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SERRE’S MODULARITY CONJECTURE (I)

CHANDRASHEKHAR KHARE AND JEAN-PIERRE WINTENBERGER

Abstract. This paper is the first part of a work which proves Serre’s
modularity conjecture. We first prove the cases p 6= 2 and odd con-
ductor, see Theorem 1.2, modulo Theorems 4.1 and 5.1. Theorems 4.1
and 5.1 are proven in the second part, see [13]. We then reduce the
general case to a modularity statement for 2-adic lifts of modular mod
2 representations. This statement is now a theorem of Kisin [19].
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1. Introduction

Let GQ = Gal(Q̄/Q) be the absolute Galois group of Q. Let ρ̄ : GQ →
GL2(F) be a continuous, absolutely irreducible, two-dimensional, odd (detρ̄(c) =
−1 for c a complex conjugation), mod p representation, with F a finite field
of characteristic p. We say that such a representation is of Serre-type, or
S-type, for short.

We denote by N (ρ̄) the (prime to p) Artin conductor of ρ̄, and k(ρ̄) the
weight of ρ̄ as defined in [26]. It is an important feature of the weight k(ρ̄),
for p > 2, that if χp is the mod p cyclotomic character, then for some i ∈ Z,

2 ≤ k(ρ̄⊗ χp
i) ≤ p + 1. In the case of p = 2, the values of k(ρ̄) can either

be 2 or 4, with the former if and only if ρ̄ is finite at 2.
We fix embeddings ιp : Q →֒ Qp for all primes p hereafter, and when we

say (a place above) p, we will mean the place induced by this embedding.
Serre has conjectured in [26] that such a ρ̄ is modular, i.e., arises from

(with respect to the fixed embedding ιp : Q →֒ Qp) a newform f of weight
k(ρ̄) and level N (ρ̄). By arises from f we mean that there is an integral
model ρ : GQ → GL2(O) of the p-adic representation ρf associated to f ,
such that ρ̄ is isomorphic to the reduction of ρ modulo the maximal ideal
of O, and with O the ring of integers of a finite extension of Qp. In these
circumstances we also say that ρ̄ arises from Sk(ρ̄)(Γ1(N (ρ̄)).

1.1. Main result. The case of the conjecture for conductor one, i.e., the
level one conjecture, was proved in [14].

Theorem 1.1. A ρ̄ of S-type with N (ρ̄) = 1 arises from Sk(ρ̄)(SL2(Z)).

This built on the ideas introduced in [12].
In this paper we first extend Theorem 1.1, and the methods of its proof,

and prove the following theorem.

Theorem 1.2. 1. Let p be an odd prime. Then a ρ̄ of S-type with N (ρ̄) an
odd integer arises from Sk(ρ̄)(Γ1(N (ρ̄))).

2. Let p = 2. Then a ρ̄ of S-type with k(ρ̄) = 2 arises from S2(Γ1(N (ρ̄))).

We note that Theorem 1.2(2) also completes the work that the qualitative
form of Serre’s conjecture implies the refined form by filling in a missing case
in characteristic 2 (see [2] and [29]).

We reduce in Theorem 9.1 the general case of Serre’s conjecture to a
certain hypothesis (H) which is now a theorem of Kisin, see [19]. In Theorem
9.1, assuming (H), we first prove the case p = 2, k(ρ̄) = 4, and then we
deduce from it the case p 6= 2 and N (ρ̄) even.

In this part we will prove Theorem 1.2 modulo two lifting theorems, The-
orem 4.1 (closely related to Theorem 6.1 of [14]) and Theorem 5.1 (closely
related to Theorem 5.1 of [14]) below, which we will only state here. Theo-
rems 4.1 and 5.1 are proved in the second part, cf. [13].



SERRE’S MODULARITY CONJECTURE 3

1.2. The nature of the proof of Theorem 1.2. The proof of Theorem
1.2 can be viewed as a double induction on the complexity of ρ̄ as measured
by two parameters: (i) the number of prime divisors of the level N (ρ̄), and
(ii) the residue characteristic p of ρ̄ (or, more or less equivalently, the weight
k(ρ̄)). A raising levels argument (see Theorem 3.4) is used to reduce proving
Theorem 1.2 to representations which are locally good-dihedral. The ideas
used in the proofs of Theorems 3.2 and 3.1 are those of weight reduction of
[14] (see Theorem 3.2), which then allows one to use the killing ramification
idea of [12] restricted to weight 2 (see Theorem 3.1). Theorem 3.3, which is
a corollary of Theorem 1.1, is used to get the induction started.

The main new ideas of this paper, as compared to [12] and [14], are as
follows:

(i) The reduction of Serre’s conjecture to proving it for locally good-
dihedral ρ̄. This is crucial as it allows us to avoid invoking any modularity
lifting theorems in the residually degenerate cases (i.e., ρ̄|GQ(µp)

reducible)

beyond the use of such in the proof of Theorem 1.1, and which are due to
Skinner-Wiles (see [27] and [28]).

(ii) The weight cycles used in the proof of Theorem 1.1 are completed so
that they start at weight 2 (see Theorem 3.2).

(iii) This allows one to use the killing ramification idea of [12] in a way
(see Theorem 3.1) so that the modularity lifting theorems needed here are
in the weight 2 case, i.e., the results of Kisin in [17].

1.3. A comparison to the approach of [12]. The path we tread in the
proof of our main theorem has many twists and turns (see diagram in Section
3) some of which could be straightened as modularity lifting techniques
become more and more powerful. It might even be possible eventually to
tread the very direct path outlined in Section 5 of [12].

The rather strong use made of various types of lifts (congruences between
Galois representations) of a given residual representation is the main distinc-
tion between the approach here as well as in [14], and the approach sketched
in Section 5 of [12]. The latter sought to prove Serre’s conjecture using only
minimal lifts and the compatible systems these live in.

The use of congruences between Galois representations, which allows one
to be very conservative in the modularity lifting results used, we believe will
be of help when proving modularity in other contexts. To be conservative
in this matter seems like a virtue to us!

One of the subtleties in the approach we adopt here is that we make serious
use of modularity lifting theorems for 2-adic lifts (see Theorem 4.1 (1)). As
we believe that for the general case of Serre’s conjecture, modularity lifting
theorems for 2-adic lifts are unavoidable (see Theorem 9.1 and Hypothesis
(H)), this seems fitting.

