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Liouville’s theorem in conformal geometry

W. Kühnel and H.-B. Rademacher

Abstract: Liouville’s theorem states that all conformal transformations of En and Sn

(n ≥ 3) are restrictions of Möbius transformations. As a generalization, we determine

all conformal mappings of semi-Riemannian manifolds preserving pointwise the Ricci
tensor. It turns out that, up to isometries, they are essentially of the same types as in

the classical case but the metric may be different.

MSC 2000: 53A30, 53B30, 53C50

In two dimensions conformal mappings are nothing but holomorphic functions
between two open parts of the complex numbers. In higher dimensions, the sit-
uation is much more rigid. The classical theorem of Liouville [28] states that a
conformal mapping between two open parts of Euclidean 3-space is the compo-
sition of a similarity and an inversion. This work was motivated by conformal
maps in carthography. Lie [27] generalized this to the case of Euclidean n-space,
for expositions in textbooks see [34, p.173] and [2, Thm.A.3.7], other references
are [30], [17], [13] and, under the assumption of minimal possible regularity, [32],
[4]. In a slightly modified form it holds also in the case of pseudo-Euclidean n-
space of arbitrary signature, see [15], [35, p.209]. It is also well known that the
conformal mappings of (pseudo-)Euclidean space are precisely those preserving
the sets of hyperspheres and hyperplanes. This aspect of Liouville’s theorem is
emphasized in [24], [25], [3].

In this note we point out a more general version of Liouville’s theorem in the con-
text of semi-Riemannian geometry. It turns out that an analogous theorem holds
for arbitrary conformal mappings preserving pointwise the Ricci tensor. Particu-
lar cases are the flat case (pseudo-Euclidean space) and the Ricci-flat case (special
Einstein spaces). In any case we have the same type of phenomenon, sketched
in [11]: Up to isometries, the mapping is necessarily of one of the following three
types:

1. a similarity (or dilatation) which fixes one point or limit point,
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2. an inversion sending one point or limit point to infinity,

3. a special type of a transformation with a parallel isotropic vector field as
the gradient of the conformal factor.

In the ordinary flat Minkowski space R
4
1 = {(u, v, x, y)} with the metric g =

−2dudv+u2(dx2 +dy2) a combination of a similarity with a boost isometry leads
to a specific homothety of type 1’ which fixes a null geodesic and which was in-
vestigated in more generality by Alekseevskii [1]. A simple example for type 3
is the mapping F (u, v, x, y) = (− 1

u
, v + u

2
(x2 + y2), ux, uy). It is conformal with

F ∗g = 1
u2 g. The gradient of the function u is the null vector ∂

∂v
. In General

Relativity type 3 occurs also for pp-waves, see [29], [23]. In flat Minkowski space
it can also be defined as a combination of a translation with two different inver-
sions, compare [15]. Type 1 and type 2 occur also on cones where the limit points
need not be part of the manifold. Normally, the apex of the cone is a singularity.
Only in a flat space the apex can be a removable singularity, compare Corollary
2. A special example for type 1 is the flat Lorentzian warped product metric
ds2 = −dr2 + r2ds2

−1 where ds2
−1 denotes a 3-dimensional compact Riemannian

manifold of constant negative curvature. The mapping F (r, x) = (cr, x) is such
a similarity. By the transformation r = et the metric can also be written in the
form ds2 = e2t(−dt2 + ds2

−1). This is called the expanding hyperbolic spacetime in
[9]. The types 1 and 3 occur also as members of 1-parameter groups generated
by conformal vector fields. However, in this paper we focus on the point transfor-
mations (or just one conformal change of the metric) because Liouville’s theorem
does also.

The analysis and the classification of these cases is based on an ODE reduction of
the differential equation Ricg = Ricg for the two Ricci tensors of two conformally
equivalent metrics g and g. Global results about complete spaces admitting such
conformal mappings were given in [10] and in our previous paper [19]. Here the
results are semi-local in some sense because only the homotheties can be defined
on a complete space.

