group such that G/H is connected, and let
h ⊂ g be the corresponding Lie algebras. Try
to interpret G as the automorphism group of
a differential geometric structure on G/H.

Definition. A Cartan geometry of type (G,H)
on a smooth manifold M is a principal H–
bundle p : G → M together with a one form
ω ∈ Ω1(G, g) such that

• (rh)∗ω = Ad(h)−1 ◦ ω for all h ∈ H.

• ω(ζA) = A for all A ∈ h.

• ω(u) : TuG → g is a linear isomorphism

for all u ∈ G.

A morphism between two Cartan geometries
(G → M,ω) and (G̃ → M̃, ω̃) is a principal
bundle homomorphism Φ : G → G̃ such that
Φ∗ω̃ = ω.

The homogeneous model of the geometry is
the principal bundle G → G/H together with
the left Maurer–Cartan form ωMC.
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Example Let G be the group of rigid motions
of Rn and H = O(n) ⊂ G, so G/H is Eu-
clidean space Rn. For an n–dimensional Rie-
mannian manifold M let G be the orthonor-
mal frame bundle. The Levi–Civita connec-
tion and the soldering form define a Cartan
connection ω ∈ Ω1(G, g). This leads to an
equivalence of categories between n–dimen-
sional Riemannian manifolds and a subcate-
gory of Cartan geometries of type (G,H).

Automorphisms

For a Cartan geometry (p : G → M,ω) of
some fixed type (G,H) let Aut(G, ω) be the
group of automorphisms. The infinitesimal
version of an automorphism Φ : G → G is a
vector field ξ on G such that (rh)∗ξ = ξ for
all h ∈ H and such that Lξω = 0. The space
inf(G, ω) of all such vector fields evidently is
a Lie subalgebra of X(G).

For A ∈ g let Ã be the “constant vector field”
characterized by ω(Ã) = A. In particular,
Ã = ζA for A ∈ h ⊂ g. For ξ ∈ inf(G, ω) the
equation 0 = (Lξω)(Ã) immediately implies
[ξ, Ã] = 0, and we obtain:
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Proposition. If M is connected, then for any

point u0 ∈ G the map ξ 7→ ω(ξ(u0)) defines

a linear isomorphism from inf(G, ω) onto a

linear subspace a ⊂ g.

If ξ is a complete vector field on G then the

corresponding one–parameter group of dif-

feomorphisms is contained in Aut(G, ω) if and

only if ξ lies in inf(G, ω). Since the latter

space is a finite dimensional Lie subalgebra

of X(G) a theorem of R. Palais implies

Theorem. The group Aut(G, ω) is a Lie

group with Lie algebra given by all complete

vector fields contained in inf(G, ω). For con-

nected M , one has dim(Aut(G, ω)) ≤ dim(G).

For example, we obtain that the isometry

group of a connected n–dimensional Rieman-

nian manifold is a Lie group of dimension

at most n(n+1)
2 . This bound is attained for

the homogeneous model Rn but also for Sn,

which has isometry group SO(n+1), and thus

for a non–flat manifold.
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Curvature

Two equivalent descriptions: curvature form
K ∈ Ω2(G, g) and curvature function κ : G →
L(Λ2g, g) defined by

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)]

κ(u)(X,Y ) = K(u)(X̃, Ỹ )

One verifies that K is H–equivariant and hor-
izontal. Correspondingly, κ is H–equivariant
and has values in L(Λ2(g/h), g). The curva-
ture turns out to be a complete obstruction
to local isomorphism with the homogeneous
model.

