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Srni, January 2005



Parabolic geometries are a large class of ge-
ometric structures are equivalent to regular
normal Cartan geometries with homogeneous
model a generalized flag manifold.

Cartan geometries

Given a homogeneous space G/H, construct
a geometric structure whose automorphisms
are exactly the actions of elements of G.

Definition. A Cartan geometry of type (G,H)
on a smooth manifold M is a principal H–
bundle p : G → M together with a one form
ω ∈ Ω1(G, g) (the Cartan connection) such
that

• (rh)∗ω = Ad(h)−1 ◦ ω for all h ∈ H.

• ω(ζA) = A for all A ∈ h.

• ω(u) : TuG → g is a linear isomorphism

for all u ∈ G.

A morphism between two Cartan geometries
(G → M,ω) and (G̃ → M̃, ω̃) is a principal
bundle homomorphism Φ : G → G̃ such that
Φ∗ω̃ = ω.
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A morphism is determined by the underly-
ing map M → M̃ up to a smooth function
from M to the maximal normal subgroup of
G which is contained in H. In all cases of
interest, this subgroup is trivial or at least
discrete.

The homogeneous model of the geometry
is the principal bundle G → G/H together
with the left Maurer–Cartan form ωMC. The
left action of g ∈ G then defines an auto-
morphism, and conversely, any smooth map
f : G→ G which pulls back ωMC to itself is a
left translation, so G = Aut(G→ G/H,ωMC).

The curvature K ∈ Ω2(G, g) of (G → M,ω)
is defined by K(ξ, η) = dω(ξ, η)+[ω(ξ), ω(η)],
for ξ, η ∈ X (G). This form is horizontal and
H–equivariant, so it may also be viewed as
κ ∈ Ω2(M,AM), where AM = G ×H g is the
adjoint tractor bundle.

General features of Cartan geometries:
• The curvature is a complete obstruction
to local isomorphism with (G → G/H,ωMC),
and hence (at least in principle) solves the
equivalence problem.
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• For any Cartan geometry of type (G,H),
the automorphism group is a Lie group of
dimension ≤ dim(G).
• Liouville type theorem: Any isomorphism
between two open subsets of (G→ G/H,ωMC)
uniquely extends to a global automorphism.
• General concepts of distinguished curves
and normal coordinates.

These properties become particularly inter-
esting if the Cartan geometry provides an
equivalent description for some underlying ge-
ometric structure.

Such equivalences are often obtained via (fairly
difficult) prolongation procedures. In such
cases, there is the additional feature that one
obtains new geometric objects for the under-
lying structure.

In the best cases, one obtains a categorical
equivalence between some geometric struc-
ture and Cartan geometries of some type
which satisfy additional normalization condi-
tions (usually expressed via the curvature).
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Generalized Flag manifolds

Let g be a semisimple Lie algebra. A |k|–
grading on g is a vector space decomposition

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

such that [gi, gj] ⊂ gi+j and such that the
subalgebra g− := g−k ⊕ · · · ⊕ g−1 is generated
by g−1.

For given g there is a simple complete de-
scription of such gradings in terms of the
structure theory. For complex g, such grad-
ings are in bijective correspondence with sets
of simple roots of g and hence are conve-
niently denoted by Dynkin diagrams with cros-
ses. For real g there is a similar description
in terms of the Satake diagram.

Putting gi := gi⊕· · ·⊕gk we obtain a filtration
g = g−k ⊃ · · · ⊃ gk of g such that [gi, gj] ⊂
gi+j. In particular, p := g0 is a subalgebra
of g and p+ := g1 is a nilpotent ideal in p
such that p = g0 ⊕ p+ is a semidirect sum.
The subalgebras p obtained in that way are
exactly the parabolic subalgebras of g.
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Given a Lie group G with Lie algebra g, we

define P := NG(p) ⊂ G. It turns out that

P has Lie algebra p and for g ∈ P the map

Ad(g) : g → g is filtration preserving. Define

G0 ⊂ P as the subgroup of those g, for which

Ad(g) even preserves the grading. Then G0 is

reductive and has Lie algebra g0. One shows

that exp defines a diffeomorphism from p+

onto a closed subgroup P+ ⊂ P and P is the

semidirect product of G0 and P+.