Notations: Let (M, g) be an n-dimensional semi-Riemannian manifold with a
metric tensor g of arbitrary signature (k, n − k). A conformal diffeomorphism
f : (M, g) → (M, g) is a mapping preserving the angles (or the orthogonality)
between any two directions and the type (space-like or time-like) of vectors. An
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equivalent formulation is that the induced metric f∗g is everywhere a positive
multiple of g. It is convenient to introduce this positive factor as ϕ−2 with a
function ϕ:M → IR+. So on M we can consider two conformally equivalent
metrics g and g = ϕ−2g. Such a transformation f is called an isometry if ϕ = 1,
it is called a homothety or similarity if ϕ is constant. The classical case of a
dilatation in Euclidean space is the mapping x 7→ cx with a real constant c,
the standard inversion is the mapping x 7→ x/||x||2, other inversions are the
mappings x 7→ cx/||x||2 for a real constant c. Ric or Ricg denotes the Ricci
tensor of the metric g. By definition Ric(X, Y ) is nothing but the trace of the
transformation R(−, X)Y where R denotes the curvature tensor of type (1,3).
Note that the Ricci tensor is invariant under scaling, i.e., Riccg = Ricg for any
positive constant c. Let ∇ denote the Levi-Civita connection induced by g. For
any given smooth function ϕ on (M, g) let ∇ϕ denote the gradient of ϕ, ∇2ϕ
denotes the Hessian (0,2)-tensor, ∆ϕ = traceg∇

2ϕ is the Laplacian of ϕ. The
expression (∇2ϕ)0 = ∇2ϕ − ∆ϕ

n
· g denotes the traceless part of the Hessian. A

conformal vector field V is generated by a local 1-parameter group of conformal
mappings. V is conformal if and only if LV g = 2ψ · g for a real function ψ.
By the equation L∇ϕg = 2∇2ϕ a gradient field ∇ϕ is conformal if and only if
(∇2ϕ)0 = 0. This equation has been studied in many papers. One crucial case is
the equation ∇2ϕ = ±ϕ · g, compare [36], [18]. For general facts about conformal
transformations of semi-Riemannian manifolds we refer to the monographs [8]
and [16].

Definition: We call a non-isometric conformal diffeomorphism f : (M, g) →
(M, g) a Liouville mapping if the equation Ricf∗g = Ricg holds as a pointwise
identity on M . If M = M then we call a conformal transformation g 7→ g a Liou-
ville transformation of the metric if the equation Ricg = Ricg holds everywhere.
A conformal vector field inducing a 1-parameter group of Liouville mappings is
called a conformal Liouville vector field (an example of type 3 will given at the
end of the paper). A Liouville vector field V is a particular case of what is called
a Ricci collineation LVRic = 0, compare [22]. If in a spacetime the stress-energy
momentum tensor is preserved by a certain Liouville mapping then the Einstein
field equations are also preserved since Ricg = Ricg implies Sg = Sg. This gives
a certain conformal interpretation of these equations even if they are not confor-
mally invariant in general. In the vacuum case this reduces to the statement that
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any conformal mapping between vacuum spacetimes is a Liouville mapping.

Obviously, the identity map between (M, g) and (M, cg) is a Liouville transforma-
tion if c is constant. Moreover, any homothetic mapping is a Liouville mapping.
Therefore, throughout this paper we focus on the case of non-homothetic confor-
mal mappings. The homothetic case was studied in [1] and [7]. In [11] a Liouville
mapping is called a quasi-similarity, a Liouville transformation is called a quasi-
homothety. We prefer our terminology because it is the aim of the present paper
to show that all these considerations are in fact generalizations of Liouville’s
theorem in conformal geometry.

Key example: If we look at Euclidean space we find that there are translations
and inversions simultaneously. Normally we describe inversions by polar coordi-
nates. So it is instructive to look at translations in polar coordinates. In the
Euclidean plane with x = r cosϕ, y = r sinϕ a fixed vector V = x0∂x + y0∂y can
be expressed as V = (x0 cosϕ+ y0 sinϕ)∂r + 1

r
(y0 cosϕ+ x0 sinϕ)∂ϕ. In particu-

lar the coefficient in r-direction is independent of r, the one in ϕ-direction is r−1

times some expression which is independent of r. This does not only generalize
to higher dimensional Euclidean spaces but also to any situation where we have
a Liouville transformation and in addition a parallel vector field, see Proposition
3 below. The metric does not have to be flat in this case, compare the example
after Proposition 6.

In the sequel we throughout consider semi-Riemannian manifoldsM of dimension
n which are sufficiently smooth in order to admit all the derivatives we are using.

