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Abstract
Consider a system of N bosons in three dimensions interacting via a repulsive short range
pair potential N2V (N(x; — x;)), where x = (x1,...,2x) denotes the positions of the particles.
Let Hy denote the Hamiltonian of the system and let ¥+ be the solution to the Schrédinger
equation. Suppose that the initial data 1 ¢ satisfies the energy condition

(N0, Hyn,o) < CENF

for k = 1,2,.... We also assume that the k-particle density matrices of the initial state are
asymptotically factorized as N — oo. We prove that the k-particle density matrices of ¥,
are also asymptotically factorized and the one particle orbital wave function solves the Gross-
Pitaevskii equation, a cubic non-linear Schrodinger equation with the coupling constant given by
the scattering length of the potential V. We also prove the same conclusion if the energy condition
holds only for k = 1 but the factorization of 1y ¢ is assumed in a stronger sense.

AMS Subject Classification Number: 81V70, 81T18, 35Q55
Keywords: Nonlinear Schrodinger equation, interacting bosons, Bose-Finstein condensate.

1 Introduction

Bose-Einstein condensation states that at a very low temperature Bose systems with a pair interaction
exhibit a collective mode, the Bose-Einstein condensate. If one neglects the interaction and treats
all bosons as independent particles, Bose-Einstein condensation is a simple exercise [15]. The many-
body effects were traditionally treated by the Bogoliubov approximation, which postulates that the
ratio between the non-condensate and the condensate is small. The coupling constant o /87 obtained
by the Bogoliubov approximation is the semiclassical approximation of the the scattering length
ag of the pair potential. To recover the scattering length, one needs to perform a higher order
diagrammatic re-summation, a procedure that yet lacks mathematical rigor for interacting systems.

*Partially supported by the EU-THP Network “Analysis and Quantum” HPRN-CT-2002-0027
TSupported by NSF postdoctoral fellowship
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Gross [12, 13] and Pitaevskii [20] proposed to model the many-body effects by a nonlinear on-site
self interaction of a complex order parameter (the “condensate wave function”). The strength of the
nonlinear interaction in this model is given by the scattering length ag. The Gross-Pitaevskii (GP)
equation is given by

. 0E(u, u _ o
10y = —Auy + o|uy|uy = % , E(u,u) = /3 [|Vu|2 + §|u|4 , (1.1)
Ut RS

where £ is the Gross-Pitaevskii energy functional and o = 8mag. The Gross-Pitaevskii equation
is a phenomenological mean field type equation and its validity needs to be established from the
Schrédinger equation with the Hamiltonian given by the pair interaction.

The first rigorous result concerning the many-body effects of the Bose gas was Dyson’s estimate
of the ground state energy. Dyson [5] proved the correct leading upper bound to the energy and a
lower bound off by a factor around 10. Dyson’s upper bound was obtained by using trial functions
with short range two-body correlations. This short scale structure is crucial for the emergence of the
scattering length and thus for the correct energy. The matching lower bound to the leading order in
the low density regime was obtained by Lieb and Yngvason [19]. Lieb and Seiringer [16] later proved
that the minimizer of the Gross-Pitaevskii energy functional correctly describes the ground state of
an IN-boson system in the limit N — oo provided that the length scale of the pair potential is of
order 1/N. For a review on related results, see [17].

The experiments on the Bose-Einstein condensation were conducted by observing the dynamics
of the condensate when the confining traps are removed. Since the ground state of the system with
traps will no longer be the ground state without traps, the validity of the Gross-Pitaevskii equation
for predicting the experimental outcomes asserts that the approximation of the many-body effects
by a nonlinear on-site self interaction of the order parameter applies to a certain class of excited
states and their subsequent time evolution as well.

In this paper, we shall prove that the Gross-Pitaevskii equation actually describes the dynamics of
a large class of initial states. The allowed initial states include wave functions with the characteristic
short scale two-body correlation structure of the ground state and also wave functions of product
form. Notice that product wave functions do not have this characteristic short scale structure,
nevertheless the GP evolution equation applies to them. It should be noted that our theorems
concern only the evolution of the one particle density matrix but not its energy. In fact, for product
initial states, the GP theory is correct on the level of density matrix, but not on the level of the
energy. We shall discuss this surprising fact in more details in Section 3.

2 The Main Results

Recall that the Gross-Pitaevskii energy functional correctly describes the energy in the large N limit
provided that the scattering length is of order 1/ [18]. We thus choose the interaction potential to
be

Vn(z) := N*V (Nz) = % N3V (Nz).

This potential can also be viewed as an approximate delta function on scale 1/N with a prefactor
1/N which we will interpret as the mean field average. The Hamiltonian of the Bose system is given
by

N N
Hy ==Y Aj+ > Vn(zj—ax), Vn(z):=N’V(Nz). (2.1)
7=1 i<k



The support of the initial state will not be scaled with N. Thus the density of the system is IV
and the typical inter-particle distance is NV -1/ 3 which is much bigger than the length scale of the
potential. The system is really a dilute gas scaled in such a way that the size of the total system is
independent of V.

The dynamics of the system is governed by the Schrédinger equation

10Nt = HNYn g (2.2)

for the wave function vy ; € L2(R?*Y), the subspace of L2(R3Y) consisting of all functions symmetric
with respect to any permutation of the N particles. We choose 1 ; to have L?norm equal to one,
ol = 1.

Instead of describing the system through the wave function, we can describe it by a density
matrix vy € LY(L2(R3*Y)), where £'(L2(R3Y)) denotes the space of trace class operators on the
Hilbert space L2(R3Y). A density matrix is a non-negative trace class operator with trace equal to
one. For the pure state described by the wave function ¢y, the density matrix yn = [¢n)(¥n] is
the orthogonal projection onto 1. The time evolution of a density matrix vy is determined by the
Heisenberg equation

i0yNe = [Hn, YNy, (2.3)

where [A, B] = AB — BA is the commutator.

Introduce the shorthand notation
x:=(x1,29,...,ZN), Xp:=(T1,...,2k), XN—k:= (Tht1,---,ZN)

and similarly for the primed variables, x) := (z},...,2}). For k = 1,..., N, the k-particle re-
duced density matriz (or k-particle marginal) associated with vy ¢ is the non-negative operator in
LY (L%(R3)) defined by taking the partial trace of vy over N — k variables. In other words, the

kernel of 7](\];,1 is given by

k
7](V7)t(Xk;X2) = /dXN—k'YN,t (Xk, XNk Xpps XN—k) - (2.4)

Our normalization implies that Tr 7](\];,1 =1forallk=1,...,N and for every ¢t € R.

We now define a topology on the density matrices. We denote by £ = £1(L?(R3)) the space of
trace class operators acting on the Hilbert space L?(R3*). Moreover, K = K(L*(R3*)) will denote
the space of compact operators acting on L?(R3*) equipped with the operator norm, || - ||, := || - ||-
Since £} = K, we can define the weak* topology on LY(L2(R3*)), i.e., w, — w if and only if for
every compact operator J on L?(R3*) we have

lim Tr Jw, = Tr Jw. (2.5)

n—oQ

Throughout the paper we will assume that the unscaled interaction potential, V'(z), is a nonneg-
ative, smooth, spherically symmetric function with a compact support in the ball of radius R,

suppV C {z € R : |z| < R}. (2.6)

With the notation r = |z|, we will sometimes write V (r) for V(z). We define the following dimen-
sionless quantity to measure the strength of V'

p=supr’V(r)+ / drrV(r). (2.7)
r>0 0



Let f be the zero energy scattering solution associated with V' with normalization lim|,_, f (z) =
1. We will write f(x) =1 —wo(x). By definition, this function satisfies the equation

[—A%—%V(:p) (1= wo(z)) =0, (2.8)

and lim,|_,o wo(x) = 0. The scattering length ag of V' is defined by

ap ;= lim wq(x)|z|. (2.9)

|z|—o00
Since V has a compact support (2.6), we have

f(x) :1_m || > R. (2.10)

From the zero energy equation, we also have the identity
/dx V(z)(1 —wo(z)) = 8mag . (2.11)

By scaling, the scattering length of the potential Viy(z) is a := ag/N and the zero energy scattering
equation for the potential Vi is given by

(—A~|— %VN(;L«)> (1 w(x)) =0 (2.12)

where w(z) := wo(Nz). Note that w(z) = a/|z|, for |x| > R/N.
We can now state our main theorems.

Theorem 2.1. Suppose V' > 0 is a smooth, compactly supported, spherically symmetric potential
with scattering length ag and assume that p (defined in (2.7)) is small enough. We consider a family
of systems described by initial wave functions Yy € Lg(RP’N) such that

(YN, HNon) < CPN* (2.13)

for all k > 1. We assume that the marginal densities associated with ¥y factorize in the limit
N — oo, i.e. there is a function ¢ € L*(R3) such that for every k > 1,

1) = o)l (2.14)

as N — oo with respect to the weak* topology of LY(L*(R3%)). Then ¢ € H (R3), and for every fized

k>1andteR, we have
(k

7§ = Lo e ®* (2.15)

with respect to the same topology. Here p; € H'(R?) is the solution of the nonlinear Gross-Pitaevskii
equation

)

0ot = — Ay + 8mao|pr|* ey (2.16)
with initial condition pi—g = ¢.

Using an approximation argument, we can relax the energy condition (2.13), and only assume
that (Y, Hyyn) < CN. However, in order to apply our approximation argument, we need to
assume stronger asymptotic factorization properties on 1y.



Theorem 2.2. Suppose V' > 0 is a smooth, compactly supported, spherically symmetric potential
with scattering length ag and assume that p (defined in (2.7)) is small enough. We consider a family
of systems described by initial wave functions Yy € L2(R3N) such that

(YN, HNyn) < CN. (2.17)

We assume asymptotic factorization of z/JN in the sense that there exists p € L*(R®) and, for every
N, and every 1 < k < N, there exists a £N ) € L2(R3N=K)) with, ||£](VN_k)|| =1 such that

N—k
low — ¢ @ e Pl - 0 (2.18)
as N — oco. This implies, in particular that, for every k > 1,

) o) (] B (2.19)

as N — oo with respect to the weak* topology of LY(L*(R3%)). Then ¢ € H(R3), and for every fized
k>1 andt € R we have

Y8 = o) (r] (2.20)

with respect to the same topology. Here p; € H'(R?) is the solution of the nonlinear Gross-Pitaevskii
equation
i0ppr = — Ay + 8mao|pi| o (2.21)

with Pt=0 = P.

Both theorems have analogous versions for initial data describing mixed states (that is vy is not
an orthogonal projection). For example, suppose that vy is a family of density matrices satisfying

Tr Hyyy < C*N* and 4\ — w&F (2.22)

where wy is a one-particle density matrix and

w Xk7Xk HWO :L‘]7

Then for every t € R and k£ > 1 we have
Ty — (2.23)
where w; is the solution of the nonlinear Hartree equation
10wy = [—A + 8mapor, w] o0t(z) = we(w; ), wi—p = wo (2.24)
The last equation is equivalent to (2.16) if wy = |¢r) (@4
Lieb and Seiringer [16] have proved that, for pure states, the assumption
(1) N
N — ool as N —oo

implies automatically (2.14) for every k > 1 (see the argument after Theorem 1 in that paper)!. For
mixed initial states we still need the second condition in (2.22) for all £ > 1 in order to prove (2.23).

We thank Robert Seiringer for pointing out this result to us.



Now we comment on the assumption of asymptotic factorization (2.18) for the initial data ¥y.
The most natural example that satisfies this condition is the factorized wave function ¥y (x) =
H;V:l o(x;). If, additionally, ¢ € H'(R?), then (2.17) is also satisfied by the Schwarz and Sobolev
inequalities. The evolution of vy is therefore governed by the GP equation according to Theorem
2.2. This is, however, somewhat surprising because the emergence of the scattering length in the
GP equation indicates that the wave function has a characteristic short scale correlation structure,
which is clearly absent in the factorized initial data. We shall discuss this issue in more details in
Section 3.

From the physical point of view, however, the product initial wave function is not the most
relevant one. In real physical experiments, the initial state is prepared by cooling down a trapped
Bose gas at extremely low temperatures. This state can be modelled by the ground state w%ap of

the Hamiltonian N

N
HG™ =" (=D + Vet (25)) + > Viv(@i — ;)
j=1 1<j
with a trapping potential Vexi(2) — o0 as |z| — oo. In Appendix C, we prove that assumptions
(2.17) and (2.18) are satisfied for ¢)5*P. In other words, Theorem 2.2 can be used to describe the
evolution of the ground state of H ]t\;ap, after the traps are removed (see Corollary C.1). This provides
a mathematically rigorous analysis of recent experiments in condensed matter physics, where the
evolution of initially trapped Bose-Einstein condensates is observed.

In Appendix B, we show that Theorem 2.2 can also be applied to a general class of initial data,
which are in some sense close to the ground state of the Hamiltonian Hﬁap. The ground state of a
dilute Bose system with interaction potential Vj is believed to be very close to the form

Wy (x) =[] F(N(zi — 25)), (2.25)

1<j

where f = 1—wy is the zero-energy solution (2.8). We remark that Dyson [5] used a different function
which was not symmetric, but the short distance behavior was the same as in Wy . An example of
a family of initial wave functions which have local structure given by W is given by wave functions
of the type

N
en(x) = Wa(x) [ w() (2.26)
j=1

where ¢ € H'(R3). Due to the factor Wy, this function carries the characteristic short scale
structure of the ground state. We will prove in Lemma B.1 that wave functions of the form (2.26)
(with correlations cutoff at length scales £ > N~!) satisfies the assumptions (2.17) and (2.18).

Part of Theorem 2.2 was proved in [8] for systems with the pair interaction cut off whenever
three or more particles are much closer to each other than the mean particle distance, N~/3. For
this model, it was proved that any limiting point of 'y](\];) satisfies the infinite BBGKY hierarchy
(see Section 3) with coupling constant 8mwag. The uniqueness of the solution to the hierarchy was
established in [9]. In the current paper we remove this cutoff and establish the apriori bounds needed
for the uniqueness theorem in [9].

The Hamiltonian (2.1) is a special case of the Hamiltonian

N N
1
Hgn:=—) Aj+ v > NPV(NO(z; — z))) (2.27)
j=1 i<j

6



introduced in [6] and [9]. In [9] we have proved a version of Theorem 2.2 for 0 < 8 < 1/2 provided
the initial data is given by a product state 1y (x) = HJ 1 p(z;) for some ¢ € H'(R?). In this case
the limiting macroscopic equation was given by

i@gpt = —AQOt + b0|90t|290t s

with by = [dzV(x). Note that N3V (NPz) is an approximate delta function on a scale much
bigger than O(1/N), the scattering length of %VN. This explains why the strength of the on-site
potential is given by the semiclassical approximation by of the 8wag. With the techniques used in
this paper, it is straight-forward to extend the result of [9] to all 5 < 1 with the same coefficient
bp in the limiting one-body equation provided that p (from (2.7)) is small enough. Combining this
comment with Theorem 2.1 and 2.2, we have shown that the one particle density matrix for the
N-body Schrodinger equation with Hamiltonian given by (2.27) converges to the Gross-Pitaevskii
equation with coupling constant given by

if 1
_ {bo, it 0 < ﬁ < (2.28)

8mayg, if g=1.
The case 8 = 0 is the mean-field case and the limiting one-body equation is the Hartree equation:

This was established by Hepp [14] for smooth potential. Ginibre and Velo [11] considered singular
potentials but with a specific initial data based on second quantized formalism. Spohn [22] introduced
a new approach to this problem using the BBGKY hierarchy. Recent progresses on mean-field limit
of quantum dynamics have been based on the BBGKY hierarchy and we mention only a few: the
Coulomb potential case [3, 10], the pseudo-relativistic Hamiltonian with Newtonian interaction [7],
and the delta function interaction in one dimension by Adami, Bardos, Golse and Teta [1] [2]. In
next section, we review the BBGKY hierarchy and the two-scale nature of the eigenfunctions of
interacting Bose systems.

3 The BBGKY Hierarchy

The time evolution of the density matrices yj(\lz)t, for Kk = 1,..., N, is given by a hierarchy of N
equations, commonly known as the BBGKY hierarchy:

il = > [-a VNJ+Z[VN #),74]

7=1 1<j

=

(3.30)

k
HWN =03 T [Vivlay — o)y,
j=1

for k = 1,..., N (we use the convention that 'y(k) = 01if £k > N). Here Tri;; denotes the partial
(1)

trace over the (k4 1)-th particle. In particular, the density matrix TN, i(z1; 7)) satisfies the equation

0\ (w1 2)) = (~ Dy + Ay )y (@ 2))

(3.31)
+ (N —1) /dxz (Vn(z1 — 22) — V(2] — 22)) 'y](\?’)t(xl,xg;xll,xg),

7



To close this equation, one needs to assume some relation between 'y](\?)t and 'y](\})t The simplest

assumption would be the factorization property, i.e.,

2 1 1
Yy, s 2, ) = (s @)y (s ) - (3.32)

This does not hold for finite N, but it may hold for a limit point 'yt(k) of 'y](\’;)t as N — oo, i.e.,

1B (w1, wa; 2, wh) = 4 (s i)y (@ ) (3.33)

Under this assumption, 'yt(l) satisfies the limiting equation

0 (@i 2h) = (—Day + D) (13 2h) + (Qul1) — Qulh)) v (15 2) (3.34)

where

Qu(a) = Jim N [ V(e yoly). i) =2 wio). (3.35)

If ps(x) is continuous, then @, is given by

Q¢(r) = bops(x).