A generalized flag variety is a homogeneous

space G/P for G and P as above. These ho-

mogeneous spaces are always compact and

for complex G they are the only compact ho-

mogeneous spaces of G.

Parabolic geometries are Cartan geometries

of type (G,P ) for G and P as above. Under

the conditions of regularity and normality (to

be discussed below), such a Cartan geometry

is equivalent to an underlying structure that

we will discuss next.
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Let (p : G →M,ω) be a parabolic geometry of

type (G,P ). Then we define the adjoint trac-

tor bundle AM := G ×P g. The P–invariant

filtration {gi} of g give rise to a filtration

AM = A−kM ⊃ A−k+1M ⊃ · · · ⊃ AkM

by smooth subbundles, and the Lie bracket

on G induces a tensorial map { , } : AM ×
AM → AM . In particular, each fiber of AM
is a filtered Lie algebra isomorphic to g.

The Cartan connection ω gives us an identifi-

cation TM ∼= G ×P g/p, with the action com-

ing from the adjoint action. Hence TM ∼=
AM/A0M , and we obtain an induced filtra-

tion TM = T−kM ⊃ · · · ⊃ T−1M of the tan-

gent bundle. The associated graded bundle

is

gr(TM) = gr−k(TM)⊕ · · · ⊕ gr−1(TM),

where gri(TM) = T iM/T i+1M . The Killing

form of g induces a duality between g/p and

p+, so T ∗M ∼= G ×P p+ = A1M . Hence T ∗M
is a bundle of nilpotent Lie algebras.
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The subgroup P+ ⊂ P acts freely on G, so
the quotient G0 := G/P+ is a principal bun-
dle over M with structure group P/P+ = G0.
The Cartan connection ω induces a bundle
map from G0 to the frame bundle of gr(TM),
hence defining a reduction of structure group.
In particular, gri(TM) ∼= G0 ×G0

gi.

Digression on filtered manifolds

A filtered manifold is a smooth manifold M
together with a filtration TM = T−kM ⊃
· · · ⊃ T−1M of its tangent bundle such that
for sections ξ of T iM and η of T jM the Lie
bracket [ξ, η] is a section of T i+jM . Since
T iM and T jM are contained in T i+j+1M , the
map which sends ξ and η to the class of [ξ, η]
in gri+j(TM) is bilinear over smooth func-
tions, and depends only on the classes of ξ
in gri(TM) and η in grj(TM).

For each x ∈ M , this makes gr(TxM) into a
nilpotent graded Lie algebra called the sym-
bol algebra of the filtration at x. If the sym-
bol algebras are all isomorphic to some fixed
a, then we have an obvious frame bundle for
gr(TM) with structure group Autgr(a).
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The equivalence to underlying
structures

A parabolic geometry (p : G → M,ω) of type
(G,P ) is called regular, if its curvature κ ∈
Ω2(M,AM) has the property that

κ(T iM,T jM) ⊂ Ai+j+1M.

Proposition. Let (p : G →M,ω) be a regular
parabolic geometry. Then the induced filtra-
tion {T iM} of the tangent bundle makes M
into a filtered manifold, such that each sym-
bol algebra is isomorphic to g−. Moreover,
the brackets of the symbol algebras are in-
duced by the bracket { , } on AM .

Now we have all the underlying structure at
hand: A filtration compatible with the Lie
bracket such that each symbol algebra is iso-
morphic to g− and a reduction of the struc-
ture group of gr(TM) to the group G0 ⊂
Autgr(g−). Fixing this underlying structure
still leaves lots of freedom for the Cartan
connection ω, so we need an additional nor-
malization condition.
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Define ∂∗ : Λ2T ∗M ⊗AM → T ∗M ⊗AM by

∂∗(α ∧ β ⊗ s) :=

− β ⊗ {α, s}+ α⊗ {β, s} − {α, β} ⊗ s.
This gives rise to a tensorial operator on
AM–valued two forms denoted by the same
symbol.

A parabolic geometry (p : G →M,ω) is called
normal if its curvature κ ∈ Ω2(M,AM) satis-
fies ∂∗(κ) = 0.

