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Abstract

We present a proof that quantum Yang-Mills theory can be isterstly defined as a
renormalized, perturbative quantum field theory on an eahyjtglobally hyperbolic curved,
Lorentzian spacetime. To this end, we construct the nonruotative algebra of observ-
ables, in the sense of formal power series, as well as a sgam@responding quantum
states. The algebra contains all gauge invariant, rend@etglinteracting quantum field
operators (polynomials in the field strength and its derves), and all their relations such
as commutation relations or operator product expansiararitbe viewed as a deformation
quantization of the Poisson algebra of classical Yanga\ileory equipped with the Peierls
bracket. The algebra is constructed as the cohomology otiaitiary algebra describing
a gauge fixed theory with ghosts and anti-fields. A key tecmificulty is to establish a
suitable hierarchy of Ward identities at the renormalizex¢kl that ensure conservation of
the interacting BRST-current, and that the interacting BiRBarge is nilpotent. The alge-
bra of physical interacting field observables is obtainethascohomology of this charge.
As a consequence of our constructions, we can prove thatpiatmr product expansion
closes on the space of gauge invariant operators. Simitagyrenormalization group flow
is proved not to leave the space of gauge invariant opetators
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1 Introduction

The known interactions of elementary particles seem to bedescribed by quantized field
theories with local gauge invariance such as QCD. Such ig®bave been extensively inves-
tigated in the context of flat Minkowski spacetime from a e#yiof different angles. It has in
particular been demonstrated that these quantum fieldidseare internally consistent, at least
to all orders in the renormalized perturbation expansidme &arly Universe on the other hand
is described by a strongly curved spacetime, and importewt gquantum field theory effects
arise in this situation— an important example being the gaien of primordial fluctuations
that have left an imprintin the CMB as well as the large scalgcture of the universe. For this
reason, it is obviously important to study quantum gaugeribe in curved Lorentzian space-
times such as the expanding Universe. The question how gstently construct such theories
in arbitrary curved, globally hyperbolic spacetimes is aem problem.

As a first step in this direction, we will prove in this papeattperturbative non-abelian
pure Yang-Mills theory can be consistently quantized onglopally hyperbolic spacetime, to
all orders in perturbation theory, and any gauge gr@uhat is a direct product dff (1)! and
a semi-simple Lie group. The essence of our proof is the itnkiconstruction of an explicit
renormalization prescription for the perturbatively definnteracting field quantities that pre-
serves gauge invariance, and that depends locally andiantigrupon the spacetime metric.
The proof of this statement is rather complicated, and iesgbartly on auxiliary constructions
that have been previously given in the literature. Some e$¢lconstructions are not so widely
known as the renormalization techniques in flat spacetimé tlaere is at present no compre-
hensive review. We therefore found it appropriate to prefiegse constructions in the form of
a report.

1.1 Generalities

Quantum field theory in curved spacetime is a natural gelzetadn of flat space quantum field
theory in which one considers quantized fields propagatimg agidly fixed, non-dynamical,
Lorentzian spacetime rather than flat Minkowski spacetinmeorder to have a well-defined
propagation of such fields (even at the classical level),usully assumes that the spacetime
is does not have any gross causal pathologies such as dlogetike curves, (a typical assump-
tion is that the spacetime is “globally hyperbolic”) but ettvise no restrictions on the metric
are placed. In particular, one does not have to (and does awt to) assume that the metric
has any isometries, or that it is a solution to a particuldd #eguation. As quantum field theory
on flat spacetime, quantum field theory on curved spacetinregeneral only believed to be
an effective theory with a limited range of validity. It is gcted to loose predictive power
when the spacetime curvatures become as large as the irRiansek length, or in quantum
states where typical quantum field observables such as Hréumu stress energy operator have
expectation values of the order of the Planck length. On therdhand, the theory is expected
to be a very good approximation when the spacetime cunaaneof the order (or below) the
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scale of elementary particle physics such\agp, or even the grand unification (GUT) scale,
which is expected to be the relevent scale during inflatioatukally, it is also in this regime
(as well as in the case of black holes) that the most interggtnysical effects predicted by the
theory occur.

Independent of those questions regarding the limits of isayspplicability of quantum
field theory in curved spacetime, one may ask whether thigrthén itself, has a consistent
mathematical formulation or not—just as it is a relevantsjio® whether classical mechanics
has a well-defined mathematical formulation even thougledrty has a limited range of va-
lidity as a physical theory. Unfortunately, this questisrai very difficult one, which has not
even been answered in a satisfactory manner for interaqtiagtum field theory models even
in flat spacetime (in 4 dimensions). Nevertheless, therst @drturbative approaches to inter-
acting quantum field theory in Minkowski spacetime, and lhyshow well-understood how to
calculate, in principle, terms of arbitrary high order iretherturbation expansion. In particular,
one has a good understanding how to systematically dealtingtiproblem of renormalization
that needs to be addressed at each order to get meaningfekeigns, and it is known how
to calculate quantities of physical interest for, say, theppses of collider physics. In fact,
this approach is at present by far the most powerful methadbtain theoretical predictions for
particle physics experiments, and to test quantum fieldrtheo

In quantum field theories in curved spacetime, new concéptoalems arise because one
no longer has a preferred vacuum state in time-dependenespees, as may be understood
from the familiar fact that time-dependent background felehd to give rise to particle cre-
ation. Thus, a state that may be thought of as a vacuum atrmeentiay fail to be the vacuum
at later time. This suggests to use an S-matrix formulatidhetheory, but such a formulation
also does not make sense in general if the spacetime doesv®mahy asymptotically time-
independent regions in the far past or future, or if the nmeapproaches a time-independent
metric too slowly. At the technical level, one no longer hagear cut relation between quan-
tum field theory on Lorentzian spacetimes and Riemanniaresipaes, because a general (even
analytic) Lorentzian spacetime will not be a real sectiom icomplexified manifold that also
has a real, Riemannian section. Furthermore, familiar flats techniques such as momentum
space, dimensional regularization, the Euclidean patgnal, are not available on a curved
manifold.

Despite these difficulties, a construction of perturbatreeormalized quantum field theory
on curved space has recently been given in a series of papersg, 61, 62, 63] where it was
shown that the algebras of local observables (interactiogl lfields) can always be constructed
at the level of formal power series in the coupling, indeperidf the asymptotic behavior of
the metric at infinity. Furthermore, it was understood howedduce the finite renormalization
ambiguities to the possibility of adding finite local ternp@$§sibly with curvature couplings) to
the Lagrangian, and to the possibility of making finite fieddlefinitions by imposing suitable
renormalization conditions. By considering the behaviotithe theory under a rescaling of
the metricg — p2g, a definition of the renormalization group could be given][68 is also
understood how to construct the operator product exparfsmn the algebra of interacting
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fields in curved space, and this gives direct informationualtioe interplay between quantum
field interactions and spacetime curvature at small scélgs [

1.2 Renormalization of theories without local gauge invaiance

The building blocks in the renormalized perturbation sefier the interacting fields are the
time-ordered product&, (01 ® - - - ® O,) of composite fields in the underlying free field theory.
In standard approaches in flat spacetime, these objectyicalty viewed as operators on
a Hilbert space (“Fock-space”), but in curved spacetimeethe no preferred Hilbert-space
representation. In this context, it is more useful to viearthinstead as members of an abstract
algebra, which may in the end be represented on a Hilberesfigpically in infinitely many
inequivalent ways). The first step in the renormalizatiargpam therefore is to define a suitable
abstract algebra, and this can indeed be done using thedeelsrof the “wave front set.” The
next step is to actually construct the time-ordered praglastspecific elements in this algebra.
A naive definition leads to infinite meaningless expressibaosone can show that it is possible
to obtain meaningful objects by a process called “renormasibn”. Conceptually, the best
approach here is to first formulate a set of conditions (“remdization conditions”) on the
time-ordered products to be constructed, and then showrvexglicit construction that these
properties can be satisfied. It turns out that the conditttmsot uniquely fix the time ordered
products, but there remain certain finite renormalizatiatbmuities. In curved spacetime,
it is a major challenge to formulate sufficiently strong remalization conditions in order to
guarantee that these ambiguities only consist in addintgffeontact terms” at each ordar
which are covariant expressions of the Riemann curvatutétafields of a suitable dimension.
A key condition to guarantees this is that fiieshould themselves be local and covariant [61],
and a precise formulation of that condition naturally le&mls formulation of quantum field
theory in the language of category theory [18]. The conditd locality and covariance is a
rather strong one, and it is correspondingly non-trividinal a renormalization method that will
ensure that this condition is indeed satisfied. Such a schaséund in [61, 62] for interacting
scalar field theory, based on key earlier work of [17, 16], als on the work [36, 37], where
an algebraic variant of perturbation theory in flat space deagloped. We will review these
constructions in section 3 of the paper.

In quantum field theory, one typically wants certain fieldhawe further properties. An
important observable in any theory with a metric is the stesergy tensor, which is conserved
at the classical level if the metric is the only backgrounttifi@s we assume). In perturbative
guantum field theory, it is far from obvious that the corresiog interacting quantum field
guantity is also conserved, and indeed there exist theatese this fails to be the case [2]. In
general, one can formulate a set of renormalization camaton the time-ordered products (the
“principle of perturbative agreement” [65]) that will guartee conservation to all orders in the
perturbation expansion. In [65], it was shown that the doaswvhether or not these identities
can be satisfied is equivalent to the question whether aiceahomological class on the space
of all metric defined by the field theory is trivial or not. Thbstruction sometimes cannot be
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lifted, and then the renormalization condition is impo#siio satisfy: There are anomalies.

1.3 The problem of local gauge invariance

The perturbative construction of renormalized field theson curved space without local gauge
invariance does not carry over straightforwardly to thesmvith local gauge invariance, and the
construction of such models was therefore up to now an irapbdpen problem. The key ob-
stacle is that the field equations of local gauge theoried) ag e.g. the pure Yang-Mills theory
studied in this paper, are not globally hyperbolic in natewen if the underlying spacetime is
globally hyperbolic. This, however, is a basic assumptiothe constructions [16, 17, 61, 62].
In theories with local gauge invariance, the field equati@igo be hyperbolic in nature pre-
cisely due to local gauge invariance, because it impliesgblaitions to the field equations are
not entirely determined by their initial data on some Causimface as required by hyperbolic-
ity, but also on an arbitrary choice of gauge. At the clag$eeel, this problem can be dealt with
by simply fixing a suitable gauge. However, at the quantureljavis problematical to base
the theory on a gauge-fixed formulation, because gauge ftypgally has non-local features.
This causes severe problems e.g. for the renormalizatiocegs. An elegant and successful
approach avoiding these problems is the BRST-method [9,Tk0$ method consists in replac-
ing the original action by a new action containing additicshanamical fields. That new action
yields hyperbolic field equations, and has an invariancesumdnilpotent so-called “BRST
transformation”s, on field space. Gauge invariant field observables are @ilgdisose in the
kernel ofs, or more precisely, the cohomology classes.dfurthermore, the classical Poisson
(or Peierls) brackets [89, 85, 26, 36] of the gauge fixed thaoe invariant undes. Thus, as
first suggested by [38] (based on [83]), one can try to prodsefirst quantizing the brackets
of the gauge fixed action (in the sense of deformation quainbiz [36, 37, 7, 8]), promote the
differentials to a graded derivation at the quantum level leaving the geedhborackets invari-
ant, and then at the end define the algebra of physical olides/to be the kernel (or rather
cohomolgy) of the quantum BRST-differential. As we will geoin this paper, this program can
be carried out successfully for renormalized Yang-Milledhy in curved spacetime, at the level
of formal power series in the coupling constant.

Thus, the first step consists in finding an appropriate gaxge ind BRST invariant mod-
ified action,S for pure Yang-Mills theory in curved space involving theuga field, and new
auxiliary fields (“anti-fields”). This step is completely@ngous to Yang-Mills theory in flat
space. Next, one needs to “quantize” the brackets assdaiatk the new actiors It is not
known presently how to do this non-perturbatively even ih$fzace, but one can proceed in a
perturbative fashion as in theories without local gaugatiance.

The final step special to gauge theories is now to define a quqaBRST derivation act-
ing on the quantum interacting fields This derivation shdialeaves the product invariant,
(b) square to 0, and which (c) go over to the classical BRSiAsframation in the classical
limit. The natural strategy for constructing the quantum3Riransformation is to consider
the quantum Noether current corresponding to the clasBB&T-transformation. One then
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defines a corresponding charge, and defines BRST-derivaidhe graded commutator in the
star-product with this charge. While this definition autaicaly satisfies (a), it is highly non-
obvious that it would also satisfy properties (b) and (c).fdnt, it is even unclear whether
that the quantum Noether current operator associated hatBRST-transformations would be
conserved, as would be required in order to yield a conserhiacge.

The basic reason why it is a non-trivial challenge to essabtionservation of the quantum
BRST current, as well as (b) and (c), is that the construabiotihe time ordered producig,
used to define the interacting quantum fields via the Bogoliidbrmula involve renormaliza-
tion. Itis far from obvious that a renormalization prestiop exists such that interacting BRST
current would be conserved, and such that (b) and (c) would. Ho fact, as we will show,
these properties follow from a new infinite hierarchy of Wadldntities for the time-ordered
products [see eg. (270) for a generating functional of thesetities], which are violated for a
generic renormalization prescription. We will show thagrid nevertheless exists a renormal-
ization prescription compatible with locality and covaria such that these Ward identities are
satisfied in curved space, to all orders in the renormalizrtupbation expansion, when the
gauge group is a product bf(1)' and a semi-simple group. Thus, we can define an algebra of
interacting quantum fields as the cohomology of the quantiR8 Bdifferential, and this de-
fines perturbative quantum Yang-Mills theory. In a secomg stve then define quantum states
(i.e., representations) of this algebra by a deformatigum@ent. Here we rely on a construc-
tion invented in [38]. As a by-product of our constructiong can also show that the operator
product expansion in curved space [67] closes among gawgeant operators, and that the
renormalization group flow likewise closes among gaugexiiant operators.

Our approach has several virtues also in the context in featedpme. The key virtue is that,
since our constructions are entirely local, there is a deparation between issues related to the
ultra-violet (UV) and infra-red (IR) behavior of the theorin particular, in our approach, the
identities reflecting gauge invariance may be formulateb@aonved entirely independently from
the infrared behavior of the theory, while the infra-redaftiis only removed in the very end in
an entirely well-defined manner at the algebraic level @algic adiabatic limit” [17]). In this
way, infra-red divergences are neither encountered aktred bf the interacting field algebras,
nor in fact at the level of quantum states, i.e., represemtsit In this respect, our approach
is different from traditional treatments based on Feynmagrms or effective actions, which
are only formal in as far as the treatment of the IR-problerasancerned. We explain in some
more detalil the relation of our approach to those treatmergsc. 4.9.

A local approach that is similar to ours in spirit has prewdlyween taken in the context of
QED on flat spacetime in [38], and in [35, 34] for non-abeliange theories on flat spacetime.
Note, however, that the “Master Ward identity” expressimg ¢onditions for local gauge invari-
ance in [34] was taken as an axiom and has not been shown tmbistemt yet, as opposed

IHowever, we would encounter the familiar infra-red diverges if we were to try to construct scattering
states. Actually, it is clear that those types of states cbba defined in a generic curved spacetime anyway even
for massive fields, so we do not see this as a problem.

2For recent progress in analyzing the validity of the Mastariidentity, see [15].
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to the Ward identities of our paper, which are shown to holtsoAour Ward identities (270)
appear to be different from those expressed in the Masted Vdantity of [34, 35].

1.4 Summary of the report

This report is organized as follows. In section 2, we firsteavbasic notions from classical field
theory, including classical BRST-invariance and assedi@ohomological constructions. The
material in this secion is well-known and serves mainly tasgpethe notations and provide basic
results that are needed in later sections. In section 3, wewehe perturbative construction
of interacting quantum field theory on curved spacetime. @é$ on theories without local
gauge invariance. We explicitly describe scalar field tigeand we briefly mention the changes
that have to be made for ghost and vector fields (in the Lorgatmge). We give a detailed
renormalization prescription for the time-ordered pragutheir renormalization ambiguities,
and describe how interacting fields may be constructed floemt We also show how the
method works in some concrete examples. The material piegsém this section is to some
extent taken from [17, 61, 62, 36, 35, 33], but there are atsnesnew developments. In
section 4, we perturbatively construct renormalized quanyYang-Mills theory. We first give
an outline of the basic strategy, and then fill in the tecHrdedails in the later sections. We
present our new Ward-identities in subsection 4.3, and pheve them in section 4.4. We prove
in 4.5 that our identities formally imply the BRST-invar@of theS-matrix, in 4.5 that they
imply the conservation of the interacting BRST-current] and.6 that they imply the nilpotency
of the interacting BRST-charge operator. In section 5 wédiraia proof that quantum Yang-
Mills theory has a conserved quantum stress tensor, and plaiexhow the trace anomaly
arises. We conclude and name open problems in section 6.n8ippA contains a treatment
of freeU (1)-theory avoiding the introduction of the vector potentiatiaan explanation of the
new superselection sectors arising in this context. Themlgipges B—E contain definitions and
various constructions that are omitted from the main pathefpaper.

1.5 Guide to the literature

A standard introduction to the theory of quantum fields on eved space is [105], which
gives an in-depth discussion of the conceptual problembetheory, as well as the Hawking
and Unruh-effect, at the level of free quantum fields. Theegalization of the latter effect
to certain black-hole spacetimes—emphasizing espedlatiyole of the so-called “Hadamard
condition”—is discussed in the review-style article [7€)ther monographs are [48, 11]. The
perturbative construction of interacting scalar quantuehdfitheories on curved spaces was
given in the series of papers [17, 16, 61, 62, 65]. Importamtributions to the understand-
ing of Hadamard states in terms of microlocal analysis, Whiere a key input in these papers,
were made by Radzikowski [91, 92]. These results are revdemnel extended in the very read-
able paper [76]. A complete characterization of the statespmf perturbative quantum field



theory using microlocal analysis is given in [64]. A definitiand analysis of the renormal-
ization group in curved space was given in [63]. The geneatibn of the Wilson operator
product expansion in curved spacetime was constructedl tordérs in perturbation theory
in [67] Perturbative scalar quantum field theory on Riemanrsipaces was treated in [19] using
the BPHZ method, and by [81] using the method of flow equatigisneral theorems about
guantum field theory in curved spacetime within a model-paiwlent setting were obtained
in [66] (PCT-theorem), and by [104] (spin and statisticsotieen). The literature on the quan-
tization of gauge theory, and especially Yang-Mills theorylat spacetime is huge. The use
of ghost fields was proposed first by [44], and the early apgreato prove gauge invariance
at the renormalized level used the method of Feynman grdapbsther with special regular-
ization techniques [68, 69, 70]. More recent discussiorsetban the Hopf-algebra structure
behind renormalization [20, 21, 82] may be found in [102, J10@/ith the discovery of the
BRST-method [9, 10], cohomological methods were develapatiused to argue that gauge
invariance can be maintained at the perturbative level trsflacetime. Comprehensive reviews
containing many references are [24, 88, 59, 5], see alsd¥@, 101, 40, 41, 42]. There are
also other approaches to quantum gauge invariance in flaespased on the Epstein-Glaser
method [43] for renormalization. These are described inrtteographs [93, 94] and also
in [99], which also contain many references. For a relatgor@gch, see [98]. The idea to
formulate quantum gauge theory at the level of observabla$io implement the gauge invari-
ance in the operator setting was developed in flat space {IBEB&4], building on earlier work
of [83]. A somewhat more detailed comparison between thewarapproaches to the gauge
invariance problem and our solution is given in Sec. 4.9, ilaelditional references are given.

