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Abstract. Let Gn, n ∈ N, denote the set of gaps of the Hill operator. We solve
the following problems : 1) find the effective masses M±

n , 2) compare the effective mass
M±

n with the length of the gap Gn, and with the height of the corresponding slit on
the quasimomentum plane (both with fixed number n and their sums) 3) consider the
problems 1), 2) for more general cases (the Dirac operator with periodic coefficients, the
Schrödinger operator with a limit periodic potential). To obtain 1)- 3) we use a conformal
mapping corresponding to the quasimomentum of the Hill operator or the Dirac operator.

Introduction

Consider the Hill operator H = −d2/dt2 +V (t) in L2(R) where V a is 1-periodic
real potential from L1(0, 1). It is well known that the spectrum of H is absolutely con-
tinuous and consists of the intervals S1, S2, ..., and let

Sn = [A+
n−1, A

−
n ], ..., A−n ≤ A+

n < A−n+1, , n = 1, 2, ..., A+
0 = 0 < A−1 , A−0 = −∞.

The intervals are separated by the gaps G1, G2, ..., where Gn = (A−n , A
+
n ). If a gap

degenerates i.e. Gn = ∅ then the corresponding segments Sn, Sn+1 merge. The spectrum
of the Hill operator consists of closed non overlapping intervals which are called spectral
bands. Instead of the spectral parameter E we introduce more convenient parameter

z, z2 = E, and numbers a±n =
√
A±n ≥ 0 and gaps

gn = (a−n , a
+
n ), g−n = −gn, n ∈ N, g0 = ∅.

Later on gn will be called a gap andGn a energy gap. Now we can define a quasimomentum
function [11], [2]

k(z) = arccosF (z), z ∈ Z = C \ ḡ, g = ∪gn,
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where F is the Lyapunov function of the Hill operator (see Section 5). The function k(z)
is analytic and moreover k(z) is a conformal mapping from Z onto a quasimomentum
region K = C \ ∪Γn , where Γn is an excised slit

Γn = {Rek = πn, |Imk| ≤ hn} , hn = h−n ≥ 0, n ∈ Z, h0 = 0.

Any non degenerate (degenerate) slit Γn is connected in the some way with the non
degenerate (degenerate) gap gn and the energy gap Gn . With an edge of the energy gap
Gn, having the length Ln, we associate the effective mass

M−
0 = 0, M+

0 = 1/E ′′(0), M±
n = 0, if Ln = 0, and M±

n = 1/E ′′(k(a±n )), if Ln 6= 0,

where E(k) = z(k)2 and z(k) is the inverse function for k(z). It is well known that if
Ln 6= 0 then

E(k) = A±n + (k − πn)2(1/2M±
n + o(1)), ±(k − πn) ↓ 0.

Now we describe the main purpose of our paper.
Let we have only the set of gaps Gn, n ∈ N, (or the set of segments Sn, n ∈ N).

Then we solve the following problems ;
a) find the effective masses,
b) compare the effective masses M±

n with the gap length Ln and with the height of the
slit hn (both with fixed number n and their sums), then compare such sums with a norm
of the potential V in some space,

c) find asymptotics of k(z) at large z,
d) consider the problems a)-c) for more general cases (the Dirac operator with periodic

coefficients, the Schrödinger operator with a limit periodic potential ).
The correlation between effective masses M±

n , lengths Ln, heights hn were studied
in many articles. Firsova [3] found the relation between M±

n , Ln, hn and the Fourier
coefficients of a potential V at large integer n. In [3] it was also shown that the sum of all
effective masses is equal to the physical mass. In [2] Firsova has proved the asymptotics
k(z) = z + O(z−1/3) as |z| → ∞ . Any Hill operator with finite band spectrum
was described by explicit formulae in the work of Its, Matveev [5] (including inverse
problem). In the book [10] Marchenco had obtained some inequalities between hn, Ln and
asymptotics k(z) at large real E,E = z2, (see also [11]). The main result of the paper
[11] by Marchenco and Ostrovski is the solution of the inverse problem. It is shown that
under some additional conditions on the slits Γn, n ∈ Z, the region K corresponds to a
periodic potential of the Hill operator. Later on the inverse problem and some properties
of the function k(z) have been considered in the paper of Garnett, Trubowitz [1]. In
[8] Korotyaev has studied the propagation of the acoustic waves in a periodic media. It
was shown that any spectral band (with number n) ”creates” the wave with the velocity
Un(Un is less than 1). The velocity Un is equal to the maximum of the function z ′(k(z))
when z2 belongs to the energy band with the number n. Furthermore 2M+

0 U
2
1 = 1 and
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M+
0 may be estimated in terms of the gap lengths and the edges of the bands. In [12]

Pastur, Tkachenco have considered the direct and inverse problem for the operator with
limit periodic potentials.

Let us write down the main results of the paper.
a) Simple formulae providing the possibility to find effective masses in terms of the

edges of gaps Gn, n ∈ N, are found.
b) ”The local estimates” (a number n is fixed) between the effective masses M±

n , the
height of slit hn and the length of gap Ln are obtained.

c) We derive inequalities which relate the following quantities: the sum of squares
(with weights) of the effective masses, the heights of the slits, the gaps lengths and a
norm of a potential V in some Sobolev space.

d) Asymptotics of k(z) for large |z| are found.
e) There are some estimates about Un, n ∈ N.
f) We obtain the extension of a)-d) for more general cases (the Dirac operator with

periodic coefficients, the Schrödinger operator with a limit periodic potential etc.).
It is necessary to note that the asymptotics of k(z) for E = z2 far from an energy gap

differs from the case when E belongs some neighborhood of a energy gap.
To prove a)-f) we use a conformal mapping corresponding to quasimomentum of the

Hill operator [11], [2] that makes possible to reformulate the problem for the differential
operator as a problem of the conformal mapping theory. Thus we should study some
”geometric properties” of conformal mappings from C+ onto”the comb” K+ = K ∩C+.
For solving these ”new” problems we use some techniques from [11], [9] and we often use
the Poisson integral for the domain C+∪C−∪(−1, 1) , the Dirichlet integral for a function
kp(z) (the definition of kp(z) see in Section 1) .In particular the Dirichlet integral for the
function k0(z) ≡ k(z)− z. The Dirichlet integral was used in Kargaev’s work [6] to study
the conformal mapping of the upper half plane to the comb.

1 . The main results

In this section we introduce the concepts and the facts needed to formulate the theorems,
some results for the Hill operator, the Dirac operator with periodic coefficients and some
results from the conformal mapping theory.

At first we give some definitions and facts from the theory of conformal mappings. We
call the set K+ = C+ \ ∪Γn the ”comb” where

Γn = {Rek = un, |Imk| ≤ hn} , hn ≥ 0, n ∈ Z, h0 = 0,

while un is a strongly increasing sequence of real numbers such that un → ±∞ as n →
±∞. We call a conformal mapping k(z) from the upper half plane C+ onto some comb
K+ a general quasimomentum ( GQ ) if 1) k(0) = 0, 2) k(iy) = iy(1 + o(1)) as y → ∞.
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It is well known that a GQ k(z) is a continuous function in z ∈ C̄+. In this case we
introduce the sets

gn = (a−n , a
+
n ), sn = [a+

n−1, a
−
n ] = k−1([un−1, un]), n ∈ Z.

We call σ = ∪sn the spectrum of the corresponding general quasimomentum k(z). We
also denote by gn a gap in the spectrum of GQ and we let g = ∪gn. It is well known that
the set σ can not be the spectrum of two different GQ [9]. Note that the function k(z)
may be continued onto the domain Z = C\ ḡ by the formula k(z̄) = k̄(z), z ∈ Z. If a gap
gn is empty then the components sn, sn+1 merge. The spectrum σ consists of closed non
overlapping intervals s(n) with the lengths rn, n ∈ Z, and σ = ∪s(n) where the point
zero belongs to s(0). We denote the length of the gap gn by ln. For GQ we introduce
”reduced masses” (some analog of the effective masses)

±µ±n = 1/z′′(k(a±n )), if ln 6= 0 and ± µ±n = 0, if ln = 0.

It is clear that µ±n > 0 if ln 6= 0 and we shall often use the asymptotics

z(k) = a±n ± (k − un)2(1/2µ±n + o(1)), ±(k − un) ↓ 0. (1.1)

Later on p is an integer. We introduce the functions u(z) = Rek(z), v(z) = Imk(z),

Pp(z) =
p∑

0

Qn−1z
−n, kp(z) = zp {k(z)− z + Pp(z)} , z ∈ Z, p ≥ 0,

where

Qp =
1

π

∫
xpv(x)dx, Q+

p =
1

π

∫
|x|pv(x)dx, p ≥ −1.

Here and below an integral with no limits indicated denotes integration over Rd, d ≥ 1.
For a non degenerate gap gn we denote by r+

n (r−n ) the distance between gn and the nearest
right (left) hand side non degenerate gap or the point zero. Analogously we denote by
s+
n (s−n ) the distance between gn and the nearest right(left) non degenerate gap. Let us

introduce the constants

γ0 = sup (ln/max
±

s±n ), if p = 0, and γ1 = sup (ln/max
±

r±n ), if p > 0,

and r = inf r±n . We call a general quasimomentum
i) a normed quasimomentum if Q+

−1 <∞ and Q−1 = 0,
ii) a symmetric quasimomentum if k(−z) = −k(z), z ∈ Z,
iii) a quasimomentum if un = πn, for all n ∈ Z.
Note that for the case Q+

−1 < ∞ we can normalize the general quasimomentum by
some translation. We emphasize that a symmetric quasimomentum corresponds to the
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quasimomentum for the Hill operator, a quasimomentum corresponds to the quasimomen-
tum for the Dirac operator with periodic coefficients. Furthermore a GQ is an integrated
density of states (or the rotation number ) for the Schrödinger operator with some limit
periodic potential (see [12]).