Theorem. Let M be a filtered manifold such
that each symbol algebra is isomorphic to g−
and let G0 → M be a reduction of gr(TM)
to the structure group G0. Then there is a
regular normal parabolic geometry (p : G →
M,ω) inducing the given data. If H1(p+, g) is
concentrated in non–positive homogeneous
degrees, then the pair (G, ω) is unique up to
isomorphism.

• one obtains an equivalence of categories in
that way.
• H∗(p+, g) is algorithmically computable.
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Harmonic curvature

One may pass from the full Cartan curva-
ture κ to the harmonic curvature κH, which
is much easier to handle, but as powerful as
κ. Similarly as above, one defines

∂∗ : Λ3T ∗M ⊗AM → Λ2T ∗M ⊗AM
and shows that ∂∗ ◦ ∂∗ = 0. Hence im(∂∗) ⊂
ker(∂∗) ⊂ Λ2T ∗M ⊗ AM are natural subbun-
dles, and we put KM := ker(∂∗)/ im(∂∗). For
normal geometries, κ ∈ Γ(ker(∂∗)) by defini-
tion, and we define κH ∈ Γ(KM) to be the
corresponding section of the quotient bun-
dle. This quotient bundle can be described as
G0×G0

H2(p+, g) so it is algorithmically com-
putable can be directly interpreted in terms of
the underlying structure. Moreover, it splits
into a direct sum of subbundles according to
the splitting of H2(p+, g) into G0–irreducible
components.

Theorem.(1) (Tanaka) κH is a complete ob-
struction to local isomorphism with G/P .
(2) (Calderbank–Diemer) There is a natural
differential operator L such that L(κH) = κ.
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Examples

(1) Let us first consider the case of |1|–gra-
dings. In this case, the filtration of the tan-
gent bundle is trivial and the regularity condi-
tion is vacuous. One obtains an equivalence
between classical first order G0–structures and
regular normal parabolic geometries of type
(G,P ). The most important examples are
conformal, almost quaternionic, and almost
Grassmannian structures.

(2) Suppose that H1(p+, g) is concentrated
in negative homogeneous degrees. Then it
turns out that choosing G = Aut(g) one ob-
tains G0 = Autgr(g−). Hence there is no re-
duction of structure group of gr(TM) and
one obtains an equivalence between filtered
manifolds such that each symbol algebra is
isomorphic to g− and regular normal parabolic
geometries. This class of examples contains
the quaternionic contact structures introduced
by O. Biquard, generic distributions of rank
2 in dimension 5, rank 3 in dimension 6, and
rank 4 in dimension 7.
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(3) Parabolic contact structures: These cor-

respond to |2|–gradings such that g− is a

(real) Heisenberg algebra. With a few excep-

tions, any simple g admits a unique grading

of this form. The filtration consists only of

one subbundle T−1M ⊂ TM , which defines a

contact structure on M . The reduction to

the structure group G0 can be expressed by

some additional structure on T−1M .

This class contains partially integrable almost

CR structures, Lagrangian (or Legendrean)

contact structures, and Lie sphere structures.

(4) As an example for more general struc-

tures, we discuss (generalized) path geome-

tries. These correspond to the |2|–grading on

sl(n+2,R) corresponding to the first and sec-

ond simple root. They are defined on mani-

folds of dimension 2n+ 1. The geometry is

given by two subbundles L,R ⊂ TM of rank 1

and n, respectively, such that for ξ, η ∈ Γ(R)

we have [ξ, η] ∈ Γ(L⊕R) while the Lie bracket

induces an isomorphism L⊗R→ TM/(L⊕R).
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Examples come from path geometries. Let
N be a manifold, dim(N) = n + 1 and put
M := PTN , the space of lines in TN . Take
R to be the vertical bundle of PTN → N .
Then R is contained in the tautological sub-
bundle H of TM . A path geometry on N is a
decomposition H = L⊕R. Such a geometry
is equivalent to a family of unparametrized
curves in N , with exactly one curve through
each point in each direction. In particular, a
system of second order ODE’s in Y can be
viewed as a path geometry on Y × R.