Thus (3.34) gives the GP equation with a coupling constant ¢ = by instead of 0 = 8mwag. This

explains the case if 3 < 1. For § = 1, we note that by/87 is the first Born approximation to the
scattering length ag and the following inequality holds:
by 1 1

< —=— —V(x)dzx. 3.36

a0_87r 41 Jrs 2 (z) dz ( )

Recall that the ground state of a dilute Bose system with interaction potential Vi is believed to be

very close to W (x) (see (2.25)). We assume, for the moment, that the ansatz, ¥;(x) = W (x)ps(x)

with ¢; a product function, holds for all time. The reduced density matrices for 1;(x) satisfy

VD (@1, oy 2, ah) ~ F(N (21 — 29)) F(N (2 — 2y (@ )yt (o ) (3.37)

Together with (2.11) and the assumption that p; is smooth on scale 1/N, we have
lim N [ dzoVn(z — xg)'y](a)t(xl, To; X, To) = Swaoyt(l)(xl; ) pe(z1) - (3.38)

This formula is valid for |z; — 7| > 1/N. We have used that lim|;_, f(z) = 1. For pure states,
this gives the GP equation with the correct dependence on the scattering length.

Notice that the correlation in '7(2) occurs at the scale 1/N, which vanishes in a weak limit
and the product relation (3.33) will hold. However, this short distance correlation shows up in
the GP equation due to the singular potential NVx(z1 — x2). This phenomena occurs for the
ground state as proved in [18]. Our task is to characterize wave functions with this short scale
structure and establish it for the time evolved states. The key observation is the following Proposition.
Recall the assumptions on V' from Section 2 and that 1 — w(x) denotes the zero energy solution to
—A + 3V (2.12). We will use the short notation w;; = w(z; — z;), Vw;; = (Vw)(x; — x;) (note
that Vwij = _iji)-



Proposition 3.1 (H%-energy estimate). Suppose that p (defined in (2.7)) is small enough. Then,
there exists a universal constant ¢ > 0 such that, for every i € Lg(RN), and for every fized indices
1#£j,1,7=1,..., N, we have

(6, H3) > (1— ep)N(N - 1) / (1— wiy)? [ViV, 6y (3.39)

where ¢;; defined by v = (1 — wij;)dij.

If ¢;; is singular when x; approaches x;, then V;V;¢;; cannot be L?-integrable. This Proposition
thus shows that the short distance behavior of any function ¢ with (¢, H¥v) < CN? is given by
(1 —w(x; —x;)) when x; is near z;.

We emphasized the importance of the local structure (1 —w(z; —x;)) for obtaining the scattering
length ag. While Theorem 2.2 concerns only the one particle density matrix in the weak limit and
no statement on the local structure is made at all, the validity of the GP equation does suggest the
existence of this structure. For the initial data (2.26) beginning with this local structure, it simply
means its preservation by the dynamics. This is indeed the case if the local structure of the initial
data v is precise enough so that (¢, H31) < CN?, see Proposition 3.1.

For the product initial state, there is no such structure to begin with. Theorem 2.2 thus indicates
that on some short length scale a local structure similar to (1 —w(x; —;)) forms in a very short time
which approaches zero in the limit N — oo. Heuristically, notice that the two particle dynamics is
described by the operator

10y — Dy — Agy — Viv(zy — 12) = N2[i0r — Ax, — Ax, — V(X1 — X))]

where X; = Nz; and T = N?t are the microscopic coordinates. The small positive time behavior
of the original wave function on the short length scale is the same as the long time behavior in
the microscopic coordinates. Clearly, we expect the long time dynamics to be characterized by the
relaxation to the zero energy solution. This picture, however, is far from rigorous as the true N-body
dynamics develops higher order correlations as well.

On the other hand, the local structure (1 — w(z; — x;)) cannot be the only singular piece of the
wave function in positive time for product initial states. A simple calculation shows that the energy
per particle of a product initial state 1y (x) = H;VZI @(x;) is given by

b
Jim N7 o o) = [ do (Ve@P+ 3 [ do )l (3.40)

where by = f V. This is different from the GP energy functional (1.1) due to the coupling constant.
Since the energy is a constant of the motion, this implies that the GP theory does not predict the
evolution of the energy. If we grant that the local structure (1 — w(x; — x;)) does form for positive
time t > 0, the discrepancy in energy suggests that there is some energy on intermediate length scales
of order N7, 0 < a < 1 which is not captured by the GP theory. This excess energy apparently
does not participate in the evolution of the density matrix on length scale of order one which is the
only scale that is visible by our weak limit. We do not know if such a picture can be established
rigorously.

Notation. We will denote an arbitrary constant by C. In general C' can depend on the choice
of the unscaled potential V. Universal constants, independent of V', will be denoted by c. We write
f(N) = o(N?) if there is § > 0 such that N"*T9f(N) — 0 as N — oo (unless stated otherwise,
this convergence does not need to be uniform in the other relevant parameters). We also write
f(N) < g(N) if f(N)/g(N) = o(1). Integrations without specified domains are always understood
on the whole space (R?, R3* or R3N according to the integrand) with the Lebesgue measure.



4 Proof of Theorem 2.1 and Theorem 2.2

In this section we present the main steps of the proofs and we reduce the argument to a sequence of
key theorems and propositions. These will be proven in the rest of the paper.

We start with defining the space of density matrices that depend continuously on the time
parameter with respect to the weak® topology. To use Arzela-Ascoli compactness argument, we
will need to establish the concept of uniform continuity in this space, thus we have to metrize the
weak™ topology.

Since Kj, is separable, we can fix a dense countable subset of the unit ball of Kx: we denote it
by {Ji(k)}izl € K, with ||Ji(k) llc, <1 foralli> 1. Using the operators Ji(k) we define the following
metric on £: for A (k) 5(k) e L} we set

(Y ZQ

Then the topology induced by the metric 7, and the weak™ topology are equivalent on the unit ball
of £} (see [21], Theorem 3.16) and hence on any ball of finite radius as well. In other words, a

uniformly bounded sequence 7](\1;) € E/,lC converges to 'y(k) € E/,lC with respect to the weak* topology, if

(7@) _ 7(@)‘ ' (4.1)

and only if nk('y](\];), A k)) =0 as N — oo.
For a fixed T > 0, let C([0, T, £}) be the space of functions of ¢ € [0, 7] with values in £}, which
are continuous with respect to the metric ng. On C([0,T], £1) we define the metric

(Y (), 7)) = i (Y (), W (1)) . (4.2)

Finally, we denote by Tpr04 the topology on the space @kzl C([0,T7, £1) given by the product of the
topologies generated by the metrics 7 on C([0,T], £1).

Proof of Theorem 2.1. The proof is divided in several steps.

Step 1. Compactness of 'y = {’Y](\];)t}kx- We set T' > 0 and work on the interval ¢ € [0, T].
Negative times can be handled analogously. We will prove in Theorem 6.1 that the sequence F( )
{'YNt}k>1 € D1 C([0, 717, L) is compact with respect to the product topology Tprod defined above
(we use the convention that 'y(k) =0 if K > N). Moreover, we also prove in Theorem 6.1, that any
limit point ' ¢ = {7007t}k21 € Py, C([0, 17, L3) is such that, for every k > 1, y(ﬁ’j?t > 0, and 'yglg?t
is symmetric w.r.t. permutations. In Proposition 6.3 we also show that

Tr (1-A1)...(1- AL, < CF (4.3)

for every t € [0, T] and every k > 1. Note that, for finite N, the densities 'y](\];)t do not satisfy estimates
such as (4.3) (at least not uniformly in N), because they contain a short scale structure. Only after
taking the weak limit, we can prove (4.3).

Step 2. Convergence to the infinite hierarchy. In Theorem 7.1 we prove that any limit point
Foot = {yﬁ’j?t}kzl € D> C([0,T],L}) of Tyt = {’Y](\]Z)t}kzl with respect to the product topology
Tprod 18 @& solution of the infinite hierarchy of integral equations (k =1,2,...)

k t
7B, = U (1)), — smiagy / AsUP)(t = ) Trpsr (85 — a41), 7 &L (4.4)
. 0
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with initial data 'y( = |p){|®*. Here Trj,1 denotes the partial trace over the (k + 1)-th particle,

00,0 T
and U (k)( t) is the free evolution, whose action on k-particle density matrices is given by

U (1) 8) = it o B () =it oy A

Note that (4.4) is the (formal) limit of the N-particle BBGKY hierarchy (3.30) (written in integral
form) if we replace the limit of NV (z) with 8wagd(z) (see (3.38)).

The one-particle wave function ¢ was introduced in (2.14). From (2.13) and the positivity of the
potential we note that

CN = (i, (Hy + N)wn) = NTr(1 - A) 7). (4.5)
Since by (2.14), vy~ — |¢)(p| as N — oo, w.r.t. the weak * topology of £!(L?(R?)), it follows from

(4.5) that Tr (1 — )|g0><g0| < O, and therefore that ¢ € H'(R3).
We remark here that the family of factorized densities,

= |pe) (i0e®*, (4.6)

is a solution of the infinite hierarchy (4.4) if ¢; is the solution of the nonlinear Gross-Pitaevskii
equation (2.16) with initial data ¢;—9 = ¢. The nonlinear Schrédinger equation (2.16) is well posed
in H'(R?) and it conserves the energy, £(¢) := % [ |Vo|? + 4mag [ |p|*. From ¢ € H(R?), we thus
obtain that ¢; € H'(R3) for every t € R, with a uniformly bounded H'-norm. Therefore

Tr (1= A1) (1= Ap)len) (el < Il < CF (4.7)

for all t € R, and a constant C only depending on the H'-norm of .

Step 3. Uniqueness of the solution to the infinite hierarchy. In Section 9 of [9] we proved the
following theorem, which states the uniqueness of solution to the infinite hierarchy (4.4) in the space
of densities satisfying the a priori bound (4.3). The proof of this theorem is based on a diagrammatic
expansion of the solution of (4.4).

Theorem 4.1. [Theorem 9.1 of [9]] Suppose T = {vF)};51 € @Dy.>1 L}, s such that
Tr(1—Ap)...(1—Ap)y® <k, (4.8)

Then, for any fized T > 0, there exists at most one solution T'y = {'yt(k)}kzl € Dy>1 C([0, 717, Li) of
(4.4) such that
Tr(1—Ay)...(1- A < ok (4.9)

for allt € [0,T) and for all k > 1.

Step 4. Conclusion of the proof. From Step 2 and Step 3 it follows that the sequence I'y; =
{71(\];,1}’621 € @,~,C([0,T], L) is convergent with respect to the product topology Tproq; in fact
a compact sequence with only one limit point is always convergent. Since the family of densities
I, = {'yt(k)}kzl defined in (4.6) satisfies (4.7) and it is a solution of (4.4), it follows that I'n; — T
w.r.t. the topology Tproqa. The estimates are uniform in ¢ € [0,77], thus we can also conclude that

nk('y](\];)t, 'Yt( )) — 0. In particular this implies that, for every fixed & > 1, and ¢ € [0, 7], '7](\,1 — 'yt(k)
with respect to the weak* topology of E,lg. This completes the proof of Theorem 2.1. Actually, the
estimates are uniform in ¢ € [0, 7], and thus we can also conclude that nk('y](\];)t, 'yt(k)) — 0. O
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Next we prove Theorem 2.2; to this end we regularize the initial wave function, and then we
apply the same arguments as in the proof of Theorem 2.1.

Proof of Theorem 2.2. Fix k > 0 and x € C{°(R), with 0 < x <1, x(s) =1, for 0 < s < 1, and
x(s) =0 if s > 2. We define the regularized initial wave function

T = X(kHN/N)Yn
- Ix(kHN/N)YN|

and we denote by JNt the solution of the Schrédinger equation (2.2) with initial data JN Denote
by FNt = {’y } ne the family of marginal densities associated with z/JNt By convention, we set

ﬁ(k) := 0 if £ > N. The tilde in the notation indicates the dependence on the cutoff parameter k.
In Proposition 8.1, part i), we prove that

(Ong, Hyon ) < CENF (4.10)

if k > 0 is sufficiently small (the constant C depends on k). Moreover, using the strong asymptotic
factorization assumption (2.18), we prove in part iii) of Proposition 8.1 that for every J*) e Ky,

ﬂﬂ'f)( B o ><¢|®k)_>o (4.11)

as N — oo. From (4.10) and (4.11), we observe that the assumptions (2.13) and (2.14) of Theorem
(k)

2.1 are satisfied by the regularized wave function JN and by the regularized marginal densities 7.
Therefore, applying Theorem 2.1, we obtain that, for every t € R and k > 1,

~(k
N0 — Lo (e = (4.12)
where ¢, is the solution of (2.16).

(k)

It remains to prove that the densities v, ; associated with the original wave function ¢ ¢+ (without

(k)

cutoff k) converge and have the same limit as the regularized densities 7N7t. This follows from
Proposition 8.1, part ii), where we prove that

I, = dnall = Il — ¥l < CKY?,
where the constant C' is independent of N and . This implies that, for every J*®) € K., we have

(ﬁ J®) (7](51 7 ) ( < Ok!/? (4.13)

where the constant C' depends on J*) | but is independent of N, k or x. Therefore, for fixed k > 1,
t e R, J®) e Kk, we have

T 78 (3 = e (ed™ ) | < [T g® (2 = 38) | + [T 78 (58 — lend (™) |

< CrY/? + ‘ﬁ ) <7Nt o) (0|2 ) ‘ (4.14)

Since k > 0 was arbitrary, it follows from (4.12) that the Lh.s. of (4.14) converges to zero as N — oo.
This completes the proof of Theorem 2.2. O
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5 Energy Estimates

In this section we prove two energy estimates that are the most important new tools used in the
proof of the main theorem. Both estimates concern the smoothness of the solution 1y +(x) of the
Schrodinger equation (2.2), uniformly in N (for N large enough) and in ¢ € R. However, due to
the short scale structure of the interaction, Vi, uniform smoothness, say in the z; variable, cannot
be expected near the collision points |x; — ;| ~ 1/N, j = 2,3,...,N. The key observation is
that 27 — ¢n+(x) will nevertheless be smooth away from these regimes, whose total volume is
negligible. For technical reasons, the excluded regime will be somewhat larger, |x; — ;| > ¢, but
still with N¢? <« 1. The same statement holds for the smoothness in an arbitrary but fixed number
of variables, x1, ..., xr. This is the content of our second energy estimate Proposition 5.3.

Our first energy estimate, Proposition 3.1, controls only two derivatives, but it is more refined:
it establishes smoothness of ¥n +(x) in the z; and x; variables (for any fixed pair 4, j) after removing
the explicit short scale factor (1 — w(x; — x;)). This factor represents the short scale effect of the
two body interaction Vi (x; —x;) on the wave function and it is responsible for the emergence of the
scattering length (2.9).

5.1 HZ Energy Estimate

In this section, we shall prove Proposition 3.1. We first collect some important properties of w(x)
(2.12) in the following lemma. This lemma is an improved version of Lemma A.2 from [8]. By
defining p somewhat differently (see (2.7)), we also correct a minor error in (A.6) and (A.19) of [8].

Lemma 5.1. Suppose V' > 0 is smooth, spherical symmetric, compactly supported and with scattering
length ag. Let

p=supr?V(r) + / drrV(r) (5.1)
r>0 0

and let a = ag/N be the scattering length of the rescaled potential Viy. Then the following hold with
constants uniform in N.

i) There exists a constant Cy > 0, which depends on the unscaled potential V', such that
Co<l—-w(x)<1 for all x € R3. (5.2)
Moreover, there exists a universal constant ¢ such that

l—cp<1l-—w(z)<1 for all x € R? . (5.3)
ii) Let R be such that suppV C {z € R3 : |z| < R}. Then

w(x) = % for all x  with |x| > R/N .

iii) There exist constants Cy, Co, depending on V', such that
[Vw(x)] < C1N, |V2w(zx)| < CoN?2, for all x € R3. (5.4)

Moreover, there exists a universal constant ¢ such that

v
x|’

|V2w(z)| < ¢ L for all x € R3. (5.5)

a
<c——= <
[Vw(x)| < ¢ [Vw(z)| < ¢ BE

|z [>’
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iv) We have
8ma = /dx Vn(z)(1 —w(z)).

(5.6)

Proof. We prove part i) and iii) in Appendix D. Part ii) follows trivially by the definition of the
scattering length a and by the fact that the potential has compact support. As for part iv), note
that, due to the spherical symmetry of Vi and w(z), with the notation » = |z|, the function

g(r):==rf(r)=r(1 —w(r)) satisfies

~g/(r) + FVn(r)g(r) =0.

By ii) of this lemma, g(r) = r — a for r > Ra. We thus obtain

/dx Vn(z)(1 —w(x)) = 47T/0 dr 2V (r) (1 — w(r)) = 87T/0 drrg”(r)
=87 lim (rg'(r) — g(r))|§ = 8ma.

0—00

Proof of Proposition 8.1. For j =1,..., N, we define

1
bj=—R;+35 ZVN(%’ — ).

Then we clearly have
N

Hy =) _b;.

j=1
Since 1 is symmetric with respect to permutations, we have

N

(, Hyp) = > (¥, hibjpp) = N(N — 1)(3b, hibawy) + N (3, b3) > N(N — 1){1h, h1hah) .

ihj
Of course, instead of the indices 1,2 we could have chosen any i # j.

We have

1 1
b1y = Ay + §VN($1 —x2)1) + 3 E>3 Vn(zy —x)9
>

Next we write ¢ = (1 — w12)¢p12 and we observe that

—A1[(1 —wi2)p12] = (1 —wi2)(—A1p12) + 2Vwia Vigia + Awiz dra.

Hence

_ \%
(1—w12) "1 [(1 — wi2)d12] = — Argra + 2 1 _w;; V112

(A1 + (1/2)Vy(z1 — 22)) (1 — w12)
_I_
1— w2

P12
+ % Z Vn(z1 — z5) 2.

j=3
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Using the definition of w(z) (see (2.12)), we obtain

1
(1 —wi2) b1 [(1 — wiz)p1a] = Ligna + 5 Z VN(21 — x5)h12 (5.13)
Jj=3
where we defined <
Li:=—-A1+2 Wz Vi.
1-— w12

Note that this operator is symmetric with respect to the measure (1 — wq2)%dx, i.e.