We shall tell that GQ k(z) has the moment of an order p if Q2p < ∞. By Herglotz
Theorem we have that GQ k(z) has the moment of order p ≥ −1.Later on we assume
some conditions on the spectrum (or gaps).

Condition 1. Let a GQ k(z) have the moment of an order p ≥ 0, if p = 0, then
γ0 <∞ and if p > 0, then γ1 <∞.

Condition A.Let a GQ k(z) have the moment of the order p ≥ 0,
i) if p = 1 then k(z) is a normed GQ,
ii) if p ≥ 2 then k(z) is a symmetric quasimomentum.
Let us describe the connection between GQ and the Hill operator. Remember that

the spectrum of H consists of the segments Sn, n ∈ N, with the gaps Gn. In the case of

the Hill operator the numbers a±n satisfy a±n =
√
A±n ≥ 0, a±−n = −a∓n , n = 0, 1, 2, 3, ...,

and gaps gn satisfy gn = (a−n , a
+
n ), g−n = −gn, n ∈ Z, g0 = ∅. For an energy gap Gn

and a gap gn we have the equality Ln = A+
n − A−n = ln(a+

n + a−n ), n = 1, 2, 3, ....
The quasimomentum k is defined by k(z) = arccosF (z), z ∈ Z, where F is the Lya-

punov function for the Hill equation

−f ′′ + V f = z2f, z ∈ C. (1.2)

We note that the set g is symmetric with respect to the point zero and the function
k(−z) = −k(z), z ∈ Z. In the case of the Hill operator the following equalities are valid

M+
0 = k′(0)2/2 = 1/2z′(0)2, ±µ±n = 2a±nM

±
n , n ≥ 1. (1.3)

Moreover,for the Hill operator we have (see [10])

2Q0 =
∫ 1

0
V (t)dt, Q1 = 0, 8Q2 =

∫ 1

0
V (t)2dt, ...

Let us formulate the main theorem.
Theorem 1.1.Suppose V ∈ L1(0, 1) and n=0, 1, 2.... Then

M±
2n = 2

∑

m>0,q=±
(Aq2m−1 − A±2n)−1, M±

2n+1 = 2
∑

m≥0,q=±
(Aq2m − A±2n+1)−1, (1.4)

1

π

∫
|k′(z)− 1|2dxdy = 2Q0, and

∑

n≥1

(A+
nM

+
n +A−nM

−
n ) = Q0, if V ∈ L2(0, 1). (1.5)

Furthermore, let V ∈ L2(0, 1) and p = 1 then

1

2

∫
|(z(k(z)− z))′|2dxdy +

∫
v(x)u(x)xdx = 2

∫
x2v(x)dx = (π/4)

∫ 1

0
V 2(t)dt (1.6)
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and
∑

n≥1

[(A+
n )2M+

n + (A−n )2M−
n ]−Q2

0/2 = (3/8)
∫ 1

0
V 2(t)dt, if V ∈ W 1

2 (R/Z),

and etc. for V belonging Sobolev space W p−1
2 (R/Z) and p = 2, 3, ..All series converge

absolutely.
Now we present the main inequalities obtained in this paper. We define the Dirichlet

integral πdp =
∫ |k′p(z)|2dxdy, z = x+iy, and the constants T = (π2/48r4)T 0 maxL2

n, T
0 =

1+Q0r
−2. For a sequence f = {fn}∞1 or a sequence f = {fn}∞−∞ , such that f−n = fn, n =

1, 2, ..., f0 = 0, we introduce a norm ‖f‖2
±,p =

∑
n>0(A±n )p|fn|2. We have

Theorem 1.2.a) Let V ∈ L1(0, 1). Then r > 0 and for any n ∈ N

ln ≤ 2hn ≤ ln(1 + Tn−2), (1.7)

ln ≤ 2µ±n ≤ ln(1 + Tn−2)2. (1.8)

b) Let V ∈ L1(0, 1) if p = 0 and V ∈ W p−1
2 (R/Z) if p ≥ 1. Then for any p ≥ 0 there

exist constants C1, C2, .., C5 depending only on p, γ1 (γ0 if p = 0) such that

C1Q2p ≤ C2‖L‖2
±,p−1 ≤ C3‖h‖2

±,p ≤ ‖M±‖2
±,p+1 ≤ C4dp ≤ C5Q2p. (1.9)

The exact representation of C1, C2, ..C5 will be given in Section 5. We note that in [10]
there is the estimate ln ≤ 2hn ≤ Cln for any n = 1, 2, .. and some C > 0. Some analogs
of Theorems 1.1, 1.2 for the Dirac operator with periodic coefficients will be considered
in Theorems 1.3 - 1.5.

Let us consider the case of a general quasimomentum. We introduce the function
wn(x) = |(x−a−n )(x−a+

n )|1/2, x ∈ R. We define numbers an = max |a±n |, bn = min |a±n | and
the norm ‖f‖2

p =
∑
a2p
n f

2
n, with ‖f‖ = ‖f‖0, for a sequence of real numbers f = {fn}∞−∞ .

The following statements hold true.
Theorem 1.3. Let k(z) be a general quasimomentum. Then for any n ∈ Z

v(x) = wn(x)

{
1 +

1

π

∫

R\gn

v(t)dt

wn(t)|t− x|

}
, x ∈ gn, (1.10)

2µ±n = ln

{
1 +

1

π

∫

R\gn

v(t)dt

wn(t)|t− a±n |

}2

, (1.11)

ln
2
≤ hn ≤ π

√
lnµ±n

2
≤ πµ±n , (1.12)

h2
n ≤ 2ln

√
µ+
nµ
−
n , ln ≤ 2µ±n . (1.13)

At the same time for a general quasimomentum there are some ”global estimates”.
We introduce the quantities
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µ2
0 =

∑

q=±,n∈Z

µqn min(µqn, s
q
n), p = 0, and µ2

p =
∑

q=±,n∈Z

(aqn)2pµqn min(µqn, r
q
n), p > 0.

Let us present the theorem.
Theorem 1.4. Let a GQ k(z) have the moment of the order p ≥ 0 and satisfy

Condition A and Condition 1. Then there exist constants C1, C2, .., C5 depending only on
p and γ1 (γ0, if p = 0), such that

C1 ‖l‖2
p ≤ C2 ‖h‖2

p ≤ µ2
p ≤ C3 dp ≤ C4 Q2p ≤ C5 ‖l‖2

p.

Let us finally formulate now some equalities concerning a GQ and a quasimomentum(
the Dirac operator).

Theorem 1.5.Let k(z) be a general quasimomentum.
1) Suppose γ0 <∞, infn,± (bns

±
n ) > 0 and

∑
ln 6=0 b

−2
n <∞. Then

k′(z)2 = 1 +
1

2

∑
(

µ+
n

z − a+
n

− µ−n
z − a−n

), z ∈ Z, (1.14)

the series converges absolutely and uniformly on compact sets.
2) Suppose infn,± s±n > 0 and Q+

p <∞ for some p ≥ 0. Then

4pQp−1 + 2
p−3∑

0

(n+ 1)(p− 2− n)QnQp−3−n =
∑

n

(µ+
n (a+

n )p − µ−n (a−n )p). (1.15)

and the series converges absolutely.
3) Suppose Q2p <∞ for some p ≥ 0. Then

dp/2 = (1 + p)Q2p −
p

π

∫
x2p−1u(x)v(x)dx−

p−1∑

0

(p− 1− n)QnQ2p−2−n. (1.16)

4) Let k(z) be a quasimomentum . Then for any n ∈ Z we have

±µ±2n = 2V.P.
∑

m∈Z,q=±

1

aq2m+1 − a±2n
, (1.17)

±µ±2n+1 = 2V.P.
∑

m∈Z,q=±

1

aq2m − a±2n+1

.

We note that from (1.15) we have the equality
∑

(µ+
n − µ−n ) = 0.
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2 . The local properties of the quasimomentum

In this chapter useful results will be presented. The main attention will be given to the
analysis of the function v(z). It is well-known that for any GQ k = u + iv the function
u′x(z) > 0, z = x+iy ∈ C+ (see [9]). Hence there are two positive functions v(z), z ∈ C\σ
and u′x(z), z ∈ Z. From the Herglotz theorem we have

v(z) = y(1 +
1

π

∫ v(t)

|t− z|2dt), z ∈ C+, (2.1)

therefore u′x(iy) = v′y(iy) and

v′y(iy) = 1 +
1

π

∫ (t2 − y2)v(t)

(t2 + y2)2
dt ≤ 1 +

1

π

∫ v(t)dt

(t2 + y2)
= 1 + o(1), y →∞.

Proving some estimates in this chapter we use positive harmonic functions v, u′x and
asymptotics v(iy) = y(1 + o(1)), u′x(iy) = (1 + o(1)), y →∞.