2 Generalities concerning classical field theory

2.1 Lagrange formalism

Most, though not all, known quantum field theories have asatatcounterpart that is described
in terms of a classical Lagrangian field theory. This is esdlgdrue for the gauge theories stud-
ied in this paper, so we collect some basic notions and sefwlin Lagrangian field theory in
this subsection that we will need later. Not surprisingly, perturbative quantum field theories
derived from a classical Lagrangian, many formal aspectdedormulated using the language
of classical field theory, but we emphasize that, from thespta) viewpoint, quantum fields are
really fundamentally different from classical fields.

To specify a classical field theory on ardimensional manifold/, we first need to specify
its field content. We will generally divide the fields into lkgcound fields, collectively denoted
Y, and dynamical fields, collectively denotdd Both background and dynamical fields are
viewed as sections in a certain fibre bundbe;—~ M, over the spacetime manifold. We will
assume that the background fields always comprise a Logentzetricg = g,vdx'dx’ over M
(which is a section in the bundle of non-degenerate symaiinisors inf *“M ® T*M of signa-
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ture (—++---+)). More generally, the background fields may comprise a rii@n back-
ground gauge connection, or varions external sources. Wealso admit Grassmann-valued
fields, which are described in more detail below. The dynairields will typically satisfy
equations of motion, which are derived from an action ppfei By contrast, the background
fields will never be subject to any equations of motion.

To set up an action principle, we need to specify a Lagrandiie Lagrangians that we will
consider have the property that they are locally and comtlyi@onstructed out of the dynamical
fields®, and the background fieldg. In particular, they do not depend implicitly on additional
background structure such as the specification of a coaslsatem. Since such functionals
will play an important role in perturbation theory, it is wbrdefining the notion that a quantity
is locally and covariantly out of a set of dynamical and ngmamical fieldsd, W with some
care. Let us denote b — M the “total bundle” in which the dynamical and non-dynamical
fields live. For example, in case all the fields are tensor gielide total bundle is simply the
direct sum of all the tensor bundles corresponding to theuartypes of fields. Ik € M, we
let JX(B) denote the space ok4ets” overM. This is defined as the equivalence class of all
sectionss = (®, W) : M — B, with the equivalence relatiomy ~ o, if 0% |x = 09| for all
g < k, wherell is any affine connection in the bundse and where we have put

Do =dXt®---@dx«0, - 0y)0. 1)

We say that g-form O = Oy, ,dX" A --- Adxk is constructed out of = (®, W) and its first
k derivatives ifO is a map

p
0:3(B) — AT;M 2)

for eachx € M, which we will also write asO(x) = O[a(x), Ja(x),. .., 0%a(x)]. Now lety :

M — M’ be an immersion that lifts to a bundle mBp— B’ denoted by the same symbol, and
let 0 ando’ be sections iB — M respectively B’ — M’ such that = *a’. We will say thatO

is ap-form that is locally constructed out of the fieldsf we have

Olo(x),do(x),...,0%(x)] = g*0[d’(X), 00’ (X),..., 0%’ (X)], WX =X, (3)

for any x and any such embedding This condition makes precise the idea tlaats only
constructed out ob = (@, W) and finitely many of its derivatives, but depends on “nothing
else”. For example, if the fields are a background metgj@nd a set of dynamical tensor or
spinor fields®, then one can show that can depend upon the metric only via the curvature,
i.e., it may be written in the form

O(x) = O[®(x), OD(X), ..., I*D(x), g(x), R(X), OR(X), . .., I 2R(X)] (4)

wherel is now the Levi-Civita (or spin-) connection associatedvgt andR = Ryygp (dX' A
dx’) @ (dXC AdXP) is the curvature tensor. This result is sometimes calledfthemas replace-
ment theorem,” and a proof may be found in [75]. The secondh@karelevant to this work is
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when the background fields contain in addition a backgroumdyg connectiofl in a bundle
B =M x G. Then the lift of ) to a bundle maB — B’, with B = M’ x G incorporates the
specification of a mag : M — G that provides the identification of the fibres, i.e., a localge
transformation. The condition that= y*[) then means thal’ = 0+ g~ 1dg, and the condition
of local covariance of a functional now implies thatO can depend on the connection only via
its curvatureF and its covariant derivativesF, . .., 0¥~2F. More generally, if in addition there
are dynamical field$ valued in an associated bunde<gV (with V a representation db),
thenO can only depend on gauge invariant combination®dfl®, . . ., 0*®. These statements
can be proved by the same arguments as in [75]. In our latdicapipn to Yang-Mills theory,
@ will consist of Lie-algebra valued vector and ghost fieldswhich casé/ is the Lie-algebra
of G, on whichG acts via the adjoint representation.

We denote the space of all locally covarigmtorm functionals (2) byPP(M), or simply by
PP, and we define

P(M) = P PP(M). (5)
p=0

We also assume for technical reasons that the expressiaAshave at most polynomial de-
pendence upon the dynamical fiellsand an analytic dependence upon the background fields
W. These definitions can easily be generalized to the case (#éH) are not ordinary fields
valued in some bundle, but instead Grassmann valued fieldSra8smann valued field is by
definition simply a field that is valued in the infinite dimemsal exterior algebr&, which is

the graded vector space

E=Ext(V)=EPE,, En= /n\v (6)

with V some infinite-dimensional complex vector space. The space equipped with the
wedge product\ : E, x Eyy — Emqn, Which has the property thaen = (—1)""eme, for

en € En,en € En, ande,en, = 0 for all e, if and only if e, = Ae,. The element®, in E,

are assigned Grassmann pastg,) = n modulo 2. Thus, when Grassmann valued field are
present, expressiond € PP are no longer valued in thp-forms overM, but instead in the
set of p-forms overM, tensored witltE. A Grassmann valued field consequently has a formal
expansion of the form

D(x) = %encbn(X), én € En, (7)

where each®, is an ordinaryp-form field.

A Lagrangian is a (possiblg-valued)n-form L = L [®, W] that is locally and covariantly
constructed out of the dynamical fields the background field¥, and finitely many of its
derivatives. For manifold® carrying an orientation, which we shall assume to be givemfr
now on, one can define a canonical volum®rm e = g, _,,d¥1 A--- Adx" by the standard
formula

dx=g=/—=gd¥® A---AdX! (8)
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wherex?, ..., x"~1is right handed, and wherg—g is the square root of minus the determinant
of gyv. Using the volume-form, one defines the Hodge dual of a form by

LI
(n—p)!

and it is thereby possible to convert the Lagrangian intoadesc This is more standard in the
physics literature, but for our purposes it will be slighthore advantageous to viewas an
n-form. For compactly supported field configurations, we masnt an associated action by
integrating the Lagrangiamform overM,

S— /M L. (10)

We define the left and right variatiod, S/d®(x) resp.0rS/dP(x) with respect to the dynamical
fields by the relation

Oy pn_p = Ha...ln—pQvy..vp 9

oS SRS d
5000 00K = [, 3 05g0r 000 = G

d oo .
as[q’t, W] (11)

t=0 t=0

The left and right derivatives may differ from each otheryofdr Grassmann-valued fields
®, and we adopt the convention that the left derivative is rhegrdefault if the subscript is
suppressed. In terms of the Lagrangmform, the variational derivative is given by

3 & oL

H1...lg)

where we use the abbreviatiany, ) for thek-fold symmetrized derivative in eq. (1). The
quantitydS/d®(x) is ann-form that is locally and covariantly constructed out of thygmamical
fields and the background fields and their derivatives, anglreace be viewed as a differential
operator acting od. Field configurationsp satisfying the differential equation

3S
5P(x)

are said to satisfy the equations of motion associated Syitin to be “on shell.”

A symmetry is an infinitesimal field variatios®o = d® of the dynamical fields such that
sL = dB for some locally constructegh — 1)-form B. The existence of symmetries implies the
existence of a conserved Noether currdngjefined by

~0 (13)

wheref is the(n— 1) form defined by
Bu;..vy 1 (P,5P) = ki%..ww o | (15)
q= a(D(ul...pqo)cD)
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where we are suppressing the dependence upon the backdrelaisdo is the boundary term
that would arise ifL is varied under an integral sign. As a consequence of theitiefinwe

have 55

soJis indeed conserved on shell. In the context of perturbahenry studied in this paper, the
Lagrangian is a power series

L=Lo+AL1+NLo+..., (17)

wherelg is called the “free Lagrangian” and contains only terms astmuadratic in the
dynamical fieldsb, hence giving rise to linear equations of motion. If the sysmyis also a
formal power series

S=S+ASL + A2+ ..., (18)

then there is obviously an expansion
J=Jo+ A1+ NJa+..., (19)

S Is a symmetry of the free Lagrangidry with corresponding conserved Noether currémt
when the equations of motion hold fbeg.

The theories that we will deal with in this paper all have tiheperty thatL o contains the
highest derivative terms in the dynamical fieldsIn this case, it is natural to assign a “canon-
ical dimension” to each of the dynamical fields as followst Lg assume that the background
fields consist of a metrigy, and a covariant derivative operatar, which acts like the Levi-
Civita connection on tensors. Consider a rescaling of thegeiotgy a constant conformal factor,
12g, wherep € R. Then there exists typically a unique rescalipg— pd(®)d; ande; — pd@)g
of the dynamical fields and the coupling constantsgrsuch that. o — Lo. The numbersl(®;)
andd(c) are called the “engineering dimensions” of the field and theplings, respectively.
The corresponding dimension of composite object® is given by the counting operators

0 0
) %sz(ci)Cia—Ci. (20)

Ns =Y (d(Pi) +K) chbia(m—,@i

Not for all S and not for all choices of the background fie#dslo the equations of motion (13)
possess a well posed initial value formulation, which iswadeguirement for a physically rea-
sonable theory. For first order differential equations oare formulate general conditions under
which the equations will posses a well-posed initial valoerfulation. For example, for first
order systems of so-called “symmetric hyperbolic type¢ ihtial value problem is well posed
in the sense that, given initial data féron a suitably chosen— 1-dimensional hypersurface,
there exists a unique solution for sufficiently short “tiniase., in some open neighborhood
of 2. Furthermore, the propagation of disturbances is “causaH well-defined sense, see
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e.g. [53]. Equations of motion of higher differential oraan always be reduced to ones of first
order by picking suitable auxiliary field variables, butstriot obvious in a given example which
choice will lead to a symmetric hyperbolic system. Fortehatthe equations of motion that
we will study in this paper will all be of the form of a simple weequation. Actually, since
we only consider perturbation theory, we will only be comaat with the existence of solutions
for the “free theory,” defined b$y. For the actions considered in this paper, the correspgndin
equations are linear, and of the form
0

0= - C® + (lower order terms (21)
whered = g 0,0, is the wave operator in curved space. Such equations dosassell-
posed initial value formulation if the metric does not hawg gross causal pathologies, such
as closed timelike curves. A typical such equation (for & sealar field® = ¢) is the Klein-
Gordon equation

wheren? is a constant. For that equation, the initial value problemeéll-posed globally for
example if the spacetime manifo(¥, g) is “globally hyperbolic,” meaning by definition that
there exists a (necessarily spacelike) “Cauchy-surfa@ca’e., a surface which has the property
that any inextendible timelike curve hitsprecisely once. We will always assume in this work
that(M, g) is globally hyperbolic. Then, given arfy, f1 € C5(Z), there exists a unique solution
to eq. (22) such thap|~ = fo, andn*d,@|~ = f1, wheren s the timelike normal t&.

The well-posedness of the initial value problem for the Ki€ordon equation directly leads
to the existence of advanced and retarded propagatorshwahecthe uniquely determined dis-
tributionsAa, Agr oNM x M with the properties

(D - mz)AA(Xv y) = 6(X7 y) = (D - mz)AR(Xv y) (23)
and the support properties

SUPPAAR C {(xY) EMxM | yeJT(x)}, (24)

whereJ*(S) denotes the causal future/past of aSet M and is defined as the set of points
x € M with the property that there is a future/past directed tikeebr null curvey connecting
with a pointinS,

2.2 Yang-Mills theories, consistency conditions, cohomady

The theory that we are considering in this paper is pure Ydillg-theory, classically described

by the action
1

R I
s/m_—z/MFAF.. (25)
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Here,Fw = (i/N)[Dy, 7] is the 2-form field strength tensor of a gauge connecfipin some
principal G-bundle oveiM, whereG is a direct product of) (1)! and a semi-simple Lie group.
For the sake of simplicity, we will assume that the principahdle is toplogically trivial, i.e.,
of the formM x G. We denote the generators of the gauge Lie algebfB y=1,...,dim(G),
and we writeF =T, Fd\,d%/\ dx’ for the components of the field strength and similarly for any
other Lie-algebra valued field. Lie algebra indideare raised an lowered with the Cartan-
Killing metric k;; defined by Ted(T;)ad(T,) for the generators of the semi-simple part, and by
1 for the abelian factors.

The classical field equations for this action are

@[H * FVO] =0. (26)

The connectiorD is the dynamical field variable in this equation. Itis coneemto decompose
it into a fixed background connectidn, plus a Lie-algebra valued 1-form fiekl= 'I]ALd)dJ,
which is then the dynamical variable,

D =0 +iMA. (27)

Itis also convenient to defirié on tensor fields to be the standard Levi-Civita connectiathef
metric. The background derivative operator then has theature tensor

(O DKo = RavoPky + fiyR(T ko (28)

where R is the representation of the Lie-algebra associatiok,, andf =T, fL'Nd>dJ/\ dx’ is

the curvature of the background gauge connection. In Mirdkbgpace, it is typically assumed

thatJ = 9, implying thatf = 0. For simplicity, we will assume that the background gauge

connection has been chosen as the standard flat connectios lundleM x G, so thatf = 0

on our manifoldM. The advantage of this choice is that all quantities thatlacally and

covariantly constructed out of the fieldand the background structuge= gy,dx'dx’ and O

can be written in the form eq. (4) with = A, without any explicit appearance of the background

curvaturef. If f 0, we would have to include everywhere explicitly the backgrd curvature.
With the decompositiotD = [J+iAA, the curvaturd- is given by

Fv = 0A, — OA +iM AT (29)

wheref! 3¢ are the structure constants of the Lie-algebra defindd@iby;] = f3XT. The equa-
tions of motion, when written in terms &, are not hyperbolic, in the sense that the highest
derivative term is not of the form of a wave equation. Thus,eéquations of motion for Yang-
Mills theory do not straightforwardly admit an initial vaiuormulation. This feature is a con-
sequence of the fact that the Yang-Mills Lagrangian and tsgugof motion is invariant under
the group of local gauge transformations acting on the dyealrfields byD — g(x)~1Dg(x),
whereg: M — G is any smooth function valued in the group, or equivalenyly b

O—0+g'dg, A—g 'Ag. (30)
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Since such local gauge transformations allow one to malka tdanges to the dynamical field
variables, it is clear that those are not entirely specifigdniitial conditions. However, the
freedom of making local gauge transformation can be use@tt@@me components & to
zero, so that the remaining components satisfy a hyperbqli@tion and consequently admit a
well-posed initial value formulation, as described e.g[1lh Later, we want to perturbatively
construct a quantum version of Yang-Mills theory, and fos ffurpose, another approach seems
to be much more convenient. This approach consists in addrtiger fields to the theory which
render the equations of motion hyperbolic, and which cara famal stage, be removed by a
symmetry called “BRST-symmetry”.

In the BRST approach, one introduces additional dynamicas§nann Lie-algebra valued
fieldsC = T,C',C=T,C', and a Lie-algebra valued fieBl= T;B', and one defines a new theory
with actionSet by

Sot = Sm+ Syt + Syh, (31)

whereSy¢ is a “gauge fixing” term defined by

ng=/MB'(ig|+%B|) (32)

with a local covariant “gauge fixing” functiona} of the fieldA, and whereSy is the “ghost”
term, defined by

o) gIC|)

Sgh— |/ @“CJ

oA

The total set of dynamical fields is denotéd= (A',C',C',B'), and their assignment of ghost
number, Grassmann parity, dimension, and form degree ismsuiped in the following table

E. (33)

P AC Cc B
Dimension 1 0 2 2
GhostNumber| 0 1 -1 O
FormDegree | 1 0 O O
GrassmanParity 0 1 1 O

The assignments of the dimensions are given for the case thbapacetim# is 4-dimensional,
to which we now restrict attention for definiteness. To sthterelation between the auxiliary
theory and the original Yang-Mills theory, one first obsertigat the actioik; of the auxiliary
theory is invariant under the following so-called BRSTastormations [9, 10]:

sA = dC +irf!xAlcK, (34)
iA

¢ — '2f «C'cK. (35)

< = B, (36)

sB = 0. (37)
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The assignment of the various numbers to the fields are daaweima way thas has dimension
0, ghost number +1, grassmann parity +1, and form degreeif.diclared on arbitrary local
covariant functional®© € ?(M) of the dynamical field#\,C,C,B and the background fields
by the rulesdos—so [ = 0= dx'os+sodx, and by the rule via the graded Leibniz rule,
S(Op A Oq) = SOp A Og+ (—1)PE(%) 0y AsOq. With these definitions, it follows thaf = 0,
and thatsd+ ds= 0. It also follows thasSqt = 0, as one may see by writirf§ in the form

Sot = §m+s¥ (38)
where
W= / B| +iG)e (39)

Indeed,Sm is invariant becaussjust acts I|ke an ordinary infinitesimal gauge transformati
on A, while s annihilates the second term becasge- 0. In this paper, we choose the gauge
fixing functional as
G =0OMA,. (40)

Then the equation of motion fd' is algebraicB' = —iOMA.. Inserting this into the equation
of motion forAL, one sees that this equation is of the form (21). Indeed sttesial choice of
the gauge fixing function effectively eliminates a term o form D“DVAL (which would spoil
hyperbolicity) from the equations of motion for the gaugddighus leaving only the wave
operator. The remaining equations @, C' are also of the form (21). Thus, the equations of
motion for the total actiorg: are of wave equation type. They consequently possess a well-
posed initial value formulation at the linear level, whighsufficient for perturbation theory,
and in fact also at the non-linear level [1].