Lemma 1: For a conformal transformation g = ϕ−2g of class C2 the following
conditions are equivalent:

1. Ricg − Ricg is a scalar multiple of g

2. ∇2ϕ is a scalar multiple of g

3. (∇2ϕ)0 = 0

4. ϕ is a concircular scalar field in the sense of [36], [11].
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Proof. The proof follows directly from the following standard formula for the
relation between the two Ricci tensors of g and g:

Ricg − Ricg = ϕ−2
(

(n− 2) · ϕ · ∇2ϕ+ [ϕ · ∆ϕ− (n− 1) · g(∇ϕ,∇ϕ)] · g
)

.

The notion of a concircular scalar field is motivated by the so-called concircular
transformations preserving circles. Here a circle is defined to be a curve with
constant geodesic curvature and vanishing geodesic torsion.

Lemma 2: Under the same assumptions the following conditions are equivalent:

1. Ricg − Ricg = 0

2. ∇2ϕ = ∆ϕ

n
· g and 2ϕ · ∆ϕ = n · g(∇ϕ,∇ϕ)

3. the conformal transformation g 7→ g is a Liouville transformation (or quasi-
homothetic in the sense of [11]).

Lemma 2 follows from Lemma 1 by taking the trace of the equation Ricg−Ricg =
0.

By Lemma 2 a Liouville transformation is characterized by the equations (∇2ϕ)0 =
0 and 2ϕ·∆ϕ = n·g(∇ϕ,∇ϕ). From the second equation it becomes immediately
clear that we have to distinguish between two cases (unless ϕ is constant):

Case 1: g(∇ϕ,∇ϕ) 6= 0,

Case 2: g(∇ϕ,∇ϕ) = 0 and ∇ϕ 6= 0.

In the second case the gradient of ϕ is isotropic and necessarily parallel because
Xg(∇ϕ,∇ϕ) = 2g(∇X∇ϕ,∇ϕ) = 0 and g(∇X∇ϕ, Y ) = 0 for X orthogonal to
∇ϕ. In the context of conformal mappings between Einstein spaces Case 1 was
called proper in [5], Case 2 was called improper. The results for these two types
are quite different.
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Lemma 3: In a certain neighborhood of any point with g(∇ϕ,∇ϕ) 6= 0 the
following conditions are equivalent:

1. (∇2ϕ)0 = 0

2. ∇ϕ is a conformal vector field

3. g is a warped product metric g = ηdt2 + (dϕ

dt
)2g∗ where η = ±1 denotes the

sign of g(∇ϕ,∇ϕ) and where the metric g∗ is independent of t.

The condition 3. implies that ϕ is a function only of the real parameter t and that

∇ϕ =
dϕ

dt
·
∂

∂t
and L∇ϕg = 2∇2ϕ = 2

d2ϕ

dt2
· g.

Proof. Actually Lemma 3 is a standard result, originally due to Brinkmann [5]
and Fialkow [12], compare [36], [11], [20].
1. ⇔ 2. is trivial, 3. ⇒ 1. is easily obtained by the calculation of ∇ ∂

∂t
in terms of

Christoffel symbols. For the proof of 1.⇒ 3. one introduces ϕ as one coordinate
function. Then for one particular ϕ-level M∗ one takes geodesic parallel coordi-
nates. It is easily seen that the parallel levels of the same distance coincide with
the ϕ-levels. If we choose t as the arclength on the trajectories of ∇ϕ, then we
obtain a form g = ηdt2 + gij(t) for the metric, i, j = 1, . . . n − 1. The proof is

completed by calculating ∂
∂t

((dϕ

dt
)−2gij(t)) = 0 from the equation ∇2ϕ = d2ϕ

dt2
· g.

This implies that g∗ij = (dϕ

dt
)−2gij is independent of t.

Corollary 1: In a certain neighborhood of any point with g(∇ϕ,∇ϕ) 6= 0 the
following conditions are equivalent:

1. g 7→ ϕ−2g is a Liouville transformation

2. g is a warped product metric g = ηdt2 + (at+ b)2g∗ where a 6= 0 and b are
real constants.

In particular, in this case ∇ϕ is a homothetic vector field satisfying L∇ϕg = 2a ·g.
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Proof. By combining Lemma 3 with Lemma 2, we find that the differential equa-
tion for the function ϕ(t) can be reduced to the ODE 2ϕϕ′′ = (ϕ′)2. The
solutions are precisely the squares of linear functions: ϕ(t) = (At + B)2 with
A 6= 0 since ϕ is not constant by assumption. Consequently, ϕ′(t) = 2A(At+B)
is linear, say ϕ′(t) = at+b, and there is a common zero of ϕ and ϕ′. The equation
∇2ϕ = a · g is easily verified.