At first we shall consider harmonic functions in a domain D(I) = C\ (R \ I), where I
is a closed interval. The word ”local” is means that some properties are obtained as result
that the function v (or u′x) is positive and harmonic in a region D(ḡn)(D(sn)). Introduce
the set U = {z : |z| < 1}. There is the Lemma

Lemma 2.1.Let a function f be harmonic and positive in the domain D = D(I), I =
[−a, a], a > 0. Then

1. If f(x)2 = (a− x)(2µ+ + o(1)), as x ↑ a, then

f(x)2 ≤ (2a)(2µ+)(a− x)

a+ x
, x ∈ I. (2.2)

2.If 2(a− x)f(x)2 = µ+ + o(1)), as x ↑ a, then

µ+ ≤
2(2a)f(x)2(a− x)

a+ x
, x ∈ I. (2.3)

3. Let f(z) = f(z̄), z ∈ D. Suppose f ∈ C(C̄+ \ {tn, n ∈ Z}) where the sequence
{tn}∞−∞, such that tn → ±∞ as n→ ±∞ and yf(tn + iy) = o(1) as y → 0. Then

f(x) =
√
a2 − x2(β +

1

π

∫

R\I

f(t)dt

|t− x|
√
t2 − a2

), x ∈ I, (2.4)

lim
x↑a

f(x)√
a− x =

√
2a(β +

1

π

∫

R\I

f(t)dt

|t− a|
√
t2 − a2

), (2.5)

where β = lim f(iy)/y, as y →∞.
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Proof. Take any x ∈ I. Let W = W (z) be a conformal mapping from the region D
onto the disk U . The function W is defined by conditions W (x) = 0, W ′(x) > 0. Such
mapping may be got by the composition of mappings

z1 =
b(z)− i
b(z) + i

, b(z) =

√
z + a

z − a, z ∈ D, W =
z1 − z1(x)

1− z1(x)z1

, z1 ∈ U.

(here
√

1 + 0i = 1). Define the function f1 from the equality f1(W (z)) = f(z), z ∈ D.
Using the Harnack inequality for the positive harmonic function f1 we obtain

1− r
1 + r

f1(0) ≤ f1(r) ≤ 1 + r

1− rf1(0), 0 ≤ r < 1,

and hence

b(x)f(x)

b(t)
≤ f(t) ≤ b(t)f(x)

b(x)
, x ≤ t < a. (2.6)

We rewrite the left hand side of (2.6) in the form

f(x) ≤ f(t)√
a− t

√
(a− x)(a+ t)

a+ x
, x ≤ t < a.

From this, as t ↑ a , we get (2.2). Using the right hand side of (2.6) we obtain (2.3) by
analogy.

The function b(z) maps conformally the region D onto the upper half plane. For
−a < x < a, t < −a or t > a we have the equalities

Im
1

b(t)− b(x)
= Im

b(t) + b(x)

b2(t)− b2(x)
=

(t− a)
√
a2 − x2

2a(t− x)
, b′(t) = − a

b(t)(t− a)2
.

From here, using the property f(z) = f(z̄), z ∈ D, we get the kernel of the Poisson
integral for the domain D and hence (2.4).

By (2.4) we have (2.5). Q.E.D.
We have useful Corollary from Lemma 2.1.
Corollary 2.2.Let function f be nonnegative, harmonic in the domain D = D(I), I =

[−a, a], a > 0. Suppose f(x)2 = (a± x)(2µ± + o(1)), as ∓x ↑ a, then

af(x)2 ≤ (
√
µ+ +

√
µ−)2(a2 − x2) ≤ 2(µ+ + µ−)(a2 − x2), −a < x < a, (2.7)

f(x)2 ≤ 4a
√
µ+µ−, −a < x < a. (2.8)

Proof. By (2.2)

f(x)2

a2 − x2
≤ (2a)2 min

{
µ+

(a− x)2
,

µ−
(a+ x)2

}
≤ (
√
µ+ +

√
µ−)2

a
,
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−a < x < a. Multiplying inequalities (2.2) for µ± we obtain (2.8). Q.E.D.
Now we shall apply priveous results for GQ. Instead of a function f we shall use the

functions u′x(z), z ∈ D(sn), and v(z), z ∈ D(ḡn). In the case of a general quasimomentum
we have asymptotics of k(z) on any gap and band. For this case we have

Theorem 2.3.Let k be a GQ. Then the statements (1.10)-(1.13) are valid. Further-
more

wn(x) ≤ v(x) ≤
√

2lnµ±n wn(x)/|x− a∓n |, x ∈ gn, (2.9)

lnv(x)2 ≤ 2(
√
µ+ +

√
µ−)2wn(x)2, x ∈ gn. (2.10)

Let in addition Q0 <∞ and inf s±n ≡ s > 0. Then

|µ+
n − µ−n | ≤ l2n Q0(1 +Q0/s

2)/s3. (2.11)

Proof of estimates (1.10), (1.11), (2.9), (2.10) follows immediately from the Theorem
2.1, the Corollary 2.2.

Multiplying (2.9) at µ± we obtain the bound for hn in (1.13), and by (1.11) we have
last estimate in (1.13).

First inequality in (1.12) follows from (1.10). Let us prove the second inequality in
(1.12). Integrating v(x) on gn, using (2.9) and the convexity of the function v(x), x ∈ gn
we have

lnhn ≤ 2
∫

gn
v(x)dx ≤ 2

√
2lnµ±n

∫

gn
wn(x)/|x− a±n |dx =

√
2lnµ±nπln.

Introduce

J±n = 1 +
1

π

∫

R\gn

v(t)dt

wn(t)|t− a±n |
,

By (1.11) we have 2(µ−n − µ+
n ) = ln(J+

n − J−n )(J+
n + J−n ),

J+
n − J−n =

ln
π

∫

R\gn

v(t)sign(2t− a+
n − a−n )dt

wn(t)3
,

and hence (2.11).Q.E.D.
Now we present the result about the behavior of a general quasimomentum on the

spectrum.
Theorem 2.4.Let S = [a+, a−] be a spectral component of GQ k = u + iv and µ±

be the corresponding reduce masses. Then u′x(z) is a positive harmonic function in the
domain D(S) and

u′x(x) = 1 +
1

π

∫ v(t)dt

(t− x)2
=
f(x)

π

∫

R\S

u′t(t)dt

f(t)|t− x)| , x ∈ S, (2.12)
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µ± ≤ 2(u′x(x))2|S||x− a±|/|x− a∓|, x ∈ S, (2.13)

where f(x) = |(x− a−)(x− a+)|1/2. If k is a quasimomentum then

µ±|S| ≤ 8n2, (2.14)

where n is the number of the merged components which are composed the band S.
Proof. The estimations (2.12), (2.13) follows from the Lemma 2.1. By (2.13) we have

√√√√ µ±|x− a∓|
2|S||x− a±|

≤ u′x(x), x ∈ S.

Integrating it on S we obtain (2.14). Q.E.D.
Later on we shall need following results on the function v.
Lemma 2.5.Let k be a GQ and z ∈ C+. Then

k(z) = z + C +
1

π

∫
v(t)(

1

(t− z)
− t

1 + t2
)dt, (2.15)

C = − 1

π

∫ v(t)dt

t(1 + t2)
.

If in addition g = (a, b) be a gap in the spectrum of a GQ and l = |g|. Then

∫

g
v(t)(

1

(t− a)
+

1

(b− t))dt = l(π +
∫

R\g

v(t)dt

(t− a)(t− b)). (2.16)

2lv(x) ≤ 4
∫

g
v(t)dt ≤ l2(π +

∫

R\g

v(t)dt

(t− a)(t− b)), a < x < b. (2.17)

Suppose that Q+
p <∞, p ≥ 0 then

kp(z) =
1

π

∫ tpv(t)

t− z dt, z ∈ Z. (2.18)

Proof. We have (2.15) in the work [10]. Using k(a) = k(b) and (2.15) we obtain
(2.16). By (t − a)−1 + (b − t)−1 ≥ 4/l, a < t < b, and (2.16) and by the convexity of
v(t), a < t < b, we have (2.17).

We rewrite (2.15) in the form

k(z)− z −Q−1 =
1

π

∫ v(t)

t− z dt =
1

πzp

∫ (zp − tp)v(t)

t− z dt+
1

πzp

∫ tpv(t)

t− z dt.

Hence by definition kp we obtain (2.18). Q.E.D.
Later on we need some estimates.
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Lemma 2.6.Let a function f be analytic in the domain D = {|Rez| < a} , a > 0.
Then for any ± t ∈ [0, a) we have

16

π
|f ′(t)|2 ≤ 1

a2 cos2 πt
2a

∫

D
|f ′(z)|2dxdy ≤ 1

(a± t)2

∫

D
|f ′(z)|2dxdy. (2.19)

Proof. Map the region D on the disk U by the function

b(z) =
j(z)− j(t)
j(z) + j(−t) , j(z) = exp(

πz

2a
), z ∈ D.

Then
b(t) = 0, |b′(t)| = π

4a cos πt
2a

=
π

4a sin π(a−t)
2a

.

Define the function f1 by the relation f1(b(z)) = f(z), z ∈ D. For the function f1(z1), |z1| <
1, there exists the usual estimate

π|f ′1(t)|2 ≤
∫

U
|f ′1(z1)|2dx1dy1, z1 = x1 + iy1.

Combining this with the inequality π sin t ≥ 2t, π ≥ 2t ≥ 0, and with the equality
∫

U
|f ′1(z1)|2dx1dy1 =

∫

D
|f ′(z)|2dxdy.

we obtain (2.19). Q.E.D.
Now we present the main ”local” results. We shall estimate a reduced mass through

the Dirichlet integral from the GQ on some domain. Introduce the constant

Ap =

{
π2p(1 + p)(1 +

√
1 +

1

2(1 + p)2
)

}2

,

and the integrals

I2
p (D) =

1

π

∫

D
|k′p(z)|2dxdy.

and ”the normalized integral”

jqp(D) =
π2pIp(D)

4|aq|p(1 + p)
, D = {a+ < Rez < a−} , q = ±.