Given thatSot defines a classical theory with a well-posed initial valuerfolation, we
may define an associated graded Peierls bracket [34, 3368852{ O1, 02} p g, for any pair
of locaP functionalsOy, O, € P. Since the actiort is invariant undes, it follows that the
(graded) Peierls bracket is also invariant unglen the sense that

s{O1, 02}pg. = {SO1, O2}pi. + (—1)¥O {01,502} p ., (41)

(—1)&(%) denoting the Grassmann parity of a functional of the fieldse Fonnection between
the classical auxiliary theory associated wih:, and Yang-Mills theory with actiorgm is
based on the following key Lemma:

Lemma 1. Let O € P be a local covariant functional of the background connectibe back-
ground metric, and the fieldd = (A,C,C,B). LetsO = 0. Then, up to a term of the fors0/,
O is a linear combination of elements of the form

0= (o, ROR...,0R) [1P:(C) []©n(F, DF,...,D'F), (42)
k [ j

3The Peierls bracket may also be defined for certain non-facationals. The consideration of such function-
als is necessary in order to contain a set of functionalsisretible under the bracket.
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wherepy, Os are invariant polynomials of the Lie-algebra @f whereF = Fdx' Adx’, and
wherery is a local functional of the metrig, and the Riemann tensBrand its derivatives.

The lemma is essentially a standard result in BRST-cohoynske e.g. [5] and the refer-
ences cited there. The only difference to the formulatioregiin [5] is that, in the present
setting, the coefficients can only depend locally and covariantly upon the metric (gsosed
to being an arbitrary form on spacetime). The fact thahen has to be a functional of the
Riemann tensor and its derivatives follows again from thadihas replacement argument”,
see e.g. [75]. Thus, at zero ghost number, the local and ieoxdunctionals in the kernel f
are precisely the local gauge invariant observables of ¥dillg theory modulo an element in
the image 0oF, so the equivalence classes of the kerned mibdulo the image of at zero ghost

number,
Kernels

Images
are in one-to-one correspondence with the gauge invariasgreables. Furthermore, by (41),
the brackets are well-defined on the cohomology classeshandang-Mills equations of mo-

tion hold modulos. Thus, the theory whose observables are defined by the égubeaclasses

of s(at zero ghost number), and whose bracket is defined by tlegl®bracket may be viewed
as a definition of classical Yang-Mills theory.

{class. gauge. inv. fields=

(at zero ghost number (43)

The BRST-transformation plays a crucial role also in the perturbative quantum fiek th
ory associated with Yang-Mills theory, where its role is amgather things to derive certain
consistency conditions on the terms in the renormalizetuigeaition series. We therefore now
discuss some of the relevant facts about the BRST-transfitomin some more detail now.
Sinces® = 0, the BRST transformation defines a “differential”, or, mprecisely, a differential
complex

S:P—PL— - —Pyu—... (44)

where a subscript denotes the grading of the functiona#? loy the ghost number, defined by
the ghost number operatf(g counting the ghost number of an elementitby the formula

: :
%= 3 05y P e “o

Thus, P is doubly graded space, by the form degree and ghost numinve writeng for
the subspace of elements with form deggegnd ghost numbep. We define the cohomology
ring HP(s, PY9) to be the set of all local covariagtform functionalsO of ghost numbep, and
sO = 0, modulo the set of g-form functionalsO = sO’ with ghost numbep, i.e.,

Kernels| 75
HP(s, PI(M)) = — 7P (46)
Image5|pr_1
The above lemma may be viewed as the determination of thes $pgs, PP) for all g, p. We
will also encounter another cohomology ring, consistinglb$-closed local covariant function-
als modulo exact local covariant functionals. To describe ting more precisely, it is useful
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to know the following result, sometimes called “algebraairitare Lemma”, or “fundamental
Lemma of the calculus of variations”:

Lemma 2. (Algebraic Poincare lemma) L&t = a[®,¥]| be ap-form on ann-dimensional
manifold M, which is locally and covariantly constructed out of a numbledynamical fields
®, and background field®. Assume thatla[®,¥] = 0 for all W, and that eack is pathwise
connected to a referendé, for which a[®, Wo] = 0. Thena = df for somef3 = B[P, ¥] which
is locally constructed out of the fields.

The proof is given for convenience in the next subsectionng@@ter now a0y € P9 such
thatsOq = dOg-1, i.€., Oq is s-closed modulal. Then, bys®> = 0 andds+ sd = 0, the form
SOq-1 is d-closed, and hencg-exact by the fundamental lemma, @1 = dOg_2. We can
now repeat this procedure until we have reached the formegres O, thereby arriving at what
is called a “decent-equation”, or a “ladder”:

SOy = dOg-1 47)
SOg-1 = dOg-2 (48)
e (49)

sO; = dOg (50)
sOp = 0. (51)

Note that, within each ladder, the form degree plus the gmastber is constant. We denote the
space of0q that ares-closed modula at ghost numbep, factored by elements that asexact
modulod by HP(s|d, P9) = HP(s HY(d, ?)). In practice, ladders can be used to determine the
cohomology ofs modulod.

For the purpose of perturbative quantum field theory, it Wwél convenient to consider an-
other cohomology ring related ®that incorporates also the equations of motion. Let us add
to the theory a further set of background fields (“BRST sosifce®* = (A,*,CF,CF, Bf) corre-
sponding to the dynamical fields= (A',C',C',B'):

o [ ¢ G 8
Dimension 3 4 2 2
Ghost Number|| -1 -2 0 -1
FormDegree | 3 4 4 4
Grassman Parity 1 O 0 1
Consider now the action
SO, 0% = Smt+ Syr + Syt S Se= /M SO; A DF (52)

The new action is still BRST-closedS= 0, because it is given by the sum®§: and a BRST-
exact term, and it satisfies in additio8 S) = 0, where the “anti-bracket., .) is defined by
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the equation

_ OrFL . AR L degof) ORFL | OLR2
(Fl’Fz)‘/M {&Di(x)/\écbﬁ(x) Y S " 5o | (53)

The local anti-bracket satisfies the graded Jacobi-identit

(=1 ((F1, R2), Fa) + (=)= ((F2, Fs) Fu) + (- 1)%%2((Fs, Fu), o) = 0 (54)

and as a consequen(e (F,F)) = 0 for anyF. The differential incorporating the equations of
motion is defined by is defined by
SF=(SF). (55)

It satisfiess? = 0 as a consequence @ S) = 0 and the Jacobi identity, as well asl+ d$= 0.
It differs from the BRST-differentias by the “Koszul-Tate-differentialty

S=s+o0, (56)
where(a? = 0), ando is anticommuting witts. It acts on the fields by

0S

ob; =0, odH=_"
! ’ 0D

(57)
Thus, acting witho on a monomial in? containing an anti-field automatically gives an expres-
sion containing a factor of the equations of motion, i.e.oarshell quantity. This will be useful
in the context of perturbative quantum field theory in oraekeéep track of such terms. Starting
from the differentiak, one can again define conomology rindg%($, PP) andHY(§|d, PP). The
ring HO(§, P9) is still described by Lemma 2, because one can prove in gethettaH 9(s, PP)
andHY(§, PP) are isomorphic, see e.g. [5]. The relative cohomology rid§&|d, PP) appear

in the analysis of gauge invariance in quantum Yang-Miktly. They are also known, but they
depend somewhat upon the choice of the gauge g@uphey are described by the following
theorem, see e.qg. [5]:

Theorem 1. Let the Lie-groupG be semi-simple with no abelian factors, andret dim(M).
Then each class iRl (§|d, P") is a linear combination of expressionsof the form (42), and
representative®’ of the form

O’ = n-form part of [1(ROR..., O0™%R) [T C+AF)[] fs(F), (58)
k [ i
whereqy, (A+C,F) are the Chern-Simons forms,

o (A+C,F) = /OlTr((c+A) [tF 4+ At(t — 1)(C+A)2]m<f>—1) dt. (59)
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wherefs are strictly gauge-invariant monomials Bfcontaining only the curvaturé&;, but not
its derivatives. The numbers(r) are the degrees of the independent Casimir elemen® of
and the trace is in some representation. Tihare taken to be a basis of closed fordrs= 0
that are analytic functions of the metric and the covariamivétives of the Riemann tensor. For
p < n, a basis oH (§/d, PP) is given by the0’ at form degree, together with all element®

of the form (42), for any Lie-groupl = U (1)! x G, with G semi-simple.

Remarks. 1) The statement of the theorem given in [5] only assertsttiar; are closed
forms onM. To obtain that the; in fact have to be analytic functions B OR 2R, one has
to use that, as we are assuming, the elemenliare locally and covariantly constructed out
of the metric in the sense described above, with an analgpeddence upon the spacetime
metric. It then follows from the “Thomas replacement argaith¢75] that ther; have to be
analytic functions of the curvature tensor and its denixeti It furthermore follows that the
may be chosen to be wedge-products of characteristic slasse[]; Tr(A"R), where Tr is the
trace on the Lie-algebra &On—1,1), and wherd&rR = Tab@\?d%/\ dx’ is the curvature 2-form
of the metric, identified with a 2-form valued in the Lie-atga of SOQn— 1, 1) via a tetrad field

dxt,
ﬁ 2) There are more elementsht(§|d, P") when the grouj&s has abelian factors, see e.g. for
a discussion [59]. In pure Yang-Mills theory, abelian fastdecouple and hence can be treated
separately.

In perturbation theory, we expargihs

S=S+AS +A%S,, (60)
and we correspondingly expand the Lagrangian as
Lo = %dA‘ A+dA —idC' A+dG + B'(id *A, +%*B|)+SOA| AAH (61)
L, = %fUK*dA' AAI A AR L 3 C A AT A CK
+5.A AAY 4+ 50 ACH 4+ 5,C ACH (62)
L, = %fIJKﬁLMA‘]/\AK*(AL/\AM) (63)

in our choice of gauge (40). We correspondingly have an esipanof the Slavnov Taylor
differential ass= & + A§; + A%, and similarly of the Koszul Tate differential as= og +
Ao1 +A20,. The zeroth order parts of these expansions still definewifftials. The free
Slavnov Taylor differentiatgO = (S, O), decomposed as

S =S+ 0o (64)
will play an important role in perturbative quantum field ding Its action is given explicitly by
A =dC', §C' =0, §C'=B', §B' =0 (65)
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on the fields, where it coincides with that®f Its action on the anti-fields is given by

. 0y . > = 0 ..t 0%
%ﬁizm, SOCF:@, SOCF:@, B, :@ (66)

where it coincides with that afig. The actions ofy andog are summarized in the following
table:

Field || s (o4}

Al | dc 0

B' 0 0

c | o 0

c | 8 0

A | o | -d«dA—ixdB
BT | o —id %A

G | o | id«dC —dAf
G | o id +dG

In perturbation theory, iF = Fy+ AFy +A%F, + ..., equations likesF = 0 are understood in
terms perturbative sense, as the hierarchy of identiti¢sindd by expanding the terms out in
A. This makes no difference with regard to the above 2 cohogicédlemmas, which now also
have to be interpreted in the sense of formal power seridsainthe proof of those lemmas is
perturbative). We finally metion a few identities satisfigdthhe BRST-currend defined above
that we will need later. First, from the expression for diffietial of the BRST current, we have
dI(x) = 3 (S ®i(x)(®*(x), ). (67)
|

Applying the differentia= (S .) and using the Jacobi identity for the anti-bracket as well as
(SS) =0, we get

d8) =0, (68)
so by lemma 2, we have the identity

8 =dK, (69)
for some(n— 2)-form K, which is the beginning of a cohomologically trivial laddee., J is
the zero element irl(§/d, P°). If we expand this identity in, we get

SJo=dKg, $Jo+SJ1=dKq, etc. (70)
The free BRST-currenip is given by
Jo=+dA AdC —iB' +dG = &(dA AA —iC AxdG), (71)
and theK; are given byKo =0, and
K1 = %IfUKdAIC‘]CK (72)
1
Ky = éfUKfIMNAI AAKCMCN (73)
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2.3 Proof of lemma 2 (algebraic Poincare Lemma)

The algebraic Poincare lemma has been rediscovered maag,tand different proofs exist in
the literature. Here we follow the proof given in [106], father accounts see e.g. [5]. One first
considers the case wheri®, W] is linear inW, i.e., of the form

k
Opy..pp = _%AI pl...ppvl"'v' (CD)D(Vl Uy W, (74)
i=

where we may assume thAltis totally symmetric in the upper indices, and totally atimmetric
in the lower indices. The condition thdtr = 0 implies the condition

Al 4800y, ... Oy W = 0. (75)

Ateachx e M, Oy, ... Oy,)W|x can be chosen to be an arbitrary totally symmetric tensomeso
must have
k Vi...V 0
Ay, 8% = 0. (76)

Contracting oveb, y and using the symmetries 8K, one finds

n k p

- AK Vi.Vg 77
[(k+1)(p+1)+(k+1)(p+1) (KL D)(pr 1)) vt (77)
Kp k
_WA y[uz'-#py(vz Vk6H1]Vl) =0
and therefore that
kp
k k

A Hl...ppvl Vk — mp\ V[H2~~~LlpV(V2 Vkéul]\)l) ‘ (78)

Fork = 0, this condition simply reduces & = 0 and hencel = 0, thus proving that the lemma
is trivially fulfilled when k = 0 and whera depends linearly o. Fork > 0, one may proceed
inductively. Thus, assume that the statement has been dooath k < m— 1. Define

mp Vm
T = mAmy[pz...pp]Wz "Opw, - Oy ¥, (79)

and let
o =a—drt. (80)

Thena' is still closed and locally constructed frof, W, linear in W, but by (146), it only
contains terms with a maximum numbmar- 1 of derivatives onp. For sucha’, we inductively
know thata’ = dy for a locally constructeg. Thus,a = d(y+T1), thereby closing the induction
loop. Thus, we have proved the lemma whedepends linearly upo¥.
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Consider now the case wher®, W] is non-linear ind. Let 1 +— W be a smooth path in
field space with¥o = W. Putting S W|,—o = 8¥, we have

d < da[o,W] B
d{ S-a[®, W[} = d{i;a(m(m...mmw) O O3 } = 0. (81)

Since this must hold for all paths, the identity holds for@JW, dW. Thus, since this expression
is linear ind¥ and must hold for aldW¥, we can find & such that

d
EG[CD, Wy

= dy[P, ¥, dV¥]. (82)
=0

wherey is constructed locally out of the fields. Thus, for any patfetd space, we have

[P, W = a[d, Wo]+d{/ory[q>, wt,%wt} dt}. (83)

Consequently, for any field configuratiththat can be reached by a differentiable path from a
reference configuratioWo for which a(®, Wy), we can writea (P, W) = dp(P, ¥). O

3 Quantized field theories on curved spacetime: Renormal-
ization

3.1 Definition of the free field algebra¥ for scalar field theory

Consider the a classical scalar figidescribed by the quadratic Lagrangian
Lo— %(d(p/\ d@— mPx?) (84)

The quantityn? is a real parameter (we do not assume> 0). In this section, we explain
how to quantize such a theory in curved spacetime, and howftnelWick powers and time-
ordered products ap at the quantum level. We assume only tfdt g) is globally hyperbolic
and we assume for the rest of the paper that the spacetimasiones 4. We do not assume
that (M, g) has any symmetries. As discussed abové\ifg) is globally hyperbolic, then the
Klein-Gordon equation has a well-posed initial value folation and unique retarded and ad-
vanced propagatorfss andAa. A fundamental object in the quantizationgis the commutator
function,

A=DAp— DR (85)

which is antisymmetricA(x,y) = —A(y,X). We want to define a non-commutative produgt
between classical field observables such that

O(X) x5 O(Y) — Q(Y) *1 O(X) = IRA(X, y) L. (86)
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This formula is motivated by the fact that, &s— 0, we would like the above commutator
divided byi#i to go to the classical Peierls bracket. The classical Pedcket for a linear
scalar field with Lagrangiahg, however, is given byo(x), ®(y) }p.s. = A(X,y), See e.g. [38].

To define the desired “deformation quantization”, we praicae follows. We first consider
the free *-algebra generated by the expressigifg, wheref is any smooth compactly sup-
ported testfunction, to be thought of informally as the gnég expressiong @(x) f (x)dx. We
now simply factor this free algebra by the relation (86). STtefines the desired deformation
guantization algebrapo. Evidently, the construction oftpp only depends upon the spacetime
(M, g) and its orientations, because these data uniquely thelest@nd advanced propagators.

The algebraltpg by itself is too small to serve as an arena for renormalizetugeation
theory. It does not, for example, even contain the Wick-psvet the free field, or other quan-
tized composite fields, which are a minimal input to even dgefimieractions at the quantum
level. More generally, to do perturbation theory we needlgelaa that also contains the time-
ordered products of composite fields, and these are, of epn contained i} either.
Thus, our first task is to define an algebra that is sufficidpitijto contain such quantities. The
key input in the construction of such an algebra is an anfyittaut fixed 2-point functiomo(x, y)
onM x M of “Hadamard type” which serves to define a suitable commhetif 7,0. This is by
definition a distribution oM x M which is (a) a bisolution to the equations of motion, that is,

(D - mz)Xw(Xv y) = (D - mz)yw(xv y) = Ov (87)

which (b) satisfies
(A)(X, y) - w(yv X) = iA(Xv y) (88)
and which (c) has a wave front set [71] of “Hadamard type” [91]
WF((JO) = {(X]_,k]_,Xz,kz) eT*M x T*M;

X1 andxz can be joined by null-geodesjc
ki = y(0) andk; = —y(1), andk, € VT}. (89)

The wave front completely characterizes the singularitycitire ofw, and its definition and
properties are recalled in appendix C. It can be shown tinaing globally hyperbolic spacetime
(M, g), there exist infinitely many distributiorte of Hadamard type [77, 49, 80]. Using we
now define the following set of generators@ho, whereu= f1 ® ---® fp:

F(u = / /fl X1) - Fa(Xn) : @(X1) -+ - @(Xn) 1o dX1 ... dX,

= meXp*h< ZTJ(P fj)+ Z iTjo(fi, fj) )
4

The commutator property @b implies that the quantities@(x1) ... @(Xn) i, are symmetric in
its arguments. In fact, these quantities are nothing butrtbiemal ordered field products” (with

(90)

§=0
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respect taw), but we note that we do not think of these objects as operdefined on a Hilbert
space as is usually done when introducing normal orderecksgons.