1.4. Description of the paper. In Section 2 we single out a class of ρ̄ that
we call locally good-dihedral (see Definition 2.1) which is easier for us to deal
with. In Section 3 we reduce the proof of Theorem 1.2 to some auxiliary
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theorems. In Sections 4 and 5 we state the Theorems 4.1 and 5.1 which are
proved in [13]. In Section 6 we prove some easy lemmas needed for the proof
of Theorem 1.2. In Section 7 some estimates on prime numbers are given that
are needed for the proof of Theorem 3.2. The auxiliary theorems stated in
Section 3 are proved in Section 8, modulo Theorems 4.1 and 5.1. In Section
9 we reduce the general case to a certain Hypothesis (H). In Section 10 we
spell out a consequence of our main theorem for 2-dimensional, irreducible
compatible systems of odd representations of GQ.

1.5. Notation. For F a field, Q ⊂ F ⊂ Q, we write GF for the Galois
group of Q/F . For λ a prime/place of F , we mean by Dλ (resp., Iλ if λ is
finite) a decomposition (resp., inertia) subgroup of GF at λ. Recall that for
each place p of Q, we have fixed an embedding ιp of Q in its completions Qp.
Denote by χp the p-adic cyclotomic character, and ωp the Teichmüller lift of
the mod p cyclotomic character χp (the latter being the reduction mod p of

χp). By abuse of notation we also denote by ωp the ℓ-adic character ιℓι
−1
p (ωp)

for any prime ℓ: this should not cause confusion as from the context it will be
clear where the character is valued. We also denote by ωp,2 a fundamental
character of level 2 (valued in F∗

p2) of Ip: it factors through the unique

quotient of Ip that is isomorphic to F∗
p2. We denote by the same symbol

its Teichmüller lift, and also all its ℓ-adic incarnations ιℓι
−1
p (ωp,2) . For a

number field F we denote the restriction of a character of Gal(Q̄/Q) to GF

by the same symbol. Mod p and p-adic representations of GQ arising from
newforms, or reducible mod p representations of GQ which are odd, are said
to be modular, another standard bit of terminology.

2. A crucial definition

Define the function Q : N → N such that Q(1) = 1, and for n ≥ 2, Q(n)
is the largest prime that divides n.

Definition 2.1. Let ρ̄ : GQ → GL2(Fp) be a continuous representation.
We say that q 6= p is a good dihedral prime for ρ̄ if
(i) ρ̄|Iq

is of the form
(

ψ 0
0 ψq

)

,

where ψ is a non-trivial character of Iq of order a power of an odd prime

t 6= q, such that t divides q + 1, and t > max(Q(N(ρ̄)
q2 ), 5, p);

(ii) q is 1 mod 8, and 1 mod r for every prime r 6= q such that r ≤

max(Q(N(ρ̄)
q2 ), p).

If there exists a good dihedral prime q for ρ̄ we say that ρ̄ is locally good-
dihedral (for the prime q), or q-dihedral.
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3. Proof of Theorem 1.2

In this section we state four theorems and derive Theorem 1.2 from them.
The proofs of the theorems stated here, modulo Theorems 4.1 and 5.1, will
be given in Section 8.

3.1. Auxiliary theorems. Consider the following hypotheses (for integers
r ≥ 1):

(Lr) All ρ̄ of S-type which satisfy the following three conditions are mod-
ular: (a) ρ̄ is locally good-dihedral; (b) k(ρ̄) = 2 if p = 2; (c) N (ρ̄) is odd
and divisible by at most r primes.

(Wr) All ρ̄ of S-type which satisfy the following three conditions are
modular: (a) ρ̄ is locally good-dihedral; (b) k(ρ̄) = 2; (c) N (ρ̄) is odd and
divisible by at most r primes.

Theorems 3.1 and 3.2 exhibit relations between the (Lr)’s and (Wr)’s (be-
sides the obvious one that (Lr) implies (Wr)!). Diagramatically the relations
in Theorems 3.1 and 3.2 may be summarised as:

W1
+3 L1

w� vv
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v
v

W2
+3 L2

. . .

Wr
+3 Lr

w� vv
v
v
v
v
v
v

v
v
v
v
v
v
v
v

Wr+1
+3 Lr+1

. . .
The following theorem is the idea of killing ramification of [12].

Theorem 3.1. (killing ramification in weight 2) For a positive integer r,
(Lr) implies (Wr+1).

The following theorem is the idea of weight reduction of [14] (or weight
cycles as they are called in [15]).

Theorem 3.2. (reduction to weight 2) For a positive integer r, (Wr) implies
(Lr).

The following theorem is deduced from Corollary 1.2 of [14], and provides
a starting point from which to apply Theorem 3.2 and 3.1.

Theorem 3.3. The hypothesis (Wr) is true if r = 1.
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The following theorem uses an analog, for Galois representations, of a
result for modular forms due to Carayol (see Section 5 of [4]) that is provided
by Theorem 5.1 (4). It is used to reduce the proof of Theorem 1.2 to the
proofs of Theorems 3.1, 3.2 and 3.3.

Theorem 3.4. (raising levels)
Assume the following hypothesis for a given integer r ≥ 0:
(Dr) All ρ̄ of S-type which satisfy the following three conditions are mod-

ular: (a) ρ̄ is locally good-dihedral; (b) the residue characteristic of ρ̄ is an
odd prime; (c) N (ρ̄) is not divisible by 2r+1.

Then any ρ̄ of S-type of residue characteristic p of conductor not divisible
by 2r+1, and with k(ρ̄) = 2 if p = 2 and r = 0, is modular.

Remark: Note that by Theorem 3.4, (D0) implies Serre’s conjecture for
ρ̄ of S-type in odd characteristic with N (ρ̄) odd, and for ρ̄ of S-type in
characteristic 2 with k(ρ̄) = 2. Further (D1) implies Serre’s conjecture for ρ̄
of S-type in characteristic 2, and for ρ̄ of S-type in odd characteristic with
N (ρ̄) not divisible by 4.

3.2. Proof of Theorem 1.2. We will explain how hypothesis (D0) follows
from Theorems 3.1, 3.2 and 3.3. Then by Theorem 3.4, and the remark after
it, we get Theorem 1.2.

Notice that hypothesis (D0) will be satisfied if we prove (Lr) for each
r ≥ 1. We do this by induction on r.