Ja-wB @ = [a-weP@ox= [(-waPTievn. (1)
Analogously to (5.13), we have
1
(1= wi2) " 'h2[(1 — wi2)12] = Laghiz + 5 > Vn(wa — 5) 12 (5.15)
Jj=3
with v
Lo=—-NAy+2 w21 Vs.
1 — w2

Therefore, from (5.9) we find

(¥, Hip) > N(N — 1) /(1 — wya)? <L1 + %ZVN(J«H - 33j)> b1 <L2 + %ZVN(@ - 33j)> P12

j=3 j=3

= N(N—1) /(1 — w12)? L1¢19 Ladh1a

+ w ; / (1 = wi)® {Viv(x2 — 27) Lig1adia + V(21 — ) ¢1aLadiz}
s WZ/ (1= wiz)? Vi — ) Vi(zz — 22)|oral
= N(N—1) /(1 —w12)” L1¢15 Ladho
+ w Z / (1 —wi2)® {Vn(z1 — ;)| Vadio|* + V(22 — ;)| Vigio]* }
i>3
s WZ/ (1= wiz)? Vi — 23)Vi(zz — a2)|oral

> N(N —1) /(1 — w12)? L1¢1s Lara.
(5.16)

Here we used that the potential is positive and that the sum ) | >3 Vn(z1 — ;) is independent of xo
(and analogously } -5 V(22 — ;) is independent of z1).

From (5.16) we find
(¥, Hyp) > N(N — 1) /(1 —w12)* V161,V1 Lagnz

:N(N — 1) /(1 — w12)2 |V1V2 ¢12|2 + N(N — 1) /(1 — w12)2 Vl Elz[vl, L2]¢12 .
(5.17)
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To control the last term, we note that

v V2w v 2 1
I[Vh et ] < | 21 +< oL > <SP0
1—w21 1—’[012 1—’[012 |l‘1—l‘2|

by (5.3) and (5.5), for p small enough. Therefore we have

1
<cp / (1—wi2)? m|vl¢12||vz¢12|

1
SCP/ ————|Vigia|?
|21 — 22

< CP/ |V1V2 ¢ra]?

‘/(1 — w12)? V1$12[V1, Lo]¢12

(5.18)

< cp/(l — w12)2 |V1V2¢12|2

where we used (5.3) to remove and then reinsert the factor (1 —w12)? (assuming p is small enough),
and where we used the Hardy inequality to control the 1/|z|? singularity. From (5.17) we have

(6, H3) > (1— ep)N(N — 1) / (1— w12)? [V1 Vb1 (5.19)

This completes the proof of the Proposition 3.1. O
For fixed 2 < k < N and i, j < k, with ¢ # j, we define the densities '71(\1;,)1,j,t by

k — k —
Yhge = (1= wig) (1 —wy) 7 (5.20)

(k)

~1 is viewed as a multiplication operator. The kernel of YN it

where (1 — wij)_l = (1 — w(:ci — l‘]))
is given by
k _ 1 (k
Va5 Ok K1) = (1= w(ary = 23)) ™ (1= w(f — ) "y} (xeus k) (5.21)
Then, for every k, and every ¢,j < k, with ¢ # j, 'y](\];’)mt is a positive operator, with Tr'y](\l,i)i’j’t <C,
uniformly in N, ¢.
Proposition 5.2 (A-priori bounds for 'y](\’;)z ; .)- For any sufficiently small p, there exists a constant
C > 0, such that

Tr(1—A)(1— A\, <C (5.22)
forallt e R, 2< k< N,i,j<k,i+#7j,and for all N large enough.

Proof. For fixed i # j we define the function ¢; ;; by ¥n: = (1 — wi;)¢i ;. (the N dependence of
¢i ;¢ is omitted in the notation). Then we observe that

k
Tr (1= A) (1= A7) 7\ 0 = 19685 il = Idigal® + 20 Vidijal® + IV:Viigal®  (5.23)

with S, := (1 — A,,)/2. Next we note that, by (5.3),

l6isall2 = / dx ¢ ()2 < C / dx [ (x)? < C (5.24)
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uniformly in N and t. Moreover

b2 = [ ax vt
Videsil = [ ax [
N 1 ’ e N Vow(z; — ;) | )2
< [a [ —w(an — oy VNl +/ ST —epp| Y o

<c/dx|wz;m +0/dx . J|2|¢Nt( x)|?
<C [ ax|VibwP.
where we used (5.2), (5.5) and Hardy inequality. Next we note that, for every i =1,..., N,
(YNt HNUN ) = N(Yng, Aipnyg) = N/ |Vibna]? (5.26)
Therefore, from (5.25),

IVidijil? < ON"Hony, Hyong) = ON Ny, Hyn) < O (5.27)

by (2.13) and by conservation of energy. Finally, to bound the last term on the r.h.s. of (5.23), we
note that, for a sufficiently small p,

ViV i el|” < C/dx (1 —w(x; — 7)) | ViV (x)|
C

< mww,u HRY¥n ) (5.28)
__ ¢ 2
= m<¢N7HN¢N> <C

for all N large enough. Here we used (5.2) in the first line, Proposition 3.1 in the second line, the
conservation of H% in the third line, and the assumption (2.13) in the last inequality. Proposition
5.2 now follows from (5.23), (5.24), (5.27), and (5.28). O

5.2 Higher Order Energy Estimates

We will choose a cutoff length scale £. For technical reasons, we will have to work with exponentially
decaying cutoff functions, so we set

N
h(z) :=e" ay (5.29)

Note that h ~ 0 if |z| > ¢, and h ~ e~ ! if |z| < £. For i = 1,..., N we define the cutoff function

0;(x) := exp 1 Z h(x; — xj) (5.30)

for some € > 0. Note that 6;(x) is exponentially small if there is at least one other particle at distance
of order ¢ from xz;, while 6;(x) is exponentially close to 1 if there is no other particle near z; (on the
length scale ¢).

As for the choice of ¢, to make sure that the presence of particles at distances smaller than ¢
from z; is a rare event, we will need to assume N¢3 < 1. This condition is not used in Proposition
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5.3 below, but if N¢3 > 1, then our estimates were empty in the limit N — oo as the r.h.s. of the
estimate (5.33) below tended to zero. On the other hand, choosing ¢ too small makes the price to pay
for localizing the kinetic energy on the length scale ¢ too high. In Proposition 5.3 we will actually
have to assume N2 > 1.

Next we define

01(”) (x) :==0;(x)*" =exp | —— Zh(% —xj) (5.31)

n n n 2”
0" (x) := 6" (x) ...60" (x) = exp —GE 2D hlwi— )| (5.32)
i<k j#i

To cover all cases in one formula, we introduce the notation @,in) =1 for any k£ <0, n € Z. We will

need to use the functions 01(”) (instead of #;(x)) to take into account the deterioration of the kinetic
energy localization estimates. For example the bound |V ;6;(x)| < C¢~16;(x) is wrong, while

V60" (x)] < ce710" Y ()
)

is correct and similar bounds hold for @2” . This, and other important properties of the function

@,in), used throughout the proof of Proposition 5.3 are collected in Lemma A.1 of the Appendix.

Proposition 5.3 (H"* energy estimates). Suppose £ > N2 and that p (from (2.7)) is small
enough. Then for Cy > 0 sufficiently small (depending on the constant (1 — c¢p) in Proposition 3.1)
and for every integer k > 1 there exists Ng = Ny(k,Cy) such that

W, (Hy + N)F ) > CENF /@,(f_)l IV1... V|2
+0§N’f—1/@,§’“j1 V2V, ... Vi [2 (5.33)
+ CknkH / M (x) Vi(ax — 21s1) [V ... Vi_19b(x)[2dx

for every wave function 1 € L2(R3*N) and for every N > Ny.

In order to keep the exposition of the main ideas as clear as possible, we defer the proof of this
proposition, which is quite long and technical, to Section 9, at the end of the paper.

6 Compactness of the Marginal Densities

In this section we prove the compactness of the sequence I'y ; = {’Y](\];)t}kzl w.r.t. the topology Tprod-

(See Section 4 for the definition of 7,r0q and recall the convention that 'y](\];)t =0if k > N.) Moreover,

in Proposition 6.3, we prove important a-priori bounds on any limit point I's, ¢ of the sequence I'y ;.

Theorem 6.1. Assume that p is small enough and fix an arbitrary T > 0. Suppose that I'ny; =
{’Y](\]Z)t}kzl is the family of marginal density associated with the solution Y. of the Schrodinger
equation (2.2), and that (2.13) is satisfied. Then I'n; € P>y C([0,T], Lt) Moreover the sequence
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Int € @roy C([0,T], LL) is compact with respect to the product topology Tprea generated by the
P (k)

metrics Ny, (defined in Section 4). For any limit point I's; = {ygg?t}kzl, Yoot 15 symmetric w.r.t.

permutations, 'y(k) >0, and

0o,t

Ty, <1 (6.1)

0o,t

for every k > 1.

Proof. By a standard “choice of the diagonal subsequence”-argument it is enough to prove the
(k)

compactness of 7,3, for fixed k > 1, with respect to the metric 7). In order to prove the compactness

of 'y](\lf)t with respect to the metric 7, we show the equicontinuity of 'y](\lf)t with respect to the metric .

The following lemma gives a useful criterium to prove the equicontinuity of a sequence in C([0, T, £}).
Its proof is very similar to the proof of Lemma 9.2 in [8]; the only difference is that here we keep k

fixed and we consider sequences in £}, while in [8] we considered equicontinuity in the direct sum
C([0, T, H) = ®k>1C([0,T], Hg) over all k > 1, for some Sobolev space Hy.

Lemma 6.2. Fix k € N and T > 0. A sequence yj(\lf)t € Li, =kk+1,..., with yj(\lf)t >0 and
Tr 'y(k =1 forallt € [0,T] and N > k, is equicontinuous in C’([O T], L}) with respect to the metric

Nk, if and only if there exists a dense subset Ji of Ky such that for any J® € Ji and for every
€ > 0 there exists a § > 0 such that

]Svuzpl Tr J*) ( (k) 'yﬁ’fl) ‘ <e (6.2)

for allt,s € [0, T] with [t —s| <d. O
For the proof of the equicontinuity of yj(\lf)t with respect to the metric 7y, we will choose the set

Ji in Lemma 6.2 to consist of all J*) e K, such that SiSjJ(k) S;Sj is bounded, for all ¢ # j, and
i,j < k. We recall the notation S, = (1 — A,)"/2.
Rewriting the BBGKY hierarchy (3.30) in integral form we obtain for any s <t

k
v VNS—ZZ/dT N A —ZZ/ dr [V (i — ), 7]
1<) s

—i(N — k) Z/ dr Tr1 [V (2 — 2p41), 7](\[—:1)] .

Multiplying the last equation with J*) € 7, and taking the trace we get the bound (recall the
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definition (5.20) of the densities 'y](\’;)” 0
T g ® (), =2 (<Z/ ar [ Tr (5710085 - 8;70871) 555105,

+Z/ dr‘TY SSJ(k SZS]>< 1S Wy(z i — o) (1 —w;j)S; 15 )

- % (S8 5,585 ) (578711 = wiy) S8 |

+Z/ dr‘ﬁ (8:5;798:8;) (718711 = wy) 718
- x (S350 5,568 ) (7187 Vv i = ) (1 = wiy)S787) |
(1——)2/ dr Tr (8;008;) (7S5 NV = w1 (1= wypi) S S77)

X <Sk+1517](\1;3 k)—i-l rS'Sk+1> (Sj_lsk_il(l - wj’k“)SkHSj_l) ‘

(1--) Z/ dr [Tr (8;008;) (87 Sk (1= wiasn) Sy S;7)

X <Sk+1Sj7](V,j,k)+1,rSjSk+1> <S]»_IS,€__,}1NVN(:L‘J' - :L‘k_;,_l)(l - wj7k+1)S,;jISj‘1> ‘
(6.4)

Here we used that Sj,; commutes with J®*). Next we observe that (see Lemma 6.4 below),
1S LS N Vi (3 — 25) (1 — wig)S187Y| < ON / V(1 —w) < C, (6.5)
by part iv) of Lemma 5.1. Moreover
15,7871 (1 = wyy)S;tS;H < © (6.6)

and

1
2

1571k (1 = wgk1) Sker S5 < [ (1 = wga1) S240 8520 = wipsn) Sy S5 !

N[

<C+ HSj_lsk_—&lvk—i-l(l - wj,k+1)5j_2(1 - wj,k+1)vk+1sk_ilsj_l

1
2

+ HSJ'_ISk__&l(vk—i-le,k—i-l)Sj_z(vk—i—le,k—i—l)sk_,_ls
1
3

< C+ |87 sk (VsSSP < ¢

(6.7)

In the last step we used the second bound in (5.5). Since J*) € 7 is such that ||S¢SjJ(k) SiSil| < C
forall4,j =1,...,k, it follows from (6.4)—(6.7) that

Te J® () ‘< — Tr
[1ea 0 (1 =) | S Cote =) ma, mae s

; 7§V)” 5,8, (6.8)
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for a constant Cj, depending on k and on J®*) | but independent of ¢, s, N. From Proposition 5.2, and
from the fact that the subset J*) is dense in Kj, it follows that the sequence yj(\lf)t € C([0,T], L)
(k)

is equicontinuous. Since, moreover, Tr YNy =1 uniformly in ¢ € [0,7] and N, the compactness

(k)

of the sequence YN w.r.t. the metric M follows from the Arzela-Ascoli theorem. This proves the

compactness of I'y; = {’Y](\];)t}kzl € @, C([0,T], L}) with respect to the product topology Tprod-

Now suppose that I'sg ; = {'y(gg?t}kzl € Dy>1 C([0, 17, L) is a limit point of I'y; with respect to
Tprod- Then, for any k£ > 1, 'yéi?t € C([0,T), L}) is a limit point of 'y](\];)t The bound

Tr"y (<1

follows because the norm can only drop in the weak limit.
To prove that 'yﬁi?t is non-negative, we observe that, for an arbitrary ¢ € L2(R3**) with [|o| = 1,

the orthogonal projection P, = |p){¢p| is in Ki and therefore we have
k k . k . k
(.1 P0) = Tr PAE), = im T Pw](vj),t = Jlim (¢, vj(vj),m >0, (6.9)

for an appropriate subsequence N; with N; — oo as j — oo.

(k)

00,t

(k)

Similarly, the symmetry of .., w.r.t. permutations is inherited from the symmetry of YN for

finite N. For a permutation 7 € S, we denote by =, the operator on L?(R3*) defined by
Erp(xr, . ooxk) = 0(Tn1y - - oy Tak) -

Then the permutation symmetry of 'y(k) is defined by

00,t
k) —— k
Hﬂ")/(go)t“ L= ’Yéo)t (6.10)

for every m € Si. To prove (6.10), we note that, for an arbitrary J*) ¢ Kj and a permutation
m € Sk, we have, for an appropriate subsequence N; — oo, as j — 00,

Tr J®) ( ) _ hm JH) (k) = hm TrJ(k)_W'y](\];)t:_ lim Tr = lJ(k)uw’Y](\];)t

J=oe (6.11)
= Tr=;'J® Eﬂgo? Tr JWE, A=t
where we used that, since J*) e K, also 2~ 1J(k) € Kg. O

In the next proposition we prove important a-priori bounds on the limit points I's, ;. These
bounds are essential in the proof of the uniqueness of the solution to the infinite hierarchy (4.4), in
Theorem 4.1.

Proposition 6.3. Suppose that p is small enough, and assume that (2. 13) is satisfied. Let I'ngy =

{fy(gi?t}kZl € P>, C([0,T], L}) is a limit point of the sequence T'n ¢ = {'y }k 1 w.r.t. the product
- (k)

topology Tprod- Then v, (has a version which) satisfies

Tr(1—A1)...(1- 2y, <cf (6.12)

for a constant Cy independent of t € [0,T] and k > 1.
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Proof. We fix ¢ as a function of N, such that N¢? > 1, and N¢? < 1. Moreover we fix ¢ > 0 so
small that N¢37¢ < 1. With this choice of £ and €, we construct, for integer n, k the cutoff functions
@,in) (x) as in (5.32). For k € N, we will use the notation

Dy :=V;...V, D) :=Vi...V}, with V=V, .

We also set Dy, = I for k < 0 to cover all cases in a single formula. From Proposition 5.3, it follows
that, for any fixed & > 1,

1
< CINE (Une (Hy + N)Ftpn )
1
~ CkNF

/ @ L DEn ] <
(6.13)
(Y0, (Hy + N)*n o) < C

for any N large enough (depending only on k). In the last inequality we applied the assumption
(2.13).

For k=1,..., N, we define the densities U](\f)t by their kernels

U](\f)(xkyxk) : /dXN k O (xpey xv—) O (3, 1) Dt (31, X v 1) Dy +(Xk, XN—k).-
(6.14)

Note that the operator U ](\f )t is the k-particle marginal density associated with the N-body wave

function @,(fk) (x)Dptpn +(x). Therefore U](\;ii > 0. Moreover, it follows from (6.13) that, for N large
enough,

Tr Uy = / (017 | Dy b < / 0P | Dy |2 < CF (6.15)

It follows from (6.15) that for every fixed integer k > 1, and for every t € [0,T], the sequence U ](\f )t
k)

is compact w.r.t. the weak* topology of £i. Moreover, if Uéqt
U](\f)t, then

denotes an arbitrary limit point of

T U, < b (6.16)

Next we assume that 'y(k) € C([0,T7], £4) is a limit point of 'y](\’;)t w.r.t. to the topology 7. It

follows that for any fixed ¢ € [0, 7], 'y(k) is a limit point of 'y](\’;)t w.r.t. the weak* topology of L.