So far, we have done nothing but to introduce a new set of egfmas inM)o that generate
this algebra. We can express the product between to elefrémtd= (v) of the form (90) as

F(u)xnF(v) = thF(U@@kV) (91)

whereu®yV is thek-times contracted tensor product of distributiang in n resp.m spacetime
variables. Itis defined by

(URKV)(X1, - - s Xnrm—2k) =

n'm! K
TZ/U(er(l):---aY1a---)V(er(n—k+1):---aYk+1a---) rlw(yi,Yk+i)dy1---dY2k, (92)

* Tt i=
where the sum is over all permutationsrof m— 2k elements. A somewhat more symbolic,
but more compact and suggestive way to write the product is

F(U) %4 F (V) =: F(u) exp<:—2Lh<@>)F(v) » (93)

where_ D- is the bi-differential operator defined by

oL ORrR
<D~ / 3009 W(X,Y) 00 dxdy. (94)
The superscripts on the functional derivatives indicatd the first derivative acts to the left,
and the second one to the right factor in a tensor productsd fienctional derivatives are to
be understood to act on an expression likgxs)...@(xn) :, @ classical product of classical
fields in?(M). The point is now that the product can still be defined on a ntaiger class of
expressions. These expressions are of the form

F(u) = /u(xl,...,xn) FO(X1) - @(Xn) o OXa...dX  (N>1), (95)

whereu is now adistribution on M", rather than the product af smooth functions oM as
above in eq. (90). To make the product well defined, we onlgine@mpose a mild wave-front
set condition on the [38]:

WF(u) N U (%) U (%)M =0, (96)

XeM

with \7)(i denoting the closure of the future/past lightconex.afThe reason for imposing this
condition is that it ensures, together with (89), that thetrdhutional products in the contracted
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tensor products that arise when carrying out the pro&uegiG of two expressions of the type
(262) make sense. The point is that in such a product, theresalistributional products such
in the contracted tensor product ofv, see eq. (92). That such a product exists follows from
fact that vectors in the wave front set@fu, vcan never add up to 0, see appendix C for details.
We define the desired enlarged algebt&, to be the algebra generated by (262), with the
productx. It can be viewed, in a certain sense as the closur@/gjf because the distributions
uin eq. (262) can be approximated, to arbitrarily good ptiecidy sums of smooth functions
of the formf, ® --- ® f, as in (90) (in the Hormander topology [71]). The algebitg will

turn out to be big enough to serve as an arena for perturbttigory. For example, it can be
seen immediately thattp contains normal ordered Wick-powers @fx): Namely, since the
wave-front set of the delta-distribution &A" is

WF(3) = {(X,Kk1,...,X,kn); XxeMki ETX*M,Zki:O} (97)

it follows thatu(y, xq, ..., %) = f(y)d(y, X1, ..., X,) satisfies the wave front condition (96). The
corresponding generatéras in (262) may be viewed as the normal ordered Wick power
: @'(X) i, SMeared withf (x).

As it stands, the Klein-Gordon equation is not implementethe algebrd "o, ;). This
could easily be incorporated by factorifi¢h) by an appropriate ideal (i.e., a linear subspace that
is stable undex;,-multiplication by anyF € #}). The ideal for the field equation is simply the
linear space

Jo = {F =/U(X1,---,Xn) 1<P(X1)“'—6$2) Q%) feo A dX,
for someu of compact support, W) N [ J (V)" U (V, )" =0 } (98)
XeM

of generators containing a factor of the wave equation. $pace is stable under the adjoint
operation and,-products with anyF € M} by eq. (87) and so indeed an ideal. If we consider
the factor algebra

pr: o — Fo= Mh/J, (99)

then within %o, the field equatioril] — m?)@(x) = 0 holds. The factor algebrg, is the algebra
of physical interest for free field theory. For physical apgtion, one is interested in represen-
tations of 7o as operators on a Hilbert spack, and inn-point functions of observables iy
in physical states. However, in the context of perturbati@ory, it will be much more useful
to work with the algebra&4} at intermediate stages.

To make physical predictions, one finally needs to represenalgebra of observableg
as linear operators with a dense, invariant domain on a Hiipace#y. A vector statg¥) in
Hy is said to be of Hadamard form if itspoint functions

Gry (X1, - - Xn) = (W[To(@(X)) ... To(@(xn))| W) (100)
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are of "Hadamard form". By this one means that the 2-pointftion has a wave front set
of Hadamard form (89), and that its truncategboint function§ are smooth fom # 2. A
Hadamard representation is a representation containiegsed invariant domain of Hadamard
states. Hadamard representations may be constructed ayiaajlly hyperbolic spacetime as
one may show using the deformation argument of [48, 80] (erdbnstruction of [77], and
combining these with those of [64]. We describe the defolmnatonstruction below in sec. 4.2
in the context of gauge theories.

It is clear that, sinceth(M,g) was obtained as the completion of the algefrgn(M, g),
alsomnp(M, g) depends locally and covariantly upon the metric. Becausddht will be of key
importance when we formulate the local and covariance ¢mmddf renormalized time-ordered
products, we now explain more formally what exactly we megathis statement. Consider two
oriented and time-oriented spacetim@d,g) and (M’,¢') and a mapp : M — M’ which is
an orientation and causality preservirigometric embedding. Then there is a corresponding
isomorphism

Oy - WO(Mvg) - WO(Mlvg/)v (101)

which behaves naturally under composition of embeddingsis Tap is simply defined on
MWho(M, g) by settingay (@wg(f)) = @w g (W« ), where, f (X') = f(x) for x =y (X). Since,

as explained abovelh(M,q) is essentially the closure dfho(M,g), we can definexy on
Wp(M, g) by continuity. The action ofty, on F of the form (90) may be calculated straightfor-
wardly from the definition. However, we note that its form Mdepend on the choicas and

w for the Hadamard bidistributions dvi respectivelyM’, and will look somewhat involved if

w andw are such thatp*w # w. These expressions are given in [61], but will not be needed
here.

3.2 Renormalized Wick products and their time-ordered prodicts

In the previous section we have laid the groundwork for thestmicting a linear quantum field
theory in curved spacetime by giving the definition of an blgelp(M, g) associated with a
free Lagrangiarh o that can be viewed as a deformation quantization of the sdgeficlassical
observables with the Peierls bracket. In this section wd ghentify, within "4(M,g), the
various objects that have the interpretation of the varidicsk powers in the theory, and their
time-ordered products. Those objects will be the quastiigprime interest in the perturbative
constructions in the subsequent sections. For simplieigyfirst address the case wheg
describes a linear, hermitian scalar figidsee eq. (84).

4The truncatech-point functions of a hierarchy af-point distributions{h,} are defined by the generating
functionalhc(eé;) = Iogh(e%;), Whereh(e;;) =Snha(f, f,...,f)/nl

SAn isometric embedding may be such that the intrinsic notibnausality is not the same as the notion of
causality inherited from the ambient space. Examples sfgbit may be constructed by embedding suitable re-
gions of Minkowski spacetime into Minkowski space with elic identifications in one or more spatial directions.
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Actually, for reasons that we will explain below, it is comvent to adopt a unified viewpoint
on the Wick products and their time-ordered products. Wenéedi time-ordered product with
n factors (wheren > 1) to be a linear map

Tn: PYM) @ ... P* (M) — Distt//kn(M" 1), (102)

taking values in the distributions ov®t" with target spacép. Thus, the linear map, takes
as arguments the tensor productrofocal covariant classical forméy,..., Oy, and it gives
an expressiofiy(01(X1) ® - - ® On(Xn)), Which is itself a distribution im spacetime variables
X1, - -,%n, With values inMp, i.e., Ta(O01(X1) ® - -- @ On(Xn)) is itself a map that needs to be
smeared witm-test formsfi(x1), ..., fn(Xn), wWhere thei-th test form is an element in the set
of compactly supported smooth fornfise Qg‘k‘(M) overM. The set Didt/ /% denotes the

dual space (in the standard distribution topology [71])h&f space of form@é‘kl(M) X e X

Qg (M).

The time-ordered productg, are characterized abstractly by certain properties whieh w
will list. We define the Wick powers of a field to be the time-ered products with 1 factor,
i.e.,n=1. We will formulate the properties of the time-ordered prot in the form of axioms
in this section, but we will see in the following section tleaie can turn these properties into
a concrete constructive algorithm for these quantitiesfatn, as we will see, the properties
that we wish the time-ordered products to have dourotiuelycharacterize them, but leave a
certain ambiguity. This ambiguity corresponds preciselyhe renormalization ambiguity in
other approaches in flat spacetime, with the addition of togg to curvature. However, we
note that our time-ordered products are rigorously defifgdcontrast to the corresponding
guantities in other approaches to renormalization in flatsgime, where they are a priori only
formal (i.e., infinite) objects.

T1 Locality and covariance The time ordered products are locally and covariantly con-
structed in terms of the metric. This means thatpifM — M’ is a causality preserving iso-
metric embedding between two spacetimes preserving trsatatructure, andy denotes the
corresponding homomorphisfith(M,g) — Np(M’,d'), see eq. (101), then we have

n
agoTn=Tao@U. (103)

whereT, denotes the time-ordered product(@h, g), while T, denotes the time-ordered product
on(M’,d). The mappingy.. : P(M) — P(M’) is the natural push-forward map. Thus, the local
and covariance condition imposes a relation between thstieartion of time-ordered products
on locally isometric spacetimes.Written more explicitlg the case of scalar operators), the
local covariance condition is

ay[Ta(@ o) @ d900) | =T 0D @ go0) W) =X.  (104)
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In particular, ifn= 1, then the Wick productf (O(x)) are local covariant fields in one variable.
As we will see more clearly in the next subsection, the rezqugnt of locality and covariance
is a non-trivial renormalization condition already in trese of 1 factor.

It is instructive to consider the local covariance requieemfor the special case where
M = M’ is Minkowksi spacetime, witly = g’ the Minkowski metric—dt? 4 dx2 +dy?+dZ. In
that case, the causality and orientation preserving isecr&nbeddings are just the proper, or-
thochronous Poincare transformatiaps- (A, a) € P!, while the mamy may be implemented
by Ad(U (A, a)) in the vacuum Hilbert space representatigrof the algebrait, (we need to
assumar? > 0 to have that representation), with{/\, a) the unitary representative of the proper
orthochronous Poincare transformation. The local comagacondition (105) reduces in that
case to

U(Aa) T (Tn(cpkl(xl) ®.. .cpkn(xn)))u (A,a) =T (Tn(cpkl(/\xl —a)®... ¢ (Axy— a)))
(105)
which is the standard transformation law for the time ordgm®duct (and in fact any relativistic
field) in Minkowski spacetime.

T2 Scaling. We would like the time-ordered products to satisfy a cersaiaing relation. For
distributionsu(x), x € R" on flat space, it is natural to consider the scaled distmitowi{px), pL €
R, . Such a distribution is then said to scale homogeneously @ggreeD if u(pux) = pPu(x),
in the sense of distributions, which is equivalent to théedéntial relation

<p% — D) u(px) = 0. (106)

More generally, it is said to scale “polyhomogeneously” lmofhogeneously up to logarithms”

if instead only
N

(13— D) U0 = 5o [WPu(d] . (107)

holds for someN > 2, which gives the highest powerl of the logarithmic corrections.

For the quantities in the quantum field theory associateld tvé Lagrangiah o on a generic
curved spacetime without dilation symmetry, we do not ekpesimple scaling behavior under
rescalings in an arbitrarily chosen coordinate system. él@n we know that the Lagrangian
Lo has an invariance under a rescaling

g g, P — it @ Pt (108)

It is therefore natural to expect that the time-ordered potslcan be constructed so as to have
a simple scaling behavior under such a rescaling. Howewertd quantum effects, one can-
not expect an exactly homogeneous scaling, but only a honeages scaling behavior that is
modified by logarithms. To describe this behavior, we must fiake into account that the
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time-ordered products associated with the spacetime oggtive in a different algebra than
the time-ordered products associated with, so we must first identify these algebras. This is
achieved by the linear mag : @ +— p@, which may be checked to define an isomorphism be-
tweenh(M, g, m?) and Wh(M, p2g, ui—2m?). The desired polyhomogeneous scaling behavior
is then formulated as follows. Let

n
W =0, o Tao R explinp- AG) (109)
whereA\g is the dimension counter, defined a5+ Aj; + A¢. For example
WTa(@0a) @ - © @g°0)) = 5 o (@i () -0 d(xn).  (110)

Because we have put the identification nnapn the right side(M T, defines a new time ordered
product in the algebra associated with the unscaled megriand coupling constants. In the
absence of scaling anomalies, this would be equal to thenatid, for all p€ R;. As we
have said, it is not possible to achieve this exactly homeges scaling behavior, so we only
postulate the polyhomogeneous scaling behavior

AR

T3 Microlocal Spectrum condition. Consider atime ordered produlgl O1(X1) ®- - - ® On(Xn))
as anp valued distribution oM". Then we require that

where the seE1 (M, g) C T*M"\ 0is described as follows (we use the graph theoretical iootat
introduced in [16, 17]): LeG(p) be a “decorated embedded graph’{M, g). By this we mean
an embedded grapti M whose vertices are pointg,...,x, € M and whose edge®, are
oriented null-geodesic curves. Each such null geodesgugpped with a coparallel, cotangent
covectorfieldpe. If eis an edge ifG(p) connecting the pointg andx; with i < j, thens(e) =i

is its source ant(e) = j its target. Itis required thaie is future/past directed i) ¢ Ji(xt(e)).
With this notation, we define

Cr(M,g) = {(x1,ki;...;%n,kn) € T*M™\ 0| 3 decorated grap@(p) with vertices
X,...,Xnsuchthaki = % pe— 5 pe Vi}. (113)

es(e)=i et(e)=i
T4 Smoothness. The functional dependence of the time ordered products ersplacetime

metric, g, is such that if the metric is varied smoothly, then the tinndeoed products vary
smoothly, in the sense described in [61].
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T5 Analyticity.  Similarly, we require that, for an analytic family of anatymetrics (depend-
ing analytically upon a set of parameters), the expectatabue of the time-ordered products in
an analytic family of statésvaries analytically in the same sense as in T4.

T6 Symmetry. The time ordered products are symmetric under a permutafitre factors,

Th(O1(X1) ® -+ ® On(%n)) = Tn(Om(Xm1) ® - - - ® Omn(Xm)) (114)

for any permutationt

T7 Unitarity.  Let To(®i Gi(%)) = [Ta(®i01(x)*)]* be the “anti-time-ordered” product. Then
we require

ﬂ(éﬂ(ﬁ))=l > (—1)”+jT||1|<(§I§>Q(Xa))*h---*hTu”((gl)oj(xj)), (115)
i=1 il--Ulj=n i€l j€l;

where the sum runs over all partitions of the §kt. . ., n} into pairwise disjoint subsets, . . ., ;.

T8 Causal Factorization. The “product”Ty, is time ordered in the sense that the following
causal factorization property is to be satisfied. Det,...,x} NI ({X1,-..,%}). Then we
have

Tn(O1(X1) ® -+ ® On(Xn))
=Ti(O1(x1) @@ O1(X)) %1 Tn—i (Oi41(Xi+1) ® - ® On(%n)) . (116)

For the case of 2 factors, this means

Tl(Ol(Xl)) * Tl(Oz(Xz)) whenx; gé J+(X2);

3 (117)
T]_(Oz(Xz)) *7 T]_(O]_(X]_)) Whenx2 §é J (X]_).

T2(01(x1) ® O2(%2)) = {

T9 Commutator. The commutator of a time-ordered product with a free fieldiigeg by
lower order time-ordered products times suitable comnoufainctions, namely

[Tn(é)o.m)),cm]

whereA is the causal propagator.

S0k (%)
So(y)

_insy (0 A LLOn(x), (118
|kgl <1(X1)® /(xy) ® (% )) (118)

*h

6As explained in remark (2) on P. 311 of [61], it suffices to ddas a suitable analytic family of linear func-
tionals onMp that do not necessarily satisfy the positivity conditioguiged for states.
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T10 Field equation. The free field equatiodSy/d@ holds in the sense that

Tn+1<6?p%()®(§i§)a(xa))=IzTn<ol(x1)®~~6§;(($)®---on(xn)) mod .  (119)

T11 Action Ward identity If dy = d><{j/\ a—?(p is the exterior differential acting on theth
k
spacetime variable, then we have

Th(O1(X1) - @ dkO(Xk) - - - @ On(Xn)) = A Ta(O1(X1) ® - - ® O(Xn)) - (120)

Thus, derivatives can be freely pulled inside the time-oedgroducts.

Condition T11 can be stated as saying tihaimay alternatively viewed as a linear map
Tn: A" — M} for eachn, whereA is the space of all local action functionals, i.e., all exgsiens
of the formF = [ OA f, wheref € QS(M) is any p-form of compact support, and wheeee
P4~P. To explain how this comes about, consider the integratédifi@lynomialF = [ f AdO.

It may equivalently be written as [(d f) A O, so the time ordered product should give the same
result for either choice. T11 means that the time orderedyxets [ f(X) Ta(--- @ diO(X) ®...)
and— [dif (%) Ta(---® O(%) ®...) are equal, where the exterior derivatigie= dx' A 9/ax!
acts on the-th spacetime argument. This means thamay be viewed as a functional taking
as arguments the integrated functionals (or "actionsA, inecause it does not matter héws
represented. This is the origin of the name “action Ward titghfor T11. The action Ward
identity also means that we may apply the Leibniz rule fonddive of quantum Wick powers,
i.e., time ordered products with one factor, which is whyshme condition was called “Leibniz
rule” in [65].

3.3 Inductive construction of time-ordered products

In the previous subsection, we have given a list of propgdfehe local Wick powers and their
time-ordered products. We now present an algorithm showimg these can be constructed,
and thus in particular demonstrating that axioms T1 throlitghare not empty. We shall reduce
the problem to successively simpler problems by a seriesdifation steps. These steps are as
follows:

1. First, construct the time-ordered products with onedact

2. Assuming inductively that time-ordered products witfactors have been constructed,
we show, following the ideas of “causal perturbation thédaa, 12, 99, 98] that the
time-ordered products with+ 1 are already uniquely fixed, apart from points on the
total diagonal, by the lower order time-ordered products.

3. The problem of extending the time-ordered products atord- 1 to the total diagonal is
reduced to that of extending certain scalar distributiethé total diagonal.
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4. The problem of reducing the scalar functionsfit! to the diagonal is reduced to that
of extending a set of distributions on the- 1-fold Cartesian power of Minkowski space
via a curvature expansion.

5. The extension of the Minkowski distributions is perfodneThis step corresponds to
renormalization.

Thus, we shall proceed inductively in the number of factarsgppearing in the time ordered
productTh(01(X1) ® - --® On(Xn)). To keep our discussion as simple as possible, we now restric
attention to the case when the fieldse 2 in the time ordered product contain no spacetime
derivatives, i.e.,0, = ¢ for some natural numbets. We will also assume for simplicity
that external potential in the Klein-Gordon equation vanishes, so that there areonplog
parameters to consider. We briefly explain how to deal withganeral case in the end.

Time-ordered products with 1 factor. Forn =1 the time ordered products are just the
local covariant Wick powers, i.€Ty(¢(x)) is a local covariant field in one spacetime variable,
interpreted as thk-th local covariant Wick power af. These Wick powers may be constructed
as follows. LetH(x,y) be the “local Hadamard parametrix,” for the Klein-Gordoreogior,
given by

H(x,y) = % (;(:&% +V(x,y) log(a+t0)). (121)

Here,o(x,y) is the signed squared geodesic distance between two pojritsa convex normal
neighborhood oM, andu,v are smooth kernels that are locally constructed in termsef t
metric, which are determined by the Hadamard recursioniogia [23], which are obtained by
demanding thatl be a bi-solution (modulo a smooth remainder) of the Kleimrdeo equation.
Their construction is recalled in Appendix D. The quantity,y) = T(x) — T(y) is defined in
terms of an arbitrary global time coordinake

Consider now, for ank > 1, the “locally normal ordered expressions”

Q) - 00%) i
) _ h
= e8] 87 P (1], T0000 45 [ HOGTIF))|

Becausd is defined locally and covariantly in terms of the metricpitdéws that :(xy) . . . @(Xk)
are local and covariant fields that are defined in a convex abneighborhood of the diagonal
Ay, where

(122)

Ac={(xX....,X)| xeM}c MK (123)
The following lemma shows that the normal ordered quastiti?2) differ from the quantities
:@(X1) ... @(Xn) i ONly by @ smooth function (valued #4).