For n 6= 2, any normal parabolic geometry
(M,L,R) as before is locally isomorphic to a
path geometry. In this case the subbundle
R ⊂ TM is integrable, and one defines N to
be a local leaf space. So for U ⊂ M open,
there is a surjective submersion ψ : U → N
such that ker(Txψ) = Rx for all x ∈ U . Under
Txψ, the line Lx gives rise to a line in Tψ(x)N ,
hence defining a lift ψ̃ : U → PTN . Pos-
sibly shrinking U , ψ̃ is an open embedding.
By construction, T ψ̃ maps R to the vertical
subbundle and L⊕R to the tautological sub-
bundle.
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Correspondence spaces

The first relation between geometries of dif-
ferent type we discuss deals with the case
of nested parabolic subgroups Q ⊂ P ⊂ G.
For the homogeneous models, this is sim-
ply the observation that G/Q naturally fibers
over G/P . Moreover, G/Q = G×P (P/Q), so
this is a natural fiber bundle. It turns out
that the fiber P/Q is always a generalized
flag manifold. In the Dynkin (or Satake) dia-
gram notation, q is obtained from p by adding
crosses, and the fiber P/Q can be read off the
diagram.

Carrying this over to curved Cartan geome-
tries is easy. Given a geometry (p : G → N,ω)
of type (G,P ) the subgroup Q ⊂ P acts freely
on G, so CN := G/Q is a smooth manifold,
and the obvious map G → CN is a Q–principal
bundle. Moreover, CN = G ×P (P/Q), so
π : CN → N is a natural fiber bundle with
compact fibers. By definition, ω ∈ Ω1(G, g)
can also be viewed as a Cartan connection
on G → CN .
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Now the uniform algebraic construction of

the normalization condition pays off:

Proposition. If (G → N,ω) is a normal para-

bolic geometry of type (G,P ) then the para-

bolic geometry (G → CN,ω) of type (G,Q) is

normal, too.

To obtain an interpretation in terms of un-

derlying structures it thus remains to check

regularity, which is easy in each case.

Example. Let Q ⊂ G := SL(n + 2,R) be

the parabolic describing generalized path ge-

ometries. Then Q = P1 ∩ P2 for parabol-

ics P1 and P2 (the stabilizers of a line re-

spectively a plane). Let us start by analyz-

ing Q ⊂ P1 ⊂ G. Parabolic geometries of

type (G,P1) form one of the two exceptional

cases, which we have not described yet. If

(G → Z, ω) is such a geometry, then G0 → Z

is the full linear frame bundle of Z. The ge-

ometry is given by a projective structure on

Z, i.e. the choice of a projective class [∇] of

torsion free linear connections on TZ.
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Two linear connections ∇ and ∇̂ on TZ are
projectively equivalent if there is a one form
Υ ∈ Ω1(Z) such that

∇̂ξη = ∇ξη+ Υ(ξ)η+ Υ(η)ξ

for all vector fields ξ and η on Z. Evidently,
projectively equivalent connections have the
same torsion. Alternatively, projective equiv-
alence can be characterized as having the
same torsion and the same geodesics up to
parametrization. The harmonic curvature is
the projective Weyl curvature.

Since ω is a Cartan connection on G → Z, we
have TZ = G ×P1

(g/p1). One easily verifies
that Q ⊂ P1 can be described as the stabilizer
of a line in g/p1. Since P1 acts transitively on
P(g/p1) we conclude that CZ = PTZ. More-
over, ω is always regular as a Cartan con-
nection on G → CZ. Hence (G → CZ, ω) can
be interpreted as a classical path geometry
on Z. One verifies that the paths described
in that way are exactly the unparametrized
geodesics of the connections from the pro-
jective class.
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Let us analyze Q ⊂ P2 ⊂ G. A normal pa-
rabolic geometry (G → N,ω) of type (G,P2)
exists only for dim(N) = 2n and is equiv-
alent to an almost Grassmannian structure.
Essentially, this means that we have vector
bundles E and F over N of rank 2 and n, re-
spectively, and an isomorphism E⊗F → TN .
The subgroup Q ⊂ P2 can be characterized
as the stabilizer of a line in the representation
inducing E, so CN ∼= PE.