(L1): Theorem 3.3 fulfills the hypothesis (W1) of Theorem 3.2. Thus
Theorem 3.2 gives that (L1) is true.

Induction step: Assume we have proved (Lr) for r ≥ 1, and we want
to prove (Lr+1). The hypothesis (Lr) implies the hypothesis (Wr+1) by
Theorem 3.1. This by Theorem 3.2 yields (Lr+1).

4. Modularity lifting results

Consider ρ̄ : GQ → GL2(F) with F a finite field of characteristic p and
2 ≤ k(ρ̄) ≤ p+1 when p > 2. We assume that ρ̄ has non-solvable image and
is modular.

A continuous representation ρ : GQ → GL2(O), for O the ring of integers
of a finite extension of Qp, is said to be a lift of ρ̄ if the reduction of ρ
modulo the maximal ideal of O is isomorphic to ρ̄. We say that ρ is odd if
det(ρ(c)) = −1 for c a complex conjugation. If ρ is Hodge-Tate of weights
(k − 1, 0) at p (for k ∈ N, k ≥ 2), we say that ρ is of weight k.

The proof of the following key technical result is postponed to the second
part, cf. [13].

Theorem 4.1. Consider ρ̄ : GQ → GL2(F) with F a finite field of character-
istic p and 2 ≤ k(ρ̄) ≤ p+1 when p > 2. We assume that ρ̄ has non-solvable
image. We assume that ρ̄ is modular.

1. (p = 2) Let ρ be an odd lift of ρ̄ to a 2-adic representation that is
unramified outside a finite set of primes and is either Barsotti-Tate at 2,
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or semistable of weight 2 at 2 with the latter case considered only when
k(ρ̄) = 4. Then ρ is modular.

2. (p > 2) Let ρ be a lift of ρ̄ to a p-adic representation that is unramified
outside a finite set of primes and is either (i) crystalline of weight k at p
with 2 ≤ k ≤ p+1, or (ii) potentially semistable at p of weight 2 (i.e., either
up to twist semistable of weight 2, or potentially Barsotti-Tate (BT) at p).
Then ρ is modular.

5. Lifting results

5.1. Compatible systems of geometric representations. Let F ⊂ Q

be a number field and let ρ : GF → GLd(Qℓ) be a (continuous) Galois rep-
resentation. We recall that it is called geometric if it is unramified outside
a finite set of primes of F and its restrictions to the decomposition groups
at primes above ℓ are potentially semi-stable ([8]). Such a representation
defines for every prime q of F a representation of the Weil-Deligne group
WDq with values in GLd(Qℓ), well defined up to conjugacy. For q of char-
acteristic 6= ℓ, this comes from the theory of Deligne-Grothendieck; for q of
characteristic ℓ, this comes from the theory of Fontaine ([5], exp. 8 of [20],
[8]).

For a number field E, we call an E-rational, 2-dimensional strictly com-
patible system of geometric representations (ρι) of GF the data of:
(i) for each prime ℓ and each embedding ι : E →֒ Qℓ , a continuous, semisim-
ple geometric representation GF → GL2(Qℓ) :
(ii) for all prime q of F , a F -semisimple (Frobenius semisimple) representa-
tion rq of the Weil-Deligne group WDq with values in GL2(E) such that:

- a) rq is unramified for all q outside a finite set,

- b) for each ℓ and each ι : E →֒ Qℓ, the Frobenius-semisimple Weil-
Deligne parameter WDq → GL2(Qℓ) associated to ρι|Dq

is conjugate to rq
(via the embedding E →֒ Qℓ)).
(iii) there are two integers a, b, a ≥ b, such that ρι has Hodge-Tate weights
(a, b).

The primes of F such that rq is unramified are called the unramified
primes of the compatible system. The restriction to Iq × Ga of rq is called
the inertial WD parameter at q. We refer to a, b, as the weights of the
compatible system and when a ≥ 0, b = 0 we say that ρι is of weight a+ 1.
When a 6= b we say that the compatible system is regular and otherwise
irregular.

If we only impose (ii) b) for primes q not above ℓ, we shall say that the
system is compatible .

When we say that for some number field E, an E-rational compatible
system (ρι) of 2-dimensional representations of GQ lifts ρ̄ we mean that the
residual representation arising from ριp is isomorphic to ρ̄. We say that
a compatible system (ρι) is odd if ρι is odd for every ι. For a prime ℓ we
abuse notation and denote by ρℓ the ℓ-adic representation ρι for ι the chosen
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embedding above ℓ. We say that a compatible system (ρι) is irreducible if
all the ρι are irreducible.

When we say that ρ := ρp is a minimal lift at q of the corresponding resid-
ual mod p > 2 representation ρ̄, at primes q of characteristic ℓ 6= p, we mean
that the condition in Section 3 of [6] is satisfied. In particular, whenever
ρ̄(Iq) is projectively not cyclic of order p, the reduction map ρ(Iq) → ρ̄(Iq) is
bijective. For p = 2 see section 3.3.1. of part 2. For every p, the restriction
to inertia of the determinant of a minimal lift is the Teichmüller lift. When
ρ̄(Iq) is projectively cyclic of order p, ρ̄|Iq

is of the shape :

ξ ⊗

(

1 η
0 1

)

,

η non trivial, and we ask that ρ|Iq
isomorphic to:

ξ ⊗

(

1 η
0 1

)

,

with η a lift of η and ξ the Teichmüller lift of ξ (3.3.1. of [13]).
The proof of the following key technical result, close to Theorem 5.1 of

[14], is postponed to the second part, cf. [13].

Theorem 5.1. Consider a S-type representation ρ̄ with 2 ≤ k(ρ̄) ≤ p + 1
when p > 2, and assume that the image of ρ̄ is not solvable.

1. Assume k(ρ̄) = 2 if p = 2. Then ρ̄ lifts to an E-rational strictly
compatible, irreducible, odd system (ρι), such that the p-adic lift ρp of ρ is
minimally ramified at all primes 6= p and is crystalline of weight k(ρ̄) at p.