We have
Theorem 2.7.Let a GQ k satisfy the Condition A for some p ≥ 0. Suppose an interval

S = (a+, a−) lies in some spectral band of k . Let µ± be a corresponding reduced mass if
a± coincides with the edge of the band and s = |S|, D = {a+ < Rez < a−} .

1) Let 0 /∈ S, then

12



sµq ≤ 8(1 + p)2jqp(D)(s+ jqp(D)), q = ±, (2.20)

(aq)
2pµq min(µq, s) ≤ ApI

2
p (D), q = ±, (2.21)

(aq)
2p(µq)

2 ≤ ApI
2
p (D), q = ±, if s =∞. (2.22)

2) Let p = 0. Then

µq min(µq, s) ≤ A0I
2
0 (D), q = ±. (2.23)

3) Let p ≥ 1 and 0 ∈ S. Then

(aq)
2pµq min(µq, |aq|) ≤ ApI

2
p (D), q = ±. (2.24)

Proof. We consider the case S ⊂ R+, the case S ⊂ R− is considered by analogy. From
the definition of kp we have k(z) = z − Pp(z) + z−pkp(z), z ∈ Z. We obtain estimates for
x > 0, p ≥ 2 (the case p = 0, 1 is more simple )

0 < k′(x) = 1− P ′p(x) + x−pk′p(x)− px−p−1kp(x) =

[1 + p+ x−pk′p(x)]− p

x
[Pp(x) +

x

p
P ′p(x) + k(x)] ≤ 1 + p+ x−pk′p(x),

because Pp(x) + x
p
P ′p(x) > 0, k(x) > 0 as x > 0. Hence we have

0 < k′(x) < 1 + p+ x−pk′p(x), x ∈ S ⊂ R+. (2.25)

Let 2b = a− + a+, 2a = s and x = b + t. By (2.13), (2.25), (2.19) we obtain for
0 < t < a, c = 4(1 + p)2,

(a+ t)µ− ≤ 2s(a− t)u′(x)2 ≤ 2s(a− t)[1 + p+ x−pk′p(x)]2 ≤

2s(a− t)[1 + p+
πIp(D)

4(a− t)bp ]2 ≤ sc(a− t)
2

[1 +
j−p
a− t ]

2.

The function

f(t) =
(a− t)
(a+ t)

[1 +
j−p
a− t ]

2, 0 < t < a,

has the minimum in the point t0 = a2/(a + j−p ) and f(t0) = j−p (j−p + 2a)/a2. Hence we
have (2.20) for µ−.

Consider two cases. 1). Let µ− < s. Then

µ−/j
−
p ≤ 2c(1 + j−p /s) ≤ 2c(1 + j−p /µ−).

13



For R = j−p /µ− we obtain an inequality R ≤ 2c(1 + 1/R), which is truth under the

condition R < R1 = c(1 +
√

1 + 2/c), i.e.

µ− ≤ R1j
−
p if µ− < s. (2.26)

2). Let µ− ≥ s. Then

µ−s/(j
−
p )2 ≤ 2c(1 + s/j−p ) ≤ 2c(1 +

√
sµ−/j

−
p ).

By analogy we obtain

µ−s ≤ R2
1(j−p )2, µ− ≥ s. (2.27)

Uniting (2.26), (2.27) we have got (2.21) for µ−. In the case µ+ we have

(a− t)µ+ ≤
c(a+ t)

2
[1 +

j+
p

a+ t
]2, −a < t < 0.

Repeating the proof for µ− we obtain (2.21) for µ+. From (2.21) for the interval
(a+, a+ + 2µ+) we obtain (2.22) for the case q = +. The case q = − is proved by analogy.

2) The estimate (2.23) follows from (2.21) and from invariance (2.21) under transla-
tions.

3) Applying (2.21) for the intervals (a+, 0), (0, a−) we have (2.24). Q.E.D.
Now we shall present the more exact result about the reduced masses for the quasi-

momentum. Define constants h+ = suphn, l+ = sup ln, τ0 = π/4(1 + 2γ0). The function
f(t) = (2l+/πt) log cot[(1− t)τ0], 0 < t < 1, has the minimum at some point and denote
such point by t0. Later on we shall need the constants

τ = [cot(1− t0)τ0]
2l+

πt0 , ν =
1

8
(τ 2 − τ−2).

The following statements hold true.
Theorem 2.8.Let k be a quasimomentum. Then for any q = ±, n ∈ Z, we have

h+ ≤ log τ, (2.28)

µqn ≤ sinhh+ ≤ (τ − τ−1)/2, (2.29)

|sn| ≥ 2 arcsin
1

coshh+

≥ 2

coshh+

≤ 2

τ
, (2.30)

µqn ≤ ν inf
m
|sm|, (2.31)

γ0 ≤ sup
q=±,n

(
2µqn

max± s±n
) ≤ sinh 2h+

2
≤ 2ν. (2.32)

Proof. The estimate (2.28) follows from (3.1).
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Increase all slits Γn, n ∈ Z, including degenerate until the height h+. We obtain a
new comb and a new quasimomentum k1. From the Theorem 3.2 it follows that the
reduced masses increase and the lengths of the bands decrease. It is very important that
new reduced masses and the new lengths of the bands do not depend from number n.
Denote the corresponding reduced masses by µ and the lengths of the bands by s. It
is necessary to find µ, s. The Lyapunov function for k1 has the form (see [9]) F1(z) =
b cos z = cos k1, b = coshh+. From this formula it is easy to obtain the reduced mass
in the point x1 where F1(x1) = 1 = b cos x1 :

µ±n ≤ µ = −F ′1(x1)/F1(x1) = b sin x1/b cos x1 =
√
b2 − 1 = sinhh+, n ∈ Z. (2.33)

From this inequality and from (2.28) we obtain

2µqn ≤ exp(h+)− exp(h+) ≤ τ − τ−1.

There are the equalities sin(π/2− x1) = cos x1 = 1/b. From this it follows that

s = 2(π/2− x1) = 2 arcsin 1/b = 2 arcsin
1

coshh+

.

Hence from the inequality arcsin t ≥ t, 1 ≥ t ≥ 0, we have

|sn| ≥ s = 2 arcsin
1

coshh+

≥ 2

coshh+

≥ 2

τ
. (2.34)

By (2.28), (2.34), (2.33) we obtain

8
µqm
|sn|
≤ 2 sinh 2h+ ≤ τ 2 − τ−2 = 8ν, n,m ∈ Z.

Hence, from (1.13), (2.33), (2.34) it follows that

γ0 ≤ sup
n

(
ln

max± s±n
) ≤ sup

n
(
2µ±n
s

) ≤ 2µ

s
≤ sinh 2h+

2
≤ 2ν. Q.E.D.

Now we shall present the main result on the reduced masses in the case of a quasimo-
mentum. We introduce the constant

Bp =

{
π2p(1 + p)(1 +

√
1 +

ν

2(1 + p)2
)

}2

, p ≥ 0.

Theorem 2.9. Let a quasimomentum k satisfy the Condition A for some p ≥ 0 and
D−n =

{
a+
n−1 < Rez < a−n

}
, D+

n =
{
a+
n < Rez < a−n−1

}
, n ∈ Z. Then

(|aqn|pµqn)2 ≤ BpI
2
p (Dq

n), q = ±. (2.35)
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Proof. We consider q = −. By (2.20), (2.31)

µ−n s ≤ 8(1 + p)2j(s+ j), µ−n ≤ νs, s = |sn|, j =
π2pIp(D

q
n)

4|aqn|p(1 + p)
.

Hence µ−n ≤ s0ν, where s0 is the decision of the equation 8(1 + p)2j(s + j) = νs2. It is
easy to find

νs0 = 4(1 + p)2jB1/2
p /2pπ = B1/2

p Ip(D
−
n )/(a−n )p.

The case q = + is consider by analogy. Q.E.D.

3 . The identities and the ”integral” estimates

In this chapter we shall present results about ”global” properties of a general quasimo-
mentum. Some of them we shall obtain using the previous proposals. We have

Theorem 3.1.Let the set σ be such that l+ < ∞, the point zero lies inside σ and
γ0 <∞. Then σ is the spectrum of some GQ and

h+ ≤ log τ. (3.1)

Proof. Suppose that I is arbitrary, fixed closed interval and |I| > 2l+. Any gap, inter-
secting with I (but excluding two extreme gaps) lies in I together with the neighboring
bands. Then

2γ0|I ∩ σ|+ |I ∩ σ|+ 2l+ ≥ |I|. (3.2)

First term on the left hand side estimates the sum of lengths of ”inner” gaps. We take
a|I| = 2l+ where a > 0 and enough small. From (3.2) it follows that

(1 + 2γ0)|I ∩ σ| ≥ (|I| − 2al+) = (1− a)|I|.
We are needed the following facts (see [4], [9]).

Let S be a closed subset of a real axis such that for some values L <∞ and δ > 0 the
Lebesgue measure of the intersection of S and any interval of length 2L is not less then
δ. Then there exists the unique function v(z) which is harmonic in the domain C \S and
has the following properties:

i) a.e. on S the function v(z) has zero limit values,
ii) for every z ∈ C, 0 ≤ v(z)− |Imz| ≤ L

π
log cot δπ

4L
.