In some sense this phenomenon of a common zero of ϕ and ϕ′ is the crucial point
in Liouville’s theorem. It leads to the following generalization:

Theorem 1 (Generalized Liouville Theorem): Let (M, g) be a connected
semi-Riemannian manifold and let f : (M1, g) → (M, g) be a Liouville mapping of
class C3 for some open M1 ⊂ M . Assume that the induced conformal factor ϕ
with f∗g = ϕ−2g satisfies g(∇ϕ,∇ϕ) 6= 0 everywhere. Then (M1, g) is isometric
to an open subset of a warped product M2 = (0,∞)×tM∗ with a cone-like metric
g = ηdt2+t2g∗ with η = ±1 and where (M∗, g∗) is independent of t. Furthermore,
up to an isometry, in these coordinates the mapping f appears as f(t, x) = (2

t
, x).

Consequently, the mapping f is the composition of an isometry and an inversion.

If in addition M is assumed to be Einstein then it is Ricci flat and, consequently,
any conformal mapping is a Liouville mapping. In this case it follows that (M∗, g∗)
is an Einstein metric with the same Ricci curvature as a space of constant sec-
tional curvature η. If in addition the dimension of M is not greater than 4 then
g is flat.

Corollary 2: Let (M, g) be a complete Riemannian manifold and assume that
there is a Liouville mapping f :M \ {p} → M \ {p} for one point p ∈ M . Then
(M, g) is isometric with the Euclidean space.

Proof. Theorem 1: From Corollary 1 we obtain a local representation of the
metric as g = ηdt2 + (at+ b)2g∗ with a 6= 0. By a shift of the parameter we may
assume that b = 0 and that the factor a is incorporated into the metric g∗. This
leads to a local expression g = ηdt2 + t2g∗ in the neighborhood of every point
which satisfies the assumptions. Since g∗ is independent of t, it cannot change on
a connected open subset. Therefore there is one maximal “level space” (M∗, g∗).
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The maximum possible interval for t is either (0,∞) or (−∞, 0). Hence M1 can
be regarded as an open subset of a warped product M2 := (0,∞) ×t M∗ with a
cone-like metric. Then the function ϕ is a function of t only, more precisely we
have ϕ(t) = t2/2. The conformal factor of the mapping is ϕ−2 = 4t−4, hence
the apex t = 0 of the cone cannot belong to the domain of ϕ in any case. Note
however, that this apex is a removable singularity only if (M∗, g∗) is isometric
with the standard sphere in Euclidean space if η = 1 or with a standard quadric
in pseudo-Euclidean space if η = −1. In any case by removing the singularity
we obtain the (pseudo-)-Euclidean metric in geodesic polar coordinates around
the origin, see [20]. If M is assumed to be Ricci flat then we obtain information
about the metric g∗ from the equation Ric = t−2(Ric∗ − (n − 2)g∗). In any case
the vector field ∇ϕ = t · ∂

∂t
is a homothetic vector field satisfying the equation

Lt ∂

∂t

g = 2∇2ϕ = 2g.

Now let us consider the conformal point transformation f :M1 → M with the
conformal factor ϕ−2. The inversion f0:M2 → M2 defined by f0(t, x) = (2

t
, x)

is also conformal with the same conformal factor ϕ−2 = 4t−4. This implies that
f0 ◦ f

−1: f(M) →M2 and f ◦ f−1
0 : f0(M1) → M are isometric mappings.

Now assume that in addition g is Einstein. It is well known which Einstein spaces
admit a representation as a warped product. In any case the level M∗ has to be
an Einstein space, too. In our case the normalized scalar curvatures S and S∗ of g
and g∗ satisfy the equation 1 + ηSt2 = ηS∗, see [21], Lemma 3.3. This is possible
only for S = 0 and S∗ = η. A peculiar example for such an Einstein space is given
by the non-standard Einstein metrics on spheres (appropriately scaled), see [22].
In this case the cone has no topological singularity at the apex, just a metrical
singularity. If the dimension of M is not greater than 4 then the level metric g∗
is of constant curvature and, therefore, g is of constant curvature.