2. ρ̄ lifts to an E-rational strictly compatible, irreducible, odd system
(ρι), such that the p-adic lift ρp of ρ̄ is of weight 2 and is minimally ramified
at primes 6= p, and such that the inertial Weil-Deligne parameter of p is

(ω
k(ρ̄)−2
p ⊕ 1, 0) if k(ρ̄) 6= p+ 1 when p > 2 and k(ρ̄) 6= 4 when p = 2. In the

case p > 2, k(ρ̄) = p+ 1 or p = 2 and k(ρ̄) = 4 it is of the form (id, N ) with
N a non-zero nilpotent matrix ∈ GL2(Q).

3. Assume q||N (ρ̄) with q an odd prime such that p|q − 1. Then ρ̄|Iq
is

of the form
(

χ ∗
0 1

)

,

with χ a character of Iq that factors through its quotient (Z/qZ)∗. Let χ′ =

ωi
q (0 < i ≤ q − 2) be any non-trivial Z

∗
p-valued character of Iq that factors

though (Z/qZ)∗ and reduces to χ, and such that when p = 2, i is even.
There is an E-rational strictly compatible, irreducible, odd system (ρι)

that lifts ρ̄, such that the p-adic lift ρp of ρ̄ is minimally ramified at primes
6= p, q , and at p is either: (i) semistable of weight 2, or (ii) Barsotti-Tate
over Qp(µp), and (iii) Barsotti-Tate at p if k(ρ̄) = 2. Further ρp|Iq

is of the
form

(

χ′ ∗
0 1

)

.
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The residual representation ρ̄q, up to twisting by some power of χq, has
Serre weight either i+ 2 or q + 1 − i.

4. Let q 6= p be a prime and assume ρ̄|Dq
(up to unramified twist) is of

the form
(

χp ∗
0 1

)

,

and assume that p|q+1. Let {χ′, χ′q} be any pair of Z
∗
p-valued characters of

Iq of level 2 (i.e., that factors though Fq2
∗, but not through F∗

q) and which

are of order a power of p. Thus we may write χ′ as ωi
q,2ω

qj
q,2 for some

0 ≤ i < j ≤ q − 1: we further assume that when p = 2, i+ j is even.
Then there is an E-rational strictly compatible, irreducible, odd system

(ρι) that lifts ρ̄, such that the p-adic, lift ρp of ρ̄ is minimally ramified at
primes 6= p, q and at p is either: (i) semistable of weight 2, or (ii) Barsotti-
Tate over Qp(µp), and (iii) Barsotti-Tate at p if k(ρ̄) = 2. Further ρp|Iq

is
of the form

(

χ′ ∗
0 χ′q

)

.

If q is odd, the residual representation ρ̄q, up to twisting by some power
of χq, has Serre weight either q + 1− (j − i) or j − i when j > i+ 1, and q
when j = i+ 1.

Remark: The computation of the weights of the residual representations
in Theorem 5.1 (3) and (4) is done by Savitt in Corollary 6.15 (1) and (2)
of [25]. The conditions of parity when p = 2 garantee that the lift ρ is odd.

6. Some utilitarian lemmas

We recall Dickson’s theorem (see [10], II.8.27): for any prime p a finite

subgroup of GL2(Fp) that acts irreducibly on Fp
2
has projective image that is

either isomorphic to a dihedral group, A4, S4, A5, PSL2(F
′) or PGL2(F

′) for
F′ a finite subfield of Fp. Note also that PSL2(F

′) is a simple (non-abelian)
group as soon as |F′| ≥ 4. Although the lemma below, which refines the
above statement for p = 2, is also a part of Dickson’s theorem it is often
not stated as such, and we give the easy proof. (We thank Serre for some
correspondence about this.)

Lemma 6.1. Let G be a finite, solvable subgroup of GL2(F2) which acts

irreducibly on F2
2
. Then the projective image of G is dihedral.

Proof. By Dickson’s theorem, the projective image of G is isomorphic to a
dihedral group, A4 or S4. The possibility of S4 can be ruled out as any
element in GL2(F2) of order a power of 2 is forced to be of order 1 or 2.
The possibility of A4 can be ruled out by using the facts that A4 has a
normal subgroup of order 4, and that a Sylow 2-subgroup of GL2(F) for F a
finite field of characteristic 2 is given by the unipotent matrices. This forces
a G with projective image A4 to be conjugate to a subgroup of the upper
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triangular matrices of GL2(F2). This contradicts the hypothesis that G acts

irreducibly on F2
2
. �

Lemma 6.2. (i) Let ρ̄ : GQ → GL2(Fp) be an S-type representation with
solvable image. Then ρ̄ is modular, and in fact arises from Sk(ρ̄)(Γ1(N (ρ̄))).

(ii) If ρ̄ is of S-type, p ≥ 3, 2 ≤ k(ρ̄) ≤ p + 1, and ρ̄|GQ(µp)
is reducible,

then ρ̄ has weight either p+1
2 or p+3

2 .

Proof. (i) If p > 2 this is a consequence of the Langlands-Tunnell theorem
(see Theorem 4 of [16]). If p = 2 we only have to consider the case when the
projective image of ρ̄ is dihedral by Lemma 6.1. The dihedral case follows
from the method of proof of Proposition 10 of [26]: see [22], where this is
alluded to as the “trick of Serre”, or Lemma 2 of [29]. For p = 2, it follows
from Theorem 1 of [29] that ρ̄ arises from Sk(ρ̄)(Γ1(N (ρ̄))).

(ii) As p > 2 the projectivisation ρ̄proj of the representation ρ̄ is tamely
ramified at p, and thus ρ̄proj(Ip) is cyclic. As the quadratic subfield of Q(µp)
is ramified at p, ρ̄proj(Ip) is of order 2. From this the result follows by the
definition of k(ρ̄) in Section 2 of [26].

�

Remark: Just as in [14], it should be possible with greater care to avoid
using Lemma 6.2 in the proof of Theorem 1.2 except in the case when ρ̄ has
(projectively) dihedral image.

Lemma 6.3. Let ρ̄ be a locally good-dihedral representation (for a prime q).
(i) The image of ρ̄ is not solvable.
(ii) Let (ρι) be any strictly compatible system lifting of ρ̄ such that the

ramified primes of the compatible system are contained in the prime divisors
of N (ρ̄)p and ρp|Dq

is a minimal lift of ρ̄|Dq
. Then for any prime r ≤

max(Q(
N(ρ̄)
q2 ), p), any mod r representation ρ̄r that arises from (ρι) is locally

good-dihedral (for the prime q) and hence has non-solvable image (which is
projectively not isomorphic to A5).