We take L = 2l+/a, δ = (1−a)2l+/a(1 + 2γ0) and o < a < 1. From last inequality and
from Levin’s work [9] we obtain that σ is the spectrum of GQ and we have (3.1).Q.E.D.

Now we shall prove the simple variational inequalities for effective masses ( reduced
masses ).

Theorem 3.2.Let km(z) be GQ, m = 1, 2.

16



1). Suppose that um,n = un, m = 1, 2, and h1,n ≤ h2,n for any n ∈ Z. Then

|s1,n| ≤ |s2,n|, µ±1,n ≤ µ±2,n. (3.3)

2). Suppose that s1,n ⊆ s2,n for any n ∈ Z and a+
1,N = a+

2,N for some N ∈ Z. Then

µ+
1,N ≤ µ+

2,N . (3.4)

Proof. 1). Introduce the function f(z) = Im(z1(k2(z))). This function is harmonic,
nonnegative in C+ and continuous in C̄+. Suppose the inequality

f(z) ≥ Im(z2(k2(z))) = y, z = x+ iy, y > 0. (3.5)

Then Im z1 ≥ Im z2 in the domain k2(C+) and

z′1(u) =
∂

∂v
Imz1(u) ≥ ∂

∂v
Imz2(u) = z′2(u), u ∈ R, u 6= un.

From this it follows the proposal of 1) because

|sm,n| =
∫ un

un−1

z′m(u)du, m = 1, 2, n ∈ Z,

zm(k) = a±m,n ± (k − un)2(1/2µ±m,n + o(1)), ±(k − un) ↓ 0.

From the representation (2.15) we obtain that

km(z) = z(1 + o(1)), z ∈ U(A) = {z : y > A|x|} , |z| → ∞.

But for any A there exists a constant R = R(A) > 0 such that km(U(A)) ⊃ {z : |z| > R}∩
U(2A), m = 1, 2. Hence zm(k) = k(1 + o(1)), k ∈ U(2A), |k| → ∞, and

z1(k2(iy))/iy = [z1(k2(iy))/(k2(iy))][k2(iy))/iy]→ 1, as y →∞.

From this it follows that f(iy) = y(1 + o(1)), as y →∞, and using the Herglotz theorem
we obtain (3.5).

2). From the Phragmen-Lindelof theorem (for our case see [9]) we have the inequality
v1(x) ≤ v2(x), x ∈ R. Then from the definition of the reduced mass we obtain

µ+
1,N = lim

x↑a+
1,N

v1(x)2

2(a+
1,N − x)

≤ lim
x↑a+

1,N

v2(x)2

2(a+
1,N − x)

= µ+
2,N . Q.E.D.

Lemma 3.3.Let k(z) be a GQ.
1). Suppose that Q0 <∞. For t > 0, t 6= |a±n |, n ∈ Z, introduce the functions

S(t, z) =
1

2

∑

|a±n |<t
[
µ+
n

z − a+
n

− µ−n
z − a−n

], f 2(t) =
1

π

∫ 2π

0
|k′(t exp(iϕ))− 1|2dϕ.
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Then ∫ ∞

0
tf 2(t)dt = d0 <∞, (3.6)

|k′(z)2 − 1− S(t, z)| ≤ πt(f 2(t) + 23/2f(t))

t− |z| , |z| < t. (3.7)

2). Let in addition γ0 <∞, R ≡ inf bnr
±
n > 0, and

∑
ln 6=0 b

−2
n <∞. Then

∑

n6=0

µ±n
|a±n |

<∞. (3.8)

Proof. From the Cauchy theorem about residues we obtain the equality

k′(z)2 − 1− S(t, z) =
1

2πi

∫

|a|=t

k′(a)2 − 1

a− z da,

and the inequality

|
∫

|a|=t

(k′(a)− 1)2 + 2(k′(a)− 1)

a− z da| ≤ πt(f 2(t) + 23/2f(t))

t− |z| .

and by (1.16) we have (3.6).
We have inequalities

(
∑

n6=0,µ±n<r
±
n

µ±n
|a±n |

)2 ≤ 2(
∑

ln 6=0

b−2
n ) (

∑

µ±n<r
±
n

µ±n
2

),
∑

n6=0,µ±n≥r±n

µ±n
|a±n |

≤
∑

µ±n≥r±n

µ±n r
±
n

R
.

From these inequalities and from the Theorem 1.4 we obtain the convergence (3.8). Q.E.D.
Now we prove the formulae for the reduced masses in the case of a quasimomentum

and some equalities.
Proof of the Theorem 1.5. 1) From (3.6) it follows that we can take the sequence

{tn}∞1 such that tn → ∞, f(tn) → 0 as n → ∞. From this and from (3.7) we obtain
(1.14).

2) The definition of kp and its represention (2.18) result in following asymptotics

k′(iy) = 1 +
p∑

0

Qm−1m(iy)−1−m +O(y−2−p), y →∞. (3.9)

Then for each term of the series in (1.14) we have

µ+
n

z − a+
n

− µ−n
z − a−n

=
p∑

m=0

[µ+
n (a+

n )m − µ−n (a−n )m]z−1−m + Fn(z)z−1−p,

Fn(z) =
µ+
n (a+

n )p+1

z − a+
n

− µ−n (a−n )p+1

z − a−n
.
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Suppose that ∑

n

|µ+
n (a+

n )m − µ−n (a−n )m| <∞, 0 ≤ m ≤ p, (3.10)

sup
y≥1

∑

n

|Fn(iy)| <∞. (3.11)

Then by (1.14) we obtain

k′(iy)2 = 1 +
1

2

p∑

m=0

∑

n

[µ+
n (a+

n )m − µ−n (a−n )m](iy)−1−m +O(y−2−p), (3.12)

y →∞. Hence we have (1.15) from the comparison of (3.9), (3.12).
Let us prove (3.10), (3.11). It is useful to note that from (1.11), (2.11) we have

µ±n < Cln, |µ−n − µ+
n | < Cl2n, n ∈ Z, for some C > 0. Hence

|µ+
n (a+

n )m − µ−n (a−n )m| < m|a+
n − a−n |am−1

n µ+
n + |µ+

n − µ−n |amn < Cl2n(m+ an)am−1
n ,

and

|µ
+
n (a+

n )p+1

iy − a+
n

− µ−n (a−n )p+1

iy − a−n
| ≤

|µ+
n (a+

n )p+1 − µ−n (a−n )p+1|/an + |µ+
n (a+

n )p−1 − µ−n (a−n )p−1| ≤ Cl2n(m+ 1 + an)2ap−2
n ,

and by (2.17), (1.12) we obtain Q+
p ≥ c‖l‖2

p/2 for some c > 0.
3) We can write kp = R+iJ , where J(x) = xpv(x), R(x) = xp(u(x)−x+Pp(x)), x ∈

R. For the domain D = {z : R1 < |z| < R2, y > 0} , 0 < R1 < R2 <∞, we have the Green
formula

πI2
p (D) = −

∫

R1<|x|<R2

R′(x)J(x)dx+ (R2b
′(R2)−R1b

′(R1))/2 (3.13)

where the function

b(t) =
∫ π

0
J2(t exp(iϕ))dϕ, t > 0,

and we have got the equality

−R′(x)J(x) = xpv(x)



(p+ 1)xp − pxp−1u(x)−

p−1∑

0

Qm(p− 1−m)xp−2−m



 , x ∈ R.

Introduce the set σN = σ ∪ (−∞, N) ∪ (N,∞) and the variables corresponding σN

denote by upper index N. It is well known (see [9]) that

vN(x)↗ v(x), |uN(x)| ↗ |u(x)|, N →∞, x ∈ R.
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From this and from Levy’s theorem it follows that

QN,+
m ↗ Q+

m,
∫
vN(x)|uN(x)||x|mdx↗

∫
v(x)|u(x)||x|mdx,

as N →∞, and by (2.18) we obtain that kNp converges to kp uniformly on compact sets
from C \ σ. We also have from (2.18) that

kNp (z) = O(1/z), (kNp (z))′ = O(1/z2), as |z| → ∞.
Hence if R2 →∞, R1 → 0 we obtain (1.16) for the case σN . Then by Fatou theorem

dp/2 ≤ (1 + p)Q2p −
p

π

∫
x2p−1u(x)v(x)dx−

p−1∑

0

(p− 1− n)QnQ2p−2−n.

But from this and from (3.13) we obtain that the limit a = lim tb′(t) ≥ 0, as t→∞,
exists.Let us prove that a = 0. Suppose not.Then for some C > 0 we have tb′(t) ≥
C, t >> 1. Hence b(t)→∞, as t→∞. Define the function

f 2(t) =
∫ π

0
|k′p(t exp(iϕ))|2dϕ, t > 0,

where by the definition of dp we have

2

π

∫ ∞

0
tf 2(t)dt = dp <∞.

There is a sequence tn → ∞, such that tnf(tn) → 0, as n → ∞. Suppose not. Then
for some c > 0 we have tf(t)2 > c/t for large t and dp = ∞. For this sequence tn we
obtain

|kp(tn exp(iϕ))| ≤ |kp(itn)|+ tn

∫ π

0
|k′p(tn exp(iφ))|dφ ≤ |kp(itn)|+ πtnf(tn)→ 0,

as n→∞, uniformly on φ ∈ [0, π], because by (2.18) kp(iy)→ 0, as y →∞. So

b(tn) ≤
∫ π

0
|kp(t exp(iϕ))|2dϕ,→ 0, as n→∞.