Lemma 3. Let w(x,y) be a 2-point function of Hadamard form, i.e., the wave fratt&WH w)
is given by (89). Then locally (i.e., whek¢ is defined)w— H is smooth, i.e.,

1 <U(X, y)

e m+v(x,y) Iog(0+it0))+ (smooth function irx,y). (124)

WX y) =
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Furthermore, any two Hadamard states can at most differ bytatly smooth function irx, y.

The proof is given in Appendix E.
Now let O = ¢¢ € P°(M). Because the normal ordered products may be smeared with a
o-function (or derivatives thereof), we may define

T1(O(X)) =: O(X) 4 (125)

which is a well defined element i#t4 after smearing with any testfunctidne Cg(M). This
defines our time-ordered products with one factor. It fobofrom the definition ofH that
T1(¢¥(x)) is a local covariant field, i.e., it satisfies T1 for= 1. The other properties T2—T11
are also seen to be satisfied using the propertiét @éscribed in Appendix D.

Time-ordered products with n > 1 factors: We have defined the time-ordered products
with n = 1 factor, and we may inductively assume that time orderedymts with properties
T1-T11 have been defined for any number of factors. The key idea of causal perturba-
tion theory [43, 12, 98, 99] is that the time ordered prodweith n+ 1 factors are already
uniquely determined as algebra-valued distributions emtianifoldM"*1 minus its total diag-
onalAn; 1 = {(x,%,...,x) € M™1} by the causal factorization requirement T8, once the time
ordered products with less than or equaintéactors are given. The construction of the time
ordered products at order+ 1 is then equivalent to the task of extending this distrinuin a
suitable way compatible with the other requirements T1-TihOorder to perform this task in
an efficient way, it is useful to derive a number of properttest hold at all ordersm<nas a
consequence of T1-T10.

The first property is a local Wick expansion for time orderedducts [62]. This is a key
simplification, because it will enable one to reduce the fmwbof extending algebra valued
guantities to one of finding an extension of c-number digtrdns. In the simplest case, when
none of the(; contain derivatives of, we have in an open neighborhoodf

Tn(01(X) ® -+ ® Om(Xm)) _ _
J1 Jm

Z (pll(X]_) ®v ® @M (Xm)) d Om(Xm) v (126)
- :t,_( 1y sXmm)

forall 1 < m< n, wherety, are c-number distributions, and whgres a multi-index. The Wick
expansion when derivatives are presentiris completely analogous, with the only difference
that now the derivative§¥g are formally treated as “independent variables”. The Wixjxas-
sion formula can be proved from axiom T9. Because the tintler@d products are local and
covariant, the c-number distributions in the Wick expangiave the same property, in the sense
that if y : M — M’ is an isometric, causality and orientation preserving esdbey, so that if
y*g = g, then

(g Xt %m) =4 (g X, Xm), W) =X (127)
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BecauseH and the local normal ordered products are in general onlyhddfin a neighbor-
hood of the diagonal, it it follows that also the c-numbettrisitions are only defined on a
neighborhood of the diagonal, but this will turn out to befsignt for our purposes.

The second property is a subsequent “scaling-" or “curea¢pansion” [62] of each of the
distributiont;, j = (j1,..., jm) in powers of the Riemann tensor and the coupling constamts (i
our case onlyr?) at a reference point. For this, consider first a rescajjrg g (and of the
mass? — P 2n¥ if the theory has a mass). It follows from the scaling propd@@ and those
of H that

aN
d(logwN
for someN (in fact,N > m-+1 is sufficient). One can now derive from this scaling law @ftth
the following scaling expansion in the curvature [62]: -

(it (12g; .. )| =0 (128)

S
t(exp &1, .-, eXpém-1,y) = %C{il...ut(y) UM @& Em) (129)
k=

where the dots represent a remainder of scaling degree (geemdlix C for the mathematical
definition of this concept) which is strictly lower than theaing degree of any term in the sum.
Eachuy is a Lorentz invariant distribution ofR*)™1,

U ML, AEm) = AV AU (&, .. Em) VA€ SDu(3,1), (130)
that scales almost homogeneously under a coordinate irggcal
N
SllogpN U (e Bem-1)] = 0 (131)

with p € N and where each ter@ is a polynomial inm? and the covariant derivatives of the

Riemann tensor ,
Cln ) =Gl M RY), OR(Y),..., O'R(y)]. (132)

The scaling condition can be rewritten equivalently as

< Zl & 6EV ) ulr M (&, &mo1) =0, (133)
wherep = sd(uy) is equal to the scaling degreewfand is given by
3 ki = sd(uk) + Ae(CY), (134)

where
(135)

k
Ne = 2m2 +z k+2DRa(D )
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is the dimension counting operator for curvature terms aneedsionful coupling constants
(in our case onlyr?). Thus, by including sufficiently (but finitely many) terms the scaling
expansion (129) on can achieve that the remainder repexséngtthe dots has arbitrarily low
scaling degree. It doestmean that the sum is convergent in any sense (itis not).

Having stated the detailed properties of the time orderedymxts with< n factors, we are
now resume the main line of the argument and perform the naetgin of the time-ordered
products withn+ 1 factors. Let be a proper subset ¢f., 2,...,n+1}, and letU; be the subset
of M"*1 defined by

Ui ={(x1, %2, .., Xn41) [ % ¢ 37 (xj) foralliel,j¢l}. (136)

It can be seen [17] that the séiis are open and that the collectidh); } of these sets covers
the manifoldM™1\ A, 1. We can therefore define an algebra valued distribufipn on this
manifold by declaring it for eaclxy, ..., X,+1) € U; by

Thi1 <<Pkl(X1) ® @ (Pk”“(xnﬂ)) =
T|I|(®d(i(xi))*h-rn+l—|l|( X d("(xj)) V(X1 %n1) €Ur. (137)

i€l jentl

To avoid a potential inconsistency in this definition formsiinU; NU; # 0 for differentl, J,

we must show that the definition agrees for differeidt This can be achieved using the causal
factorization property T8 of the time ordered products wéhks or equal than factors [43,
17]. Property T8 applied to the time ordered products with1 factors also implies that the
restriction of T, 1 to M1\ A, .1 must agree with (137). Thus, property T8 alone determines
the time ordered products up to the total diagonal, as weeatbtd show, see [17] for details.

In fact—assuming that time ordered products with less oaktinpann factors have been de-
fined so as to satisfy properties T1-T11Mf—one can argue in a relatively straightforwardly
way that the fields defined by eq. (137) with- 1 factors automatically satisfithe restrictions
of properties T1-T9 td1™1\ A, 1, while T10 and T11 are empty in the present case for time
ordered products without derivatives.

Our remaining task is to find an extension of each of the al&htued distribution3,, . 1
in n+ 1 factors fromM" 1\ A, to all of M in such a way that properties T1-T9 continue
to hold for the extension. This step, of course, correspaadenormalization. Condition T8
does not impose any additional conditions on the extensmme need only satisfy T1-T7 and
T9. However, it is not difficult to see that if an extensiq ; is defined that satisfies T1-T5
and T9, then that extension can be modified, if necessang twalso satisfy the symmetry and
unitarity conditions, T6 and T7, see [61].

’Of course, if anyTy, 1 failed to satisfy any of these properties i1\ An.1, we would have a proof that no
definition of time ordered products could exist that satssti@—T9.
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Thus, we have reduced the problem of defining time orderedymts to the problem of
extending the distribution, 1 defined by (137) fronM™1\ An. 1 to all of M™+1 so that prop-
erties T1-T5 and T9 continue to hold for the extension. To fivad extension, we now make
a Wick expansion of,,. 1, which follows from the Wick expansion at lower orders. Thétk
expansion will contain c-number distribution coefficiertthat are defined as distributions on
a neighborhood oM™\ A, 1. They possess a scaling expansion analogous to (129), with
distributionsu that are defined ofiR*)"\ 0. As we have just argued, time ordered products
satisfying all of our conditions will exist if and only if the-number distribution$ defined
away fromAn1 appearing in the Wick expansion fok1 analogous (126) can be extended
to distributions defined on an open neighborhood\gf; in such a way that the distribution
T, 1 defined by (126) continues to satisfy properties T1-T5. s$tiaightforward to check that
this will be the case if and only if the extensionsatisfy the following five corresponding
conditions:

t1 Locality/Covariance. The distributiong;j, with j = (j1,..., jn+1) are locally constructed
from the metric in a covariant manner in the following senket {y : M — M’ be a causality-
preserving isometric embedding, so tijeiy = g. Then eq. (127) holds fan=n+ 1.

t2 Scaling. The extended distributiortig scale homogeneously up to logarithmic terms, in the
sense that there is &hc N such that (133) holds fan=n-+1.

t3 Microlocal Spectral Condition. The extension satisfies the wave front condition(YFa,,, , C
{(Xvklv"'vkan—O—l) | zk| = O}

t4 Smoothness. t depends smoothly on the metric.

t5 Analyticity. For analytic spacetimasdepends analytically on the metric.

In summary, we have reduced the problem of defining time edieroducts to the following
guestion: Assume that time ordered products involvihg factors have been constructed so
as to satisfy our requirements T1-T9. Defifig, by (137) and define the distributionn
M™1\ An,1 by the analogy of (126) fof, 1, in a neighborhood of the diagonal. Can e&ch
be extended to a distribution defined on a neighborhoot,@f so as to satisfy requirements
t1-t5?

The answer to this question is “yes,” and we shall now show tiendesired extension of
t(Xg,...,X+1) may be found. The ideais that, since the remainder in thégpakpansion (129)
fort has an arbitrary low scaling degree for sufficiently langey item (v), it can be extended
to the diagonad\, 1 by continuity [17], i.e., there is no need to “renormalizeétremainder for
sufficiently largem. In fact, by Thm. 5.3 of [17], it is sufficient to choose> d — 4n for this
purpose. Furthermore, each term in the sum in the scalingresipn (129) can be written as

39



CK(y) - uk(&1, . ..,&n) by (i). Eachuy is an almost homogeneous, Lorentz invariastoint dis-
tribution on(R*)"\ 0. As we will see presently in lemma 3.3 [62], this Minkowslstdbution
can be extended to a distribution @&*)" with the same properties (possibly with a higher
than that appearing (133)), by techniques in Minkowski sp#tds this step that corresponds to
the renormalization. As a consequence of the propertiesfisalt by the extension, the corre-
sponding extensioncan be seen to satisfy t1)—t5), thus solving the renormi@izgroblem
for the time ordered product, 1 (@@ (x)) with n+ 1 factors.

Lemma 4: (see [62]) Letu = uy,..(&1,...,&n) be a Lorentz invariant tensor-valued distri-
bution onR*"\ 0 which scales almost homogeneously with degree C under coordinate
rescalings, i.e.,

Su=0 forsome natural numbé\. (138)

whereS) = (3 &/'9/0¢!' + p)N. Thenu has a Lorentz invariant extension, also denatetb a

distribution onR*" which also scales almost homogeneously with degreeder rescalings of
the coordinates. Moreover:

1. If pe Z, p < 4n, thenu can be extended by continuity, the extension is unique, and
Su=0.

2. If p e C\ Z then the extension is unique, agu = 0.

3. If p € Z, p > 4n, then the extension is not unique, a8}i'u= 0. Two different exten-
sions can differ at most by a distribution of the fotrd, whereL is a Lorentz-invariant
partial differential operator ig1, ..., &, containing derivatives of degrge— 4n.

Proof: The proof of the lemma shows how the desired extensioan be constructed. We
will first extend u using the Epstein-Glaser prescription [43]. This extemsieed not satisfy
either the scaling or Lorentz invariance properties. Havewe will show that the extension
can be modified, if necessary, so as to scale almost homogsigwith degreep. We will
then show that the resulting extension can be further maljifimecessary, so as to be Lorentz
invariant while retaining the almost homogeneous scaliitg degreep.

Choose an arbitrary smooth functianof compact support oR*" which is equal to one in
a neighborhood of the origin. For any test functiba C{;°(R4”) we set

WeH)X) =f0-wx) Y xf(0)/al, (139)
ja|<Re(p)—4n

wherex= (§1,...,&n) € R*", and we use the usual multi-index notatiwe= (ay,...,04n), and
0 = 07" -0y as well aga| = ¥ a;. It follows from §'u = 0 thatu has scaling degree R®),

8For distributions with arexactlyhomogeneous scaling, this result has previously beenradatan [71, Thms.
3.2.3 and 3.2.4]. Thus, our theorem generalizes this réstitie case of almost homogeneous scaling.
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so by [17, Thm. 5.3], we can define an extensignof u to R*" by setting
u'(f) = uWpf). (140)

It follows that the scaling degree af is not bigger than R@) [17, Thm. 5.3], but it need not
hold thatu’ scales almost homogeneously with degrgiee., there is no guarantee t@’{u’ =0
for some natural numbévl. However, one can calculate that

WS -SWf0= 5 W ()0af(0) (141)

laj<Re(p)—4n

for some smooth functiong® whose support does not contain the origin. From this it feflo
immediately that
U=y ", (142)
la|<Re(p)—4n

wherec® = (—1)/%u(y®). Note that the sum on the right side is empty wheridRe< 4n, so in
particula@' U = 0, meaning that’ has an almost homogeneous scaling.
If Re(p) > 4n, we now define a modified distributiaif by
! / Ca

Using the fact tha§,0406 = (p — 4n— |a])0q0, we find$u” = 0 whenp € C\ Z, while

U= Y c"0qd. (144)
|af=p—4n

whenp € Z. In the latter case, if we apply the operafrto both sides of the above equation,
then we get thaf)"'u” = 0, because

$040=0 for|a]=p—4n. (145)

Thus, in the case 1) of the lemma,provides an extension with the desired almost homoge-
neous scaling, while in cases 2) and 8),provides an extension af with the desired almost
homogeneous scaling. For notational simplicity, we wibplthe “primes” in the following and
denote the almost homogeneous extensiam as

We now investigate the Lorentz transformation propertfes drestoring the tensor indices
onu, we find by a calculation similar to eq. (142) above that for test functionf € C5°(IR{4”)
and any Lorentz transformatiof, we have

Uy (F) = A AUy, (R =5 bR (A)dad(f), (146)

laj<p—4n
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where (R(A)f)(x) = f(Ax) and theb |, (A) are complex constants, which would vanish if
and only if the distributioru were Lorentz invariant. We now apply the differential ogera
g/ to both sides of the above equation. Siteis itself a Lorentz invariant operator, we
haveR(A)S, = SR(A). Therefore, sinc&]) ™ u =0, the operatof) ™ annihilates the left side
of eq. (146), so we obtain

0= ¥ bl ,NWd= 5 (p—4n—[a)NBY L, (A)dS.  (147)
|| <Re{p) —4n || <Re(p)—4n

It follows immediately thabfi ,, (A) = 0, except possibly wheju| = p — 4n, which evidently
can only happen whemis an integer. Thus, focussing on that case, we have

Uy (F) = A AUy (RA) ) = b 10 (A)dy, ... Bu,_4nd(F) (148)

for all f and all Lorentz-transformations. Using this equation, one finds the following trans-
formation property fob(A),

0 =b(A1/\2) — b(A1) — D(A1)b(A2) = (3b)(A1,/\2), (149)

where we have now dropped the tensor-indices and where Di@etite tensor representation
of the Lorentz-group on the spaceD(®'R*)* @ (@P~4"R%). This relation may be viewed as
saying that [90]

be H(3,D) (150)

where we mean the group cohomology ring with values in D, sge®8]. That ring is known
to be trivial for the Lorentz group and any finite-dimensibDasee e.g. [108], in the sense that
any b satisfying the above cocycle conditidh = 0 can be written in the forrh = &a,

b(A) = (da)(A\) =a—D(A)a VA, (151)

wherea is an element itH%(3,D) = D = (2'R*)* @ (2P~4"R*). This enables us to define the
modified extension

Uy = Uy — Bt 00, -0 0, (152)

where we have now restored the tensor indices. It is easdgladd that/ is Lorentz invariant
and satisfies)™1u' = 0. In cases 1) and 2} actually even satisfie§)u = 0, so the modified
extension (152) even satisfi%u’ = 0. We have therefore accomplished the goal of construct-
ing the desired extension afin cases 1), 2) and 3).

The uniqueness statement immediately follows from the tiaat the difference between
any two extensions has to be a Lorentz-invariant derivatiube delta-functionl.d, such that
§1L8 = 0. Thus,L can be non-zero only whemis an integer, and. must have degree of
preciselyp — 4n. O

Thus, we have described how to construct the time orderedupte Tn(2!"_, @) of Wick
monomials without derivatives. These construction canringple be generalized to time
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ordered products of Wick monomiat$ containing derivatives by generalizing the Wick ex-
pansion to fields with derivatives. A non-trivial new renalmation condition now arises from
T10, becaus& contains derivatives. This condition is not automaticahyisfied, but it is not
difficult to see that we can change, if necessary, our coctsru of the time ordered products,
SO as to also satisfy T10 [65].

We finally have to consider condition T11. This condition asisfied by our construction
for T1, but not in general foil, whenn > 1. The operational meaning of this requirement is
that “derivatives can be freely pulled through the timeeasndg symbol”. This identity is a non-
trivial requirement because both sides of the equation me#e different things a priori: The
first expression means the time ordered product of fields,obménich contains a total deriva-
tive, the second expression denotes the derivative, inghsesof distributions, of the algebra
valued distribution given by the time ordered product of file&ds without the total derivative.
That these two quantities are actually the same is not obvramn the above construction, and
is therefore an additional renormalization condition]exlthe “action Ward identity” in [33],
and the “Leibniz rule” in [65]. It is shown in these two refaces how, starting from a prescrip-
tion that satisfies T1—T10 but possibly does not satisfyrm®rmalization condition, one can
go to a prescription which does.

The action Ward identity is at odds with conventions ofteurf in standard textbooks on
field theory in Minkowski spacetime [107], where the denwvatis not taken to commute with
Tn. To illustrate this difference in point of view, consideettime ordered produck(@(X) ®
@(y)). According to condition T11, we hav@&ly — M) To(@(X) @ @(y)) = To((Ox — mP)@(X) ®
@(y)). In our approach, the time ordered products need not vanigmwacting on a factor of
the wave equation, so this quantity does not need to vanisfact, one can see that the time-
ordered product under consideration is uniquely deterthime the properties T1—T10, and
we haveT,((Oyx — mP)@(x) @ @(y)) = ikd(x,y)1L. In standard approaches, on the other hand, it
is assumed that the time ordered product vanishes whergamitilx — m?)@(x), because the
time-ordering symbol is viewed as on operation acting orslel quantized fields, rather than
just classical polynomial expressions#h On the other hand, in most standard approaches, it
is not assumed that derivatives commute WighIn this way, one reaches the same conclusion
for the example just considered, and both viewpoints arsisteant for that example. However,
the standard viewpoint gets very awkward in general whersidening more complicated time
ordered products of fields with derivatives, for a discussee e.g. [34]. This is because itisin
general inconsistent to assume that a time ordered prodmtaining a factotOCg vanishes,
because of possible anomalies. On the other hand, the kzailieican always be satisfied, and
possible anomalies can thereby be analyzed consistently.