0o,t

Because of the compactness of the sequence U ](V)t w.r.t. the weak * topology of Ek, we can assume,

by passing to a common subsequence N;, that there exists a limit point U (k)t € El of Uy (k) such that,

Tr J*) ’Y( 1)7 — Tr J*®) 5 (k) (6.17)
and
Tr J*) U](\i),t Ty J® Uéi)t (6.18)

for every J*) € K. For notational simplicity, we will drop the index 4, but keep in mind that the
limits hold only along a subsequence.
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Next we fix J*) ICi. such that Vy .. .VkJ(k)Vz ... V7] is compact and such that

4
Sup/dx}f Z |V?E;1 Vi ...V, Vi .. .V;mJ(k)(xk;xﬁfﬂ < 00
' b=0 (6.19)

4
Sup/dxk Z IVl Vi .. Vi,V .. .V;mJ(k)(xk;xzﬂ < 00
Xy b=0

k

for every j,m,n <k, and (i1,...4;), (r1,...,rm) C {1,2,...,k}. Then we have, applying (6.17) to
the derivatives of J(k),

Te V... VidOVE. Vil = Tr V1. Ve dBVEL L Vi) (6.20)

as N; — oo. For such observable J*) we rewrite the Lh.s. of (6.18), using (6.14), as

Tr J® U = / o T8 (xx; x3,) OF (k. 30y 1) O (3, x v 1) (6.21)
X Dk?/JN,t(Xka XN—k)D;cEN,t(X;m XN—k) :

From (6.21), we will show later that
Tr J*) U](\;ii = /dxkdxzde_k (Dk Dy, J(k)> (xk; X)) YN (X, XN_k)ENi(X;C, xn—k) + o(1)
(6.22)

as N — oo.
Before proving (6.22), let us show how Proposition 6.3 follows from it. Equation (6.22) implies
that

T J® U] = Tr Vi Ve d BV Vi + o(1)

(6.23)
= T V.. Vi J®VE L V)
as N — oo (using (6.20)). Comparing with (6.18), we obtain that
Te J® UL, = e v, .. v g0V v, (6.24)

Since the set of all J*) ¢ K with the property that V.. .VkJ(k)V’{ ...V} € Kj and such that
(6.19) is satisfied is a dense subset of Ky, it follows that

Vi Vv ovi=u®),. (6.25)
From (6.16), we find
Tr (A1) ... (—Aa)y Y, < CF. (6.26)

Now suppose that ' ; = {yglg?t}kzl € C([0,T], L£}) is a limit point of the sequence I'y ;. Then,
for every fixed k¥ > 1 and ¢ € [0,T], 'y(k) is a limit point of 'y](\];)t and thus satisfies (6.26), for a

oo,t
constant Cy independent of ¢ and k. Moreover, for any m < k we also have

Tr (A1) ... (~A)0 L, < o (6.27)
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To prove the last equation, we repeat the same argument leading from (6.14) to (6.26), but with the

densities U ](\f )t replaced by

Ufn)]Vt(Xk; X)) = /dXN—k @;(fk) (X XN—k)@;ik)(ij XN—k) DN (X1, XN <) Dyt v o (X, XN—) -
(6.28)
From (6.26), (6.27), and from the permutation symmetry of y(ﬁ’j?t, we find
"k
(1= A0 (-0 = 3 (BT ol can@l s et 629)

m=0

which completes the proof of Proposition 6.3.

It remains to prove (6.22). To this end, we rewrite the r.h.s. of (6.21) by using @,(fk) = ngk)@]g_l
as follows: ®
T J® Uy = (1) - (1]) (6.30)

with
(I):= /dxkdxkde i J F) (xp; x @]i 1 (e, x N k)@](gk)(xz,xN_k)

%)
X DN (Xp, XN 1) D3t v 4 (X XN )
%)

(6.31)
(II) := /dxkdxﬁfde_kJ( (xp;x (1—0( (Xp, XN— k))@l(c )l(xk,xN k)@](f)(x;,xN_k)
X Dipthn o (X, XN —k) Dyt ¢ (X, X —1) -
By integration by parts
(I) = (Ia) + (Ib) (6.32)

with
(Ia) := /dxkdxkde oV JE )(xk7xk) @]i L (Xk XN_k) @](Ck)(xfk,xN_k)
x D Xk, X Dby (X5, XN
k1N (Xk, XN k) Dpth n 1 (Xge, XN k) (6.33)
(Ib) ::—/dxkdxdeN_kJ(k)(Xk;Xz) Vk (Xk,XN_k)@](fk)(Xz,XN_k)
X Dy 19N 4(Xk, XN—k) Dy v ¢ (X, XN—k)

The main term is (Ia). To bound the term (Ib), we use Schwarz inequality with some « > 0:
/ (k) / (k) 2 2
|(1b)| < o | dxpdxpdxn—g] ] (xk3 x| ‘vk@k—l(xkaXN—k)‘ | Dr—19N ¢ (Xky XN 1) |
+a! / dxcgacy o i J®) (3¢ 14| O (), x| Do, (kX v )|

<a <sup/dx;|J<k>(xk;x;)|> /dx (vk@ ( | Dy 19y 4(x)]?

Xk

!
X

+at (SUP/kalJ(k)(Xk;XﬁfN) /dXZdXN—k O (k. x i) | Ditov,e (kx|

(6.34)
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Using that
*) (]2 L2t : (k1)
‘Vk@k_l(x)‘ <o (=3 ha—am) | o) (6.35)
m=2
we obtain that

/dx ‘Vk@,(fli)l(x)‘z | D—19n.4(x) 2
ok K i
<cr? / dx (e_e mzz h(ay — xm)> O ()| Di- b ()| (6.36)

kK 2
SC(N -k / dx (i— > hwi— xm)> O (x)| Dy 1thw 4 ()2,
m=2

i>k

where we used the symmetry of the Dj_19n+ w.r.t. permutations of the last N — k variables. Since
2k k 2 2k k 2
k+1 k+1 k
) (g_e h(a; — f'fm)) o (x) < =2 D hlai— ) oV (x) <col (x) (6.37)
i>k m=2 i>k m=2

(see part ii) of Lemma A.1), it follows from (6.36) that
2
[ [0 1Dicrome < corv -7t [ ) Diawna?

S CK—Q(N _ k)—l/ @](f?_—zl) |Dk_1wN7t|2 (638)
<CR02(N —k)™!

by (6.13) (here the constant Cj depends on k and on the observable J*)). From (6.34), from the
assumptions (6.19), and again using (6.13), it follows that

|(Ib)] < Cp ((N —k) 2 +a™t) =0o(1) (6.39)

because N/? > 1.
Next we consider the term (II) in (6.31). By Schwarz inequality, we have

[(11)| < a/dxkdxzde_k |J(k)(xk;x2)|@](€k_—g1)(xk,XN_k)|DkwN7t(xk,xN_k)|2

+a ! / dxpdxdx g |J® (i x5) [ (1 — 0 (x, v 1)) O T (x4, x v )
X [ Do (X xv—) [*

< (sup [ ax 7O 0aixi)l) [ ax 5 ol Dun P
Xk

(6.40)
e ( o / o |7 (s 4| (1 —e,ik><Xk,xw_k>>>

/
X XN~k

X /dXZdXN—k @](C]H_l)(xzaXN—k)|D;J/}N,t(X§mXN—k)|2

< Gy <a +a ! sup / dxg |T® (x5 %4)| (1 — 60 (x, xN_k))> ,

’
X XN —k
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where we used (6.13). Next we note that
2k
[ 7Ol (1 6 e xv-) < T2 [ e 9% () o — )
mFk (6.41)

< C*NP / doci [V AT® (g x| + 17 (s )|

because, with h(z) = exp(—(z% + £2)1/2/f), we have, by the Sobolev inequality,

4
/ da h(@)|f(2)] < |l flleo < CF / SOVt (6.42)
b=0

From (6.40), (6.41), and from the assumptions (6.19) we find
|(I1)] < Ck (0 +a 'NEFF) =0 (6.43)
as N — oo, because N/37¢ < 1.

From (6.30), (6.39) and last equation we find

T J® Uy = / dxpdx)dx VT ® (x5 x4) OF) (xp, xn 1) OF (x, xv 1)

(6.44)

X Dy 1Nt (Xp, XN &) D3ty (X, XN ) + 0(1)

Repeating the same arguments to move the derivative V), from ¢y to J (k), we obtain
Tr J(k) U](\;ii = /dxkdxdeN_kvkvzj(k) (Xk§ xz) @ik_)l(xk, XN—k) @ik_)l(xz, XN—k) (6 45)

X D 19Nt (Xky XN k) D10 4 (X, Xn—&) + 0(1)
Iterating this argument k—1 more times to move all derivatives to the observable, we prove (6.22). O

The following lemma was used in the proof of Theorem 6.1, and will also be used in the next
sections, in order to bound potentials by the action of derivatives.

Lemma 6.4. i) Suppose V € L3/2(R3). Then
/dx V(@)lp(@)* < OV a2 /dx (IVe(@)? + [o(x)?) (6.46)

i) Suppose V€ L'(R3). Then the operator V(x1 — x3), viewed as a multiplication operator on
L?(R3 x R3, dwy dxo), satisfies the following operator inequalities

V(l‘l — ,1‘2) S OHVHLl (1 — Al)(l — Ag), and V(l‘l — ,1‘2) S OHVHLl(l — Al)z. (6.47)

The proof of (6.46) is given in Lemma 5.2 of [8], the proof of the first inequality of (6.47) is found
in Lemma 5.3 of [10]. The last inequality follows from the usual Sobolev imbedding. [
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7 Convergence to the infinite hierarchy

The aim of this section is to prove that any limit point I'ec s € Dy C([0,T1, L) of the sequence
I'n+ satisfies the infinite hierarchy (4.4).

Theorem 7.1. Suppose the assumptions of Theorem 2.1 are satisfied and fixr T > 0. Suppose
Fet = {'y(gi?t}kzl € D> C([0,T],L}) is a limit point of Tny = {'y](\lz)t}{gvzl with respect to the
topology Tprog- Then I'se ¢ is a solution of the infinite BBGKY hierarchy

kot
1 = UM ()7, — 8miag Y / AsUP(t = 5) Tripn [0(z; = we1), 7LD (7.1)
j=1"9

with initial data 'y(k) = |} {(p|®*.

00,0 T

Remark. Note that in terms of kernels
<T1“k+1 6(zj — $k+1)7g§,§1)> (x5 x3,) = YEED (x4, 253 X, 7).

To define this kernel properly, we choose a function g € C(‘)X’(R?’), g > 0, f g = 1, and we let
gr(z) = r73g(x/r). Then the definition is given by the limit

: / / k+1 ./ /
lim dwy1d@k+1 9r (Tpy1 — Trs1) g (Thpr — xj)%go,s )(ka Thot1; Xy Tpy 1)

r,r'—0

(7.2)

. (k1 -
=: 'Yéo,s )(kaxjvxkvxj)'

The existence of this limit in a weak sense (tested against a sufficiently smooth observable) follows
from the apriori estimate (6.12) and from the following lemma (whose proof was given in Lemma 8.2
in [9]).

Lemma 7.2. Suppose that 6,(x) is a function satisfying 0 < 64(z) < Ca31(|z] < ) and
[Sa(z)dz = 1 (for example 6o(z) = a 3g(x/a), for a bounded probability density g(x) supported
in {x:|z| <1}). Moreover, for J®) € Ky, and for j =1,...,k, we define the norm

175 = sup (@) ) )t ) (179 o )]+ 1V, T8 (s 331 + [V T (i 1))

Xpg X
(7.3)
for any j <k and for any function J®) (x;;x,) (here (x)? := 14+ x2). Then if y*+V (xp41; X}, 1) 18
the kernel of a density matriz on L*(R**+D) we have, for any j < k,

‘ /ka+1dX2+1 TE) (%13 %) (O (Tr1 — Ty 1)00s (X5 — Thp1) = 0(@hr1 — 2h41)0(25 — T41))
X 7(k+1)(xk+1% Xjo11)

< (const.)* [JW|; (a1 + v/az) Tr[8;Skiay VS Skl . (T.4)

Recall that Sy = (1 — Aml)l/z. The same bound holds if x; is replaced with :17; in (7.4) by symmetry.

Proof of Theorem 7.1. For every integer k > 1, and every J*) e K}, we have

sup Tr J*) (71(\IZ)¢ - 'Yg;,)t> —0 (7.5)
te[0,T]
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along a subsequence N; — oco. For an arbitrary integer £ > 1, we define

k

Qp = H (<l‘]> + S]) .

j=1
In the following we assume that the observable J*) e K}, is such that

HQ,ZJUf)Q,ZHHS < o0, (7.6)

where ||Allgs denotes the Hilbert-Schmidt norm of the operator A, that is ||A||3q = TrA*A. Note
that the set of observables J(*) satisfying the condition (7.6) is a dense subset of Kj.
It is straightforward to check that

151 ... 85 TR S, .. .Sy < HQ,ZJWQ,ZHHS. (7.7)

Moreover, for any j < k
170 < (const )| 2T 0| . (7.8)

where the norm ||.||; is defined in (7.3). This follows from the standard Sobolev inequality || f||o <
(const.) || f|ly2.2 in three dimensions applied to each variable separately in the form

(1-A,) [<x>4(VzJ(x7 z')) <$'>4} ‘2

(const.) Tr (1 — A)(x)*V J (x)® J* V* (x)* (1 — A)
(const.) Tr Q7 JQM *Q7

<sup <x>4<x’>4|VmJ(x,x’)|>2 < (const.) /dxdx’

z,x’

<
<

with Q = (z) + (1 — A)Y/2. Similar estimates are valid for each term in the definition of || - ||, for
j < k. Here we commuted derivatives and the weights (x); the commutators can be estimated using
Schwarz inequalities.

For J®) € K, satisfying (7.6), we prove that
Tr S0 = Tr T W) (| (7.9)

and that, for ¢t € [0, T,
Tr T4 E, = v 70U ®) (1) —8m0zz / dsTr JR ) (¢ — )[5( — 1), EED] L (7.10)

Note that the trace in the last term of (7.10) is over k + 1 variables. The theorem then follows from
(7.9) and (7.10), because the set of J*) € K}, satisfying (7.6) is dense in K.

The relation (7.9) follows from the assumption (2.14) and (7.5).

In order to prove (7.10), we fix ¢ € [0,T], we rewrite the BBGKY hierarchy (3.30) in integral
form and we test it against the observable J*). We obtain

Te g0 ) = T g0 ¢ —ZZ / ds T JR Ut — ) [Vio(wi — 25), 7))
i<j (7.11)

k t
N Ry / ds TrTOUB(E — )[Vi(y — w541), 75
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From (7.5) it follows immediately that

Tr J*) ,Y](\’Z)t Ty J(k),y(k) (7.12)

0o,t

and also that
k k
Tr J® U@ ()7 F) = v (u(m(_t) J<k>> V&)
= Tr (U (=) J0) 3 = Tr SO UB @), (7.13)
as N — oo. Here we used that, if J*¥) € Ky, then also U¥) (—t)J*) e K.

Next we consider the second term on the r.h.s. of (7.11) and we prove that it converges to zero,
as N — oo. To this end, we recall the definition (5.21)

k _ _ k
Yo xg) = (1= w(ay — 7)) (L — wa) — )~y (xks Xh)

for every i # j, 4,5 < k. Then we obtain

[T IO UB (¢ = )V = ), 940

< ‘TY (5:85M (s — )7 ®)8:5;) (87187 WVvls — 27) (1 — wig) S5
% (Si5980)5.65685 ) (7187 (0 = wiy)S187) | (7.14)
+ ‘TY (Sisj(u(’“)(s - t)J(k))Sz’Sj> <Si_lsj_1(1 - wij)S'_lsj_1>

7

x (Si879805.65585) (S5 v (@i — ) (1 = wi) S5 |

1

Since, by part iv) of Lemma 5.1,
||Si_15j_1VN(:L“Z' —x;)(1— wij)Si_lsj»_lH < C/d:L‘VN(:L‘)(l —w(z)) <CN! (7.15)

and
1718571 (1 = wiai — 2,))57187 1 <1 (7.16)

we find

‘T&v JE U® ( — §) [V (2 — ), 7](\];,)3]

< CN7Y8:S; (uw)(s - J<k>> S,S; || Tr §25% )

3 INijs
From ||S;S; (U(k)(s—t)J(k)) S:Si| = 11S:S;J*)S;S;|| < oo, and from Proposition 5.2 it follows
immediately that, for any ¢ € [0, 7],
E o pt
3 / ds Te J® U (1t — 8)[Vig(as — ;)75 = 0 (7.17)
—Jo ’
1<)

as N — oo (the convergence is not uniform in k).
Finally we consider the last term on the r.h.s. of (7.11). First of all, we note that

k t
b [ ds T aOUO @ - [Vala; - a0 (7.18)
j=1"9
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as N — oo. In fact
‘ﬂ JOYUE) (t — ) [Vi(z; — T11), 7](\1;7?)]‘
<[ (SUP(s=0)08;) (8755 Vs — 2 (1 = wias) S ;)
% (SkerSN T oSiSkn ) (8718041 = wipi1) Sk S;) (
+|Te (850%908;) (8781 (1= winen)Sih 57

% (Ska1S koSS (S5 SEh N Viv(ry — k) (1= wirin) S 8771 |
(7.19)
As in (7.15) we have ||Sj_lSk_ilVN(xj — Tp41)(1 — wj7k+1)Sj_ISk_—&1H < CN~!. Moreover (see (6.7)),
155 Sk 1 (1 = wjpg1) Sy S5l < C. (7.20)
By an argument very similar to (7.14)—(7.17) and by Proposition 5.2 we obtain (7.18).