4). For the Lyapunov function F (z) = cos k(z), z ∈ C, there is the estimate |F (x)| ≤
cosh v(x), x ∈ R. Then we obtain

∫ log+ |F (x)|
1 + x2

dx ≤
∫ v(x)

1 + x2
dx <∞.

Hence the functions F (z) ± 1 are entire functions of Cartwright class. Using the
properties of this class ( see [7]) and taking into account the fact that zeros of the function
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F (z) − 1 is the set
{
a±2n, n ∈ N

}
( if a−2n = a+

2n then the multiplicity equals to two) we
obtain

F (z)− 1 = exp(iaz)V.P.
∏

n∈Z,q=±
(1− z

aq2n
), z ∈ C, (3.14)

where a ∈ C and the multiplication in (3.14) converges uniformly on any compact set of
the complex plane. Introduce the function f+(z) = F ′(z)/(F (z)−1). From the Weierstrass
theorem and from (3.14) we have

f+(z) = ia+ V.P.
∑

m∈Z,q=±

1

z − aq2m
, (3.15)

where the series converges uniformly on any compact set lying in C \
{
a±2n

}
. Using (3.15)

and the equality ImF (x) = 0, x ∈ R, we have a = 0. From F (z) = cos k(z), z ∈ C, we
obtain z′(k(z))F ′(z) = − sin k(z) and hence

−F (z) = z′′(k(z))F ′(z), F (a±n ) = (−1)n, z = a±n . (3.16)

From (3.15), (3.16) it follows that for z = a±2n+1

f+(z) = F ′(z)/2F (z) = −± µ±2n+1/2 = V.P.
∑

m∈Z,q=±

1

z − aq2m
.

Using f−(z) = F ′(z)/(F (z) + 1) we have (1.17) for µ±2n. Q.E.D.
Let γ2 = max {2, γ0} . We shall prove ”the global estimates” for GQ.
Theorem 3.4. Let a GQ k satisfy the Condition A and the Condition 1 for some

p ≥ 0.
1). Suppose p = 0. Then

‖l‖2/8 ≤ Q0 = d0/2 ≤
1

π
‖l‖ ‖h‖ ≤ 2

π
‖h‖2 ≤ πγ2 µ

2
0, (3.17)

µ2
0 ≤ 2A0d0, d0 ≤ 4γ2A0‖l‖2.

2). Suppose p ≥ 1. Then

2−4−2p‖l‖2
p ≤ Q2p ≤

1

π
‖l‖p‖h‖p ≤

2

π
‖h‖2

p ≤ 2π(1 + γ1)1+2pµ2
p, (3.18)

µ2
p ≤ 2Apdp, dp ≤ 2(1 + p)Q2p, (3.19)

Q2p ≤ 4(1 + p)Ap (1 + γ1)1+2p ‖l‖2
p. (3.20)
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Proof. 1). Prove successively all inequalities. Take any gap gn. From (2.9) we obtain
v(x) ≥ wn(x), x ∈ gn. Integrating this inequality on gn and adding in n we have first
inequality. In (1.16) there is second equality.

In (1.12) we have the inequality ln ≤ 2hn and this gives

πQ0 =
∫
v(t)dt ≤

∑
hnln ≤ ‖l‖ ‖h‖ ≤ 2‖h‖2.

Let Yn = minµ±n . By (1.13) we have ln ≤ 2Yn. Hence

lnYn = min
{
lnµ
±
n

}
= min

q=±
{µqnsqnln/sqn} ≤ γ0(µ−n s

−
n + µ+

n s
+
n ),

and then
lnYn ≤ min

{
2Y 2

n , γ0(µ−n s
−
n + µ+

n s
+
n )
}
≤ γ2

∑

q=±
µqn min(µqn, s

q
n).

From this inequality and from 2h2
n ≤ π2lnYn (which follows from (1.12)) we obtain

‖h‖2 ≤ π2

2

∑
lnYn ≤

γ2π
2

2

∑

q=±,n
µqn min(µqn, s

q
n) =

γ2π
2

2
µ2

0.

Using (2.23) we have the estimate

µ2
0 =

∑

q=±,n
µqn min(µqn, s

q
n) ≤ 2A0d0.

By (3.17)

π2Q2
0 ≤ ‖l‖2‖h‖2 ≤ ‖l‖2γ2π

2

2
µ2

0 ≤ ‖l‖2γ2π
22A0Q0.

From this estimate it is easy to get the necessary inequality.
2). Consider the case gn ⊂ R+ (the cases gn ⊂ R− or 0 ∈ gn are proved by analogy).

From (2.9) it follows that

∫

gn
t2pv(t)dt ≥

∫

gn
t2pwn(t)dt ≥

∫ b

0

√
b2 − x2(x+

a+
n + a−n

2
)2pdx ≥

b2π

4
(
a+
n + a−n

2
)2p ≥ l2nπ2−4−2pa2p

n ,

where 2b = ln. From this we have first inequality. By (1.12)
∫

gn
t2pv(t)dt ≤ a2p

n lnhn ≤ 2a2p
n h

2
n, n ∈ Z.

Hence the three inequalities in (3.18) are proved. We have ln ≤ γ1 max± r±n . There are
two cases. First, let ln ≤ γ1r

−
n , then an ≤ (1 + γ1)|a−n |. By (1.12), (1.13)
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h2
n ≤ π2lnµ

−
n /2 ≤ π2µ−n min

{
µ−n , γ1r

−
n /2

}
≤ π2(1 + γ1)µ−n min

{
µ−n , r

−
n

}
.

Hence
a2p
n h

2
n ≤ π2(1 + γ1)1+2p(a−n )2pµ−n min

{
µ−n , r

−
n

}
. (3.21)

Second, let ln ≤ γ1r
+
n , then by analogy

a2p
n h

2
n ≤ π2(1 + γ1)1+2p(a+

n )2pµ+
n min

{
µ+
n , r

+
n

}
. (3.22)

By (3.21), (3.22)

a2p
n h

2
n ≤ π2(1 + γ1)1+2p

∑

q=±
(aqn)2pµqn min(µqn, r

q
n).

From this it is easy to prove last estimate in (3.18).
To prove (3.19) we use (2.21) and then

µ2
p =

∑

q=±,n∈Z

(aqn)2pµqn min(µqn, r
q
n) ≤ 2Apdp.

Last estimate in (3.19) follows from (1.16).
We shall prove (3.20). By (3.18), (3.19)

π2Q2
2p ≤ ‖l‖2

p‖h‖2
p ≤ ‖l‖2

pπ
2(1 + γ1)1+2pµ2

p ≤ ‖l‖2
pπ

2(1 + γ1)1+2p4Ap(1 + p)Q2p.

From this estimate we obtain (3.20). Q.E.D.

4 . Asymptotics

Let < A,B > be the distance between sets(numbers) A,B. Introduce the numbers ξ > 0,

ξ±n = min(ξ, r±n /2), ξn = min
±
ξ±n , B

±
n = a±n ± ξ±n , f±n =

1

π

∫

gn

v(t)dt

|t− a±n |
, n ∈ Z,

the domains Zn(ξ) = {B−n < Rez < B+
n } , gn(ξ) = {|Imz| < ξ}∩Zn(ξ), and the functions

J(p, ξ, z) =
2

π

∫

2|t−z|<z

|t|pv(t)dt

|t− z|+ ξ
, fp(z) =

kp(z)

zp
.

We present the theorem.
Theorem 4.1.Let k be a GQ. Suppose that Q+

p <∞ for some p ≥ 0.
1). Let < z, g >≥ ξ > 0. Then

|kp(z)| ≤ 2Q+
p /|z|+ J(p, ξ, z), (4.1)
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and J(p, ξ, z)→ 0, as |z| → ∞.
2). Let z ∈ gn(ξ) for some ξ ∈ (0, bn). Suppose Pp(x)′ < 1, z ∈ gn. Then

|fp(z)| ≤ hn +
2Q+

p

(bn − ξ)1+p
+ (bn − ξ)−p


apn max

±
f±n + max

x∈{a±n ,B±n }
J(p, ξn, x)


 , (4.2)

where
2hn ≤ π(f+

n + f−n ), f±n ≤
√

2lnµ±n , (4.3)

f+
n + f−n ≤ min

{√
4ln(µ−n + µ+

n ), ln(1 +
Q0

min±(r±n )2
)

}
. (4.4)

Remark. If p ≥ 0, |n| >> 1, then Pp(x)′ < 1, x ∈ gn. Furthermore, if a GQ k satisfy
the Condition A then Pp(x)′ < 1 for any x 6= 0.

Proof. 1) By (2.18) and by the inequality 2|z − t| ≥ ξ + |z − t| if < z, g >≥ ξ we have

|kp(z)| ≤ 1

π

∫

2|t−z|<|z|

|t|pv(t)dt

|t− z| +
1

π

∫

2|t−z|>|z|

|t|pv(t)dt

|t− z| ≤ 2Q+
p /|z|+ J(p, ξ, z).

Since Q+
p <∞ we obtain that J(p, ξ, z)→ 0, as |z| → ∞.

