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Basic ideas

• Consider isomorphism class of geometric
structures of some type on a manifold M ,
or equivalently the space of all such struc-
tures modulo the action of Diff(M). “Moduli
space” of such structures.

• Localizing leads to deformations and one
may pass further to a formal and infinitesi-
mal level. Formal tangent space at the given
structure to the moduli space: infinitesimal
deformations modulo trivial infinitesimal de-
formations.

Example Riemannian metrics:

• Infinitesimal deformations of g are sections
h = hab of E(ab) = S2(T ∗M).

• h is trivial, iff h = Lξg for a vector field ξ =
ξa ∈ X(M) = Γ(Ea). Then hab = ∇(aξb) and
we obtain the Killing operator D : Ea → E(ab)

• ker(D) is the space of Killing fields, i.e. in-
finitesimal isometries of g, and coker(D) is
the formal tangent space at g to M.
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Cartan geometries

“Curved analogs” of a homogeneous space
G/H. For M with dim(M) = dim(G/H), a
Cartan geometry of type (G, H) on M is a
principal H–bundle p : G → M plus a Cartan
connection ω ∈ Ω1(G, g), i.e.

(i) (rh)∗ω = Ad(h)−1 ◦ ω for all h ∈ H.

(ii) ω(ζA) = A for all A ∈ h ⊂ g.

(iii) ω(u) : TuG → g is a linear isomor-

phism for all u ∈ G.

Morphisms are principal bundle maps com-
patible with the Cartan connections. The
homogeneous model is p : G → G/H with the
Maurer–Cartan form as a Cartan connection.

Infinitesimal deformations: principal bun-
dles are rigid, so we can only deform ω. Con-
dition (iii) is open, so infinitesimal deforma-
tions are given by g–valued one forms on G,
which satisfy (i) and are horizontal. These
are equivalent to elements of Ω1(M,AM),
where AM := G ×H g is the adjoint tractor
bundle.
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Trivial deformations come from pulling back

ω by principal bundle automorphisms. In-

finitesimally, one obtains right invariant vec-

tor fields ξ ∈ X(G)H. The trivial infinitesimal

deformation caused by ξ is Lξω. Applying ω

induces an isomorphism

X(G)H ∼= C∞(G, g)H ∼= Γ(AM).

Via the Cartan connection ω, one has TM ∼=
G ×H (g/h). In particular, there is a natural

bundle map Π : AM → TM , which corre-

sponds to projecting a right invariant field to

the base.

The Cartan connection ω induces a canonical

linear connection ∇ on AM . Further we have

the curvature K ∈ Ω2(G, g) defined by

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

It is easy to see that K is horizontal and H–

equivariant, thus defining κ ∈ Ω2(M,AM).

For the homogeneous model, κ = 0 by the

Maurer–Cartan equation, and κ is a complete

obstruction to local isomorphism to G/H.
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A simple computation shows that if ξ ∈ X(G)H

corresponds to s ∈ Γ(AM), then Lξω corre-
sponds to

∇̃s := ∇s + iΠ(s)κ ∈ Ω1(M,AM)

In particular, infinitesimal automorphisms of
(p : G → M, ω) are in bijective correspondence
with sections of AM that are parallel for the
linear connection ∇̃.

Cartan geometries are most interesting when
they are equivalent to some underlying struc-
ture. This needs a normalization condition
on the curvature. Analyzing the effect of
an infinitesimal deformation on curvature is
subtle, since the identification of TM with
an associated bundle depends on the Cartan
connection. The infinitesimal change of cur-
vature caused by ϕ ∈ Ω1(M,AM) turns out
to be given by

d∇ϕ− iΠ◦ϕκ = d∇̃ϕ ∈ Ω2(M,AM),

where we use the covariant exterior deriva-
tive. Thus infinitesimal deformations of a
Cartan geometry are governed by the twisted
de-Rham sequence (Ω∗(M,AM), d∇̃).
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The case of parabolic geometries

These are Cartan geometries of type (G, P ),
where G is semisimple and P ⊂ G is a parabolic
subgroup. Under the conditions of regular-
ity and normality on the curvature, these are
equivalent to underlying structures. Among
them, there are important examples like con-
formal, almost quaternionic, CR, and quater-
nionic contact structures. From now one, we
only deal with regular normal geometries.