Proof of Corollary 2: In the Riemannian case we have g(∇ϕ,∇ϕ) 6= 0 on an open
subset M ′ unless ϕ is constant. If ϕ is globally constant then f is a homothety,
and the assertion is well known. Otherwise, by Theorem 1 M ′ \ {p} is an open
part of a warped product (0,∞)×tM∗ with g = dt2 + t2g∗. Here (M∗, g∗) must be
complete because otherwise g would not be complete. Again by the assumption
of completeness the apex t = 0 of the cone must be an ordinary (non-singular)
point of M , hence M∗ is a standard unit sphere and M is the Euclidean space in
standard polar coordinates.
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Remarks: 1. There are, however, examples in higher dimensions which are Ricci
flat but not flat. Take any 4-dimensional level metric g∗ which is Einstein with
scalar curvature η and then takeM5 = (0,∞)×M∗ with the metric g = ηdt2+t2g∗.

2. If the isometry mentioned in theorem 1 preserves the t-levels then it is easily
seen to be induced by an isometry of M∗. Otherwise the metric is of a special
type and admits a parallel vector field, see Corollary 4 below. If the metric is
Riemannian and if M∗ is complete then this cannot happen unless the metric is
flat, see [14]. The case of a conformal mapping moving the apex p and not pre-
serving the t-levels can really occur: Consider a Euclidean translation composed
by an ordinary inversion at p. This defines a conformal mapping of En \ {p} into
En which does not preserve the levels of the associated conformal factor. These
levels are concentric spheres.

3. In addition to the obvious self-similarity of cones there are other types of
self-similarities which do not satisfy the assumptions of Theorem 1, see [1], [7].

Corollary 3 (Classical Liouville Theorem) [35, p.209], [2, Thm.A.3.7]:

Any conformal mapping f of class C3 from a connected and open part of Euclidean
space into Euclidean space can be written (up to motions in source and target) as
a dilatation or as an inversion.

Similarly (see [15], [33]), any conformal mapping of class C3 from a connected and
open part of pseudo-Euclidean space into pseudo-Euclidean space can be written
(up to motions) as either a dilatation or an inversion or the composition of two
distinct inversions.

Proof. Let f :U → R
n be a conformal mapping with the conformal factor ϕ−2

which is a function of class C2 on U . If ϕ is constant, then the mapping f0(x) =
ϕ · f(x) defines an isometric mapping f0 which, consequently, can be globally
extended. Hence f can be written as f(x) = ϕ−1 · f0(x), a composition of a
(pseudo-)Euclidean motion with a dilatation. If ϕ is not constant, then we have
∇ϕ 6= 0 on an open set. If ∇ϕ is not a null vector then we can apply Theorem
1. The result is that in certain coordinates the mapping can be written as an
inversion at a certain sphere. If ∇ϕ is a (parallel) null vector field on an open
set then we form the compositions j ◦ f and f ◦ j of f with an inversion j. For
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a generic j the gradients of j ◦ f and of f ◦ j are no longer parallel on open sets.
Therefore we can apply Theorem 1 to j ◦f and f ◦j. This proves Corollary 3.

Proposition 1: If ϕ : M → R is a function satisfying ∇2ϕ = c · g with a
constant c 6= 0 (i.e., ∇ϕ is homothetic) and if F :M → M is an isometry which
does not preserve ϕ (i.e., ϕ ◦ F 6= ϕ) then M carries a parallel vector field.

Proof. Let ψ = ϕ ◦ F . Then we have ∇ψ|p = DF−1|p(∇ϕ|F (p)) and ∆ψ|p =
∆ϕ|F (p). It follows that ∇2ψ = c · g and, consequently, ∇2(ψ − ϕ) = 0. Hence
∇(ψ − ϕ) is parallel vector field. It remains to show that it does not vanish. If
∇ψ = ∇ϕ then we have 2ϕ(F (p))·c = 2

n
ϕ(F (p))∆ϕ(F (p)) = g(∇ϕ|F (p),∇ϕ|F (p)) =

g(∇ψ|p,∇ψ|p) = g(∇ϕ|p,∇ϕ|p) = 2
n
ϕ(p)∆ϕ(p) = 2ϕ(p) · c since F is an isom-

etry. Consequently ∇ψ = ∇ϕ implies that ψ = ϕ which was excluded by our
assumption.