Proof. Part (ii) follows from strict compatibility, part (i) and the following
observation. Let a ≥ 1 be an integer, let t 6= 2 and r be distinct primes. Let
D2ta ⊂ PGL2(Qr) be the dihedral group of order 2ta which we may assume
to be a subgroup of PGL2(O) with O the valuation ring of Qr. Then the
reduction map is bijective on D2ta.

Let us prove (i). By definition ρ̄|Iq
is of the form

(

ψ 0
0 ψq

)

,

where ψ is a character of Iq of order a power of a prime t|q + 1, and t is
bigger than max(r, p, 5) where r 6= q ranges over primes that divide N (ρ̄).
As t does not divide q − 1, ρ̄|Dq

is irreducible, and hence so is ρ̄. As t > 5,
we see that the projective image cannot be A5.



SERRE’S MODULARITY CONJECTURE 11

We see that if the image of ρ̄ is solvable, as t > 5, then by Dickson’s the-
orem the projective image of ρ̄ is dihedral. Note that the primes s different
from q at which ρ̄ is ramified are such that q is 1 mod s (and 1 mod 8 if
s = 2). Suppose ρ̄ is induced from GK with K a quadratic extension of Q.
Then K is unramified outside the primes that are ramified in ρ̄. Thus the
prime q either splits inK or is ramified inK: both possibilities lead to a con-
tradiction. If q splits in K, this contradicts the fact that ρ̄|Dq

is irreducible.
If K is ramified at q we again get a contradiction as t is odd. �

7. Estimates on primes

In the arguments below we need to check, that for each prime p ≥ 5, there
is a prime P > p (for instance the next prime after p) and either

(i) an odd prime power divisor ℓr||(P − 1) so that

(1)
P

p
≤

2m+ 1

m+ 1
− (

m

m+ 1
)(

1

p
)

where we have set ℓr = 2m+ 1 with m ≥ 1, or
(ii) 2r||(P − 1) (with r ≥ 4) so that

(2)
P

p
≤

2r

2r−1 + 2
− (

2r−1 − 2

2r−1 + 2
)(

1

p
).

This can be checked as in [14] using the estimates on primes of [23] as
follows:

We check this by hand for p ≤ 31. From [23] one deduces (see [14]) that
for p > 31, P

p ≤ 3
2 − ( 1

30) = 1.46. This establishes (1) and (2) above as 2m+1
m+1

and 2r

2r−1+2
are ≥ 3

2 and m
m+1 and 2r−1−2

2r−1+2
are ≤ 1 (for m ≥ 1, r ≥ 4).

For later reference we note that it follows from (1) that

(3) p+ 1 ≥
m+ 1

2m+ 1
(P − 1) + 2 = (P + 1) −

m

2m+ 1
(P − 1),

and it follows from (2) that

(4) p+ 1 ≥
2r−1 + 2

2r
(P − 1) + 2 ≥ (P + 1)−

1

2
(P − 1).

Remark : It is proven in [14] that in fact one can always find P such that
(i) holds (for example P the smallest non Fermat prime > p).

8. Proofs of the auxiliary theorems

8.1. Proof of Theorem 3.1. Assume (Lr).
Consider ρ̄ of S-type which is locally good-dihedral for a prime q, with

k(ρ̄) = 2, and such that N (ρ̄) is odd and at most divisible by r + 1 primes.
Choose a prime s 6= q that divides N (ρ̄).

By Theorem 5.1 (1) construct a compatible lift (ρι) and consider ρs. Then
ρ̄s is a S-type representation, is q-dihedral and hence has non-solvable image
(by Lemma 6.3 (ii)) , and N (ρ̄s) is divisible by at most r primes: the prime
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divisors of N (ρ̄s) are a subset of the set of the prime divisors of the prime-to-
s part of N (ρ̄). Thus by (Lr) we know ρ̄s is modular, and then by Theorem
4.1 we are done.

8.2. Proof of Theorem 3.2. Assume (Wr). Then we have to prove that
any ρ̄ of S-type which is locally good-dihedral (for a prime q), such that p
is odd, N (ρ̄) is odd, and divisible by at most r primes, is modular.

We do this by induction on the prime p as in the paper [14].
We first do the case p = 3 and p = 5 as the arguments in these cases are

a little different from the general inductive step of the proof.
Mod 3: Consider ρ̄ of S-type which is locally good-dihedral (for a prime
q), k(ρ̄) ≤ 4 in residue characteristic 3, N (ρ̄) is odd, and at most divisible
by r primes. Using Theorem 5.1 (2) lift it to a compatible system (ρι) and
consider ρ2. The residual representation ρ̄2 is q-dihedral and hence has non-
solvable image (see Lemma 6.3), k(ρ̄2) = 2 and N (ρ̄2) is divisible by at most
at r + 1 primes, the primes dividing N (ρ̄) and 3. If ρ̄2 is unramified at 3,
N (ρ̄2) is divisible by at most r primes, and then ρ̄2 is modular by (Wr).
Theorem 4.1 yields that (ρι) is modular and hence ρ̄ is modular in this case.

Otherwise, note that ρ̄2|I3 is unipotent, as χ3 is of order 2. Thus ρ̄2|D3

(up to unramified twist) is of the form

(

χ2 ∗
0 1

)

.

Thus we may use Theorem 5.1 (4) to lift ρ̄2 to an odd compatible system
(ρ′ι), choosing χ′ = ω2

3,2. Consider ρ′3 and the residual representation ρ̄′3
which by Lemma 6.3 is q-dihedral and hence has non-solvable image. By
Theorem 5.1 (4), a twist of ρ̄′3 has weight 2, and N (ρ̄′3) is odd and divisible
by at most r primes. Thus ρ̄′3 is modular by (Wr), and we are done by
applying Theorem 4.1.
Mod 5: Consider ρ̄ of S-type which is locally good-dihedral (for a prime
q), in residue characteristic 5, N (ρ̄) is odd, k(ρ̄) ≤ 6, and at most divisible
by r primes. Using Theorem 5.1 (2) lift it to a compatible system (ρι) and
consider ρ2. The residual representation ρ̄2 is q-dihedral and hence has non-
solvable image (see Lemma 6.3), k(ρ̄2) = 2 and N (ρ̄2) is divisible by at most
r+1 primes. If ρ̄2 is unramified at 5, N (ρ̄2) is divisible by at most r primes,
and then ρ̄2 is modular by (Wr). Theorem 4.1 yields that (ρι) is modular
and hence ρ̄ is modular.