Here ω is not regular as a Cartan connection
on G → CN in general. Regularity turns out
to be equivalent to the fact that the structure
on N is Grassmannian, i.e. admits a torsion
free connection. In that case we obtain a
generalized path geometry on PE. The cor-
responding subbundles L and L ⊕ R can be
characterized as the vertical respectively the
tautological subbundle in TPE. In particular,
the manifold N is the space of all paths of
the induced path geometry. The splitting of
the tautological bundle as L⊕R comes from
the torsion free connections compatible with
the Grassmannian structure.
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Starting from a Grassmannian structure on
N , we obtain a generalized path geometry
on CN := PE. We know that the resulting
subbundle R ⊂ TCN is involutive, so for suf-
ficiently small open subsets U ⊂ CN we can
form a local leaf space ψ : U → Z. With a
bit more work one shows that one may take
U = π−1(V ), for sufficiently small and con-
vex open subsets V ⊂ N , where π : CN → N
is the natural projection. One then obtains
a correspondence

Z
ψ←− π−1(V )

π−→ V,

which is the basis for twistor theory for Grass-
mannian structures.

Returning to the general case Q ⊂ P ⊂ G, we
now turn to the question when a parabolic
geometry (G → M,ω) of type (G,Q) is lo-
cally isomorphic to a correspondence space.
There is an obvious necessary condition: The
subspace p/q ⊂ g/q is Q–invariant, thus giv-
ing rise to a subbundle V ⊂ TM . If M ∼= CN ,
then V is the vertical subbundle of CN → N .
Hence vectors from V must hook trivially into
the Cartan curvature.
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Using principal bundle geometry one proves
that this necessary condition is also suffi-
cient:
Theorem. Let (G →M,ω) be a parabolic ge-
ometry of type (G,Q) with Cartan curvature
κ, and let V ⊂ TM be the distribution corre-
sponding to p/q ⊂ g/q. Then (G → M,ω) is
locally isomorphic to a correspondence space
CN of a parabolic geometry of type (G,P ) if
and only if iξκ = 0 for all ξ ∈ V.

While this result is very satisfactory from a
conceptual point of view, it is difficult to use
in concrete cases, since the Cartan curvature
is hard to handle. Using BGG sequences,
one constructs a differential operator, which
reconstructs κ from the harmonic curvature
κH. The algebraic properties of this operator
can be controlled very well, and one proves
Theorem. Let (G → M,ω) be a parabolic
geometry of type (G,Q) with Cartan curva-
ture κ and harmonic curvature κH, and let
V ⊂ TM be as above. If iξκH = 0 for all
ξ ∈ V, then iξκ = 0 for all ξ ∈ V.
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Let us return to the example of generalized
path geometries. For a regular normal geom-
etry (G → M,ω) of type (G,Q) the harmonic
curvature κH consists of two irreducible com-
ponents:

T : L ∧ TM/(L⊕R)→ R Torsion

ρ : R ∧ TM/(L⊕R)⊗R→ R Curvature

Looking at Q ⊂ P1 ⊂ G we have V = R ⊂
TM , and the last two theorems show that M
is locally isomorphic to the correspondence
space of some projective structure if and only
if ρ = 0. Rephrased in terms of second order
ODE’s this gives
Theorem. A system of second order ODE’s
is locally equivalent to a geodesic equation if
and only if the curvature ρ of the associated
path geometry vanishes identically.

If ρ = 0, then the torsion T is directly related
to the projective Weyl curvature of the pro-
jective structures on the local leaf spaces. In
particular, the path geometry is locally flat if
and only if the induced projective structures
on all local leaf spaces are projectively flat.
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For the other “side” Q ⊂ P2 ⊂ G we get

V = L ⊂ TM . The statement then is that a

path geometry descends to a Grassmannian

structure on that space of all paths if and

only if T = 0. This is equivalent to torsion

freeness in the sense of Cartan geometries.

Then the curvature ρ is an equivalent en-

coding of the Grassmannian curvature down-

stairs. In particular, the twistor space of a

Grassmannian structure inherits a projective

structure only in the locally flat case.

Now one defines torsion freeness for systems

of second order ODE’s as torsion freeness

of the associated path geometries. Since a

torsion free path geometry is obtained as a

pull back from the space of paths, the cur-

vature descends to the space of paths, and

hence is constant along each path. Using

this, D. Grossman proved:

Theorem. For generic torsion free systems

of second order ODE’s, the curvature of the

associated path geometry can be used to

solve the equation explicitly.
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The case n = 2. This corresponds to three

dimensional projective structures, generalized

path geometries in dimension 5 and almost

Grassmannian structures on 4–manifolds. In

dimension 4, an almost Grassmannian struc-

ture is equivalent to a split signature confor-

mal spin structure. The two components in

the harmonic curvature of such a structure

correspond to the self dual and anti self dual

part of the Weyl curvature.