3.4 Examples

Here we illustrate the above general construction of theetordered product by some sim-
ple examples. The simplest non-trivial example of a timesoed product with one factor is
T1(@?(X)) =: @?(X) 3. Using the definition of the locally normal ordered produbts may be
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viewed as a “point-splitting” definition, see e.g. [23]. Gader next the time ordered product
To(@?(x1) ® @?(x2)). By T8, it is defined for non-coincident points # x, by the prescription

@P(X0) ks @P(X2) v whenxg ¢ J7(Xp). (153)

In order to extend the definition to coincident poinis= X, i.e., to make the time-ordered
product a well defined distribution on the entire product ifidd M2, we now use the expansion
procedures described in general in the previous sectiomguke definition of the produet;,
and of the locally normal ordered products, we have

QP (X1) ok PP (X2) =
L @ (X))@ (%) 1w —2hH (X1, %2) T @(X0)Q(X2) w +12H (X1, %)% 1L, (154)

To(@R(X1) ® @ (X)) = { @ (X2) twxn D @P(X1) . Whenxy & I (xo);

for pointsxy, X, that are sufficiently close to each other so that the localddstd parametrix
H (x1,x2) is well-defined. Using furthermore the definition of the IbEaynman parametrikg
(see eq. (431)) and

F(TX)=TY)HXY) +3(T(y) = T(X)H(Y,x) =iHF (xy) (155)
we can write the time ordered product under consideration as
To(¢ (1) ® @(Xp)) =

L @ ()@ (X2) n +2(1/1)HE (X1, %2) © @(x)@(%2) s +(/1)He (x1,%2)? 1L, (156)

for non-coinciding pointsx,y. This is the desired local Wick-expansion. Comparing with
eq. (126), we read off

too(Xe,X2) =1, ti1(x1,%2) = (h/i)HE (X1, %2), to2(X1,%2) = (h/i)°HE (X1, %2)*  (157)

for the coefficients in the Wick expansion. The coefficiegigt; 1 may be extended to co-
incident pointsx =y by continuity, because their scaling degree is 0 resp. 2¢hvig less
than 4, but the distributioty » has scaling degree 4 and therefore cannot be extended to the
diagonal by continuity, but must instead be extended norally. Actually, sincet; is the
square of the distributiorlg with singularities on the lightcone, it is instructive toexk ex-
plicitly that it is even defined for non-conincident pointet are on the lightcone. This can
be done using the wave front set: Bar¢ J*(xp), the pair(xq, ki; X2, ko) € T*(M?) is in the
wave front set oHF (see appendix C) if and only ¥ andx, can be joined by a null-geodesic
y:(0,1) — M, with y(0) = ky andy(1) = —ko, with ky € V}. Similarly, for x; ¢ J~(x2), the
pair (x1, ki; X2, k2) € T*(M?) is in the wave front set if and only i; andx, can be joined by

a null-geodesiy: (0,1) — M, with y(0) = k; andy(1) = —kp, with k; € V*. It follows that,
whenx; # X2, elementgxy, kg, Xo, ko) € WF(HE) can never add up to the zero element. Thus,
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by the general theorems about the wave front set summarizapgpendix C, arbitrary powers
Hr (X1, %2)K exist in the distributional sense, i.e., as distributiond4# \ A,. On the other hand,
whenx; = Xo, arbitrary elements of the forrtxs, k, xo, —K) are in WKHg). Thus, for coinci-
dent points, the elements in the wave front set can add uprég aed the produdtr (xq, o)X

is therefore not defined as a distribution on alM#, i.e., including coincident points.

In order to extend, > to a well-defined distribution to all df12, we now need to perform
the scaling expansion & >, which in turn can be obtained from the scaling expansioRaf
The latter can be found using expansions for the recursidefined coefficients in the local
Hadamard parametrix, see e.g. [23]. Up to numerical prefactt is given by (we assume for
simplicity thatm? = 0)

1 1 &HegY 1 .
HE(@XREY) ~ g +Ru0) (— 5+ 108 +i0) +...  (159)

where the dots stand for a remainder with scaling degréewheret, € TyM has been identified
with a vector inR* via a tetrad, and wher&® = Nwé&HEY. From this we obtain the first terms in
the scaling expansion of » up to numerical prefactors as

to2(eXRy&.Y) ~ U(E) + R () UM (€) + . . (159)

where the dots stand for terms of scaling degree less tharh@.dBtributionsu andu are
defined oriR*\ 0 and is given there by

1 1 & 1nMlog(E?+i0)

(82+i0)2° (E) = 3(2+i02 ' 6  £2+i0 (160)

u(g) =

u has scaling degree 4, whil#¥ has scaling degree 2. Thus, by lemma 3.3, we need to extend
non-trivially only u, while u® and the remainder (i.e., the dots in the scaling expansion of
t22) can be extended by continuity. An extension to allRdf(i.e., including€ = 0) of u can
easily be guessed, but we here prefer to give a systematicochetvhich is needed anyway
in more complicated examples. A constructive method toinkea extension ol is provided
by lemma 3.3. However, that has the disadvantage of beingwbat complicated because it
involves a non-Lorentz invariant cutoff functiomat intermediate steps, which is awkward in
concrete calculations. Instead we here present a diffenetihod, that is more practical and
works in a wide class of examples. That method is based ugodiatithat, for complex scaling
degree, there is a unique extension of a homogeneous distnlby lemma 3.3. The method
has also appeared in the context of BPHZ-renormalizationamentum space under the name
“analytic renormalization” [95, 96, 97].

Consider instead af the distribution given by

1

Ua(§) = (@102 2

acC\Z. (161)
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By contrast tay, this is well defined on all oR?, see e.g. [57], and also [84] for a treatment of
such so-called “Riesz-distributions”. An extensignof u can now be obtained by taking the
residue of the meromorphic functi@— u(f)/a,

u'(f) = Resa_o%af). (162)

Indeed, if the support of excludes 0, then'(f) obviously must coincide withi(f), because
we may then use formula (160) to getf). The almost homogeneous scaling property of
u(f) under rescalings of (¢) — f(p&) also immediately follows from the definition. To get a
more explicit formula for the extension, we compute the feutransform ofua, given up to
numerical factors by [84]

N a (3

Ga(p) = 47— (P —10) ™% (163)

We expand this expression arouad-= 0 using the well-known residue of tHefunction at O
and substitute the resulting expression into eq. (162). B¥aio, up to numerical prefactors

0'(p) = Inf1*(p* —i0)] (164)

wherel is some constant. Taking an inverse fourier transform theesghe desired extension

(165)

ey Looclogll A& +i0)]
(€)= 26 < &2+i0 )
whered? = nWa9?/9gH9g". Note that the extension has acquired a logarithm, whictgereeral
phenomenon according to lemma 3.3. Different choicek dfange the extension by a term
proportional tod*(&), and thus correspond to the different extensiona(§j. Thus, inserting
this extension into the scaling expansiort,of, we obtain the desired extension®{ ¢?(x1) ®
@ (%2))-

Our last example is the time ordered prodiligte®(x1) ® @3 (x2) ® @ (x3)) with 3 factors.
The terms in the Wick expansion of this quantity that neede@ktended non-trivially from
M3\ Az to M3 are

t332(X1,%X2,X3) = t11(X1,%2)t11(X2,X3)t2.2(X1,X3), (166)
t334(X1, X2, X3) = t11(X1,X2)t22(X2, X3)t22(X1,X3) - (167)

All other terms are either already well-defined as distiitmg on all ofM3 (assuming the cor-
responding time ordered products with 2 factors have beénet, or can be extended by
continuity. We focus on the last tertgz 4. Again, for the sake of illustration of the general
construction, we first verify explicitly that this distritian is indeed well-defined oM3\ As.
Consider a pointxs, X2, X3) ¢ Az. Then it must be possible to separate one point, from the re-
maining two points by a Cauchy surface. For definitenessjdetssume that this point xs,
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and thaixg, xp ¢ J7(x3). Then(xa, ki; X3, k3) is in the wave front set ab »(x1, x3) if and only if
ki ~ —ks, and ifky € V. Likewise, (x2, p2; X3, P3) is in the wave front set ab »(x2, x3) if and
only if po ~ —ps, and if p2 € V. Finally (X1, 01; X2, 0) is in the wave front set dfi 1 (X1, Xo) iff
01 ~ —02 andg; € Vi whenxy ¢ J*(xp), or iff gy = —g whenx; = xp. We now add up these
wave front set elements, viewed in the obvious way as elesmaf, M x T M x TEM. We
obtain the set

S= {(x1, ki +01; X2, P2+ G2; X3, ks + P3) } - (168)

Assume first thak; = xo. Clearly, if e.g.k1 +01 =0, thengy, € V¥, sop2+ o = p2— 1 # 0,
becausep, € V;. Thus,S cannot contain the zero element, and the product defiing is
well-defined near(x1,x2,x3) by thm. 5. Similarly, ifx; ¢ J~(x2), thengz € V¥, and again
p2 + 02 # 0, and againS cannot contain the zero element. The same type of argumeriieca
made for all other configurations of the points, except thdigorationx; = xo = x3. Thus, by
the general existence theorem 5 for products of distrilnstit 3 4 is indeed well-defined as a
distribution onM?3\ Ag.

We next would like to construct an extensiontgg 4 along the lines of our general con-
struction. Thus, we must determine the scaling expansidgsaf It can be obtained from the
expansions of the (extended) distributigns and ofty ; that were constructed above. We focus
on the terms that require a non-trivial extension (up to nucaeprefactors):

t33.4(exp, &1,€xp €2, Y) ~ U(&1,&2) + R (Y)U" (€1,&2) + Rwop (Y)UP(§1,&2) + ..., (169)

whereu is the distribution defined ofR*)?\ 0 given by

_ 1 ,/logl"2(&5 +i0)]\ ., (log[l "*(&5+i0)] 1
u(es &) = ;24( E24i0 )%( z§+2|o )<El—zz)2+i0

whereut is the distribution defined ofR*)2\ 0 given by

U“V(El,ﬁz)—
_1; <|09[ (52+'0)])< 188 1nWlogll~ (Ez+'0)]) 1
271\ g2+io 3(82+i0)2 ' 6 £2+10 (E1— 22410

+ (&1 &2)
(170)

and whera"Vo? is the distribution or{R*)?\ 0 defined by

VG, _1_,/log[l 7?(§2+i0)] log[l ~2(£5+i0)]
u p(ElaEZ) - Za < Ez—HO )62< E%—HO )
(-3 ENESENED 1 nHO(EYED+ 28YER)

6[(E1—E2)2+i02 12 (§1—E&2)2+i0

+ o n"log{l 2[(& — &) +i0]})
F (o) (A7D)
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The dots in eq. (169) again represent a remainder. This nevedaling degree 6 and can thus
be extended by continuity, while the 3 terms in the scalingassion that are explicitly given
have scaling degree 10 for the first term respectively 8 feisiicond and third term. They must
thus be extended non-trivially. The extension of the cquesling distributiongu, u?v, ubver
now can no longer be found by trial and error, but one must usEnatructive method, such as
that given in the proof of lemma 3.3. We will again not use thithod here, but instead use a
variant of the method given above. For this, we consider isteilution

1
(8 +10)273(83+i0)2P[(81— &2)2 +i02C

It can be checked using wave-front arguments similar toghain above that this distributional
productis well-defined oiR*)?\ 0 fora, b,c € C\ Z. Furthermore, by Lemma 3.3,af+b+c ¢

Z this distribution has a unique extension to all(&*)2. We define the desired extensiontof
by the expression

Uabc(§1,€2) = (172)

Ua,b,c(f)

ab(c—1)"
This is an extension, because one can checkuti&) conicides withu(f) for any f whose
support exclude§; = > =0, and it is also clearly Lorentz invariant and has the ddsatenost
homogeneous scaling behavior. To get a more explicit egfmedoru’, we perform a fourier
transformation ofi, , c using eq. (163) and eq. (23) of [22]. This gives, up to nunaf@ctors

U (f) = Res—1Res_gRes—o (173)

4at+b+c
fa—a-b_orz-arz_brz-o oeP:r

Uapc(P1, P2) = (174)

where

lab,c(P1, P2) =
[(p1+ P2)%—i0> 2P Cr(c)F (a+b+c—2)F(2—a—c)F(2—c—b) x

i P3 )
F4( c,a+b+c—2a+c—1,b+c—1 — — |+
4( (p1+ P2)2—i0’ (pL+ p2)? —i0

[(pr+ p2)2—i0]"3(p3 —i0)2 > Cr(a)r(2—b)r(2—a—c)r(b+c—2) x

P2 p3 )
Fla2—bat+c—1,3—b—c —, — | +
4( (P1+ P2)2—i0’ (p1+ p2)2—i0

[(p1+ p2)? —i0]°(p2 —i0)22°r(b)r(2—a)l (a+c—2)l (2—c—b) x

P2 p3 )
F4(b,2—a,3—a—c,b+c—1 —, — | +
4( (P1+ P2)2—i0’ (p1+ p2)2—i0

[(pl+ p2)2 - |O]C_2(p% _ iO)Z—a—C( p% . i0)2—b—c v
Fr4—a—b—cr(2-cr(a+b—2)r(b+c—2)x

p2 P3 )
Fl4—-a—b—-c,2—c,3—a—c,3—b-c —, — .
4( (P1+ P2)2—i0’ (p1+ p2)2—i0
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Here,F;4 is the Appell function, defined by

(a)jl+j2(B)j1+j2 i1oi2 (175)

F4(G,B,V,6|Z]_,22) = (y)jl(é)jz 21 22 s

j1,)2=0

with (a)j the Pochhammer symbol. The fourier transform of the extenisi then given by

Uab.c(P1, P2)

ab(c—1) ’ (176)

(' (p1, p2) = Res—1Reg—oRes—o
which may be evaluated readily using the Laurent expanditredcamma-function. Itis worth
noting that the extension of given by expression (173) now implicitly contains third pena of
the logarithm, thus again confirming the general theoremthi@e are logarithmic corrections
to the naively expected homogeneous scaling behavior.

3.5 Ghost fields and vector fields

The above algebraic construction of Wick-powers and theietordered products may be gen-
eralized to a multiplet of scalar or tensor fields satisfyangystem of wave equations &h
with local covariant coefficients or to Grassmann valuedifieln the BRST approach to gauge
theory, the relevant fields are (gauge fixed) vector fieldd,grost fields.

Classical ghost fields are Grassmann valued fields valudteiGtassmann algebEa For
gauge theory, the relevant ghost fields are described, dtabdevel, by the Lagrangian of the
form _

Lo=—idCA=xdC. a77)

The fieldsC,C are independent and take values in the Grassmann al@ebfa particular,
the “bar” overC is a purely conventional notation and nst intended to mean any kind of
conjugation. The non-commutative *-algebirg corresponding to this classical Lagrangian is
described as follows. As above, we consider a bi-distrdyud®(x,y) on M x M of Hadamard
form (we put a superscript “s” for “scalar”), and we considistributionsu on M" which are
anti-symmetric in the variables, and which satisfy the waveyfrcondition (96). With each
such distribution, we associate a gener&t(u), which we (purely formally) write as

F(u) =
/u(xl,...,xn;yl,...,ym) :C(xl)---C(xn)f(yl)---g(ym) w0 X1, .. dX%dyr...dyn. (178)

We now define a,-product between such generators. This is again defined @&y where
the derivative operator (94) is now given by

. oL S OR oL S OrR
<D> =—Ii / &(X)w (X’y)éc(y) - &(X)w (X’y)éc(y) dxdy. (179)
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Here, as above, it is understood that a functional derigaiting orF (u) is executed by for-
mally treating the fields in the normal ordered expressioulassical fields, i.e., by formally
identifying :C(x1) - - -C(xn)C(y1) - - -C(Ym) 1w With the classical field expression. The operation
* of conjugation is defined a€(x)* = C(x) andC(x)* = C(x). This is consistent with the

product. It leads to the anti-commutation relations forghest fields,

W) +CY)*Cx) = A(xy)L, (180)

(V) +C(Y)x, C(x) = C(x) %, C(y) +C(y)nC(x) =0, (181)

2(X) %5, C
C(X) *7 C
where we have put a superscript on “s” the scalar causal gedpeA® to distinguish it from
the vector propagator below. The field equations may be imeteed, as in the scalar case,
by dividing ¢4 by the ideal generated byIC(x) and [JC(x). Time-ordered products of
Grassmann fields are also defined in the same way as abovajlyheioor difference being
that they are not symmetric in the tensor factors, but haaglept symmetry according to the
Grassmann parity of the arguments. For example, T6 reatisaiths

Tn(- - ® O1(Xj) ® O2(Xj+1) ®...) = (—1)FEHT (- @ O1(Xj) ® O2(Xj+1) ®...).  (182)

There are similar signs also in T9.

We next consider 1-form (or vector) field&, In the Lorentz gauge, their classical dynamics
is described by the Lagrangian

Lo= %(dA/\ *xd A+ OAN xOA) . (183)

whered = xdx is the co-differential (divergence). Their equation of roatis the canonical
wave equation for vector$dd+ 6d)A= 0, or

(gwO+Rw)A”" =0 (184)

in component notation. It is seen from the component fornmefdquation that it is hyperbolic
in nature, and hence has unique fundamental retarded aad@etVsolutiong), andAg, where
we have put superscript a “v” in order to distinguish thenmirtheir scalar counterparts.

To define the corresponding quantum algebra of observallegroceed by analogy with
the scalar case. For this, we pick an arbitrary distributiirtaking values inf *M x T*M of
Hadamard form. Thusp'(x,y) satisfies the vector equations of motion (184xiandy, its
anti-symmetric part is given by\Y(x,y), whereA is the difference between the fundamental
advanced and retarded vector causal propagators, and\vesfnant set is given by eq. (89).
The algebrai is generated by expressions of the form

F(u) = /u(xl,...,xn) CAX) - AXn) e AXg .. A%, (185)
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whereu(xy, . ..,Xy) is a distribution with wave front set (96), now taking valieghe bundle
TM x ---x TM, and the *-operation is declared #(x)* = A(x). The %-product is again
defined by eq. (91), where the derivative operator (94) is gmen by

o OrR
<D = / 6A(x)w (X,Y) SALY) dxdy. (186)

From this, we can calculate the commutation relations ferfigld A(x) =: A(X) ¢,
AX) xn AlY) — AlY) x1 A(X) = iR AY(x,y) 1L, (187)

The construction of Wick powers and their time-ordered picid is completely analogous to
the scalar case, the only difference is that the HadamatdrgearametrixH must be replaced
by a vector Hadamard parametrix, whose construction isriestin Appendix C.2.