It remains to consider

k t
N Z / ds Tr JOUB (4 — §)[Viy () — Th11), 7](5;51)]
j=17"

E ot
S [ as e (s = 05%) [NVt = )1 = w28
o (7.21)

k t
-3 / ds Tr (U (s = )70 ) NV — x12) (1= wia1) 781 0 05000
j=170

k-t
+ Z/ dsTr (U(k)(s - t)J(k)> Wikt17N spe1s(1 = Wik )N V() — Tr41)
j=1""

The terms on the third and fourth lines converge to zero, as N — oco. For example, the contributions
on the third line can be bounded by

T (U@ (s = 00) V(= 20) (1= w5078 ot 051
<1185 (UB(s = 0)I0) S5 S5 (NViv(w; = o) (1= winin) S S | (7.22)
— —1a— k+1
X HSj 1Sl’erleJerISj 151«&1” Tr S?S,fﬂ VJ(V,;k)Jrl,s'

Then we use
155 1S ANV (5 — w1 ) (1 — wjpg1) S5 'S L I < © (7.23)

and
i S -1 g— 1o 1Y
157" Sty S5 Sl < HSk—&ISJ ")k 1SE 1 Wj k18] ISkiIH
< HSj_leka“Sj_lHl/z + HS’;}lsj_l(ij,kﬂ)zsj_lsk_jl||1/2 (7.24)

<CN'4+CN-V4,
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To prove (7.24), we applied Lemma 6.4 and the fact that, by Lemma 5.1, with R such that supp V' C
{z e R?: |z| < R},
x(z| > R/N) _ C

w(z) < Cx(lz| < R/N)+a < ,
() < Oxlel < R/N) - e

and 1

a
el <(——
|z[2 [Vuw(z)] < CN1/2|33|5/2

(the last bound is obtained interpolating the first bound in (5.4) and the second bound in (5.5)). It
follows that

|Vw(z)|* < C

kot
‘ Z / dsTr <L{(k)(s — t)J(k)>NVN(:L‘j — l'k—i—l)(l — wj7k+1)'y](\l,€;&17swj7k+1
j=1"0 (7.25)

< CtkN—1/4 max sup Tr SjSkH'y](\I;;ri)Jrl S Sk+1
I<k selo,t] ha

which converges to zero, as N — oo, by using Proposition 5.2. The fourth line of (7.21) can be
handled analogously. Hence, from (7.21),

k t
Ny / ds Tr JOUB(E — 8)[Viy (25 — 251,75
j=1""

koo (7.26)
=30 [ s (s = 0I) [NVir(a = i) (= i) S
J=1

+ ij ON(l)

where on (1) — 0 as N — oo and C 7 is a constant depending on k and on 7.

To handle the r.h.s. of (7.26), we choose a compactly supported positive function h € Cg° (R3)
with [dz h(z) = 1. For 8 > 0, we define d3(z) = $73h(x/f), i.e. I3 is an approximate delta-function
on the scale 3. Then we have

k t
> [ as e (s =03 ) [NVt = )1 = w28
J=1
k t
= Z/ ds Tr (U(k)(s - t)J(k)> [NVN(!L“;' — k1) (1= Wjk41) — 8Ta00E(25 — Thi1), VN fps1.s
j=1"0
E ot
+ Z/o ds Tr (U(k)(s - t)J(k)> [Swaoég(xj — Tpt1), 7](\];‘—;]{))—{-18}
j=1

k t
= Z/o ds Tr (U(k)(s - t)J(k)> [Swaoég(xj — $k+1)771(\]/€,;?+1,s}
j=1
+ Crr (O(NTY2) + 0(8Y/%)
(7.27)

for some constant Cj, 7 which depends on k > 1, on T, and on J*) (O(5'/?) is independent of N).
Here we used that, by (5.6),

/ ANV (2)(1 — w(z)) = Srap ., (7.28)
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and we applied Lemma 7.2. To apply Lemma 7.2, we used Proposition 5.2 and that, by (7.8),
16457 (s = )TNy < O 2] 15" (s — )79 Qs

with a k-dependent constant C. Since e~(5=0)% (z;)mei(5=02 = (x; + 2(s — t)p;)™, for any j =
., k, m € N, we obtain that

I (s — )T By < C(1+ |t — )| QF TW QF s -

(k+1)

To control the first term on the r.h.s. of (7.27) we go back to vy We write
A ) <71 —1)yei + L <71 ~1).  (729)
N,j,k+1,s N,s 1— W, k1 N,s 1— W, k1 N,s 1— W, k1

When we insert (7.29) in the r.h.s. of (7.27), the contributions arising from the last two terms in
(7.29) converge to zero, as N — oo, for any fixed > 0. For example, to bound the contribution of
the second term on the r.h.s. of (7.29), we use that

1
‘TY (U(k)(s — t)J(k)> [877(1055(% — Tky1), (m - 1) 7](\1;,—:1)] ‘
-]7

< | (U5 = )00 (S 6a(x; — 1) Ski) (Skjl%5;+l> (Sk1785VS001) |

o wy, _ _
+ C‘TT (u(k)(s - t)J(k)> <Sk—&1 %Sm&) <5k+171(vs )Sk—i-l) (Si105(%) — 1) Sp1) ‘

Wy k+1 k1
< OIS 86(x5 — @g1) Skt | HSk—HlJTkJ’_ k+1H Tr Sk—i—l'Y( )
-]7
(7.30)
Now we have
k—i—lm k+1 (7.31)

because w(z) < Calz|~! and thus, as an operator inequality, wjjt1 < CaSi,; (and a ~ N71).
Moreover

Tr Sk+17 <¢N s (1= App1)Uns)
LN (Hy + N)Yws) (7.32)
= N‘1<¢N, (Hy+ N)yy) <C

by the assumption (2.13). It is also easy to see that

1S t108(25 = @rt1) S| < CB™ (7.33)

for 3 < 1. The contribution arising from the last term on the r.h.s. of (7.29) can also be controlled
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similarly. Therefore, it follows from (7.26), (7.27), (7.29), and (7.30) that

k t
N> / ds Tr JRY® (¢ — 5) |:VN($j — Thi1), %(ﬁl)}
j=17"

L
= 8may Z/ dsTr (U(k)(s - t)J(k)> [55(% — Tki1), yé]jfgl)}
j=1"0 (7.34)

k t
+ 8mag Z/ ds Tr (U(k)(s - t)J(k)> [55(%' — Tpy1), vj(\lf;rl) - véﬁfgl)}
j=1"0

+ Crr (0(82) + on (1))

where on(1) — 0 as N — oo (for any fixed 5 > 0). The first term is the main term. To control the
second term, we rewrite it, for € > 0, as

k t
3 / ds Tr (U (s = )70 ) [65(x; — wpsa) AL =2 EL0]
j=17"

E ot
1
= (k) (o — 4).7(k) L (k+1)  _ (k+1)
jEZI/O dsTr <Ll (s—1t)J )55(% $k+1)1+55k+1 <7N,s Vo5 )

k t
1
k) (e _ (k) o - (k+1) _ _ (k+1)
+JE:1/0 dsTr <Ll (s—1t)J )55(% Tht1) (1 : 55k+1> <7N7S Skt )

k t

1

-y / ds Tr (25 — Tha1) g — <u(k)(s—t)J(k)> (ﬁ@—;n _7§§;1>>
j—l 0 k+1

k /td T 05(z; ) (1 1 (15— 93 (2 — 4E50)
_; i s 1ropg(zj — Tp+1 B s v yEEDY
(7.35)

The second term on the r.h.s. of (7.35) can be bounded by using that

e 00t~ (- ) (7o)
= 5” (u(k)(s - 75)J(k>) dp(z; — $k+1)H (TT Sk+17](\1;:1)5k+1 + TYSkergg,ng)SkH)
< OB <Tr SI§+1'YJ(\I/€,—SH) + TrSI%H’Y(gg,ng))
< CB 3¢
(7.36)

where we used (7.32) and Proposition 6.3. Also the fourth term on the r.h.s. of (7.35) can be
controlled analogously. As for the first and third term on the r.h.s. of (7.35), we note that for every
fixed e > 0, 8 > 0 and s € [0, t], the integrand converges to zero, as N — oo, by (7.5), and because

1 1

R) (g — #).7k) C_ - _ -
<u (S t)‘] ) 5ﬁ($] fL‘k+1) 1 n ESk+1’ 55(!,17] $k+1) 1 i ESk+1

(L{(k)(s - t)J(k)> € Kisi.
(7.37)

33



Since, moreover, the integrand is bounded uniformly in s € [0, ¢] (because for fixed €, 3 > 0 the norm
of the operators (7.37) is bounded uniformly in s), it follows from Lebesgue dominated convergence
theorem and from (7.34) that

k t
Ny / ds Tr JOUD (& — 5) [V (2 — wx11), 755 ]
j=17"

E o pt
7.38
= E / dsTr (U(k)(s —t)J(k)> [Swaoég(xj —xk+1),yé]§fgl) (7.:38)
j=1"0

+ Crr (0(8'%) + B70() + on(1))

where the convergence on(1) — 0 as N — oo depends on ¢ and 3. By applying Lemma 7.2 again
and by using that, by Proposition 6.3,

max  sup Tr(1 —Aj)(1—Akt1) %ngtFI) <C.
J=L.wk te[0,1) |

we can replace 05(z; — Tx41) with §(z; — Tx41) in (7.38) at the expense of an error O(371/2).

From (7.11), (7.12), (7.13), (7.17), (7.18), and (7.38) with 6(z; —z141) it follows, letting N — oo
with fixed 8 > 0 and € > 0, that

Tr JW4 B, = T JWU® (1) %gf,)o

koot
— 1 Z/ ds Tr (U(k)(s - t)J(k)> [Swaod(xj — Thy1), véljfgl) +0(8Y?) + B710(e) .
j=170
Eq. (7.10) now follows from the last equation letting first ¢ — 0 and then 8 — 0. O

8 Regularization of the Initial Wave Function

In this section we show how to regularize the initial wave function ¢n given in Theorem 2.2.

Proposition 8.1. Suppose that (2.17) is satisfied. For k > 0 we define

Ty = X(KHN/N)pn
" Ix(RHN/N)pN||

Here x € C§°(R) is a cutoff function such that 0 < x <1, x(s) =1 for 0 <s <1 and x(s) =0 for
s > 2. We denote by 7](\1;), fork=1,...,N, the marginal densities associated with V.

(8.1)

i) For every integer k > 1 we have

ok Nk
— .

(N, HY dn) < -

i1) We have N
sup [ — vl < Crl/?
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iii) Suppose, moreover, that the assumption (2.18) is satisfied, that is, suppose that there exists
0 € L*(R?) and, for every N € N and k = 1,..., N, there exists £N ) ¢ L2(R3N=K)) with
||£](VN_k)|| =1 such that

Jim [y — ¢ e ) = 0. (8.3)

Then, for k> 0 small enough, and for every fized k > 1 and J* € K, we have

lim TrJ(k)< B ><¢|®k) ~0. (8.4)

N—oo

Proof. The proof of part i) and ii) is analogous to the proof of part i) and ii) of Proposition 5.1
in [9]. Introduce the shorthand notation = := x(kHx/N). In order to prove i), we note that
1(Hy < 2N/k)E = E, where 1(s < \) is the characteristic function of [0, A]. Therefore

<«ZN,HMN>:< SUN g SN >:< =L\ <HN32N//<>H5@§‘/’—N>

(= 1Z¢n|l 2kN||k~¢N|| 1Z¢n|l (8.5)
< |I1(Hy < 2N/R)HY| < .
To prove ii), we compute
1Zn = onll? = (¥n, (1= 2n ) < (Y, LieHy = N ) (8.6)
Next we use that 1(s > 1) < s, for all s > 0. Therefore
- K
IZn —nl* < 5 (N, Hxpn) < Ck (8.7)
by the assumption (2.17). Hence
IE¢Nn — ¥ < COkY2. (8.8)
Since ||| = 1, part ii) follows by (8.8), because
EYn - EYN ||
[~ = g < o = Zowli+ By = 20| = low = 2owll+ - li2ewll

< 2|n — En]| -

Finally, we prove iii). For any sufficiently small x we will prove that for any fixed £ > 1, J ®) e K},
and € > 0 (small enough)

T 78 (5 = o)) | < e (8.10)

holds if N > Ny(k, ¢) is large enough. To this end, we choose ¢, € H%(R?) with ||¢«|| = 1, such that
e — @ull < e/(32k||J®)|). Then we have

(Nk (Nk

ok _ < kllp — oul] < ———— . 8.11
Therefore
— N—k
= (@?’“ ® ¢l )>

[

=l 2 (o8 0 e | | < rmong [ (o - 028 0 ) [ < dllow - 2% )

(8.12)
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for k > 0 small enough (by (8.8) and because ||Z| < 1). Hence

s (et ™)
I=ynll = (Soiak ®£](VN—k)>

| o = @ 4l o €070 - o2t 0 )

«_ &
A
(8.13)

for N large enough. Here we used (8.11) and the assumption (8.3). Next we define the Hamiltonian
Z Aj+ Z Vi (zi — ;) (8.14)
j=k+1 k<i<j

Note that Hy acts only on the last N — k variables. We set = := x(kHy/N). Then, from (8.13), we
will obtain
N—k
H =y <®k®£( )) H .
ol (5% @ e ) | = 3170

for N sufficiently large (if kK > 0 and £ > 0 are small enough).
Before proving (8.15), let us show how (8.10) follows from it. Let

_ (ereed™) Ew»
YN = — TS W S e g A
I1E (w5 20" B3

since = acts only on the last N — k variables and since ||¢,| = 1. Moreover, we define

[

(8.15)

[

%(\I;)(Xk;xfrf) = /dXN—k JN(XkaXN—k)JN(X;mXN—k)-

Note that JN is not symmetric in all variables, but it is symmetric in the first k£ and the last N — k
(k)

variables. In particular, 75" is a density matrix and clearly
k-
= |px) <‘%9*|® Le. )(kv )(k ]TI:QQ* T;)P,(z

Therefore, since ||y — JNH < ¢e/(3||J®|) by (8.15) and since ||¢ — ¢.|| < e/(32k||J®)]||), we have

T 78 (5 = o) el™) | < [T 7™ (5 = oo (0al®) | + |0 7® (le.bnl ™ = 1ohel™) |

<20 T e — x|+ 2k TD [l — ] < €
(8.16)

for N sufficiently large (for arbitrary x,e > 0 small enough). This proves (8.10).

It remains to prove (8.15). To this end, we set Yy, = k@ E(N k7 and we expand the

operator = — = = y(kHx/N) — x(kHy/N) using the Helffer—SJostrand functional calculus (see,
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for example, [4]). Let X be an almost analytic extension of the smooth function x of order three
(that is |0:x(2)| < C|y|3, for y = Imz near zero): for example we can take Y(z = = + iy) =
[x(@)+iyx () +x" (z)(iy)?/2+ X" (z)(iy)3/6]0(x, y), where § € C5°(R?) and §(x,y) = 1 for z = z+iy
in some complex neighborhood of the support of x. Then

1 v ! 1
)¢N*__;/dxdyazx(z) (z—(/%HN/N) - z—(%ﬁN/N)> o

[I]>

—
—
—

. (8.17)
K ~
- dz dy 9:%(2) ——————(Hy — Ayn)————— s
Nm ) —(“HN/N)( )z—(/@HN/N)
Taking the norm we obtain
~ 2)| 1 ~ 1
= B < 22 /d dy H Hy — Hy)——————na||. (818
(2~ Syl — o (318)
Notice that the operator
R k
Hy—Hy=-) Aj+ > Vy(zi—z)) (8.19)
j=1 i<k,i<j<N
is positive hence (Hy — ﬁ]\/)l/2 exists. By using ||ABv|? < ||A||?(v, B*B), we obtain
| (v — i), ||
—— o N — AN)———=—— VN«
z— (kHN/N) z— (kHy/N)
A 1 A
< ||y — Hy)12 Hy — Hy)'?|
H N — Hy) |z—(/-cHN/N)|2( N — Hy) (8.20)

1 N 1
*xy o~ __ H _H - =< * .
: <¢W’ ER A N)z—(mHN/N)wN’>

Moreover (since || BA2B|| = ||AB2A|| < ||AC?A|| for positive operators A, B, C' with B? < C?),

H(HN — Hy)'? |z — (/@I;N/N)P(HN - ﬁN)mH B H |z — (/@;{N/NM (Hy = Hp) |z — (mlT{N/N)| H
1 1
<| 2= (Hn N VN2 2 (/@HN/N)|H
CN
-~ |:[/|—2/{

(8.21)

for z in the support of X, where we used the spectral theorem in the last step. On the other hand,
the second factor on the r.h.s. of (8.20) can be bounded by

1 ~ 1
*7—/\ H - H - =< *
(v P (/@HN/N)( N~ Hy) (el ) )
1 1
< k‘<1/1N,*, m (=Ay + kVn(z1 — 22) + NVN(21 — TRy1)) m ¢N,*> )
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Here we used the fact that 1 . is symmetric w.r.t. permutations of the first £ and the last N — &

variables, and that the operator Hy preserves this property. Since NVy(z1 — zp11) < C|[V |11 (1 —
A1)?, and V(21 — 22) < OV |2 (1 — A1)? (see (6.47)) we find

1 ~ 1
YNso———=——(Hn — HN)———=——"nN.x
< zZ— (kHN/N) z— (kHN/N) > (8.22)
1 1
< e (A1 (1= A1)?) ————=n) < Ckly| el
k‘<¢N Z— (Hn V) (=41 +( 1)%) z—(/-cHN/N)wN’ > < Ck |yl ™"l exlt,
because A; commutes with Hy (recall that YN s = p2F ® £(N k) ) From (8.18), (8.20), (8.21) and

(8.22) we find that R
||(E - EW’N,*H < Ok,eN_l/z

for a constant Cj . depending on k and e (through the norm ||¢*||52) but independent of «, for x

small enough. This implies that
N—k
<¢i®k ® 51(\/ )> = =

(et 2 el™ )1 T 12 (efr o el

Hna(@;@'f@@v‘ N

[

(i

(8.23)
= 3
<4|I(E-EZ o <

for N large enough (and assuming that ¢ > 0 and x > 0 are small enough, independently of N).
Here we used that (by (8.3), (8.8), and (8.11))
= N—k) N—Fk)
12 (#2* @ €0 P) 1> lowll - 9w — ol - I (4w — o™ @ €M) |
— = ( ®k ®£(N B _ ook g (N k) ) I (8.24)

>1-CkY2—o(1) = ——— >1/2

for k,e small enough and for N large enough. From (8.23) and (8.13) we obtain (8.15). This
completes the proof of part iii). O

9 Proof of Proposition 5.3

This section is devoted to the proof the Proposition 5.3. Let us recall the definition of the cutoff
functions

o = 0 (x) = exp | ~ 22 33 bl — ;)
i<k j#i
from (5.32) with the function h defined in (5.29). We introduce the notation h;; = h(z; — ;) and
we also adopt the convention that h;; = 0 for any i € N. Moreover we recall that Dy :=Vq...V.