Here there is a nilpotent ideal p+ ⊂ p, which
via the Killing form is dual to g/p. Hence
for a geometry (p : G → M, ω), we get G ×P
p+

∼= T ∗M . The bracket in g makes AM
into a bundle of Lie algebras, which contains
T ∗M as a bundle of subalgebras. Using the
(tensorial) Lie bracket on both bundles, one
defines natural bundle maps

∂∗ : ΛkT ∗M ⊗AM → Λk−1T ∗M ⊗AM

such that ∂∗ ◦ ∂∗ = 0. We also denote by ∂∗

the induced operators on AM–valued forms.
Normality of a parabolic geometry is defined
by ∂∗(κ) = 0.
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The BGG–machinery

Now im(∂∗) ⊂ ker(∂∗) ⊂ ΛkT ∗M ⊗ AM are
natural subbundles, and Hk := ker(∂∗)/ im(∂∗)
is algorithmically computable via Kostant’s
version of the BBW-theorem. The BGG–
machinery relates operators on AM–valued
forms to operators defined on these subquo-
tient bundles. First note that there is a nat-
ural tensorial map

πH : Ωk(M,AM) ⊃ Γ(ker(∂∗))→ Γ(Hk).

The core of the machinery is to construct
(higher order) invariant differential operators
Lk : Γ(Hk) → Ωk(M,AM), which split these
algebraic projections. These splitting opera-
tors are characterized by the additional fact
that ∂∗ ◦ d∇ ◦ Lk = 0 for all k. Having these
splitting operators at hand, one defines the
BGG–operators by

Dk := πH ◦ d∇ ◦ Lk : Γ(Hk)→ Γ(Hk+1).

The machinery can also be applied using d∇̃

rather than d∇ and we will denote the result-
ing operators by L̃k and D̃k.
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Results

1. H0 is a quotient of TM , and πh and L̃0 in-
duced inverse isomorphisms between the set
of infinitesimal automorphisms and the ker-
nel of D̃0.
Under mild conditions, one can prove that
D̃0 = D0 and L̃0 = L0, but this is not true in
general.

2. An infinitesimal deformation ϕ ∈ Ω1(M,AM)
is called normal if ∂∗(d∇̃ϕ) = 0. Then trivial
infinitesimal deformations are normal and the
operator L̃1 induces a bijection between the
cokernel of D̃0 and the formal tangent space
of the moduli space of normal parabolic ge-
ometries.

3. By normality, one has ∂∗(κ) = 0, so one
may define the harmonic curvature κH :=
πH(κ) ∈ Γ(H2). This is much simpler than
the full curvature κ but it is still a complete
obstruction to local flatness. Under the iso-
morphism from 2., the operator D̃1 computes
the change of harmonic curvature caused by
an infinitesimal deformation. In some cases,
one can prove that D̃1 = D1.
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The locally flat case

If κ = 0, then ∇ = ∇̃, and d∇ ◦ d∇ = 0, so

(Ω∗(M,AM), d∇) is a complex, which is a fine

resolution of the sheaf of parallel sections for

∇. The homology groups in degree 0 and 1

are the space of infinitesimal automorphisms

respectively the formal tangent space to the

moduli space of locally flat structures.

The BGG machinery easily implies that also

(H∗, D) is a complex which computes the

same homology. Hence one obtains a de-

formation complex for locally flat geometries

in the picture of the underlying structure.

Semi–flat cases

For some geometries, the bundle H2 decom-

poses into a direct sum of natural bundles.

Hence there are various components in the

harmonic curvature, and semi–flatness corre-

sponds to vanishing of some of these parts.
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The most important examples here are self–

duality for four–dimensional conformal struc-

tures, torsion freeness for almost quaternionic

structures, integrability for CR structures, and

torsion freeness for quaternionic contact struc-

tures in dimension 7. For higher dimensional

quaternionic contact structures, regularity can

be equivalently characterized as semi–flatness.

In these cases, all the bundles Hk decom-

pose into direct sums, and in joint work with

V. Souček, we have shown that the result-

ing BGG–patterns contain various subcom-

plexes. For all the structures listed above,

this leads to a deformation complex in the

semi–flat category. For quaternionic struc-

tures (and in particular self–dual conformal

structures in dimension four) this deforma-

tion complex is elliptic.
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