2) By the maximum principle enough to estimate fp on the boundary of Zn(ξ). First
we consider fp(z) when z belong to the upper side of the slit gn (the case of the lower side
is considered by analogy). By the definition of kp, fp we have

0 ≤ Imfp(x+ i0) = v(x) ≤ hn, x ∈ gn. (4.5)

Now we estimate the real part of fp(x+ i0), x ∈ gn. We see Refp(x+ i0)′ = 1−Pp(x)′ > 0.
Then the function −Refp(x + i0) increases in x ∈ gn and supx∈gn |Refp(x + i0)| =

max± |Refp(a
±
n )|. Now we estimate the function fp(z), Rez = B±n . By (2.18)

|fp(z)| ≤ 1

π|B±n |p
∫ |t|pv(t)dt

|t−B±n |
, Rez = B±n .

Suppose x ∈ {a±n , B±n } . Then

|x|p|fp(x)| ≤ 1

π

∫

2|t−x|>|x|

|t|pv(t)dt

|t− x| + apnf
±
n +

1

π

∫

{2|t−x|<|x|}\gn

|t|pv(t)dt

|t− z|
≤ 2Q+

p /|x|+ apnf
±
n + J(p, ξn, z).

since 2|t− x| ≥ |t− x|+ ξn if t /∈ gn and |a±n − t| ≤ |B±n − t| if t ∈ gn. By (2.16), (2.17)
we have the first inequality in (4.3). By (2.9) we obtain

f±n ≤
√

2lnµ±n
π

∫

gn

1

wn(t)
dt ≤

√
2lnµ±n .
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Using the estimates for v from (2.10), (2.16) we obtain (4.4). Q.E.D.
We shall consider asymptotics for the Hill operator. We introduce the numbers

πvn =
∫

gn
v(t)dt, Tn =

∑

m6=0

vn+m(mr)−2, πWn =
∫

R\gn

v(t)dt

wn(t)2
, n ∈ Z,

and the function

Fn(x) =
1

π

∫

R\gn

v(t)dt

wn(t)|t− x| , n ∈ Z, x ∈ gn.

We present the theorem.
Theorem 4.2.Let k(z) be the quasimomentum of the Hill operator and V ∈ L1(0, 1).

Then for any x ∈ gn, n ∈ Z, the statements (1.7), (1.8) are valid. Furthermore

max {Wn, Fn(x)} < Tn ≤ Q0r
−2, (4.6)

Tn ≤ Tn−2, (4.7)

v(x) ≤ wn(x)(1 + Tn−2). (4.8)

Proof. We estimateWn, the case of Fn is considered by analogy. We have the inequality
wn(t)2 ≥ m2r2, t ∈ gn+m, and hence

Wn =
1

π

∑

m6=n

∫

gm

v(t)dt

wn(t)2
≤ 1

π

∑

m6=n

∫

gm

v(t)dt

(m− n)2r2
= Tn. (4.9)

By |m| ≥ 1 we have Tn ≤ Q0r
−2. In the case of the Hill operator

ln = Ln/(a
+
n + a−n ) ≤ Ln/2nr, n > 0. (4.10)

By (1.10), (4.9)

v(x) = wn(x)(1 + Fn(x)) ≤ wn(x)(1 + Tn), x ∈ gn, n ∈ Z. (4.11)

We see from (4.10), (4.11), (4.6) that

vn ≤
1

π

∫

gn
wn(t)T 0dt ≤ (ln/2)2T 0/2 ≤ T 0L2

n

8(2nr)2
.

Hence

Tn =
∑

m6=n,n 6=0

vn−m(mr)−2 ≤
∑

m6=n,m6=0

T 0L2
m

2(4m(n−m)r2)2
≤ 3T

2π2

∑

m6=n,m6=0

1

m2(m− n)2
,

and by
n2

m2(m− n)2
= (

1

m− n −
1

m
)2,

∑

m>0

1/m2 = π2/6,
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we have (4.7). By (4.6), (4.7), (4.11), (1.10), (1.11) we obtain (1.7),(1.8). Q.E.D.
Introduce the function

A(β, ξ, z) = 2

{
ξ−1 + ξ−

1
β (
β − 1

r
)1− 1

β

}
, 1 ≤ β <∞,

A(β, ξ, z) = 2

{
ξ−1 +

1

r
log(1 +

|z|
2ξ

)

}
, β =∞, ξ > 0.

We present
Theorem 4.3.Let k be the quasimomentum for the Hill operator and p ≥ 0, ξ >

0, Q+
p <∞, z ∈ C, β ≥ 1. Then

πJ(p, ξ, z) ≤ T 0A(β, ξ, z)





∑

2<gn,z>≤|z|
apβn l

2β
n





1
β

≤ T 0A(β, ξ, z)





∑

2<gn,z>≤|z|
a(p−2)β
n L2β

n





1
β

.

(4.12)
Proof. Introduce the function

B(β, ξ, z) =
∑

2<gn,z>≤|z|
(ξ+ < gn, z >)−β1 , 1/β1 + 1/β = 1,

and a number πQ(p, n) =
∫
gn
|t|pv(t)dt. We have

J(p, ξ, z) ≤ 2
∑

2<gn,z>≤|z|
(ξ+ < gn, z >)−1Q(p, n) ≤ 2(

∑

2<gn,z>≤|z|
Q(p, n)β)1/β B(β, ξ, z)1/β1 .

We have to estimate B. We obtain

B(β, ξ, z) ≤
∑

2|n|≤|z|
(ξ + |n|r)−β1 ≤ 2

{
ξ−β1 +

∫ |z|/2r

0
(ξ + |x|r)−β1dx

}

and

B(β, ξ, z) ≤ 2

{
ξ−β1 +

ξ1−β1

r(β1 − 1)

}
, 1 ≤ β <∞,

B(β, ξ, z) ≤ 2

{
ξ−1 +

1

r
log(1 +

|z|
2ξ

)

}
, β =∞,

and hence B ≤ Aβ1 . By (1.7)

πQ(p, n) ≤ apn

∫

gn
v(t)dt ≤ apnhnln ≤ apnT

0l2n/2 ≤ ap−2
n T 0L2

n/2. Q.E.D.
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5 . Applications

In this chapter we shall apply the previous results for the case both the Hill operator and
the Dirac operator with periodic coefficients.

First we consider the Hill operator H = −d2/dt2 + V (t) in L2(R) where V is 1-
periodic real potential and V ∈ L1(0, 1). Let ϕ(t, z), θ(t, z) be the solutions of (1.2),
satisfying ϕ′t(0, z) = θ(0, z) = 1, ϕ(0, z) = θ′t(0, z) = 0, and the Lyapunov function
F (z) = (ϕ′t(1, z)+θ(1, z))/2. The sequence 0 = A+

0 < A−1 ≤ A+
1 < ..... is the spectrum of

equation (1.2) with periodic boundary conditions of period 2, i.e. f(x+2) = f(x), x ∈ R.
Here equality means that A−n = A+

n is a double eigenvalues. We remind that a±n =√
A±n ≥ 0, a±−n = −a∓n , n ∈ Z+. Essentially that F (a±−n) = (−1)n, n ∈ Z. The lowest

eigenvalue A+
0 is simple, F (a+

0 ) = 1 and the corresponding eigenfunction has period
1. The eigenfunction corresponding to A±n have period 1 when n is even and they are
antiperiodic,f(x+ 1) = −f(x), x ∈ R, when n is odd. We have the well-known estimate

A±n = (πn)2 +
∫ 1

0
V (t)dt+O(1/n2), n→∞. (5.1)

Later on we need the simple relations

µ±n = ±2a±nM
±
n , M±

n = M∓
−n, µ±n = µ∓−n, n ∈ N, (5.2)

Ln

2
√
A+
n

≤ ln ≤
Ln√
A+
n

, n ∈ N. (5.3)

There are some estimates for ln, hn, µ
∓
n , v, in Section 2 and the some series for the

general quasimomentum in Section 3. For the Hill operator we can rewrite these results
more simple.

Corollary 5.1.1).Let k be GQ for the Hill operator and V ∈ L1(0, 1). Then

k′(z)2 = 2E
∑

n≥0,q=±

M q
n

E − Aqn = 1 + 2
∑

n>0,q=±

AqnM
q
n

E − Aqn , (5.4)

the series converges absolutely and uniformly on compact sets. The effective masses are
expressed by (1.4).

2).Let a potential V ∈ W p
2 (R/Z) , p ≥ 0. Then

∑

n≥1

[(A+
n )1+pM+

n +(A−n )1+pM−
n ] = (1+2p)Q2p+

p−1∑

0

(1+2m)(p−m−1

2
)Q2mQ2(p−1−m), (5.5)

and the series converges absolutely. If p = 0(p = 1) then we have (1.5) ((1.6)).
Proof. By (1.14), (5.2), (5.3)
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2(k′(z)2 − 1) =
∑

n∈Z

(
µ+
n

z − a+
n

− µ−n
z − a−n

) =
∑

q=±,n>0

q[
µqn

z − aqn +
µq−n

z − aq−n
] =

∑

q=±,n>0

qµqn[
1

z − aqn −
1

z + aqn
] =

∑

n>0,q=±

4AqnM
q
n

E − Aqn .

and hence

(k′(z)2 − 1)/2 =
∑

n>0,q=±

(Aqn − E + E)M q
n

E − Aqn =

−
∑

n>0,q=±
M q

n + E
∑

n>0,q=±

M q
n

E − Aqn = M+
0 −

1

2
+ E

∑

n>0,q=±

M q
n

E − Aqn
because

∑
n≥0,q=±M

q
n = 1/2 (see (1.14) at z = 0 ). Thus we obtain (5.4).