3.6 Renormalization ambiguities of the time-ordered prodwts

In the previous section, we have described the construofitotal and covariant renormalized
time ordered products in globally hyperbolic Lorentziamwad spacetimes. We now address
the issue to what extend the time ordered products are unidues, suppose we are given two
prescriptions, called = {T,} andT = {1}, satisfying the conditions T1—T11. We would like
to know how they can differ. To characterize the differeree jintroduce a hierarchp = {Dn}

of linear functionals with the following properties. Eabh is a linear map

Dn: P4(M)®--- @ PX(M) — PR/ MM [[]] (188)

where we denote bg*u-k(MM) the space of all distributional local, covariant functitmef
@ and its covariant derivativeSKg, of m2, of the metric, and of the Riemann tensor and its
covariant derivative§XR. which are supported on the total diagonal, and which takeegan

the bundle
kn kl+"'+kn

kq
ATMx---x AT'Mc A T*M" (189)

of antisymmetric tensors ovét". Thus, if0; € X (M), thenDp(®;0,) € P*a/~/k(M"), andDy,
is a (distributional) polynomial, local, covariant furmtial of g, the massir?, and the Riemann
tensor and its derivatives taking values in taet - - - + k, forms overM", which is supported
on the total diagonal, i.e.,

SUPPD(01(X1) @ -+ ® On(%n)) = {X1 =X2 = --- =X} = On. (190)

It is aks-form in the first variable;, ako-form in the second variabbe, etc.
The difference between two prescriptions for time ordenemipcts may now be expressed
in terms of a hierarchp = {Dn} as follows. LetF = [ f A O be an integrated local functional
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O € P(M), and formally combine the time-ordered functionals intoemeyating functional
written

=1
T(exp,(F)) =y =Ta(F*M), 191
(exps(F)) = 3 STl(F") (192)
where exp, is the standard map from the vector space of local actfottsthe tensor algebra
(i.e., the symmetric Fock space) ower We similarly writeF € A+— D(eg) € A for the cor-
responding generating functional obtained fr@m The difference between the time-ordered
product may now be expressed in the following way [61]:

(&) (&) s

whereD is a hierarchy of functionals of the type just described @hhs additionally a formal
power series im, i.e., we should tensor the spaces in the definitioddby C[[A]]). The
expressiorD (€], ) are essentially the finite counterterms that charactemizéifference between
the two prescriptions for the time ordered products. No& th curved space, there is even an
ambiguity in defining time-ordered products with one fadfibe Wick powers), so eveB1
might be non-trivial.

The counterterms, i.e., the mapg, satisfy a number of properties corresponding to the
properties T1—T11 of the time ordered products [61]. As weehalready said, th®, are
supported on the total diagonal, and this corresponds tadheal factorization property T8.
The Dy are local and covariant functionals of the fieldthe metric, andr?, in the sense that
y* o D}, = Dpo Y* for any causality and orientation preserving *-homorphigmM — M’, and
this follows from T1. It follows from the smoothness and amiaity properties T4, T5 and the
scaling property T2 that the, depend only polynomially on the Riemann curvature tenser, t
mass parameter?, and the fieldp. Since there is no ambiguity in defining the identity operato
11, or the basic fieldp, we must have

D1(1L) = Da(¢) =0. (193)

As a consequence of the symmetry of the time-ordered predigtthe map®,, are symmetric
(respectively graded symmetric when Grassmann valuedsfistnlild be present), and as a
consequence the field independence property T9, they ntisfiysa

5 B S0k ()
an<Ol(X1) K--® On(Xn)) = ZDn<Ol(X1) &--- 50(y)

In particular, theD,, depend polynomially upon the field As a consequence of the scaling
property T2 of time-ordered products, the engineering disnen of each term appearing Dy
must satisfy the following constraint. As above, &t the counter of Riemann curvature ten-
sors, and of the factors of?, let A; be the dimension counter for the fields. Let the dimension
counter on? be defined by

@ On(x)). (194)

Ng =N+ Ns - (195)
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Then we must have
(g +5dDn(0160) & -+ On(xn) ) = _ion(omxl) - 2GOX) G .. Onlxq) ) . (196)

wheresd is the scaling degree, see appendix C. The unitarity reopgrgé T7 on the time-
ordered products yields the constraint

Dn<01(x1) R on(xn))* - —Dn<01(x1)* D@ On(xn)*) . (197)

and the action Ward identity T11 implies that one can freell} an exterior derivativel; =
dx'A 2 5 into Dn.

The meaning of the above restrictions DR is maybe best illustrated in some examples
The dimension of the couplings atén?) = 42, and the dimension of the field i) =
Consider the composite fielgff € P. In curved spacetime, there is an ambigtmy(cpz) in
definingTy(¢?), given by

T1(¢?) = Ta(¢”) + (1/i) Ta(D1(¢)). (198)
By properties (194) and (193), we must h%%Ql(cpz) =0, soD4(¢?) must be a multiple of the

identity operator, s®1(¢?) = icIl. By the local and covariance property and the dimensional
constraint (196)¢ = aR+ bn?, wherea, b are constants that must be real in view of (197). Thus,
we have the familiar result that the Wick pow&(¢?) is unique only up to curvature/mass
terms. Consider next the ambiguity in defining the time cedgsroduct of two factors of?,

given by A
(¢ 0 @) = To(¢P @ @) + (1/i)? Ty (D2(¢¥ @ ¢7)) (199)

(here we are assuming thai (¢?) = O for simplicity). By the same reasoning as above, this
must now be given by

Da(@?(X) @ ¢2(y)) = c3(X, ) (200)

for some real constart because the scaling degree of the delta function in 4 dilmesss+4.
If ¢7 in this formula would be replaced kg, then the right side could be a constant times the
wave operatof] of the delta function, or by a real linear combinatiomsf R and¢?, times the
delta-function.

We summarize the renormalization ambiguities again in thaih-theorem of renormaliza-
tion theory:”

Theorem 2. [61, 62] Time ordered products with the above properties T1-T11 exist. If
T ={Tn} andT = {Tn} are two different time ordered products, satisfying coods T1-T11.
then their difference is given by

fn<01(xl) R ® On(xn)) = (201)
Tr+1<®01 X; ®® h/i)"Dy, I[®O D
lopUl1U...lI;Cn j€lo icl
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Here, the sum runs over all partitiomgU---Ulr =nof n={1,...,n}, andD = {Dn} is a
hierarchy of counterterms described above. Conversely,ief as above, thel defines a new
hierarchy of time-ordered products with the properties Tt

3.7 Perturbative construction of interacting quantum fields

In the previous sections we have given the construction akWbwers and their time-ordered
products in a theory that is classically described by a LagienL o at most quadratic in the

field, with associated classical field equations of waveaéiqa type. Those quantities may be
used to give a definition of an interacting quantum field tlyeoa a perturbation expansion.
For definiteness, consider a scalar field described by tissick Lagrangiah = Lo+ AL1,

L ::—ZL(d(pA*d(p+n12*(p2)+)\*(pN:Lo+)\L1. (202)

We would like to construct quantities in the interacting guen field theory as formal power
series in\. Even in flat spacetime, one may encouter infra-red divergeif one tries to define
the terms in such expansions, but such infra-red divergea@absent if one considers, instead
of the interaction = [ AL 4, a cutoff interactionF = [AfL, wheref is a smooth cutoff func-
tion of compact support that is one in a globally hyperbalibregion of the original spacetime
(M, qg). The perturbative formula for the interacting fields asatex with this interaction is then

iF/n\ 1 ¢ iF /h+[ jAO
S Gl 5 (X)T<e® )}j_o. (203)
This formula is called “Bogoliubov’s formula,” [12]. Eaclerm in the formal power series for
O(X)r is a well-defined element imp, due to the infra-red cutoff in the interactiéh The
subscript F” indicates throughout this paper the we mean an “intergdield” defined byf,
which is an element in the rifgih @ C[[\, 7]}, as opposed to the classical field expression
O € P. The expansion coefficients nof the interacting fields define the so-called “retarded
products,” [78]

in

O(X)g = ni P Ry (O(X); F®M). (204)

The retarded products are maRs: P2(™71) — Dist(M™1, #}) with properties similar to the
properties T1—T11 of the time-ordered products. The symyngtoperty only holds with
respect to the-arguments separated by the semicolon. Their definitioerms of time-ordered
products is

Rn(Oo(X0); O1(X1) ® - -+ ® On(X%n)) = Z I_l (_1)n+j+lT|lj| <®ielj OI(Xi)) (205)
l1U--UljCndl

9The fact that, implicit in the notationC[[4]]”, the interacting field only contains non-negative powefré,ds
not so obvious and follows from the fact tHat itself is of orderi", see [37].
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wheren+1={0,1,...,n} and Oe¢ |j, the j-subset of the partition. An important property of
the retarded product is that their support is restrictedhéoset

SUPPRA(W(Y); O1(X1) ® -+ ® On(%n)) C {(V, X1, ..., Xn) € MM €J7(y) Vi}. (206)

The support property follows from the causal factorizatmwaperty of the time-ordered prod-
ucts A useful combinatorial identity for the retarded protdus the Glaser-Lehmann-Zimmermann
(GLZ) relation, which states that [34]

Rn <‘P1(Y1); Wa(y2) ® ?2_5 O (Xi)) —Rq (wz(yz); Wi(y1) ® g o (Xi)) _

=1 i—1
h Ry (Watva): ® 0x)) Ry (Wa(y2); ®0 )] (207)
UJ=n ie je

The GLZ-relation may be used to express the commutator ofrttepacting fields in terms of
retarded products as follows:

00 n

[Wi(y1)r, Wa(y2)r] = ZO o

[Rn+1(‘4’1(X1); Wa(x2) @ F") — (1= 2)} : (208)

As a consequence of the GLZ-relation and the support prieseot the retarded products, any
two interacting fields localed at spacelike separated painmmuté®. Thus, we have con-

structed interacting fields as formal power series in thepting constant via the time-ordered
products in the underlying free field theory. If one chandesdefinition of the time-ordered

products along the lines described in the previous sulmsecthen there is a corresponding
change in the interacting theory, affecting both the intBom Lagrangian, as well as resulting
in general in a multiplicative redefinition of the interawifields. To describe this in more
detail, we introduce the linear map map

Ze 12— P[] Ze(O(X) = D(OX) @) = %$Dn+1<o<x>®F®”>, (209)

for x € M in a spacetime region whefeis constant, wher® = {Dn} is the hierarchy of distri-
butions encoding the difference between two prescriptibasd T for time ordered products.
We may introduce a basis if, and represent this map by its matrix

Ze(0(0) = 5 Z 0(%). (210)
J

For renormalizable interaction®N < 4), Zr leaves each finite dimensional subspace”asf
finite dimension invariant, but this is no longer the caserfon-renormalizable interactions.

10n case when Grassmann valued fields are present, the cotomisteeplaced by the graded commutator, and
the minus sign on the right side is replaced-bl1)%1%2, whereg; are the Grassmann parities‘8f.
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Now, if é(x)p is the definition of the interacting field using the time oetéproductsrl, and
O(X)r that usingT, then the two are related by

OM)E = ZE[O(X)]z, 5 - (211)

We now explain how one can remove the cutoff implemented bythoff functionf at the
algebraic level. The key identity [17] in this constructien

VELR *h O % VELR, = O(X)F, (212)

whereF;, F are any two local interactions as above that are equal in an npighborhood of,
and where/g, 5, € Wh @ C[[h,A]] are unitaries that can be written in terms of retarded prtsduc
They satisfy the cocycle condition

VR %0 VR R %8 Vg R = 1L (213)

To construct the limit of the interacting fields &s— 1, one can now proceed as follows. For
simplicity, let us assume thal = R x Z, with Z compact. The cutoff function may then be
chosen to be of compact support in a "time-slib&r = =~ x (—2T,2T), and to be equal to one
in a somewhat smaller time-slice, sl . To indicate the dependence upon the cuigffet us
write the cutoff function adT, and let us correspondingly write. LEf = [AfrL1 and O, for
the corresponding interacting field defined uskigas the interaction. Finally, létt = Vg, F;,
for some fixedd. The interacting fields defined with respect to the true adtonl = [AL;
may now defined as the limit

O(1 = lim Ur s, O(X)rr #,Ur (214)

The sequence on the right side is trivially convergent, bseat only contains a finite number
of terms for each fixea, by the cocycle condition. More precisely, the terms in teg@uence
will remain constants onc& has become so large thate Mt. It is important to note that
this would not be the case if we had not inserted the unitagratprs under the limit sign. In
that case, our notion of interacting field would have coiedigvith the naive “adiabatic limit”
which intuitively corresponds to the situation where theeracting field is fixed al = —oo.

By contrast, our limit corresponds intuitively to fixing thield during“finite time interval”
corresponding to the neighborhoick (-9, ). Actually, one can see that the defining formula
for Ut and the interacting field will still make sense also for spaces with non-compact
Cauchy surface. We can now define the algebras of interaf¢ilagobservables as

F(M,g) :Alg{/y/\ O modulof | O € PP(M),y € Qg—p(lvl)} C Fo(M,g)[[\, 1] (215)

It can be proved [17, 63] that the definition gf as an abstract algebra is independent of
our choice of the sequence of cutoff functiopfs-}. Another important consequence of our
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definition of the interacting fields is that, if we want to iswgate properties of the interacting
field near a poink, we only have to work in practice with the cutoff interactibnwvheref is
equal to 1 on a sufficiently large neighborhood containingor example, if we want to check
whether an interacting curredtx), is conserved, we only need to check whettiéfx)r = 0
for any cutoff functionf which is equal to 1 in an open neighborhoodof

The effect of changing the renormalization conditions miap &e discussed at the level of
the interacting field®), and the associated interacting field algehr&or this, consider again
two prescriptionsT andT for defining the time-ordered products, and let us denotebgnd
O, the respective interacting fields, and #iyandF, the interacting field algebras. Let us denote
by Z, : P — P[[A, h]] the limit of the mapZr as the cutoff implicit inF is removed. This limit
exists, because all the function@ls= {Dn} in the defining relation (209) fafr are supported
only on the total diagonal. Then one can derive from eq. (2ha) there exists an algebra
isomorphism A A

p:h— T, p(O)=[2(0)], (216)

with I = Z/(1). The algebra isomorphism mapis needed in order to compensate for the
difference between the unitarigls andUrt in the two prescriptions, see eq. (214), and see [63]
for details. A particular case of this map again arises wienprescriptionl is defined in
terms of a change of scale (see T2) from the time ordered ptodu Then we obtain, for
each scalet€ R™, a mappy, which depends polynomially gnand Iny. This map defines the
renormalization group flow in curved spacetime [63] togethigh the corresponding “mixing
matrices,” i.e., the matrix componeri[ir:,(u) of the map<, (W).

4 Quantum Yang-Mills theory

4.1 General outline of construction
4.1.1 Free fields

We now construct quantum Yang-Mills theory along the linadioed in the introduction. As
our starting point, we take the auxiliary theory describ&sically by the auxiliary actio®
with ghosts and anti-fields, see eq. (31). Thus, the set cdmyeal and background fields is

background fields| dynamical fields
spacetime metrig B
anti-ghosC*,C* ghostC,C
anti-vectorAf vectorA
anti-auxiliaryB* auxiliary B

We assume that the groud is a direct product of a semi-simple group add1)', and that
the dimension of spacetime is 4. We split the act®mto a free partS containing only
expressions at most quadratic in the dynamical fields, aridtaraction partAS; + A2S,. The
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actionS describes the classical auxiliary theory. Its field equetiare hyperbolic. As we shall
describe in more detail below, we can thus define an algétythat represents a deformation
guantization of the free field theory associated with the &exiliary actiornS, and this algebra
contains all local covariant Wick-powers, and their timele@red products.

As in the classical case, the so-obtained auxiliary thesfyyiitself not equivalent to (free)
Yang-Mills theory, because it contains gauge-variant olzddes and observables with non-
zero ghost number. To obtain a quantum theory of (free) Yt theory, we pass from the
algebra of observablegy), to the cohomology algebra constructed from the (free) turan
BRST-charg&)o. For this, we consider first the (free) classical BRST-cotrdg, which defines
a quantum Wick poweF; (Jp), which we denote again kg by abuse of notation. Let us assume
for simplicity that the spacetim@M, g) has a compact Cauchy surfateThen there is a closed
compactly supported 1-formon M such thatf,,yA a = [sa for any closed 3-formu, i.e.,

[Vl € H3(M,d) is dual to the cycléZ] € H3(M,d). We can then define tifeee BRST-charge by

Qo=/MVAJo (217)

As we will show below, the local covariant quantum BRST cotd := T1(Jo) can be defined
so that itis closedlJp = 0 modulof, so evidentlyQg is independent, modul, of the choice
of representey in HY(M,d). We will also show thaQg is ninotent,Qg = 0 modulo . It
follows from this fact that the linear quotient space

~  KernellQo, .]N FoNKernelig
0= ImageQo, -] N FoN Kernelag ’

is well defined, and that it is again an algebra. Above, we leyained thatfp is a defor-
mation quantization of the classical theory associatett &jtin the sense that, whein— 0,
the commutator divided by goes over to the Peierls bracket of the classical obsersalhte
particular, the commutator divided Bywith Qg goes to the classical BRST-variatiag, Fur-
thermore, as we explained above, the cohomology &f in 1-1 correspondence with classical
gauge-invariant observables, so that, in the classicdt, lihe algebraf, is the Poisson algebra
of physical, gauge-invariant observables. Thus, it is rtio define%o to be the algebra of
physical observables also in the quantum case.

Consider now a representatiop of the free algebray on an inner product spacky. For
simplicity, let us denote representgj(Qp) of the BRST-charge in this representation again by
Qo. We requireQ to be hermitian with respect to the (necessarily indefinrtegr product. We
would like to know under which condition this representatioduces a Hilbert-space represen-
tationTiy on the factor algebr&y. Following [38], let us suppose that the representatiofil il
the following additional

Fo= Mo/ %o (218)

Positivity requirement: A representation is called positive if the following hola) {f |@) €
KernelQo, then (YY) > 0, and (b) if @) € KernelQp, then (Y|y) = 0 if and only if |P) €
ImageQp.
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It is elementary to see that if the positivity requirementuiilled, then the representatiom
induces a representatiag of the physical observableg on the inner product space

A KernelQo

o= ImageQo ’

which is in fact seen to be a pre-Hilbert space, i.e., caai@®sitive definite inner product.
As we will see below, whes is compact, there do indeed exist representations satgstiie
above positivity requirement if we restrict ourselves te ghost number O subalgebra’y. As

we will also see, in static spacetim@d, g) or in spacetimes with static regions, the staten

(in the ground state representation) can be put into oreeoeorrespondence with-helicity
particle states of the electromagnetic field, atglcontains a dense set of Hadamard states.
However, in generic time-dependent spacetimes, such arpnetation in terms of particles
states is not possible.