Otherwise we use Theorem 5.1 (3) to lift ρ̄2 to an odd compatible system
(ρ′ι), choosing χ′ = ω2

5 . Consider ρ′5 and the residual representation ρ̄′5:
by Lemma 6.3, ρ̄′5 is q-dihedral and has non-solvable image. By Theorem
5.1 (3) (after twisting by a suitable power of χ5) ρ̄

′
5 has weight 4. The

conductor N (ρ̄′5) is odd and divisible by at most r primes. It will be enough
to prove that ρ̄′5 is modular, as then Theorem 4.1 yields that (ρ′ι) is modular.

The compatible systems (ρι) and (ρ′ι) are linked at 2 (we have ρ̄2 ≃ ρ̄′2).
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Another application of Theorem 4.1 yields that (ρι) is modular, and hence
ρ̄ is modular.

It remains to prove that ρ̄′5 is modular. There are 2 cases:
(i) either 3 divides N (ρ̄′5), or
(ii) 3 does not divide N (ρ̄′5) .
In the case of (i) we use Theorem 5.1 (2) to get a compatible lift (ρ′′ι ) of

ρ̄′5 and then observe that N (ρ̄′′3) is odd and is divisible by at most r primes:
note that the set of primes that divide the odd integer N (ρ̄′′3) is a subset
of the set of prime divisors of the prime-to-3 part of 5N (ρ̄′5). As we know
the modularity of such a ρ̄′′3 (which is again q-dihedral) by the earlier step,
we may apply Theorem 4.1 to conclude that the compatible system (ρ′′ι ) is
modular, and hence that ρ̄′5 is modular.

In the case of (ii) we use Theorem 5.1 (1) to get a compatible lift (ρ′′ι ) of
ρ̄′5 which is of weight 4. We know the modularity of ρ̄′′3 by the earlier step:
in this case the set of primes that divide the odd integer N (ρ̄′′3) is a subset
of the set of prime divisors of N (ρ̄′5). Then we may apply Theorem 4.1 to
conclude that (ρ′′ι ) is modular (note that k(ρ′′3) = 4 ≤ 3 + 1). Hence ρ̄′5 is
modular.
The inductive step: Our inductive assumption is that all ρ̄ of S-type
which are locally good-dihedral, in residue characteristic ≤ p, for p a prime
with p ≥ 5, such that N (ρ̄) is odd, and at most divisible by r primes are
modular. Let P be the next prime after p. We will prove modularity of all ρ̄
of S-type which are good-dihedral (for a prime q), in residue characteristic
P , such that N (ρ̄) is odd, and at most divisible by r primes.

Consider ρ̄ of S-type which is locally good-dihedral (for a prime q), in
residue characteristic P , N (ρ̄) is odd, k(ρ̄) ≤ P+1 and at most divisible by r
primes. Choose a prime divisior ℓr||(P−1) that satisfies one of the estimates
(1) or (2) of Section 7. Using Theorem 5.1 (2) lift it to a compatible system
(ρι) and consider ρℓ. The residual representation ρ̄ℓ is q-dihedral and hence
has non-solvable image (see Lemma 6.3), and N (ρ̄ℓ) is odd and divisible by
at most r+ 1 primes. If ρ̄ℓ is unramified at P , N (ρ̄ℓ) is divisible by at most
r primes, and then ρ̄ℓ is modular by our inductive assumption as ℓ ≤ p.
Theorem 4.1 yields that (ρι) is modular and hence ρ̄ is modular.

Otherwise we use Theorem 5.1 (3) to lift ρ̄ℓ to an odd compatible system
(ρ′ι), choosing χ′ = ωi

P with i ∈ [ m
2m+1(P − 1), m+1

2m+1 (P − 1)] when ℓ > 2,

and an even i ∈ [ 12(P − 1), 2r−1+2
2r (P − 1)] when ℓ = 2. Consider ρ′P and

the residual representation ρ̄′P . By choice of i, the estimates (3) and (4) of
Section 7, and Theorem 5.1 (3), we deduce that (after twisting by a suitable
power of χP ) k(ρ̄′P ) ≤ p + 1, and is q-dihedral and hence has non-solvable
image, and the conductor N (ρ̄′P ) is odd and divisible by at most r primes.
(Note that if ℓ|N (ρ̄′P), then ℓ|N (ρ̄).) It will be enough to prove that ρ̄′P is
modular, as then Theorem 4.1 yields that (ρ′ι) is modular. The compatible
systems (ρι) and (ρ′ι) are linked at ℓ, and another application of Theorem
4.1 yields that (ρι) is modular, and hence ρ̄ is modular.
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It remains to prove that ρ̄′P is modular. There are 2 cases:
(i) either p divides N (ρ̄′P ), or
(ii) p does not divide N (ρ̄′P ).
In the case of (i) we use Theorem 5.1 (2) to get a compatible lift (ρ′′ι ) of

ρ̄′P and then observe that N (ρ̄′′p) is odd and divisible by at most r primes:

note that the set of primes that divide N (ρ̄′′p) is a subset of the set of prime
divisors of the prime-to-p part of PN (ρ̄′P ). As we inductively know the
modularity of such a ρ̄′′p (which is again q-dihedral), we may apply Theorem

4.1 to conclude that the compatible system (ρ′′ι ) is modular, and hence that
ρ̄′P is modular.

In the case of (ii) we use Theorem 5.1 (1) to get a compatible lift (ρ′′ι ) of
ρ̄′P . We inductively know the modularity of ρ̄′′p: in this case the set of primes

that divide the odd integer N (ρ̄′′p) is a subset of the set of prime divisors of

N (ρ̄′P ). Then we may apply Theorem 4.1 to conclude that (ρ′′ι ) is modular,
and hence that ρ̄′P is modular.

Remarks:
1. It seems possible with greater care to avoid in the general inductive

step of the proof of Theorem 3.2 the use of ℓ = 2. It is also possible to present
the general inductive step slightly differently by at the outset dividing into 2
cases: (i) ρ̄ is ramified at some prime < P , (ii) ρ̄ is unramified at all primes
< P .