Proof of Proposition 5.3. We prove (5.33) by induction over k. For k = 1 we clearly have

N(N -

.+ Ny 2 N [ 1vrep+ T v - mior (9.1
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For k = 2 we have, from (5.9), (5.16) (but keeping the term on the sixth line, which was neglected,
because of its positivity, in the last inequality in (5.16)), (5.17), and (5.18) we find, for p small enough
(recall the definition of p in (2.7)),

(W, (Hy + N)*p) > (4, Hy)
> N(N — 1) (b, hihat)) + N (v, b))
> N(N —=1)(1-c¢p) /(1 — w12)2|V1V2¢12|2 (9.2)

N(N — 1)(N —2)
2

/ (1= w12) Viv(ez — 23)|[Vigual® + N / B10[?

where b;, for i =1,..., N, was defined in (5.8). From the last term we get
/|h1¢|2 > /0§2)|h1¢|2 > /9(2 AyPALp + = Z/e(z ALY Va(zy —z)d+he)  (9.3)
j>2

where h.c. denotes the hermitian conjugate. The last term is exponentially small in N because on
the support of the potential Viy(z1 — z;) the point x1 is close to z; (on the length scale N~') and

this makes the factor 9(2) exponentially small. Hence we find (with the notation V{ =0 (;y where
1
21 = (29,22, 2Y) e R3),
3 . .
/9(2 [h19]* > /9(2 IViy[* + /Z ) (Vi) ViV w+hc}+/ S ViviePvieviy

ij=1
- o { [ o9+ [ o]

by using |V19§2)| < 05—19§1) from Lemma A.1, part iii). From part ii) and iv) of the same lemma
we also have

(9.4)

e

L <o) and ‘v%a?)‘ <20V (9.5)
01

and therefore we obtain

3 (2
i 7 _ Vv 9
> | [P wimvivis| <a [oP e ot [FAE
ij=1 (9.6)
<o) [ 67 Vh P+ o )/9§”|w|2 ,
where we used that N/? > 1 (and an appropriate choice of the parameter o). Analogously
Z /‘vwﬂe(z Vigpvi ¢| < o(N /9(1 V122 (9.7)

1,j=1
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From (9.2)—(9.7), we find

(W, (Hy + N)%9) > N2(1— cp— o(1) / (1 — w12)*| V1 Vadua?
3

+ NT(l —o(1)) /(1 — wi2)? V(22 — 23)|V1d12|? (9.8)

+NG=o(1) [ 0936 - oV { [oowwpe s [ eﬁ”w} .

Next we apply Lemma 9.4 (with n = 0) to replace, in the first and second term on the r.h.s. of
the last equation, ¢12 by 1. We find

(W, (v + N)Yp) = N2(1 - ep— o(1) / 0|V, Vo ?

3
+ 5= o(1) [ 0 Vir(aa = 20)| V1w + N (L= o(1)) [ 67VR0P (09)
— o) [ {19102+ 610 P + NVi(ar — w20}

By (9.1) we have

o) [ {61912 + 00102 + NViy(ar = 2)[6 2} < o(N) (. (H + N)0)

(9.10)
< o(1)(4, (Hn + N)*y).
Hence, from (9.9), we obtain
(1 o) (Hy + NP0} = N2(1 = ep = of1)) [ 67 V:¥a0 "
N3
+ 3o [ 8Vt - v o)
+N(L= o) [ 67T,
It follows that, for p small enough, there exists Cy > 0 such that we have
(W, (Hy + N)*$) > C3N? / 07 V1 Va2 + CIN? / 0 V(s — )| V192
(9.12)

+C2N / 02| v2y?

if NV is large enough.

We assume now that (5.33) is correct for all £ < n + 1 and we prove if for k = n + 2, assuming
n > 1. To this end we note that, for N > Ny(n), using the induction hypothesis we have

(Y, (Hy + N)"¢) > (Hyo, (Hy + N)"Hn1p)

> CyN™ /@ff_)l |DypHyo? (9.13)

> O(q)mNn /@7(1714-2) |DnHN'(/J|2
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where we used that 1 > OZ(”) > 0§n+2) forevery ¢ =1,...,n. We write Hy = Z;VZI hg"), with

1 . .
pi) — { TR+ 3 2inizg V(T — 1)) iy >m (9.14)
J —Aj+ 35 Zign Vn(zi —xj) + 50, VN(2i — 5) ifj7<n.
Then we have
(W, (Hy + N)"™2y) > CoN" > / O Db P Dby
©,7>n
+CENT Y / O Db ¥ Dby + hc. (0.15)
i<n<j
raNt Y / O D" P Dby
,0<n

The last term on the r.h.s. (where i, j < n) is positive and therefore it can be neglected. In the
first term on the r.h.s. we can neglect all terms where ¢ = j (because they are all positive). Therefore
we obtain

W (N2 > G Y [ €+ Db G Dy
e (9.16)

+ CoNT Z’/@g”“) {Dnhﬁ”)EDnhg.”)szrh.c.} .

1<n<g

In Proposition 9.1 below we give a lower bound for the first term in (9.16), while Proposition 9.5
estimates the second term. Combining these two estimates, we find that, for p small enough (inde-
pendently of N and n) and for N large enough,

(0 (Hy + N)"20) = EN™(1 = ep = of1)) [ O Dyt

+CEN (1= o(1) [ 05 [ViDuir v

(9.17)
CyN"t3 n
+ 1= 0(1) [ 05 Viv(nsa — wusa) IDasrv
_'Qn(w)
where the error ,,(v) is given by
() = o) [ O Vis(inss — i) D1
T o(N™H) { et + [ @fﬁlllen—lwlz}

(9.18)

T o(N™) { Sy O NT

+ / 0" VD, + / @Si;?HDn_sz}.
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Now we use the induction hypothesis, Eq. (5.33), with k = n — 1,n,n+ 1 to bound the negative
contributions. For example, (5.33) with & = n 4+ 1 implies that

o(N"*%) / O V(a1 = Tnsa) [Dn ¥f* < o(N) (0, (Hy + N)"™9) < o(1)(8, (Hy + N)" )
because Hy > 0. The other terms in (9.18) are treated similarly. It follows that
(1+0(1)) (@, (Hy + N)"™) > CEN"(1 - ¢p— o(1)) / O | D yatsf?
+ N1 = o(V) [0 [ViDuir v

CnNn—i-?) n
+ OT(l —o(1)) /@a(z:lz) VN(ZTnt2 — Tnts) |Dn+1‘/’|2'

Thus, if p and Cj are small enough (independently of n), we can find No(n+2,Cy) > Ny(n, Cy) such
that

(W, (Hy + N)"™2p) > CZ}HN””/ @q(;rrf) |Dysot)|? +03+2N”+1/@£Zﬁ2) V1 Dy1 )2
(9.19)
+ N[O Viv(wnsa — 2usa) Dt

O

In the rest of this section we will state and prove Propositions 9.1 and 9.5 used in (9.16). Both
proofs will be divided into several Lemmas.
Similarly to the H ]%,-energy estimate from Proposition 3.1, the key idea in Proposition 9.1 is that

hz(.n)z/) can be conveniently estimated by the derivatives of ¢;;, where ¢;; is given by the relation
¥ = (1 — wj;)¢i;. The estimates of all errors are done in terms of ¢;; and its derivatives. Finally,
Lemma 9.4 will show how to go back from the estimates on ¢;; to estimates involving v with a cutoff
supported on a bigger set.

Proposition 9.1. Suppose p is small enough and £ > N-Y2 Fori=1,...,N, let f)l(.n) be defined
as in (9.14). Then

SR S e
§,>n,i]
> N1 = cp—o(1)) [ O IDau (9.20)
CpN™3 n
+ A1 0(1) [ O Vis(onss = 7ss) [Dasrdf? = 2 (v)
where the error term Q, (1) has been defined in (9.18).
Proof. For any i # j, i,j > n, we write ¢ = (1 — wj;)¢;;. Then we have, similarly to (5.13),
Vwij 1
i®ij + 5 V(i — Zm) dij
,jv¢3+2 Z N(x €T )¢]

1,

(1- wij)_lhz(.n) (1 — wij)ij] = —Didij + 21
) T M ] (9.21)
=Lidij + 5 Z V(i — 2m)dij

m>n, m#i,j
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Vwi 1
l—wi]-

where the differential operator L; := —A; + 2 V; is such that

[ wiPean = [ -w)aeo = [0 w)Pviavi (9.22)
Note that the operator L; also depends on the choice of the index j. Analogously, we have

n 1
(1 — wij)_lhg' ) [(1 — wij)qbij} = Lj¢z'j + 5 Z VN(,I‘]' — l‘m)¢m

m>n, m#i,j

with L; = —A; + 21v_wji V;. Note that D,, commutes with L;, L; and 1 — w;; if 4,5 > n. The Lh.s

w5

of (9.20) is thus given by

1 —
CgNn Z (1 N wz’j)2 @1(1”+2) Dn LZ + 5 Z VN(.Z‘m — l‘z) ¢z’j
i,j>n,i#j m>n,m#i,j

1
X Dn Lj+§ Z VN(zj — ) | b4
r>n,r#i,j
> CGN" Y /(1 —wyj)? O LD, ¢y LDy ¢
it
CIN™ B
7’7]>n77'7é] 7'>’I”L,T’7£Z7‘]

because of the positivity of the potential. Proposition 9.1 now follows from Lemma 9.2 and Lemma
9.3, where we consider separately the two terms on the r.h.s. of the last equation. ]

Lemma 9.2. Suppose the assumptions of Lemma 9.1 are satisfied. Then we have
CoN" Z (1—wi;)? ") L; Dy gy Lj Dy i
1,5>n,i#]

> N2 (1= cp— 1)) [ O [Dasa (9.23)

—ovs) ([0 D+ [0 (D)

Proof. By the symmetry (9.22) we have

CyN™ Z /(1 —wij)* O LDy ¢y LDy i
i i
=CyN™ Z /(1 — w;;)? {@7({”2) ViDy, &5 ViLiDy ¢ + v,0"t? v,D, ¢ LDy, ¢z’j}
i i
= CyN" Z /(1 — w;j)? {@f{”z) IV;ViDy, ¢35 |* + V052 ¥, Dy, 6, V;ViDy, i
i i
+ VO VYD, 6y ViDy 63 + ViV,00+) ViD,, 6;; VD, ¢
+ 00 VD, 6 [Vi, L] Dn 6}
(9.24)
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To bound the second and third term on the r.h.s. of (9.24), we note that, by part iii) of Lemma A.1,

+2
> hmy | 05 (9.25)
m=1

Therefore the second term on the r.h.s. of (9.24) can be bounded by

D

(vj@g”“)( <ot (2;

/(1 —w;;)? V;002) VD, §;; V;ViDy i

1,7 >n,17£]
N (n+2
2
2 1 2 (2772 & (n+2) 2
rortat Y /(1—%) S > | O VD, 0
i,j>ni#] m=1

for some o > 0. Next we use that ¢;; = 1(1 — w;;) 1. Since i, j > n, we have
ViDy, ((1 — wij) ™) = Viwij (1 — wiy) 2 Dytp + (1 — wyj) ' VD)
and thus

Vw;;

C
W|an|2+2|viDn¢|2'

(1= wij)* |ViDngy|* < 2 (1 P
T — &
(9.27)

) | D + 2|V Dpyp|* <

tj

Therefore the second term on the r.h.s. of (9.26) is bounded by
, (272 & (n+2) 2
> (—wy) e > hmy O, |ViDn ¢ij)
i\j>n,it] m=1
2n+2 - (n+2) 2 1 2
m=1 v J

1,J>n,i#£]
2
|an|2}

nt+2 N
<C /(255 Z%) {@f{”” VDt +
(9.28)

v (@g"“))%

i, j>n,i

where we used Hardy inequality and the fact that i # j and i > n. Using a bound similar to (9.25),
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and part ii) of Lemma A.1, we can continue this estimate

2
2n+2 n .
> /(1—%)2 (E—Eth]) 0" |V,D,, ¢ij|?
m=1

i, j>n,i]

2 2
ont2 I . o1
<c ) /( E thj> O ¢ IViDyth|* + £ 2( I wa) | Dy

i,j>n,i#] =1 m=1
2
on+2 - (n+2) 2
i>n j>nm=1
2 2
9 on+2 - 2t - (n+2) 2
j>nm=1 i>n m=1

<Cc> / Ot |V, D,y|? + Ct? / 0 |D,?

>n
<CON / O | Dy b2 4+ O / O | D2,
(9.29)

because of the permutation symmetry of ¢. From (9.26) we find
,j>n,i#]

< aN? /(1 — Wnt1,012)? O Dyyo b1l

/(1 — wy;)? V00 VD, 6,5 Vi ViDy, 65

+a 'Ce2N / O D,y + ator™ / 0™ | D, y|?

< O(Nz) </(1 - wn+1,n+2)2 @7(171+2)|Dn+2 ¢n+1,n+2|2 + /@7(1714-1) |Dn+1w|2 + /@7(171_)1 |Dn¢|2>
(9.30)

for an appropriate choice of a (using that N/? > 1). In the last term we also used that 97(1”) <1

The third term on the r.h.s. of (9.24), being the hermitian conjugate of the second term can be
bounded exactly in the same way.

Now we consider the fourth term on the r.h.s. of (9.24). To this end we use that, since i # j,
and i, j > n, we have, by Lemma A.1, part v),

2n+2

n+2 —2 n+2
ViV 0| < ci ( — jhmj> ( = :hmi> o+ (9.31)

=1 m=1
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Therefore

Z ‘ /(1 — wij)z VZ'VJ’@?({”Q) szn aij ijn ¢z’j
1,5 >n,07#]

2
on+2 "
Y (T o S
m=1

i,j>n,it] (9.32)

sCWQN/@%“HDMwP+6%4/@#HawP
st%(/@%“HDmﬂmﬁy/@ﬁlumwﬁ,

where in the second line we used (2.51) and a Schwarz inequality, in the third line we used the bound
(9.29), while in the last line we used N/? > 1.

Next we consider the last term on the r.h.s. of (9.24). To this end we note that, by (5.3) and

(5.5),
' [Vi’ 1V—w;ij]

assuming that p is small enough. Therefore, the terms in the sum on the last line of (9.24) can be
bounded by using Hardy inequality as

2 2
< |V wji| + < Vwj; > < ¢p 1
- 1- Wi 1-— W5 - |l‘ 2

i $j|

‘/(1 — wy;)? O YDy 65 [Vi, Lj] Dy ¢35

1

gwﬂyww%wmw_wwmmwﬁ
i j

1
+2 ) ]2
< cp/@qgn ) o _xj|2|vZDn¢m|

2 (9.33)

1
<ep / 0"+2) |V, V; Dyois |2 + C / v; (@g”+2>)2 ViDnpyi; |

(9.25)
< ¢p /(1 —w;;)? O |V,;Vi Dy i

2
3 2n+1 n N
o /(1 — w;j)? (6—5 ) him) O\ |V;Dpgsis|* .

m=1

Next we sum over i,j > n (i # j); to control the contribution originating from the second term on
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the r.h.s. of the last equation we use (9.29). We obtain

Z ‘/(1 — wij)? O VD, ¢y; [Vi, Lj] Dy i

1,J>n,i£]

<ep Y [(1—wy)? O VYDl
iLj>mit

+ Cl2N / et D, w24+ Cce? / 0" | D)2 (9.34)

<cp (1= wig)* O |V,;ViDyhi|*
J J J

1,5>n,i#j

+o(N?) ( / Ot | D, 19| + / e\, |an|2> :

Inserting (9.30), (9.32), and (9.34) into the right side of (9.24) it follows that

CIN"™ Z (1 —wy)? 00+ ,D, ®4; LDy, dij
i,J>n,i#j

> CgN"+2(1 — Cp — 0(1)) /(1 - wn+1,n+2)2 @7(1714-2) |Dn+2¢n+1,n+2 2 (935)
—ovn ) ([0 D+ [0 (D)

Lemma 9.2 now follows from (9.41) in Lemma 9.4 below that shows how to replace estimates involving
the function ¢;; = (1 — w;;) !4 with estimates on 1. O

Lemma 9.3. Suppose the assumptions of Lemma 9.1 are satisfied. Then we have

CpN™ ) ~
3 , Z ' ) N /(1 — wij)? O Vi (x; — ) Li Du &y Dy iy + hic.
1,7>N,0#£] r>n, r#i,j
Cp N .
= OT(l B 0(1)) /@7(14-—?2) VN(xn+2 - $n+3) |Dn+1'(/1|2 (9'36)

— o(N™+3) /@7(1”“) VN (i1 — Tng2) | Dntp|? .