By (1.17), (5.2) we have (1.4) by analogy.
2). By (5.2)

A ≡
∑

q(aqn)1+2pµqn =
∑

n>0

q[(aqn)1+2pµqn + (aq−n)1+2pµq−n] =

∑

n>0

q(aqn)1+2pµqn[1− (−1)1+2p] = 4
∑

n>0

(Aqn)1+pM q
n, p ≥ 0.

Using (1.15), (5.2) we obtain

A = 4(1 + 2p)Q2p + 2
2(p−1)∑

0

(n+ 1)(2p− 1− n)QnQ2p−2−n =

4(1 + 2p)Q2p + 2
p−1∑

0

(2m+ 1)(2p− 1− 2m)Q2mQ2(p−1−m).

By (3.17), (5.5) we have (1.5) and by analogy we get (1.6). Q.E.D.
Remind that for a sequence f = {fn}∞1 and a number p we introduced a norm ‖f‖2

±,p =∑
n>0(A±n )p|fn|2. If we define a number η = supn>0 {A+

n /A
−
n } > 1, then we have simple

estimates ‖f‖2
−,p ≤ ‖f‖2

+,p ≤ ηp‖f‖2
−,p. It is necessary to note that for an even sequence

f = {fn}∞−∞ , i.e. such that f−n = fn, n = 1, 2, 3, ..., f0 = 0, we have the equalities
2‖f‖2

±,0 = ‖f‖2, 2‖f‖2
+,p = ‖f‖2

p.
Now we present the theorem.
Theorem 5.2.Let k be a quasimomentum of the Hill operator and V ∈ L1(0, 1). Then

1

16
‖L‖2

+,−1 ≤ Q0 = d0/2 ≤
2

π
‖h‖2, (5.6)

‖h‖2
±,0 ≤ 4π2‖M±‖2

±,1 ≤ π2B0d0, (5.7)

d0 ≤ 2B0 ‖L‖2
±,−1. (5.8)
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Suppose a potential V ∈ W p−1
2 (R/Z), p ≥ 1. Then

2−5−2p‖L‖2
+,p−1 ≤ Q2p ≤

4

π
‖h‖2

+,p, (5.9)

‖h‖2
±,p ≤ 4π2‖M±‖2

±,1+p ≤ π2Bpdp/4, (5.10)

dp ≤ 2(1 + p)Q2p ≤ 8(1 + p)Bp‖L‖2
+,p−1. (5.11)

Proof. By (5.3), (3.17)

d0/2 = Q0 ≥
2

8

∑

n>0

l2n ≥
1

16

∑

n>0

L2
n/A

+
n ,

and again by (3.17) we have (5.6). Now we shall prove (5.7). By (5.2), (1.12)

h2
n ≤ π2(µ±n )2 ≤ 4π2A±n (M±

n )2, n ∈ N. (5.12)

Combining (5.12) with (2.35) we have (5.7). We see from (3.17), (5.3), (5.7) that

π2Q2
0 ≤ ‖h‖2‖l‖2 ≤ 2‖h‖2

+,0‖l‖2 ≤ 4π2B0d0‖l‖2
+,0 ≤ 4π2B0d0‖L‖2

±,−1,

and using 2Q0 = d0 we have (5.8). The estimates (5.6)-(5.8) have been proved.
We rewrite (3.18) in the form 22−4−2p‖l‖2

+,p ≤ Q2p ≤ 4‖h‖2
+,p/π, and by (5.3)

2−5−2p‖L‖2
+,p−1 ≤ Q2p ≤

4

π
‖h‖2

+,p,

From (5.12) it follows that

‖h‖2
±,p ≤ 4π2

∑

n>0

(A±n )p|M±
n |2A±n ≤ 4π2‖M±‖2

±,p+1,

and by (2.35) 4‖M±‖2
±,p+1 ≤ Bpdp.

Now we shall prove (5.11). We have first inequality of (5.11) in (3.19). It is necessary
to prove the second. By (3.18) and by the first estimate of (5.11) we obtain that

π2Q2
2p ≤ 4‖h‖2

+,p‖l‖2
+,p ≤ 4‖L‖2

+,p−1π
2Bpdp ≤ 8‖L‖2

+,p−1π
2Bp(1 + p)Q2p,

and hence we have (5.11). Q.E.D.
Now we shall find asymptotics k(z) as |z| → ∞. We consider only the case p = 0.

Suppose ξ > 0 and < z, g >≥ ξ. By (4.12) at β =∞ we have

πJ(0, ξ, z) ≤ 2T 0

{
ξ−1 +

1

r
log(1 +

|z|
2ξ

)

}
sup

2<z,gn>≤|z|
l2n, (5.13)
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and since
2|a−n + a+

n | ≥ |z|, as 2 < z, gn >≤ |z|, (5.14)

and by (5.3)

sup
2<z,gn>≤|z|

l2n ≤
4

|z|2 sup
2|a−n |≥|z|

L2
n, (5.15)

then we see from (5.13)- (5.15) that

J(0, ξ, z) ≤ J1(ξ, z)J2(ξ, z)/|z|2, (5.16)

πJ1(ξ, z) = 8T 0 sup
4A−n≥|z|2

L2
n, J2(ξ, z) = ξ−1 +

1

r
log(1 +

|z|
2ξ

).

Then we obtain
|k(z)− z| ≤ 2Q0/|z|+ J1(ξ, z)J2(ξ, z)/|z|2. (5.17)

Now we consider the case < z, g >≤ ξ. Let m >> 1 and such that r±n ≥ π/2 as
|n| ≥ m. We take 4ξ < π and z ∈ {< z, gn >≤ ξ} . By (1.10 ), (5.3)

2hn ≤ T 0ln ≤
T 0Ln
|a+
n + a−n |

≤ T 0Ln
|z| . (5.18)

From (5.18), (1.10) it follows that

f±n ≤ T 0ln ≤ T 0Ln/|z|, (5.19)

and by (5.16) J(0, ξ, x) ≤ 4J1(ξ, |z|/2)J2(ξ, 2|z|)/|z|2, x ∈ {a±n , a±n ± ξ} . Finally, we obtain

|k(z)− z| ≤ (4Q0 + T 0Ln)/|z|+ 4J1(ξ, z/2)J2(ξ, 2z)/|z|2.
Now we shall consider some estimates about the velocity Un, n ∈ Z. Let the spectral
band of the quasimomentum for the Hill operator s(n) = [a(n), b(n)], rn = |s(n)|, n ∈ Z.
Suppose the point kn such that Un = z′(kn) = max z′(k), z(k) ∈ s(n). We present

Corollary 5.3.Let V ∈ L1(0, 1). Then

∑
r2
n(1− U−1

n )2 ≤ 4d0.

Proof. Let 2xn = a(n) + b(n) and the domain Dn = {Rez ∈ s(n)} , n ∈ Z. Then we
have

π(rn/2)2|k′(xn)− 1|2 ≤
∫

Dn
|k′(z)− 1|2dxdy

and by |k′(xn)− 1| ≥ |1−U−1
n | we obtain (rn/2)2|1−U−1

n |2 ≤ I2
0 (Dn). Summing we have

the estimate.Q.E.D.
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Now we shall consider the Dirac operator HD (with periodic coefficients) in the Hilbert
space H = L2(R)⊕ L2(R)

HD =

(
0 1
−1 0

)
d

dt
+

(
V1(t) 0

0 V2(t)

)
.

Later on we shall use the Dirac equation

f ′2 + V1f1 = zf1, −f ′1 + V2f2 = zf2, (5.20)

where V1, V2 are real 1-periodic functions in t ∈ R, V1, V2 ∈ L1(1, 0). For a vector -function
f(t) = {f1(t), f2(t)} ∈ H we consider the following boundary conditions

f(0) = f(1), (5.21)

f(0) = −f(1). (5.22)

The boundary value problem (5.20), (5.21) is called by periodic and the boundary
value problem (5.20), (5.22) is called by antiperiodic. We denote the eigenvalues of the
periodic problem by a±2n and the eigenvalues of the antiperiodic problem by a±2n+1, n ∈ Z.
It is well- known that

... < a−2n−1 ≤ a+
2n−1 < a−2n ≤ a+

2n < ....., (5.23)

a±n = n(π + o(1)), |n| → ∞.
Let ϕ(t, z) = (ϕ1(t, z), ϕ2(t, z)), θ(t, z) = (θ1(t, z), θ2(t, z)) be the solutions of (5.20)

satisfying ϕ(0, z) = (0, 1), θ(t, z) = (1, 0).
We introduce the Lyapunov function for the Dirac equation 2FD(z) = ϕ1(1, z) +

θ2(1, z), z ∈ C. The properties of the Lyapunov function for the Dirac operator and for
the Hill operator are similar. But there is one exception.The function FD(z) is not even
in z ∈ C. We have F (a±−n) = (−1)n, n ∈ Z. The spectrum of HD is purely absolutely
continuous and is given by the set ∪sn, where a interval sn = [a+

n−1, a
−
n ]. These intervals

are separated by gaps gn = (a−n , a
+
n ). If a gap gn is degenerate, i.e. gn = ∅ then the

corresponding segments sn, sn+1 merge.The spectrum of HD falls into the components
which are called spectral bands. Now we define the quasimomentum function k(z) =
arccosFD(z), z ∈ Z = C \ ḡ, g = ∪gn. The function k(z) is analytic and moreover k is a
conformal map from Z onto the quasimomentum slit plane K = C\∪Γn where an excised
slit is given by Γn = {Rek = πn, |Imk| ≤ hn} , hn ≥ 0, n ∈ Z. A lot of estimates for the
Dirac operator repeat corresponding estimates for the Hill operator.
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