2. As seen above all the residual representations considered in the proofs
of Theorem 3.1 and 3.2 are locally good-dihedral which avoids problems
of residual degeneracy. Also, starting with a q-dihedral ρ̄ in characteristic
P , that is ramified at a set of primes S, the proof needs to consider resid-
ual representations in characteristic at most maxℓ∈S\{q}(P, ℓ). This is what
motivates our Definition 2.1.

8.3. Proof of Theorem 3.3. Theorem 3.3 follows from Corollary 8.1 (i)
below, which in turn follows from Corollary 8.1 (ii). The latter (in the case
p > 2) is Corollary 1.2 of [14].

Corollary 8.1. (i) If ρ̄ is an irreducible, odd, 2-dimensional, mod p rep-
resentation of GQ with k(ρ̄) = 2, N (ρ̄) = q, with q an odd prime, then it
arises from S2(Γ1(q)).

(ii) If ρ̄ is an irreducible, odd, 2-dimensional, mod p representation of
GQ with k(ρ̄) = 2, unramified outside p and another odd prime q, tamely
ramified at q, such that the order of ρ̄(Iq) is the power of an odd prime t > 5,
then ρ̄ arises from S2(Γ1(q

2)).

Proof. The first statement is exactly Corollary 1.2 of [14], except that we
also use Theorem 5.1 (1) in the case when p = 2.

We reduce the second statement to the first. We may assume that t 6= p,
as otherwise this is covered by the first statement. Also as ρ̄ is tamely
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ramified at q, we deduce that t 6= q. We may also assume that im(ρ̄) is not
solvable as otherwise we are done by Lemma 6.2.

Using Theorem 5.1 (1) we construct a compatible system lift (ρι) of ρ̄.
Thus ρp unramified outside {p, q}, is Barsotti-Tate at p, |ρp(Iq)| = |ρ̄p(Iq)|.

If the reduction ρ̄t of an integral model of ρt is reducible, or unramified at
q (which implies reducibility by the proof in [12] of the level 1 weight 2 case
of Serre’s conjecture), then we are done by applying the modularity lifting
theorems of [27], which allow us to conclude that ρt is modular, hence (ρι)
is modular and hence so is ρ̄.

If ρ̄t is irreducible and ramified at q, then part (i) implies that the rep-
resentation is modular (as in fact the ramification will be unipotent at q),
and then by modularity lifting results in [31], [30], we again conclude that
ρt is modular, hence (ρι) is modular and hence so is ρ̄. The lifting theorems
apply as one easily checks that ρ̄t|Q(µt) is irreducible using that k(ρ̄t) = 2
and t > 5 (see Lemma 6.2 (ii)).

�

8.4. Proof of Theorem 3.4. Consider ρ̄ : GQ → GL2(F) of S-type, F a
finite field of characteristic p, with k(ρ̄) = 2 if p = 2 and r = 0, and of
conductor not divisible by 2r+1.

Let S be the primes other than p at which ρ̄ is ramified. We may assume
that ρ̄ has non-solvable image.

Using Theorem 5.1 (2), construct a compatible system (ρλ) that lifts ρ̄.
If there is a p′ /∈ S ∪ {p} and p′ > 5 at which the mod p′ representation ρ̄p′

has solvable image we are done after using Lemma 6.2 and then applying
the modularity lifting theorems in [27] if im(ρ̄p′) is reducible, or the ones in
[31] in the irreducible case. Note that for p′ /∈ S ∪{p}, p′ > 5, ρ̄p′ cannot be
irreducible and induced from the quadratic subfield of Q(µp′) (as k(ρ̄p′) = 2
and p′ > 5: see Lemma 6.2 (ii)).

Thus we may choose p′ > 5 that is congruent to 1 modulo 4, with p′

larger than all the primes in S ∪{p}, and such that ρ̄p′ : GQ → GL2(F
′) has

non-solvable image with F′ a finite field of characteristic p′.
We have the following general lemma:

Lemma 8.2. Let p be a prime that is congruent to 1 modulo 4, and ρ̄ : GQ →
GL2(F) a representation of S-type, with F a finite field of characteristic p.
Assume that im(ρ̄) is not solvable. Denote by ρ̄proj the projectivisation of ρ̄,
and c ∈ GQ a complex conjugation. There is a set of primes {q} of positive
density that are unramified in ρ̄ such that:

(i) ρ̄proj(Frobq) is the conjugacy class of ρ̄proj(c),
(i) q is congruent to 1 modulo all primes ≤ p− 1 and is 1 modulo 8,
(iii) q is −1 mod p.

Proof. By Dickson’s theorem, and as ρ̄ has non-solvable image, the image
of ρ̄proj is conjugate to either PSL2(F

′′) or PGL2(F
′′) for some subfield F′′

of F, with |F′′| ≥ 4, or is isomorphic to A5. When the image is conjugate to
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PGL2(F
′′), note that as p is congruent to 1 mod 4, ρ̄proj(c) is inside PSL2(F

′′).
As PSL2(F

′′) (for |F′′| ≥ 4) and A5 are simple (and non-cyclic), and as p is
congruent to 1 modulo 4, we may appeal to the Cebotarev density theorem
as follows. We choose q satisfying the following conditions : q ≡ 1mod(8),
χℓ(Frobq) = 1 for ℓ odd < p, χp(Frobq) = −1, and ρ̄proj(Frobq) conjugate
to ρ̄proj(c). We explain why the conditions are compatible. Let L be the
intersection of the field defined by the kernel of ρ̄proj and the cyclotomic
field generated by µ8, µℓ for ℓ odd < p and µp. The degree of L over Q is
either 1 or 2. If it is of degree 1, the compatibilty is clear. If L is quadratic,
the image of ρ̄proj is PGL2(F

′′), and the first three conditions, as well as
the fourth, impose that q is split in L ; it is also the case for the fourth
condition, because as p is 1 mod 4, −1 is a square mod p. This proves the
lemma.