Likewise, on the level of path geometries,

the harmonic curvature now splits into three

components, the additional being a torsion

τ : Λ2R → L. For the correspondence space

of a conformal structure, this encodes the

self dual part of the Weyl curvature. The

tensor τ is the obstruction to integrability

of the subbundle R and hence we see that

for split signature conformal four manifolds

a twistor space exists exactly in the anti self

dual case.
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The Fefferman construction

Let Ω ⊂ Cn+1 be a strictly pseudoconvex do-
main with smooth boundary M := ∂Ω. Then
M naturally inherits a hypersurface type CR
structure of signature (n,0), see below. Us-
ing the ambient metric, Ch. Fefferman con-
structed a conformal structure of signature
(2n+1,1) on M×S1, which depends only on
the CR structure on M .

For p ≥ q put G := SU(p+ 1, q + 1) and let
P ⊂ G be the stabilizer of an isotropic com-
plex line in V := Cp+1,q+1. Then regular nor-
mal parabolic geometries of type (G,P ) are
equivalent to partially integrable (p.i.) al-
most CR structures of signature (p, q). Such
structures exist on manifolds M of dimen-
sion 2(p+ q) + 1. They are given by a con-
tact structure H ⊂ TM and an almost com-
plex structure J on H, such that the tensor
L : Λ2H → TM/H induced by the Lie bracket
of vector fields satisfies L(Jξ, Jη) = L(ξ, η).
Then L is the imaginary part of a Hermitian
form (the Levi form) and (p, q) is the signa-
ture of this form.
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In addition, one has to choose an (n+ 2)nd
root of the so–called canonical bundle, a com-
plex line bundle on M . For M = ∂Ω one de-
fines Hx as the maximal complex subspace
of TxM ⊂ TxCn+1 and Jx by restriction. The
complexification of H splits as H1,0 ⊕ H0,1,
and the integrability of the complex structure
on Cn+1 implies that the subbundle H0,1 ⊂
TM⊗C is involutive. This conditions is called
integrability and structures satisfying it are
called CR structures. It implies compatibility
of L and J and is equivalent to torsion free-
ness of the associated parabolic geometry.
The canonical bundle is trivial in this case,
so the choice of a root makes no problem.

Forgetting the complex structure on V and
looking at the real part of the Hermitian in-
ner product gives an inclusion G ↪→ G̃ :=
SO(2p + 2,2q + 2). Fix a real line in the
chosen isotropic complex line and let P̃ ⊂ G̃
be the stabilizer of this real line. Evidently,
G ∩ P̃ ⊂ P and P/(G ∩ P̃ ) ∼= RP1. The space
G̃/P̃ is the projectivized null cone, and thus
the homogeneous model for conformal struc-
tures of signature (2p+ 1,2q+ 1).
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Elementary linear algebra shows that G acts
transitively on G̃/P̃ . Thus G̃/P̃ ∼= G/(G ∩ P̃ )
and the latter space is a circle bundle over
G/P . This is Fefferman’s construction for
the homogeneous model.

Consider a p.i. almost CR manifold M and
let (G → M,ω) be the corresponding regular
normal parabolic geometry. Then we define
M̃ := G/(G∩ P̃ ), which is a circle bundle over
M . Let V1 ⊂ V be the isotropic line stabilized
by P and put E(−1,0) := G×PV1. (This bun-
dle is dual to the chosen root of the canoni-
cal bundle.) Since G∩ P̃ is the stabilizer of a
real line in V1, M̃ is the space of real lines in
E(−1,0). By construction, G → M̃ is a prin-
cipal bundle with structure group G∩P̃ and ω
can be viewed as a Cartan connection on that
bundle. In particular, TM̃ ∼= G×G∩P̃ g/(g∩ p̃).