Proof. Using (9.22), we find

CrN™
2

1 —wy;)? O Viy(z; — 27) LiDy 65 Dn ¢35
j j j i

i g>nit] >N, L]

- G >, 2 /(1 —wig)? Vi (aj — ) (9.37)

2
i >t TN, T

X {@g”“) \ViDnoij|* + v,0"*2 v,D,, by Dn(mj} .
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Using (9.25) (with j replaced by i) the second term in the curly bracket can be bounded by

> X

1, >n,1#£] r>n, r#4,j

< Ca Z Z/ Ot Vi (x; — z,) |ViDpys|? (9.38)
1,5>n,i#]) T#1,7

(1 — wij)z VN(l'j - l'r) vz@q(ln—ﬂ) ViD, az’anQSij

N n 2
B B 2n+2 "
+OPa™t Yy /(1 — wij)” (E—f 2 him) O Viv(j — ;) | Dudrigl*
m=1

1,5 >N07] T#1,]
Since i, j > n, and ¢ = (1 — w;;)¢p;;, the second term can be estimated as

2n+2 n
o™t Y E:(/<ﬁ Zﬁm>(W“WM%—wﬂawﬁ

i j>n,iA] TN

<ceaty Y (2:22%’) O+ Viy(z; — ;) Dy

ji>nr>nr#j i>n m=1 (939)
20ty S [Vt — ) (Dl
j>nr>n,r#j

— 20" (N = n)(N —n—1) /@Wl) V(@i — nen) | D2

because of the permutation symmetry of ¢ and o). From (9.39) and (9.38), it follows that

PIEEDY

i j>n,it] TN

/(1 — wij)z Vz@gﬁ_z) VN(l'j - l'r) szn aianQSij

Z Z / 1 - wzg @1(1”+2) VN(l‘j - xr) |szn¢z]|2 (940)
1,5>n,i#£] r#1,5

4+ o(N9) / O V(241 — Tuta)| Dt

where we used that N¢? > 1 and we made a suitable choice of the parameter a. Inserting this
bound into (9.37), using the permutation symmetry, and (9.42) from Lemma 9.4, the lemma follows
easily. O

The next lemma, showing how to replace estimates on ¢;; with estimates on v, has already been
used in the previous proofs.

Lemma 9.4. Suppose the assumptions of Proposition 5.3 are satisfied. Recall that ¢;; is defined by
Y= (1 —wij)di.

i) Forn >0, we have

/(1—wn+1,n+2)2 00" | Dyttt ntal?

(9.41)
> (1= o1) [ 00 IDpeav? o) { [0 Drvl+ [ O 1D}
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i1) Forn >0, we have

/(1 — wWni1m12)? O Vy(2nye — 2ni3) [ Dns1bns1ntzl’

> (1-o(1) / O V(@i — Tnis) | Dusath]? — o(1) / OV Vy (w11 — wns2) | Duth?.
(9.42)

Proof. In order to prove part i) we start by noticing that
42
/ (1= Watrnr2)? O0) | Dysodnitntal® = / (1= wni1042)? O [Dnradniinial’ (943)

Using that ¢pni1n42 = (1 — Wni1nt2) "t ¥ we find

1 v'U~)n—i-1,n—|-2

D =———Dy o+ DyVyi2
n+2¢n+1,n+2 1 wn+1,n+2 n+ (1 — wn+1,n+2)2 n Vnt
Vw192 nt1 ( V2 Wn 41 042 (Vwni1,n42)?
+ Do+ 2 g ’ D,
(1= wWnt1np2)? " (1 — wpt1,n42)? (1 —wpi1n42)3) "

and thus, from (5.3) bounds]

/(1 — Wnt1n42)? OV | Dot nial®
> / O |Dusatpl? = C / O Vw1 el Dot [Dsrvo] - (9.44)
=0 [ O (Vuwnsinsal +[Vunss2]) [Dasad] D).
The second term can be bounded by
/@7(3:2) |Vwni1nt2l [Dnto| [Dnt1?]
< 0‘/97(3:32) |Dpyotp|” + ! /@q(;iz)wwnﬂ,mﬂz | D19 ]?
<a / O | Duyatpf? + a7 / OV X(ni1 = Tnial = ) (Vi1 2l [Dsrv?

(9.45)
oo / OV X(|zns1 — Tnga| < O)[Vwnirnral? D]

x - >/
< a/@q(ﬁ:f) |Dn+2¢|2+004_1a2/@$f12) X(| n+1 n+2| 4— ) |Dn+1'(/}|2
|$n+1 - $n+2|

_ 2
+Ca N2 [ 0 (fin = nsa] < ) IDusav
where in the last inequality we used that, by Lemma 5.1, [Vwy41 nt2| < CN. Moreover we used that
Vw(z) = a/|z| for |z| > R/N (with R such that suppV C {z € R?: |z| < R}), and that R/N < ¢
for N large enough. Using that

0 D\ (|ns1 — s <€) < Cem " (9.46)
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we have (recall that a = ag/N)
[0 9wnstsal Dasatl [Dasavd

< a / O |Dpsatp? + Ca a2 / Oy Dy, 1 |? + Ca™ N2 0" / Oy Dy, 1.
Since N¢? > 1, we find

/ 00" Vw11 o] | D2t D] < o(1) { / 0" | D,y b + / ST |Dn+1w|2} . (9.47)

As for the third term on the r.h.s. of (9.44), we proceed as follows.
[ 00 (Funsral? + [ s10s2l) D] D]
<a [0 Duatl? +at [ O (Vwnsroal + [Vwnirsal) D

2) _ 2) X(|Tnt1 — Tpg2| 24
Sa/®ﬁ§ﬂ%n¢?+0a“f/@ﬁi (s M|6)U%w2
|$n+1_$n+2|

(9.48)

+CaIN? / 0D \((2ns1 — npal < ) |Dut]

where we used the bounds for |Vw| and |V?w| from (5.4) and that w(z) = a/|z| for |z| > ¢ since
¢> R/N. Using (9.46) to bound the last term, we obtain

/ 0D (|Vawns1mial? + [V2wns1nszl) [Dnyats] | Dot

1

— D A4
|ZL‘n+1 _$n+2|2| nw| (9 9)

< O‘/@a(ﬁ:z) | Dyt |? —|—Ca‘1a2£—4/@?(1n+2)

—I—Coz_1N4 —Cl—¢ /@ Y |an|2

To bound the second term on the r.h.s., we apply Hardy inequality. We have

1
@(n+2) - D 2
/ " |$n+1 - $n+2|2 | n¢|

1
2

<C / 0+ D, y2+ C / Vot (@g"”)) D)2
2
(n+2) 2 2 2l & (n+2) 2
<C [ e+ D, 1|2+ Cl = z;hmﬂ 0 +2) | D,y (9.50)
2n+1
<C/@(n+2 |Dn+1¢| + C(N 15 / Z Zh” @(n+2 |D,, w|2
j>n+1 i=1
<0/@%1m+w4+0 )~Le? /@ Y 1 Datp]?.

Since N¢? > 1, it follows from (9.49) that

/@fﬁ:f) (|an+1,n+2|2+ |v2wn+1,n+2|) |Dn+2¢| |Dn¢|
1){/@%2 | D2t ? +/@<”“ | Dnia9o? + /@ 1|an|2}
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Part i) of Lemma 9.4 follows now from (9.44), (9.47) and from last equation.

In order to prove part ii) we rewrite the Lh.s. of (9.42) as follows.

/(1 — Wnt1.042) 200D Vv (212 — Tuya) [ Dos16ns1nra)?
(9.51)

2
> /(1 - wn+1,n+2)2@q(ﬁ:i ) VN(Zni2 — Tns3) | Dns1Gniini2] -

Using
1 v'U~)n—i-1,n—|-2

Dypiidniing2 = —————Dp 10 + 5
1-— Wn41,n+2 (1 - wn+1,n+2)

Dyt

we find

/(1 — Wnt1.042) 200D Vv (2s2 — Tnya) [ Dns10ns1nra)?
(n+2) 2
(1-a) [ O Vi@ = usa) [Dasrdl (9.52)

_ 2
1 / O |Vt msal® Vi (nse — 2nss) | Dut -

The last term can be controlled by using (5.4) and that w(z) = a/|z| for |z| > ¢ > R/N by
/@fﬁ:f) |an+1,n+2|2 VN(Zni2 — Tny3) |Dn¢|2

< CNQ/GSZ:EQ X(|Tnt1 = Tnga| <€) Vv (Tpya — Tngs) [ Dnt]?

) X(|Tny1 — Tpg2| >4
+ Ca? /@fﬁ: X 2] 1 )VN(!En+2 — Tny3) [Dut]?
|$n+1 - $n+2|

< N2 [ O Vi = ass) Db+ CaPt [ QU Viv(onss = i) [Das P

< o(1) / O ) Vi (2nss — nss) | Duth]2.

(9.53)
From (9.51), we have
/ (1= Wnt1.n42) 08 Vi (@nt2 — Tnys) [ D1 dnrimsal’
1 (n+2)
— o Opty” VN (Tny2 — Tnts) [Dny1¢]? (9.54)

1) /@7(1”4_1 VN(ZL'n—i-l _$n+2) |Dn'¢}|2

In the last term we used @7(3:31) < @%n+1), the permutation symmetry of ¢ and we shifted the indices

n+2,n+3—-n+1,n+2 O

Proposition 9.5. Suppose N¢?> > 1. Let hl(.n) be defined as in (9.14). Then, if N is large enough
(depending on n),

CyN™ / 0+ Db Y Db v + hoe. > CENTH(L / 0l |V Dy v?

i<n<g

(9.55)
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where the error term €, (1) has been defined in (9.18).
Proof. We rewrite the Lh.s. of (9.55) as

CEN" Y / 0+ Db Y Dby + .

1<n<g

=CyN" > /@f{”z) DA DypAjap
i<n<g
CoN™ (n+2) —
- X Y e Vs - an) AT DY

i<n<j m>n, m#j

—opNt Y S / O D (Vi (s — 1) B) Duld; 4
i<n<j r#i
cnNn _
+ A ST S [ D, (Ve — 00) B) DalViv(as — ) 6) + b

i<n<j r#i m>n, m#j

(9.56)

with A, = 1 if r > n, and A, = 1/2 if r < n (recall the definition of b\, for i < n, in (9.14)). The
terms on the last two lines are easy to bound because the potential Vi (x; — x,) forces the particle i
to be close (on the length scale N~!) to the particle r. But then the factor 9§n+2) in @2”*2) makes
this contribution exponentially small. More precisely, for ¢ < n, we have the bound

(va@g"”)) VAV (i — 2,)]| < e CF @+ (9.57)

fora=0,1, 6=0,1,2, and for all N large enough. It is therefore easy to prove that

CEN" Y / 0+ Db Y Db ) + hc.

1<n<g

=CyN" > / 0"t DAY DA
i<n<g
CoN™ 2 —
5 >y ’/@g ) Vn(xj — 2m) Dpith Dyt + hec.

i<n<j m>n, m#j

=0 () [{OrIDuaul + O Dol + 005 1 Du vl + 057 Dua )

Lemma 9.5 now follows from Lemma 9.6 and Lemma 9.7 below, where we handle the first and,
respectively, the second term on the r.h.s. of the last equation. ]

Lemma 9.6. Suppose the assumptions of Lemma 9.5 are satisfied. Then we have

CoN™ > / 0" DAY Do+ hec.

1<n<g

> CpN™(1 - o(1)) / 0 |7, D, 1 (9.58)

o(N™) / O DDy 12 — o(N™H) / 0DV, D2
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Proof. Integration by parts leads to

/@<”+2 DpA; ¢ DAt + hec.

1i<n<g

= > /@<"+2 IViV;Dn o + /v 0" V,V,;D, Y V;D,,

i<n<g 1<n<g

(9.59)
+ ) /v 02 VD, % ViV Dy 1)
1<n<g
+ ) /vv 0" VD, Y V; Dyt + hic.
i<n<g
The second term on the r.h.s. of the last equation can be bounded by
3 (/ve)“”? ViV;D, ¥ V;Dy
i<n<g
N (9.60)
<a ) / NCE IViDntp* +a7 ) /@<”+2 ViV, Dy, 1|
i<n<g i<n<g
for some o > 0. Next we use that, by Lemma A.1, part iv),
n+2)
Z |v @( | < 06—2@(714-1)
i<n @(n+2
and therefore, since N/? > 1,
3 (/v 0" V,V,D, ¥ V; an(
i<n<g
< aCl™ 22/90”1 IViDntp* + a7 ) /@(”“ ViV Dy | (9.61)
>n i<n<g
O(Nz)/@qﬁ”“) | Dy1 )2 + o(1) /@<”+2 ViV, Dy 2.
1<n<g
The estimate of the third term on the r.h.s. of (9.59) is almost identical to the second term;
3 (/v 02 V,D, ¥ V,;V, an‘
i<n<g
< Z |V @(n+2)| IV, Doto|2 + ! Z 0n+2) |v, YDy 2
a (n+2 n a n
i<n<j i<n<j (9.62)
< Col~ 22/@(’”1 IViDnp* + a7 ) /@<”+2 |ViV;D,, |
i<n i<n<g
/@<”+1 IViDntp|* +0(1) ) /@<”+2 ViV Dy |2
i<n<g

53



Finally, to bound the fourth term on the r.h.s. of (9.59), we use that, by Lemma A.1, part vi),

S vviert < ool and Y |V, Vi0 | < cere(ty. (9.63)
j>n i<n
This implies that

3 ‘/vjvi 64 ViDy § VD

1<n<g

i<n i>n i>n i<n
<o) [ O IITiDL +o(N?) [ O IID,ul.
Lemma 9.6 now follows from (9.59), (9.61), (9.62) and (9.64). O

Lemma 9.7. Suppose the assumptions of Lemma 9.5 are satisfied. Then we have, for N large enough
(depending on n),

CrNT § B
N 02 Z Z /@7(1 +2) Vn(zj — xpm) DpAjtp Dyptp + hec.
1i<n<g m>n, m#£j (965)

> — o(N™3) /@7(1”+1) VN(Tnt1 — Tng2) [Dnp|? .

Proof. We have

- Y X [ e Ve, — am) DuAT Dyt e

i<n<j m>n, m#j

= > Y ’/@g””) VN (Zm — )| ViDy ¥|? (9.66)

i<n<j m>n, m#j

+ > > /vi@g"“) V(2 — Zm) ViDp ¥ Dy tb + hec..

1<n<j m>n, m#j
The second term can be bounded by

‘ Z Z /vi @7(1”+2) VN(zj — @) ViDp Dy tp + h.c.‘

i<n<j m>n, m#j

<ad, ) viou T Vn (25 — ) | Dn o 9.67
< @q(ln_,_g) N\Lj m n ( . )

i<n<j m>n, m#£j

tat YD /@v(znﬂ) Viv(z; = 2n) [ViDy 9|

i<n<j m>n, m#j

Since, by Lemma A.1, part iv),

_ont+2)2
M < cr2e(ntl) 7 9.68
(n+2) n
i<n @n
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using the permutation symmetry and optimizing «, we obtain

‘ > /vi@g"“) Vn(2j — @m) ViDp ¥ Dyt + hec.

i<n<j m>n,m#j
< o(N%) [ O Viy(anss — asz) 1Dl (9.69)
OIS /@5;”2) Vi (@5 — 2m) [ViDn 2.
i<n<j m>n, m#j

Inserting the last bound in (9.66), we conclude the proof of Lemma 9.7. ]

A Properties of the cutoff function (91(”)

Recall that the cutoff functions @,in) = @,in) (x) defined for k =1,...,N and n € N, in Eq. (5.32).
In the following lemma we collect some of their important properties which were used in the energy
estimate, Proposition 5.3.

Lemma A.1. i) The functions @,in) are monotonic in both parameters, that is for any n, k € N,
ol <eM<1, e <e<1.

Moreover, @,in) 18 permutation symmetric in the first k and the last N — k variables.

i) We have, for anyn e N, k=1,...,N,

m

k N
2™ n n—
Food hy| e <o (A.1)
i=1 j#i

iii) For everyk=1,...,N, n € N, we have

n N
Iv,0 < ce! (i— th) o <crte"™™  ifi<k

r=1

- (A.2)
v,0| < ce? (75 th) o <crtel"  ifisk
r=1
i) For every k=1,...,N, n € N we have
2
N |V .@(”)

% < cr-2e(" Y (A.3)

Jj=1 @k

v) For every fivtedk =1,...,N and n € N we have

k k
B AL AL n _ n— e . ..
<ot 2(75 S jhmj> (EE jhm>@,§)gce 20" i i andi,j >k
m=1 r=1

< Cr? @,in_l), forany 1,7

viv,e[”

viv,0p

(A.4)
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vi) For every fited k =1,..., N and n € N we have

(v V00"

2 (n— 1)
< Cl 7o, (A.5)
7-]

—x/2

Proof. Part i) follows trivially from the definition of 91(”). Part ii) follows from z™e™" < Ce

for every real x. To prove part iii), we observe that, for i > k

Vol = ( ZVhW>eXp ——ZZ}W : (A.6)

r=1 j#r

Since |Vh(x)| < C¢~1h(x), we obtain

(vi@,i”) <

Similarly, for ¢ < k, we have

Vi@]i”) _ _<i_:§:vmr(1 —|—777«)> exp —i—:zk:z:hjr (A.8)
r=1 r=1 j#r
with n, =0 if r > k and n, = 1 if » < k. Therefore, in this case
‘Vi@]i”) <ot (i_f Z hir> exp —2—6 Z Z hjr | - (A.9)
r=1 r=1 j#r

Egs. (A.7) and (A.9), together with part ii), prove (A.2).
As for part iv), we have, from (A.7),

v |v.em| N
IVk _ 2n
> WS ey Z hﬂ“ P e Z > hr
=kl O j=k+1 r=1 jer
on N ok 2 on k (A.10)
e (= 30 Y ohi | e (=20 ki
¢ j=k+1 =1 St jr

by part ii) of this lemma. The contribution to (A.3) from terms with ;7 < k can be controlled
similarly, using (A.9). The proof of part v) and vi) is based on simple explicit computations and the
same bounds used for part iii) and iv). O

B Example of an Initial Data

In this section, we denote by (1 — w(z)) the ground state solution of the Neumann problem
1
(-84 3700 ) (1= wl) = enl1 = w(a)
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on the ball {x : || < ¢} with the normalization condition w(z) = 0 if |x| = £. We extend w(xz) =0
for all x € R? with |z| > £. We will choose ¢ such that a < ¢ < 1. Recall that a = ag/N is the
scattering length of the potential Viy(z) = N2V(Nz). Assuming that V > 0 is smooth spherical

symmetric and compactly supported, we have, from Lemma A.2 in [8], the following properties of e,
and w(z).