�

Apply Lemma 8.2 to our ρ̄p′ , and choose a prime q as in the lemma.
Next one uses Theorem 5.1 (4) to lift ρ̄p′ to a compatible system (ρ′λ) such
that ρp′ |Iq

is of the shape there for some χ′ a p′-adic character of Iq level
2 and order a power of p′. Let s be the largest prime < p′: consider ρ′s,
and the corresponding residual representation ρ̄′s. Note that s > 2, ρ̄′s is
good-dihedral (for the prime q), and N (ρ̄′s) is not divisible by 2r+1. Thus,
by hypothesis (Dr), ρ̄

′
s is modular and we know by Lemma 6.3 that ρ̄′s has

non-solvable image. Hence by Theorem 4.1 the compatible system (ρ′λ) is
modular. Observe that the compatible systems (ρλ) and (ρ′λ) are linked at
ρ̄p′. Applying Theorem 4.1 again we conclude that that (ρλ) is modular,
and hence ρ̄ is modular, proving the theorem.

9. The general case

Consider the following hypothesis:
Hypothesis (H): Let ρ : GQ → GL2(O) be a continuous, odd, irreducible,
p-adic representation, such that:

(i) the residual representation ρ̄ has non-solvable image, and ρ̄ is modular;
(ii) ρ is unramified outside a finite set of primes, is of weight 2 and

potentially crystalline at p.
Then ρ is modular.
We show using essentially all the results and methods of this paper:

Theorem 9.1. Assume Hypothesis (H). Then Serre’s conjecture is true.

Proof. We will prove (Dr) for all non-negative integers r, thus proving Serre’s
conjecture (under (H)) by Theorem 3.4.

We begin by proving (D1) and Serre’s conjecture in residue characteristic
2. By Theorem 3.4 it is enough to prove (D1). Thus we wish to show that
a ρ̄ of S-type in odd residue characteristic p, which is locally good-dihedral,
and with N (ρ̄) not divisible by 4, is modular.
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The argument we give for this is analogous to that given for going from
residue characteristic 3 to residue characteristic 2 in the proof of Theorem
3.2 except that the roles of 2 and 3 are reversed. Using Theorem 5.1 (2),
construct a compatible system lift (ρλ) of ρ̄ such that ρp is a minimal weight
2 lift. Consider ρ̄3. This has non-solvable image by Lemma 6.3, and if it
is unramified at 2 we are done by applying Theorem 1.2 and Theorem 4.1.
If ρ̄3 is ramified at 2, then ρ̄3(I2) is unipotent and thus ρ̄3(D2) is up to
unramified twist of the form

(

χ3 ∗
0 1

)

.

Consider the two 3-adic characters χ′, χ′2 of I2 of order 3, and using Theorem
5.1 (4), construct a compatible system lift (ρ′λ) of ρ̄ such that in particular
ρ′3(I2) has the form

(

χ′ ∗

0 χ′2

)

.

Note that the WD parameter of ρ′3 at 2 is of the form (τ, 0) with τ irreducible.
Consider ρ̄′2. We claim that k(ρ̄′2) = 2. If so we would be done by Theorem
1.2(ii) and Hypothesis (H), as we know by Lemma 6.3 that ρ̄′2 has non-
solvable image, and by Theorem 5.1 (4) that ρ′2 is potentially semistable of
weight 2 at 2.

To prove the claim (we give this ad hoc argument as the reference [25]
does not consider the case p = 2), note that if k(ρ̄′2) = 4, then it is très
ramifiée and thus for a finite extension K of Q2 of odd ramification index,
ρ̄′2(GK) cannot be finite flat. On the other hand we do know by Theorem
5.1(2) that we may take a finite extensionK of Q2 of ramification index 3 (=
order of χ′), such that ρ̄′2(GK) is finite flat which is plainly a contradiction
thus proving the claim. (We can take K for instance to be the field cut out
by χ′ over the quadratic unramified extension of Q2.)

Having proved Serre’s conjecture in residue characteristic 2 and (D1), we
deduce from this (Dr) for all integers r > 1. Thus we wish to show that
a ρ̄ of S-type in odd residue characteristic p, which is good-dihedral, and
with N (ρ̄) not divisible by 2r+1, is modular. As we have proved (D1), we
may assume that ρ̄(I2) does not have, up to a twist, unipotent image. Using
Theorem 5.1 (2), construct a compatible system lift (ρλ) of ρ̄ such that ρp

is a minimal weight 2 lift. Consider ρ̄2. This has non-solvable image by
Lemma 6.3, and we know it is modular, and by Theorem 5.1 (2) that ρ2

is potentially crystalline of weight 2 at 2. Thus we are done by applying
Hypothesis (H).

�

10. Modularity of compatible systems

We formulate the following corollary of Serre’s conjecture (Theorem 1.2
and 9.1 of this paper, and Theorem 0.1 and Corollary 0.2 of [19]). For the
definition of compatible systems and their regularity, see Section 5. The
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proof is similar to the arguments in Sections 4.7 and 4.8 of [26], but we also
use the argument of [11].

Theorem 10.1. (i) A (2-dimensional) regular compatible system that is
irreducible and odd arises up to twist from a newform of weight ≥ 2.

(ii) An (2-dimensional) irregular compatible system that is irreducible and
odd arises up to twist from a newform of weight 1.

Proof. We only sketch the proof.
In both cases it is easy to see that ρ̄λ is irreducible for almost all λ using

the fact that the conductor of ρλ is bounded independently of λ and the
Hodge-Tate weights of ρλ are fixed.

After twisting we may assume that the Hodge-Tate numbers (a, b) of the
compatible system are such that b = 0 and a ≥ 0.

In the case of (i), when a > 0, we see that Theorem 1.2 applies to ρ̄λ for
infinitely many λ and that these arise from a fixed newform f ∈ Sk(Γ1(N ))
for some fixed integers k = a+ 1, N . This proves (i).

In the case of (ii), when a = b = 0, by a theorem of Sen and Fontaine for
all but finitely many λ, ρλ is unramified at ℓ(λ), where ℓ(λ) is the residue
characteristic of the residue field arising from λ. Then arguing as in [11],
which uses the results of Gross and Coleman-Voloch, [9] and [3] (see also
3.4 of [7]), we conclude from Theorem 1.2, that ρ̄λ for almost all λ arise
from the space S1(Γ1(N )) of classical forms of weight 1 and level N with N
independent of λ. This proves (ii). �

Part (ii) implies Artin’s conjecture for odd irreducible 2-dimensional rep-
resentations of GQ, but is not implied by it: thus we rederive by a different
method Theorem A of [1]. Part (i) combined with Faltings’ isogeny theorem
yields modularity of abelian varieties of GL2-type over Q: see Theorem 4.4
of [21].
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