The inclusion G ↪→ G̃ induces an equivariant
isomorphism g/(g ∩ p̃) → g̃/p̃. This can be
used to pull back the P̃–invariant conformal
inner product on g̃/p̃ to a (G ∩ P̃ )–invariant
conformal inner product on g/(g ∩ p̃), which
induces a conformal structure on M̃ .
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This can be easily reformulated in terms of

Cartan connections: Define a P̃–principal bun-

dle G̃ → M̃ as G̃ := G ×G∩P̃ P̃ . Then G ⊂ G̃,
and it is elementary to show that there is a

unique Cartan connection ω̃ ∈ Ω1(G̃, g̃) such

that ω̃|TG = ω. Since any Cartan connec-

tion on G̃ is automatically regular, ω̃ induces

a conformal structure on M̃ , which is exactly

the one described above.

Using this observation, one can explicitly de-

scribe the conformal structure on M̃ in terms

of a Webster–Tanaka connection on M , its

torsion and curvature.

Surprisingly, ω̃ is not the normal Cartan con-

nection associated to the conformal structure

on M̃ in general, but one has:

Theorem. Let M be a p.i. almost CR man-

ifold with Fefferman space M̃ . Then ω̃ is the

normal Cartan connection associated to the

canonical conformal structure on M̃ if and

only if the structure on M is integrable.
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The relation between the Cartan connection
implies much more than just the existence
of a canonical conformal structure. This can
be most easily expressed in terms of the stan-
dard tractor bundles. The CR standard trac-
tor bundle of M is T := G×PV. This is a com-
plex vector bundle with a Hermitian metric of
signature (p+1, q+1) and a Hermitian con-
nection. We can also form T̃ = G ×G∩P̃ V→
M̃ , which comes with the same data. The
theorem can be rephrased as the fact that,
ignoring the complex structure, T̃ is the nor-
mal conformal standard tractor bundle of M̃ .

Applications

• Chern Moser chains on M are the projec-
tions of null geodesics on M̃ .
• Relation between conformal tractor calcu-
lus on M̃ and CR tractor calculus on M .
• Conformally invariant differential operators
on M̃ descend to families of CR invariant dif-
ferential operators on M .
• Conformal interpretation of solutions of cer-
tain CR invariant operators.
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Fefferman spaces form a very nice and inter-
esting class of conformal structures:
• Fefferman spaces have a parallel orthogo-
nal complex structure on the standard tractor
bundle and are locally characterized by that.
• Existence of twistor spinors and odd degree
Killing forms on Fefferman spaces.
• Interpretation of infinitesimal conformal iso-
metries of M̃ via the CR geometry of M .

Analogs of the Fefferman construction

To obtain such an analog one needs an inclu-
sion G ↪→ G̃ between semisimple Lie groups,
and a parabolic P̃ ⊂ G̃ such that the G–orbit
of eP̃ ∈ G̃/P̃ is open. Equivalently, the inclu-
sion g→ g̃ has to induce a linear isomorphism
g/(g∩p̃)→ g̃/p̃. Finally, one needs a parabolic
P containing G∩P̃ . For a parabolic geometry
(G →M,ω) of type (G,P ), one then defines

M̃ := G/(G ∩ P̃ ) = G ×G∩P̃ (P/G ∩ P̃ )→M

As before, one obtains G̃ → M̃ and a Car-
tan connection ω̃ on this bundle, and thus a
geometry of type (G̃, P̃ ) on M̃ .
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To obtain the underlying geometric structure
on M̃ , one only has to check regularity, which
usually is very easy. The harder part (which
has not been carried out in all the examples
below) is to determine the precise conditions
under which the Cartan connection on ω̃ is
the normal Cartan connection determined by
this underlying structure.

Examples

• Sp(p+1, q+1) ↪→ SU(2p+2,2q+2), stabi-
lizers of a quaternionic respectively complex
isotropic line. This leads to twistor theory
for quaternionic contact structures.
• SO(p+1, q+1) ↪→ SO(p+2, q+1), stabilizers
of an isotropic line respectively an isotropic
plane. Conformal structure on M induces Lie
sphere structures on open subsets of T ∗M .
• Sp(2n,R) ↪→ SL(2n,R), stabilizers of a line.
Contact projective structure on M extends to
a projective structure.
• G2 ↪→ SO(4,3), stabilizers of a null line.
Generic rank two distribution on M5 induces
a conformal class of signature (3,2).
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