i) If a/¢ is small enough, then
ee = 3al™3(1 + o(a/l)) (B.1)
ii) There exists ¢op > 0 such that
cp<1l—-w(z)<1
for all z € R3. Moreover

1(|z[ <) 1(|z[ <)

< d <C . B.2
w(e)| € Cam = and (V)] < Cag 5 (B.2)
We define the N-body wave function
N
WN(X) = H(l — w(xi — l‘])) .
1<j
For m=1,..., N, we also define
N
W][Vm](xm—i-la .. 'axN) = H (1 — w(xi — ,Z‘]))
m<i<j
Lemma B.1. Define
N
Wi (x) Hj:l o(z;)
¢N(X) = N
IWn () [Tj=1 ()l
for any o € HY(R3) with ||¢||;2 = 1. Then, if a < £ < 1, we have
(YN, Hnpy) < CN (B.3)
and, for any fized k,
Jim [y — e @ el =0, (B4)
where N
- [icic; (1 —w(@i — 25)) [T (25)

s (1= w(ai = ) TT g (@)

Proof. Let ¢n(x) = H;VZI ¢(xj), and, for m = 1,..., N, qbk,n](xmﬂ, S L XN) = Hj\;m o(xj). We
start by noticing that

IN

@ — o)W | <|[wwon| < [wi W (B.5)
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Here ||W[1]¢[1] | is the norm on L2(R3*N-1)). The upper bound in (B.5) is clear since 1 —w < 1 and
l¢|| = 1. To prove the lower bound, we note that, by (B.2), and using the notation w;; = w(x; — x;),

N
W ol = [ dx [0 =i [ox(l

1<j

N N
- [ TT (1w ool - [ <1H<1wu>2> [ (1= lon(P

1<i<y j=2 1<i<y

N
2
> PRI 23 [ axeon s [ coom)] oo
=1

1 —xi| <
> a2 - ona [ ax HELZ =0

WilGes,.....an)] lon P

|z1 — 5

> (1 - CNalllp|2) W12

using that 1(|z; — z;| < ¢) < ¢|zq — 2|71, and then applying a Hardy inequality in the variable z;.
This proves (B.5), because ¢ < 1. Analogously, we can prove that

-t ] < | < ot ] X

where 0x(1) — 0 as N — oo, for every fixed k > 1, and where ||W[k]¢[k] | is the norm on L2(R3(N—F)),
Next we prove (B.4). To this end we remark that, by (B.6),

H Wnon — Wion H < [ IWnonll 1‘ 0 (B.7)
Wanonll B 1= HwFpm)
as N — oo. Moreover, since
(K]
®k (N—-k) _ W ON
T
we observe from (B.7) and (B.6) that
2
(Wx = Wiy
timsup [y — % @ €0 < timsup | Vo (B3)

k k
Neoo W hgl) 2
Now we have

o = wihon| = [ ax (1 11 <1wm>2) LT Ly RAE

1<j<k,i<k<j J=1

N
<CZZ/dxwm WA @, - o)) T o))

i<k j=1 j=1
k k
<CNkat|| |2 W 682

by using (B.2) and Sobolev inequality in z; (see Lemma 6.4, part i)). By (B.8) and ¢ < 1, this
proves (B.4).
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Finally, we prove (B.3). To this end we observe that

—HN (Wnon) ZLJ¢N+e€Z (| — 5] < O)pn — Z Z Vwij  Vwim 6y (B.9)

Wi j#m i=1 jmzi,j#m L=wij 1= wim

where

Vwim
j=-0+2Y _“Z V5.
m#j gm

Note that
/ W2 Gy Lyt = / W3 Ligy iy = / W3 Vidy Vit -

From (B.9) we find, by using (B.1), Wy < W][\?] and by applying the Sobolev type inequalities of
Lemma 6.4 and the permutational symmetries,

(Wnon, HvWn o)

- Z/Wmv ¢N|2+ee2/dwa 1(ja; — 2l < 0)]én ()

j#m

vy [ Wi g (B.10)

i=1 jm#i,j#m Wij
< Nl Wil |+ oN v — alel [ W]
+ONN = 1)(N = 2)a el | Wilo® |
for any € > 0. From (B.6), and since £ < 1, we have

< Wnon N Wnon
[Wxenl” 7 [[Wren||

which completes the proof of (B.3). O

> < CON (B.11)

C Trapped condensates

In this Appendix we show that Theorem 2.2 can be applied to the ground state of interacting Bose
Hamiltonians with a trap. Recall the definition of the Hamiltonian Hy without a trap from (2.1),

and define
N

N N
HY™ = Hy + ) Vest(aj) = Y (=8 + Vet () + Y Viv(zi — )
j=1 j=1 i<j
with a smooth trapping potential Vext > 0 satisfying lim, | Vext(x) = 0o . Denote by wtrap the pos-
itive normalized ground state vector of Hﬁap. The corresponding Gross-Pitaevskii energy functional
is given by

£ (9) = / dz (V) + Ve (2)]b(2)[2 + dmao|o(a)]*)
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and we denote by (btrap the L?-normalized, positive minimizer of Sggp. As proven in [16], the ground

state energy per particle is given by minimum value of ng;p as N — oo,
<w}c\1}ap’ Htrapwtrap> trap(¢trap) (012)
and the one-particle marginal density 'y](\})trap associated with w%a satisfies 'yN trap |¢trap>< trap|

(with convergence in the trace-norm). From (C.12), (%P, Hy"Piv*) < CN and since Hy < Hy™,
we obtain that wtrap satisfies (2.17). The goal of this section is to prove in Proposition C.2 below
that wtrap satisfies the asymptotic factorization property (2.18). From Theorem 2.2 we therefore
immediately obtain the following corollary:

Corollary C.1. Suppose V' satisfies the same conditions as in Theorem 2.2. Let )y be the solution
of the Schrodinger equation without a trap, i0pny = HyYnge, but with initial data given by the

trapped ground state, Yo := wtrap Fork=1,...,N, let 'y](\];)t be the one-particle marginal density
associated with Y. Then, for everyt € R, and k > 1,

v = e (@l ® as N — oo (C.13)

in the weak* topology of LY(L*(R3%)). Here oy is the solution to the Gross-Pitaevskii equation

iOppr = — Ay + 8maolpy| oy
with initial data pi—g = qbth O

Proposition C.2. For any fized k = 1,2, ..., there exists a sequence of normalized wave functions,
EJ(VN_k) e L2(R3N=K)) N > k, such that

Hwtmp tmp]@k ®£(N k) H 0

as N — oo.

We will prove this proposition only for kK = 1, the proof for arbitrary £ > 1 can be obtained
similarly. For brevity, we set £y = 5%_1. For the proof, we make use of the following three lemmas.

Lemma C.3. There exists a constant C' > 0 independent of R, N such that
11(Jz1] > R)Yy™|| < Ce™ " (C.14)
where 1(s > ) denotes the characteristic function of the interval [\, 00).

Lemma C.4. We have ¢ mp( ) > 0 for all x € R®. Moreover

(1= A)pgEll < oo, ($¢H, Venlz)dap) <

and there exists a constant C' > 0 such that
11(lz| > R)$GE| < Ce X

for all R > 0.
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Lemma C.5. For fited R > 0, N € N define ER,N e LA(R3WV-1) py

c 1 tra 2 ¢§\7ap($17 XN—I)
Enn(xx-1) = e [ d ol P
Siorjer @1 (0GR @02 Jiosi<r oG8 ()
where xy_1 = (x2,...,zN). Then we have
~ 2
/dXN—1/| | dx; ‘¢§§ap($1,XN—1) — ¢l (x1) Epn(xn-1)| <crdy (C.15)
z1|<R

where cg < 00 s independent of N and dy is independent of R and satisfies dy — 0 as N — oo.
Using these three lemmas we can prove Proposition C.2.

Proof of Proposition C.2 for k = 1. Using the notation introduced in Lemma C.5 we have
[P — e @ Ep N |? = /dXN 1 /dxl [P (21, xn—1) — PP (z1)ER N (XN -1)[?

/ dxy_1 / dey [ (x) — G2 (1) Epn (k1) 2
|z1|<R (0.16)

/de 1/ dxy |1/Jtmp( ) — trap(flh)fRN(XN D?
|Il|>R
ScRdN—I-Ce

where we used Lemma C.5 to bound the term on the second line, and Lemmas C.3 and C.4 to bound
the term on the third line. Eq. (C.16) implies that

S @ ErN
loee? © Er N |
9 ||,¢}trap trap ® gR NH

||,¢}trap trap ® gR NH

Now choose a sequence Ry such that Ry — oo and cgr,dy — 0 as N — oo. Then, taking
EN =Ery N/ |ERy N, We clearly have ||€n]| =1 for all N, and, by (C.16) and (C.17),

wtrap ¢trap éR,N

wtrap

(19:34] (C.17)

Hwtrap trap ® £N|| —0 as N — 0o.
O

We still have to prove Lemmas C.3, C.4 and C.5. Lemma C.4 is a standard result which follows
from the fact that (btrap is the solution of the elliptic non-linear eigenvalue equation

_A¢trap + ‘/extqbtrap + 87Ta0|¢trap| ¢trap M¢trap (018)

with some constant . Lemma C.5 has been proven in [16], more precisely, it follows from Eq. (13)
of [16] by noticing that the two terms in the parenthesis in this equation converge to zero, uniformly
in R, because of Eq. (7) and Lemma 1 in [16]. It only remains to prove Lemma C.3. To this end we
use the following two lemmas.
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Lemma C.6. Let y € C®°(R) with x(s) =0 if s <1 and x(s) = 1 if s > 2, and let f € C1(R) be a
monotonically increasing function with sup,, | f'(x)| < co. Then we have, for R > 0 large enough,

x(aal/R) (HE™ = 17 (ea) 2 = B ) x(anl/R) = x(Ja1l/ B)*,

where En denotes the ground state energy of Htrap

Proof. Define

N
tra Z A + ‘/ext x] Z VN
Jj=2 2<i<y

and let Ex_1 = inf o(Hy®). Moreover, we define J%ipl e L2(R3V-1) to be the positive normalized

ground state of H™ . Then we have, since —A; > 0 and Vn(z) >0,
N-1

x| /R) (Hy™ =1 (jaa)” = Bx ) (|l /R)
> X(arl /B (HY + Vesa(wr) = |f (aa) P = Bx ) x(nl /B) —(C19)
> x(arl/R)? (Vess(@1) = € = (Ey = Ex-))

where we used the assumption |f'| < C. Next we remark that there exists a constant C' > 0 such
that B
En<En_1+4+C for all N .

In fact (using the symmetry of the wave function)
Ex < (¢cp’ © O, Hy dap @ Un) = En—1 + (087 (~A1 + Vex(@1)) dap)
+ (G ® PP, (N = )NV (N (21 — 22)) 51 @ Uph)
< Eno1+C (1= D) ll? + Cloar s Vexi(1)6GH)

<Enx_1+4C
(C.20)

where we used the operator inequality W (z; — z2) < C||W||z:1(1 — A1)? and Lemma C.4. Since
lim| ;| o0 Vext(®) = 00, the lemma now follows from (C.19). O

Lemma C.7. Suppose that f,x are as in Lemma C.6. Then we have, for R large enough,
le? =Dy (21 |/ RYY ™I < Cr (C.21)
for some constant C'r depending on R but not on N.

Proof. We compute

ra —f(lx ra . X
S HG™ — Ex)e T (=D = HE — | f/(|21|)[* — By +i (pl f(|z1]) +f/(|$1|)® 'p1> ;

o
|1
with p1 = —iVy. Therefore, for R large enough,
Re <ef(|r1| x(Jz1| /Ry, ef (Iz1]) (Htrap EN) e~ Uzl ef U1y (|2 |/ Ry trap>
= (e Dyx(fanl /R), (HR™ = | (12 = Bx ) x(lanl /R)e =Dy v
> [|e D x (|| /R
(C.22)
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where we used Lemma C.6. On the other hand
Re <ef(|r1| (a1 |/ Ry, ef (lz1) ( Ftrap EN) e~/ e/ (1) (21| / R)p trap>
< ||ef(|r1|)X(|$1|/R)¢§\r[ap||Hef(lrll) (H]téap ) (|$1|/R)¢trap

< ||ef(|r1|)X(|$1|/R)zz};\rlapn Hef(lml) [ trap (|x1|/R)} trap

(C.23)

because (Hy™ — Ex)y™ = 0. Combining (C.22) and (C.23) we obtain that, for R large enough,

lef =Dyl RV P < [[ef0mD [Hi, x(laal/R) |05

Next we note that

K (l/R)

V1 + R 2 (|z1]/R)+ R~ oy
1

[Hy, x(|21]/R)] = —2iR™ (lel/R)| N

Since f is monotone increasing, we see that

ef(|m1|)xl(|$1|/R)|i_1|H < Cef 2R

oF (1)) (|$1|/R)H§CR—1ef(2R) and

|21 (C.24)

Hef(lrll)xﬂ(|$1|/R)H < Cef2R),

The energy estimate (C.12) and Vy > 0 imply that |[V1¢5*| < C uniformly in N. From these
estimates the lemma follows. O

Proof of Lemma C.3. Suppose Y is as in Lemmas C.6 and C.7. For a fixed R large enough, we have,
by Lemma C.7,

el < el x|/ Ro)o ™Il + 1€ (1 = x(|1]/Ro)) ™| < C.

Therefore
11(|z1] > R)Y™I < lle”™ 11 (|zy| > R)eltlpl™| < Ce™

D Properties of the one-body scattering solution 1 — w(z)

In this section we prove part i) and iii) of Lemma 5.1.

Lemma D.1. Suppose that V' > 0 is smooth, spherical symmetric with compact support and with
scattering length ag. Let

p =supr?V(r) —I—/ drrV(r), (D.1)
r>0 0

and suppose @g(x) is the solution of

1
<—A + 5{/) 0o =0 with o — 1 as |z| — co. (D.2)
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i) There exists Cy > 0, depending on V, such that Co < po(z) < 1 for all z € R®. Moreover there
exists a universal constant ¢ such that

1—cp<gp(x) <1 for all z € R3. (D.3)

it) There exists a universal constant ¢ > 0 such that

Vool < erm [Voo@)l S el ond [Viao(e)| < e (D.4)
Moreover there are constant C1,Co, depending on the potential V', such that
[Veo(z)| < Ch V20| < Cs. (D.5)

Proof. Let R be such that supp V' C {z € R3 : |z| < R}, and let ag denote the scattering length of
V. Then we fix R > R such that ap/R < min (p, 1/2), with p defined in (D.1).

In order to prove part i), we observe that, for |z| > R, po(z) = 1 — ag/|z|. Hence
1

5 Sw(@) <1l and  1-p<ep(a) <1, forz >R. (D.6)

Next, by Harnack principle the ratio between the supremum and the infimum of g in a given ball
is bounded: therefore ¢( is bounded away from zero in the ball |z| < R and thus there exists
Cp > 0 such that opg(x) > Cy for all = € R3. Moreover by the maximum principle, and since, from
(D.2), —Agpy < 0, it follows that po(z) < 1, for all z € R3. To prove (D.3) for |z < R, we write
wo(z) =m(r)/r, with r = |z|. Then m/(R) = 1, and, from (D.2),

1
—m/'(r) + iV(r)m(r) =0. (D.7)
Since 0 < po(z) < 1, it follows that m(0) = 0 and 0 < m(r)/r < 1. Therefore, for r < R,

m(s)

- R R 00
m/(r) = m/(R) —/ dsm”(s) =1— %/ dssV(s) >1- C/o dssV(s) >1—cp (D.8)

m(r) >1—cp forall r < R. (D.9)

m(r) = /07“ dsm/(s) > r(1 —cp) = po(r)= "

The last equation, together with (D.6), implies (D.3).
Next we prove ii). For |z| > R, we have ¢o(z) = 1 — ag/|z| and thus

ao ao 4 >
<< =—< = f >R D.10
|v900($)| = |l‘|2 = R|l‘| = |l‘|’ or |$| = iy ( )

by definition of R. Next, for |z| < R, we write ¢o(x) = m(r)/r, with 7 = |z|. Then

Veoa)] = |22

r
1 T 1 T S

- ‘—/ dsm”(s)——z/ ds/ d/@m”(/{)‘ (D.11)
rJo ™ Jo 0
1 T

== [ dexm”(k),

7"20
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because m” (k) > 0. From (D.7) we obtain

1 T
Veo(@)] < 5 / an w2V () M) < 00 (D.12)
2r< Jo ||

K

because 8mag = [ V(x)po(x) (see Lemma 5.1), part iv). Moreover, again from (D.11) and (D.7), we
have

1 7 o K2V
[Vo(x)| < T/ dr K%V (k) m(x) < Pr20 " () < N (D.13)
0

K r r

Together with (D.10) we obtain the first two inequalities in (D.4). From (D.10) and from the first
inequality in (D.13), it also follows that there exists C7, depending on the bounded potential V', such
that [Vyo(x)| < Ci. To prove the second bounds in (D.4) and (D.5), we note that

IV2p0(z)] < — < £~ for |z > R, (D.14)
by the definition of R. For |z| < R, we have (expanding m(r) and m/(r) and using that m(0) = 0)
Pt < [0 50D 2m<r>‘
_ ‘%v( m(r) %/ (8)‘ (D.15)
) <c

(sups>0 s V
~C D)

r

Last equation, together with (D.14), implies the third bound in (D.4). Moreover, from (D.14) and
the second line in (D.15), it also follows that there exists Cs, depending on the bounded potential
V, such that |V2pg(x)| < Cs. O

Proof of Lemma 5.1, part i) and iii). By scaling 1 —w(x) = po(Nz), with ¢ defined in Lemma D.1.
Therefore part i) of Lemma 5.1 follows immediately by part i) of Lemma D.1, and part iii) of Lemma
5.1 follows from (D.4) and (D.5). O
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