Let ξ ∈ X(G) be a vector field such that
Lξω = 0. From the definitions one easily
concludes that then LξK = 0 and ξ ·κ = 0. If
in addition ξ(u) is vertical, and A = ω(ξ(u)),
then ξ(u) = ζA(u) and equivariancy of κ im-
plies that (ζA · κ)(u) coincides with the alge-
braic action of A ∈ h on κ(u) ∈ L(Λ2(g/h), g).
Hence for a = {ω(ξ(u0)) : ξ ∈ inf(G, ω)} ⊂ g

we see that all elements of a ∩ h annihilate
κ(u0) ∈ L(Λ2(g/h), g).
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The Lie bracket on inf(G, ω)

The bracket on the Lie algebra of Aut(G, ω)

is induced by the negative of the Lie bracket

of vector fields on G, which also makes sense

on inf(G, ω). For ξ ∈ inf(G, ω) and η ∈ X(G)
we compute

0 =(Lξω)(η) = ξ · ω(η)− ω([ξ, η])

=dω(ξ, η) + η · ω(ξ)

=κ(ω(ξ), ω(η))− [ω(ξ), ω(η)] + η · ω(ξ).

Hence for fixed u0 ∈ G, the above bracket on

inf(G, ω) corresponds to the operation

(A,B) 7→ [A,B]− κ(u0)(A,B) (∗)

on a = {ω(ξ(u0)) : ξ ∈ inf(G, ω)} ⊂ g.

Hence we may identify inf(G, ω) with the sub-

space a ⊂ g endowed with Lie bracket given

by (∗). Recall further that any element of

a ∩ h annihilates κ(u0).
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Parabolic geometries

Cartan geometries corresponding to parabolic
subalgebras in semisimple Lie algebras. Let
g be a semisimple Lie algebra endowed with
a grading of the form g = g−k ⊕ · · · ⊕ gk, put
h := g0 ⊕ · · · ⊕ gk. Choose a Lie group G

with Lie algebra g and let H be the normal-
izer of h in G. This is equivalent to H being
a parabolic subgroup of G in the sense of
representation theory.

Putting gi = gi⊕· · ·⊕gk defines an H–invariant
filtration g = g−k ⊃ · · · ⊃ gk, which makes g

into a filtered Lie algebra such that h = g0.
A parabolic geometry of type (G,H) is called
regular, if its curvature function κ satisfies
κ(u)(gi, gj) ⊂ gi+j+1 for all u ∈ G and all
i, j = −k, . . . ,−1.

Geometric structures like conformal, almost
quaternionic, hypersurface type CR, quater-
nionic CR and many others can be identified
with subclasses of regular normal parabolic
geometries of some type.
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Proposition. Let (G → M,ω) be a regu-

lar normal parabolic geometry with curvature

function κ. If κ 6= 0, then the lowest homo-

geneous component of κ has values in a non-

trivial, completely reducible representation of

H.

This representation can be computed explic-

itly for any given type. Since this represen-

tation is nontrivial, Aut(G, ω) may have the

maximal possible dimension dim(G) only if

κ = 0 and thus the parabolic geometry is lo-

cally isomorphic to the homogeneous model.

Return to the identification of inf(G, ω) with

a subspace a ⊂ g induced by ξ 7→ ω(ξ(u0)) for

some fixed point u0 ∈ G. Define a filtration

on a by ai := a∩gi for i = −k, . . . , k. By regu-

larity this makes a into a filtered Lie algebra,

and the inclusion induces a Lie algebra ho-

momorphism gr(a) → gr(g) = g on the level

of the associated graded Lie algebras. Hence

gr(a) (which has the same dimension as a) is

(isomorphic to) a graded Lie subalgebra of g.
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Example: 3–dimensional CR structures

These are 3–dimensional contact manifolds
together with a complex structure on the
contact subbundle. The typical examples of
such structures are given by non–degenerate
hypersurfaces in C2. By a theorem of E. Car-
tan, these structures admit a canonical nor-
mal Cartan connection of type (G,H), where
G = PSU(2,1) and H ⊂ G is a Borel sub-
group. This construction identifies the cate-
gory of 3–dimensional CR manifolds with the
category of regular normal parabolic geome-
tries of type (G,H).