Proposition 2: Assume that a cone metric g = ηdt2 + t2g∗ is given. Then
locally the following conditions are equivalent:

1. There exists a parallel vector field V

2. On the level M∗ there exists a non-constant function α with g∗(∇∗α,∇∗α) 6=
0 which satisfies the equation ∇2

∗
α = −ηαg∗.

Proof. (1) ⇒ (2) Let V be a parallel vector field. We can decompose it into
V (t, x) = α(t, x)∂t + W (t, x) where W is orthogonal to ∂t and where α is not
the zero function because V cannot be orthogonal on every t-line simultaneously.
Since the t-lines are geodesics, V has a constant angle with ∂t along them. Con-
sequently, α does not depend on t. So we can regard α as a function on any of
the levels. From ∇∂t

V = 0 we obtain ∇∂t
W = 0. Therefore W (t, x) is parallel

along the t-lines, and we can set W (t, x) = 1
t
W (x) where W (x) is the lift of a

vector field on M∗. Altogether we obtain V (t, x) = α(x)∂t + 1
t
W (x).
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Next, if X denotes the lift of a vector field on M∗, we have for any fixed t

∇∗

XW = ∇XW + g(X,W )t−1η∂t

= ∇X(tV (t, x)− tα(x)∂t) + g∗(X,W )tη∂t

= −tX(α)∂t − tα(x)∇X∂t + g∗(X,W )tη∂t

= t(g∗(X,W )η − g∗(∇
∗α,X))∂t − tα(x)t−1X.

Since the ∂t-component of ∇∗

XW must vanish for any X we obtain first the
equation

∇∗α = ηW

and, consequently,
∇∗

X∇
∗α = η∇∗

XW = −ηα(x) ·X

which is the assertion. In particular, α is not constant. Moreover, since

g(V, V ) = ηα2 + g∗(W,W ) = ηα2 + g∗(∇∗α,∇∗α)

is constant, it follows that g∗(∇∗α,∇∗α) cannot vanish on any open set. Conse-
quently, ||W ||2 cannot vanish either.

For the converse direction (2) ⇒ (1) we assume that α satisfies this differential
equation and define V by the equations above. It then follows that V is parallel.

Corollary 4: If a cone metric g = ηdt2 + t2g∗ carries a parallel vector field then
g∗ can be written as a warped product g∗ = ǫdu2 + α′2(u)g∗∗ where ǫ = ±1 and
the function α(u) satisfies the equation α′′ + ǫηα = 0. Conversely, if a metric of
the form g = ηdt2 + t2(ǫdu2 + α′2(u)g∗∗) with such an α is given then g carries a
parallel vector field.

This follows from Lemma 3 in connection with Proposition 2. Along the trajec-
tories of the gradient of α is not a null vector. With ∇∗α = ǫα′(u)∂u the function
satisfies the ODE α′′ + ǫηα = 0. The solutions are linear combinations of sin, cos
if ǫη = 1 and of sinh, cosh is ǫη = −1.
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Corollary 5 (see [14] ):
If g = dt2+t2g∗ is positive definite and if g∗ is complete then g is either irreducible
or flat.

Proof. This follows from the well known theorem of Tashiro [36] and Obata [31]
that on a complete Riemannian manifold (M∗, g∗) the equation ∇2

∗
α = −αg

admits a non-constant solution only if the manifold is a round sphere of radius 1.
So if g carries a parallel vector field then this equation on (M∗, g∗) is satisfied by
Proposition 2. It follows that the level M∗ is the unit sphere and, consequently,
g is flat.

Corollary 6: Assume that the cone metric with g = ηdt2 + t2g∗ is an Einstein
n-manifold (necessarily Ricci flat) and carries a parallel vector field. Then for
n ≤ 5 g is necessarily flat. In contrast, there is an example of a 6-dimensional
Ricci flat cone which is not flat.

Example: Let h be a complete Ricci flat space with a positive definite metric
which is not flat (one example is the Calabi-Yau metric on the K3 surface). Then
the Lorentzian warped product metric

g = −dt2 + t2(du2 + e2uh)

is Ricci flat but not flat. It carries the homothetic vector field t∂t and, in addition,
the parallel null vector field V = eu(∂t+

1
t
∂u). The level g∗ = du2+e2uh is complete

if h is.