The homogeneous model in this case is S3 ⊂
C2. Therefore CR–manifolds which are lo-
cally isomorphic to the homogeneous model
are called spherical.

The general results on Cartan geometries im-
ply that the group Aut(M) of CR automor-
phisms of a 3–dimensional CR manifold M is
a Lie group of dimension ≤ dimG = 8. We
now claim:
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Theorem. (1) If dim(Aut(M)) < 8, then

dim(Aut(M)) ≤ 5.

(2) dim(Aut(M)) ≤ 3 if M is not spherical.

The grading of g = su(2,1) has the form g =

g−2 ⊕ · · · ⊕ g2 with g±2
∼= R, g±1

∼= C and

g0
∼= C. The Lie algebra of Aut(M) must

be contained in inf(G, ω), which gives rise to

a graded Lie subalgebra gr(a) of g. Hence

we can prove (1) by showing that any proper

graded Lie subalgebra of g has dimension at

most 5.

For (2) one verifies that the representation of

h, in which the lowest nonzero homogeneous

component of the curvature has its values

comes from a faithful representation of g0
∼=

C. Thus we can prove (2) by showing that

any graded Lie subalgebra of g which has a

trivial component in degree 0 has dimension

at most 3.
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For an appropriate choice of Hermitian met-
ric on C2 we have

g =


α+ iβ z iψ

x −2iβ −z̄
iϕ −x̄ −α+ iβ




with α, β, ϕ, ψ ∈ R and x, z ∈ C. From this,
one immediately reads off that the brackets
g±1 × g±1 → g±2 are given by the standard
symplectic form on C, while the brackets be-
tween the other grading components are es-
sentially induced by complex multiplications.

Suppose that b = b−2 ⊕ · · · ⊕ b2 is a graded
Lie subalgebra of g, put ni = dim(bi) and
n = dim(b), where all dimensions are over R.

Case 1: n−1 = 2. This means that b−1 =
g−1 and then [b−1, b−1] = g−2 ⊂ b. Suppose
there is a nonzero element z ∈ b1. Then
[z, b−1] = g0 and hence [z, g0] = g1 are con-
tained in b, which immediately implies b =
g. Hence we conclude that b 6= g is only
possible if n1 = 0. This implies n2 = 0,
since for a nonzero element iψ ∈ g2 the map
adiψ : g−1 → g1 is surjective. Hence b ⊂
g−2 ⊕ g−1 ⊕ g0, and we get (1) and (2).
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Case 2: n−1 = 1. For 0 6= x ∈ b−1 the

map adx is a linear isomorphism g0 → g−1

and g1 → g0, so we conclude that n0 ≤ 1 and

then n1 ≤ 1, and for n0 = 0 we also must

have n1 = 0. This already gives (1) and (2).

Case 3: n−1 = 0. Since the bracket induces

a linear isomorphism g−2⊗ g1 → g−1 we con-

clude that either n−2 = 0 or n1 = 0. This

implies (1) and (2) in this last case, and the

proof of the theorem is complete.

This theorem reduces the classification of ho-

mogeneous 3–dimensional CR manifolds to

pure algebra: In the spherical case, the Lie

algebra of the automorphism group is a sub-

algebra of g = su(2,1), and one can work in

the homogeneous model. If M is not spheri-

cal, then dim(Aut(M)) = 3 and fixing a point

x0 ∈ M the map f 7→ f(x0) is a covering

Aut(M) → M . The CR structure on M lifts

to a left invariant structure on Aut(M).
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Hence any non–spherical homogeneous 3–di-

mensional CR structure is covered by a left

invariant structure on a Lie group. Determin-

ing such left invariant structures is a purely

algebraic problem.

For higher dimensional CR structures, simi-

lar methods were used by K. Yamaguchi to

determine the second largest possible dimen-

sion for the automorphism group. He com-

pletely classified the CR structures with au-

tomorphism group of this second largest di-

mension.
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