Lemma 4: Assume that an n-dimensional manifold (M, g) admits a Liouville
mapping such that the conformal factor ϕ has a gradient ∇ϕ 6= 0 everywhere.
Then the following conditions are equivalent:

1. g(∇ϕ,∇ϕ) = 0 everywhere,

2. ∇2ϕ = 0 everywhere,

3. ∇ϕ is a parallel vector field,
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4. in a suitable coordinate system the metric g can be written as g = 2dϕdϑ+
g#(ϕ) where g#(ϕ) is an (n − 2)-dimensional metric which is independent
of ϑ.

Proof. 4.⇒ 1. holds because in these coordinates we have ∂
∂ϑ

= ∇ϕ.
1. ⇔ 2. holds by Lemma 2,
2. ⇔ 3. is trivial.
The main part is the proof of 1.⇒ 4 which is originally due to Brinkmann in [5,
p.132-133], for a modern treatment see also [6, Sect.3.3]. Because ϕ is nowhere
constant we can introduce ϕ as one of the coordinates. Then ∇ϕ is a parallel
vector field by 3., therefore we can introduce a second coordinate function ϑ by the
condition ∂

∂ϑ
= ∇ϕ. It follows that g( ∂

∂ϕ
, ∂

∂ϑ
) = 1 and, in particular, that ∂

∂ϕ
and

∂
∂ϑ

are linearly independent everywhere. Now let us fix one particular ϕ-ϑ-level
with a non-degenerate induced metric g#(ϕ, ϑ). Then introduce geodesic normal
coordinates ϕ, ϑ, x1, . . . , xn−2 around this level. It follows that the metric g# is
independent of ϑ because ∂

∂ϑ
is parallel. By a transformation of the metric one can

assume that g( ∂
∂ϕ
, ∂

∂ϕ
) is also zero. This leads to the expression g = 2dϕdϑ+g♯(ϕ)

for the metric.

Corollary 7 If the conditions in Lemma 4 are satisfied then the ϑ-lines (or
the trajectories generated by the parallel vector field ∇ϕ) are null geodesics. The
family of all of them forms a so-called null congruence. The Liouville mapping
transforms this null congruence into a (possibly different) null congruence.

Proof. We have to show that the parallel isotropic vector ∇ϕ is mapped by the
Liouville mapping onto a parallel isotropic vector. This follows directly from the
formula

∇XV −∇XV = −X(logϕ)V − V (logϕ)X + g(X, V )∇(logϕ)

for the conformal change of the metric g = ϕ−2g and any X,V. In our case we have
V = ∇ϕ which implies V (logϕ) = 0 and X(logϕ)∇ϕ = g(X,∇ϕ)∇(logϕ).
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Lemma 5 If an n-dimensional manifold (M, g) carries two linearly independent
null congruences then it is (locally) reducible to a product (R2 ×M∗, 2dudv + g∗).
Moreover, the transition from one null congruence to the other can be realized by
an isometry.

This follows because the two linearly independent isotropic vector fields generate
a 2-dimensional distribution which is integrable and parallel. Therefore, a 2-
dimensional factor splits off which is a flat Lorentzian plane.

In view of Lemma 5 and up to an isometry, one has to consider only the case that
the null congruence is preserved.

Theorem 2 (The isotropic case in Liouville’s theorem): Assume that an
n-dimensional manifold (M, g) admits a Liouville mapping F :M → M such that
the conformal factor ϕ has an isotropic gradient ∇ϕ 6= 0 everywhere. Assume
further that F preserves the null-congruence given by the parallel null vector ∂v =
∇ϕ. Then in certain coordinates u, v, xk (k = 1, . . . , n − 2) the metric has the
form

g = −2dudv +
∑

i,j

g#
ij (u, xk)dx

idxj

and, up to an isometry, F has the form

F (u, v, xk) =
(

−
1

cu
, cv + ζ(u, xk), ξ1(u, xk), . . . , ξn−2(u, xk)

)

with a constant c and with a certain function ζ, where for any fixed u, v the
transformation

(x1, . . . , xn−2) 7→ (ξ1, . . . , ξn−2)

is a homothety with respect to the metric g#. The conformal factor of F is the
function ϕ(u, v, xk) = u, i.e., F ∗g = u−2g.

Conversely, Let h be any metric on an (n − 2)-dimensional space M∗ admitting
a 1-parameter group Φu of similarities (homothetic transformations) with Φ∗

uh =
u−2h. Then on M = R+ × R × M∗ the metric g = −2dudv + Φ∗

uh admits a
conformal mapping F such that the conformal factor u has an isotropic gradient
∇u = ∂v. In this case F acts on M∗ by the similarities Φu.

14



Proof. The particular form of the metric is obtained by Lemma 4 which also
determines the conformal factor as ϕ = u. We compute the differential of F with
respect to the basis ∂u, ∂v, ∂1, . . . , ∂n−2 as follows. By assumption F preserves
the null-congruence given by the v-lines. This implies that at every point the
differential of F transforms the vector ∂v into some vector linearly dependent on
∂v. This implies that the component functions κ, ξ1, . . . , ξn−2 in

F (u, v, x1, . . . , xn−2) = (κ, λ, ξ1, . . . , ξn−2)

are independent of the variable v. Consequently, we have

Fu = (κu, λu, (ξ1)u, . . . , (ξn−2)u)
Fv = (0, λv, 0, . . . , 0)
Fk = (κk, λk, (ξ1)k, . . . , (ξn−2)k) for k = 1, . . . , n− 2

where the indices indicate the partial derivatives with respect to the corresponding
cordinates.
From the equation g(Fu, Fv) = u−2g(∂u, ∂v) = −u−2 we obtain κuλv = u−2.
Differentiating once more leads to the equation κuλvv = 0.
Similarly, from the equation g(Fk, Fv) = u−2g(∂k, ∂v) = 0 we obtain κkλv = 0.
Since λv cannot vanish identically, we get κk = 0 for all k. As a consequence,
κu does not vanish identically. It follows that λvv must vanish identically. Hence
λv = c is constant and κu = 1

cu2 and κ = − 1
cu

. It also follows that λ = cv+η(u, xk)
with some function η.

Now let u0 and v0 be fixed, and consider the mapping Φ defined by

(x1, . . . , xn−2) 7→ (ξ1(u0, x1, . . . , xn−2), . . . , ξn−2(u0, x1, . . . , xn−2)).

From the equation

Φ∗g#(∂i, ∂j) = g#(Fi, Fj) = g(Fi, Fj) = u−2
0 g(∂i, ∂j) = u−2

0 g#(∂i, ∂j)

we see that Φ is homothetic.

Conversely, if (M∗, g∗) is given with a 1-parameter group Φu of similarities then
we can define F by

F (u, v,x) =
(

−
1

cu
, cv + ζ(u,x),Φu(x)

)

.
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The function ζ is determined by the condition that Fu must be orthogonal to
the derivative of F by any coordinate in the (n − 2)-dimensional space M∗ and,
furthermore, that g(Fu, Fu) = 0.

Remark: In the case of a vacuum spacetime our extra assumption on preserving
the null-congruence is always satisfied unless the manifold is flat.

Examples: 1. Let g = −2dudv +
∑

i ǫix
2
i be the metric of the semi-euclidean

space. Then the following mapping is a conformal involution:

F (u, v, x1. . . . , xn−2) = (−u−1, v + (2u)−1
∑

i ǫix
2
i , u

−1x1, . . . , u
−1xn−2).

A local 1-parameter group of conformal mappings is

Φt(u, v, x1, . . . , xn−2) = 1
1−tu

(u, v(1− tu) + t
2

∑

i ǫix
2
i , x1. . . . , xn−2).

The expression in the first coordinate differs from the form given in Theorem 2
but that is just up to a conjugation with a shift u 7→ u + u0. It generates the
following conformal vector field

d
dt

Φt = (u2, 1
2

∑

i ǫix
2
i , ux1. . . . , uxn−2)

which is a standard special conformal vector field also in the general context of
pp-waves, see [23]. Here it can be considered as a Liouville vector field where
every member of the 1-parameter family is of type 3.

2. Let g = −2dudv + u2
∑

i ǫix
2
i ;. Then the following involution is conformal:

F (u, v, x1. . . . , xn−2) = (−u−1, v + u
2

∑

i ǫix
2
i , ux1, . . . , uxn−2).

3. More generally, let h be any metric and let g = −2dudv + dt2 + t2h. Then the
following involution is conformal:

F (u, v, t, xk) = (−u−1, v − 1
2
u−1t2, u−1t, xk).

Similarly, if g = −2dudv +u2(dt2 + t2h). Then the following involution is confor-
mal:

F (u, v, t, xk) = (−u−1, v + u
2
t2, tu, xk).
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