When the Cauchy surfaces bBf are not compact, the char§® is in general not defined
as stated. The reason is that the 1-form figld no longer of compact support, but has non-
compact support in spatial directions. Nevertheless, wesea that if we formally consider the
graded commutatoQo, O(X)] with a local quantum Wick-power, denote&d(x) := T;(O(X)),
then there will be only contributions in the formal integdfiningQp (see (217)) from the
portion of the support of that is contained id™*(x) UJ~(x). All other contributions vanish
due to the (graded) commutativity property, T9. Since thergection of the support gfand
JT(x)uJ~(x) is compact for a suitable choice gfit follows that the commutator of any local
observable infy with Qo is always defined. Thus, whil@g itself is undefined, the graded
commutator still defines a graded derivation. The definibbthe algebra of gauge invariant
observables can then be given in terms of this graded demvatiowever, the construction of
representations explicitly used (the represente@gfifself, and not just the graded commutator.
Thus, it is not straightforward to obtain Hilbert space es@ntations on manifolds with non-
compact Cauchy surfaces.

(219)

4.1.2 Interacting fields

As similar kind of construction as for free Yang-Mills thgocan also be given in order to
perturbatively construct quantized interacting Yangi#iiheory. The starting point is now the
classical auxiliary interacting field theory described bg uxiliary actiorS= Sy+AS; +A%S,.
Thus, the interaction is

| = /()\L1+)\2L2) —ASL+ %S, (220)

The first step is to construct a quantum theory associatdd this auxiliary action. For sim-
plicity, we again assume thit has compact Cauchy-surfaces—the general situation cam aga
be treated by complete analogy with the free field case aglpstribed. Following the gen-
eral procedure described in Sec. 3.7, we first introduce fra-ned cutoff for the interaction
supported in a compact region of spacetime, and constrag¢htaracting theory in that region.
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To define the desired infra-red cutoff, we consider a compattpported cutoff functionf,
which is equal to 1 on the submanifditir = (—T,T) x Z. We define a cutoff interactiof,, by
F = [{fAL1+ f?A%L,}, and we define corresponding interacting fie@s by Bogoliubov's
formula. We then remove the cutoff at the algebraic levelestdbed in sec. 3.7, and get a cor-
responding algebra of interacting fields. This algebra of interacting fields is not equivalent
to quantum Yang-Mills theory, as it contains gauge variaglt§ and fields of non-zero ghost
number. As in the free case, we obtain the algebra of phyBetdlobservables by considering
the cohomology of the (now interacting) BRST-charge opmer&}, .

To define this object, consider the interacting BRST-curvgth cutoff interaction, defined
by the Bogoliubov formula [see eq. (204)]

INE = —T(7 /M1y, (" /MY
e = gy T
i

- ;H<ﬁ)an(J(x); Fem), (221)

As in our general definition of interacting fields, we can themove the cutoff at the algebraic
level by defining an interacting curredtx),;. We will show below that the interacting BRST-
currentJ; (x) is conserved itM, so we can define a corresponding interacting BRST-charge by
Qi = [YAJ, [compare eq. (217)].

We will furthermore show that the so-defined charge is nilep Q|2 = 0. Thus, we can
define the physical observables as in the free field theorjpégdhomology of the interacting
BRST-charge, i.e., the algebras of interacting fields afimelé by

Kernel[Q, .]N A NKernelAg
ImageQy, .| N A NKernelAg

Next, one would like to define representations of the algebabservables on a Hilbert space.
Such representations can be obtained from those of the liesyt by a deformation pro-
cess [38]. For this, consider a statgy) € #p in a representatiomp of the underlying free
theory satisfying the above positivity requirement. Letodlyg) € KernelQp. Then, using

Q7 =0, andQ = Qo +AQ1 +A%Qy +. .. one first shows that there exists a formal power series

(W) = [Wo) +Alth) +A2|W2) + - € H = Ho[[A]] (223)

such thaQ |y) = 0, whereQ, has been identified with its representer in the represemtati
that is induced from the representation of the underlyimg theory. In order to construct the
vectors|y;), we proceed inductively. We write the condition thét) is in the kernel ofQ; and
thatQ? = 0 as

F = (222)

0= ). 0= - 224
kZOQkNJ ) kZOQkQ K (224)
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for all m. Form= 0, the first equation is certainly satisfied, as we are assmQuo) = 0
Assume now thapo), (W1),-- ., |Wn—1) have been constructed in such a way the first equation
is satisfied up ton=n— 1, and put

n—1

Xm) = > Qm-k[W)- (225)
K=0
Then, using the second equation in (224), we see that
m
0= Z Qm-k[Xk) Z {XmlXm-k) (226)

for all m. We now use the inductive assumption tha#) = 0 for m < n— 1, from which we
get thatQp|Xn) = 0, puttingm= nin the first equation. Puttingn = 2n in the second equation,
we get(Xn|Xn) = 0. In view of the positivity requirement, we must thus haxg = —Qo|WUn)
for some|Wn). We take this as the definition of timeth term for the deformed state (223). This
then satisfies the induction assumption at orgehus closing the induction loop.

Thus, by the above deformation argument, one sees that Kgrae 7| is a non-empty
subspace. One furthermore shows that the representatgatisfies an analog of the positivity
requirement! for the interacting theory. Thus, we obtain, as in the freseca representation
75 on the inner product space

~ KernelQ
-‘7—4 - I ;
mageQ,
and this space is again shown to be a pre-Hilbert space. Faitslef these constructions, see
sec. 4.3 of [38].

(227)

4.1.3 Operator product expansions and RG-flow

As we have just described, a physical gauge invariant, asterg field is an element in the
algebrafy, i.e., an equivalence class of an interacting field operat¢x) satisfying

[Q,0(0)] =0 vxeM, (228)
modulo the interacting fields that can be written as
0(x) =[Q.0[(x)] VYxeM, (229)

for some local field?’ (as usual[, | means the graded commutator). Our constructions of the
interacting BRST-charge do not imply that the actiofQpon a local covariant interacting field
is not equivalent t@. But it follows from general arguments that

[Q, G(X)] = (G0N (x) VxeM (230)

Since we are working over the rirg[[A]] of formal power series in in the case of interacting Yang-Mills
theory, the positivity requirement needs to be formulategrapriately by specifying what it means for a formal
power series to be positive. For details, see [38].
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whered’is a map
G: PP(M) — PP(M)[[h]], G =S8+ hbL+h%Go+.... (231)

Becauste2 = 0, the mapyis again a differential (the “quantum BRST-differentialf = 0,
whose action on general elementgfns different from that ok.” An exception of this rule are
the exactly gauge invariant elemems= W at zero ghost number, which by lemma 1 are of the
form W = [ Os (F, DF, D?F, ...), with Og invariant polynomials of the Lie-algebra. For such
elements, we shall show that we hayd = SW = 0. Thus,

[Q,W1(X)]=0 ¥xeM (232)

and the corresponding interacting fiells(x) are always observable.
Givenn local fieldsOj,, ..., Oj, € P, we can construct the operator product expansion of
the corresponding interacting quantum fields,

Oja (X0)1 %1 - - - % Oy (X)) ZC” (X, X0, Y) Ok(Y)r - (233)

The operator product expansion is an asymptotic expansioq f...,x, — Y, see [67], where
the construction and properties of the expansion are destri Because the actighof the
auxiliary theory has zero ghost number, the OPE coeffici@r@sion-vanishing only when

> No(0j,) = Ag(Ok) - (234)

Now assume that all operatog,, ..., Oj, are physically observable fields. Then, since the
graded commutator witk), respects the-product, also all local operatod appearing on
the right side must be in the kernel @. By the same argument, if one of the operators on
the left side is of the trivial from (229), then it follows theach operator in the expansion on
the right side is of that form, too. Thus, we conclude that@RE closes on gauge invariant
operators, and we summarize this important result as aeheor

Theorem 3. Let Oi,..., O, € P be in the kernel o6,"with vanishing ghost number, as char-
acterized by thm. 1. Theﬁl"l i Is non-vanishing only fol0x € ¢ of vanishing ghost number
that are in the kernel of. If one O, is in the image 08, thenC" i, 1s non-vanishing only for
Ok € P of vanishing ghost number that are in the image.df € one drops the restriction to the

0-ghost number sector, then the same statement is trueswetbiaced byg.”

By the same kind of argument, one can also show that the reati@ation group flow closes
on physical operators. The renormalization flow in curvesicgpime was defined in subsec. 3.7
as the behavior of the interacting fields under a conformahge of the metricg — Yg.

In general we havey(0i(x)i (X)) = Z' (W) - 0j(x) for all x € M, wherepy, : #(g) — i (K2Q)
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is an algebraic isomorphism implementing the conformahgeaof the metric. Now, in the
perturbative quantum field theory associated with the @anyilactionS, we have

PuI(X¥)) =Zi (W) - I(X)  VXEM, (235)

for some constant (rather than matr) ) € C[[A, 4], i.e., the interacting BRST-current does
not mix with other operators under the renormalization grélow, because one could derive
the existence of an independent conserved quantity in tesiclal theory otherwise. Such a
guantity does not exist as one can prove by the methods ofl{Spllows from the above
equation that

Pu(Q) =Z(W- Q. (236)
Thus, if[Q,, Gi(x)1] = 0 for all x € M, then, by applying,, to this relation, it also follows that
Z(W[Qi, i(x)i] = 0. (237)

Becausi‘j () is invertible (it is a formal power series kstarting withé‘j), we thus obtain the
following result, which states that the RG-flow does not éethe sector of physical observables:

Theorem 4. Let O, € P be in the kernel o6,"with vanishing ghost number, as characterized
by thm. 1. ThenZi‘(p) is non-vanishing only foO; € © of vanishing ghost number that are

in the kernel ofs” If O is in the image ot’sfthenZi‘(p) is non-vanishing only fol0; € P of
vanishing ghost number that are in the images.off one drops the restriction to the 0-ghost
number sector, then the same statement is truesvitplaced byg.”

Remark : An interesting corollary to this theorem arises when onesaders the particular
case wherO is the Yang-Mills Lagrangian. Since it is the only gauge nsat field at ghost
number O of this dimension, it does not mix with other field opQ;-exact terms under the
renormalization group flow. The correspondicgnstant Z() describing the field renormal-
ization for the interacting field corresponding to the YaWdls Lagrangian then defines the
flow of the coupling constant. Since our flow is local and covariant, it follows that thiswio
automatically must be exactly the same as in Minkowski sjraed

A similar remark would apply to more complicated gauge theowith additional mat-
ter fields, as long as there cannot arise any additional auygko curvature of engineering
dimension 4 (such as e.BTr ®? if the gauge field is coupled to a scalar figdn some repre-
sentation of the gauge group). Even if there can arise sugplicgs, the above argument can
still be used to directly infer the vanishing of gHfunctions in curved spacetimes wigh= 0 if
the correspondin@-functions vanish in flat spacetime.

4.2 Free gauge theory

We now describe in more detail the construction of free gahgery outlined in the previous
section 4.1. As explained, our starting point is the auyliaeory that is classically described
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by the free actiorg. The first step is to define a suitable deformation quantimeigebrait}
for this theory. The theory contains the dynamical fiefels= (A',B',C',C"), as well as the
background fieldsb* = (AF, Bf,C¥,Cf). Of the dynamical fieldsB' is only an auxiliary field
with no kinetic term inrS= 0, wh|Ie the vector field\' and the ghost fields', C' were quantized
above in sect. 3.5. Thus, the desir#g will essentially be a tensor product of the algebras for
the vector and ghost fields. We now describe the construatidetail.

We first consider a vector Hadamard 2-point functiof{x,y), and a scalar Hadamard 2-
point functionw®(x,y). These quantities by definition satisfy the hyperbolic ¢ipus

(dB+3d)x00" (x,y) = 0= (d3+8d)yw’(x,y) (dB)xw(x,y) = 0= (dB)yw’(xy), (238)

the commutator property (86), and the wave front condit&®)( Below, we will show that we
can always choose them so that they additionally satisfgdinsistency relation

dst(xv y) = _6ywv(xv y)v dyws(xv y) = —6)((1)\/()(, y): (239)

wheredy = dxX' A aa“, and wheredy = xdyx is the co-differential, etc. We define the desired
deformation quantization algebfid} to be the vector space generated by formal expression of

the form
F(u) = /u:‘ll Ik”(xl, X Y1, - s Ym) CDil(yl)...CDim(ym)Cbil(xl)...Cbin(xn) ‘w, (240)

whereu is a distribution subject to the wave front set condition)(®6the variables, . . ., Ym,
but not subject to any wave front set condition in the vaealy, ..., x,. We define thex;-
product to be given by the differential operator

/&D )6qf’ iy Oxay (241)
wherej, k= (A',B',C',C!), and where
W(xy) —idw(xy) 0 0
(@i(xy) = ()@ | QY0 o ety (242)
0 0 Liwd(xy) O

Our definitions imply the commutation relations (180), (1®&ith obvious modification to
accommodate the Lie-algebra indices on the fidld€', C'), as well as

A () %5 B (y) — B (y) %1 A (x) = 1KY §,AY (%, y) 1. (243)

The commutators of all other fields, in particular those Iawray any of the background fields
Af,BF .CF CF, vanish. In this sense the background fields@neumbers, and their product is
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not deformed. This completes our construction of the qaatitin algebrait} of free gauge
theory.

The next step is to define withi#ip the Wick products and time ordered products satisfy-
ing conditions T1-T11. As for the time ordered products vatte factor, we make the same
definition as in the scalar case, with the only difference Hhas replaced by the matrix valued
Hadamard parametrix

_HV(va) _IéyHV(va) 0 0
(Hi(xy) = (ko) | &HL¥ 0 o iy | @
0 0 —iH3(x,y) 0

wherej, k= (A',B!,C',C'"). Using the Hadamard parametrix, the time ordered prodii¢is)
with one factorO € P are defined by complete analogy with the scalar case, andsttesfy
T1—T11. In particular, it follows from the definition thatehVick productT; (Jg) of the free
BRST-current (71) is conserved;T1(Jo) = T1(dJp) = 0 (modulo%). Hence, we can define a
a conserved BRST-charge (when the Cauchy surfaces are cgrapa above). It also follows
directly from the relations in the algebrag thatQ% = 0. Thus, we can define the algebra of
physical observablegy, by the cohomology of)y as explained in the previous section. It fol-
lows from the Ward identity (c) below that @ € P is a classically gauge invariant polynomial
expression il i.e., 0 = 0 dAli (so that in particulasgO = 0), then the corresponding
Wick powerTy(O) is in the kernel 0fQp under the graded commutator. Thus, at ghost number
0, the algebra contains all local covariant quantum Wick g/of classically gauge invariant
observables.

Thus, it only remains to prove the existence of Hadamardigtfnctionsw®, w" satisfying
eq. (239), and to prove that the algelfahas sensible Hilbert space representations. Both
statements will now be proved by appealing to a deformatigaraent, as originally proposed
by Fulling, Narcowich and Wald [48], and a construction ofMSeer and Pfenning [45] for
Maxwell fields on ultra-static spacetimes. That constaurctinly works for spacetimed = 2 x
R with Z compact and simply connected (i.8l(Z, ds) = 0), which is a physically reasonable
assumption in view of the topological censorship theored],[&and which we shall assume
here.

Consider, besides the original spacetiriM, g), an auxiliary deformed asymptotically static
spacetime(l\?l,@). By this we mean that both spacetimes are identical to thedudf some
Cauchy surfac& x {t, }, and thayis “ultrastatic” to the past of some Cauchy surface{t_},
meaning thag has the form

g = —dt®+ h;j (x, %%, %) dX dx! (245)
j

there, whereh = hjjdXdxl is a Riemannian metric o that does not depend upén The
idea of the deformation argument is now as follows. Firshstoict a paif®®, @') satisfying
the desired eq. (239) in the ultrastatic part(df,§). Then, becausd and d intertwine the
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action of the wave operato on 0-forms anddd+ od on 1-forms, and sincéi® &") are
bisolutions to the respective wave equations (238), theatbsquations (239) must therefore
hold on all of(l\?l,g), and not just on the ultrastatic part. Furthermore, one bawg480] using
the celebrated “propagation of singularities theorem”] [&&e Appendix C,E) that the pair
(6®,6Y) satisfies the desired wave front set condition (89) on al\bfg) if they are satisfied
in the ultrastatic part. In particular, on the part(®, §) identical to(M, g), we then have a pair
of Hadamard bi-distribution&v®, @) with the desired properties. The pé&iv°, &) on the part
of (M, §) identical with(M, g) may now be propagated to a solutit®, ) of the hyperbolic
equations (238) on the undeformed spacetiMeg). By the same arguments as above, this will
now have a wave front set of Hadamard form on the undeformadespne, and it will satisfy
the desired equation (239).

Thus, we need only prove the existence of a pait, ©') satisfying (239), the Hadamard
condition (89), the commutator property, and field equati(#88) on an ultrastatic spacetime
(I\?I,Q). This can be shown as follows using the following constauctyy [45], which in turn
builds on results of [77]: On the 3-dimensional compact Rianian spacetimg, h), we con-
sider a complete set of eigenfunctions of the corresponstiatar Laplace-operatdy, = dsds,

Dndk = —V(S k)%, (246)

with positive eigenvalues(S k)?, labelled by an indek € J(S) in a corresponding index set.
One defines = (t,x) € M andug(t,x) = €(SKlt$, (x), as well as the “scalar’ and “longitudi-
nal” mode 1-forms oM by

Ask(t,X) = uk(t,x)dt (247)
A k(t,x) = V(le)duk(t,x)+iuk(t,x)dt, (248)

with v(L,k) = v(Sk). These mode functions are smooth by elliptic regularity. e @rext
chooses an orthonormal set of eigenmodes for the Lapl@giandsds + dsds on (X, h) acting
on 1-forms. By the Hodge decomposition theorem (see e.g),[d8ingH*(Z,ds) = 0, these
can be uniquely decomposed into ones in the imag& a&nd those in the image ak. We
denote those in the image &f by & and their eigenvalué$by —v(T,k)?, wherek is now an
index from a sef(T). We define the corresponding “transversal” mode 1-form¥idoy

A7 x(t,x) =€V TRLE, (x). (249)
and we define the vector Hadamard 2-point distribution oruttra-static spacetime by

' (xy) = — ;kg@) %ﬂx,k(xmkk (y) (250)

2Note that the scalar and transversal eigenvalues need incide.
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wheres(S) = 1,s(L) = -1 =9(T), andA € {SL,T}. It was proved in [45] that this is of
Hadamard form and that it has the desired commutator prnpp&f define the scalar Hadamard
2-point distribution on the ultra-static spacetime by

1 -
. (251)
P

O>(X,y) =

It was shown by [77] that this is of Hadamard form and thattitséi@s the desired commutator
property. The desired consistency property (239) on thasthtic spacetime follows by going
through the definitions. Thus, by the deformation argumeatpbtain from this a paifw’, «®)
on the undeformed spacetime satisfying also the desiresistency condition (239).

We must finally construct a Hilbert space representatiorhefdlgebrafy = Mg/ % that
gives rise to a corresponding representation of the algaefopaysical observables (218) on the
factor space (227). On an ultrastatic spacetivh@, we construct a representation as follows.
We let hy be the 1-particle indefinite inner product space spannedéytthonormal basis
elementsg  x, with A = SL, T andk € J(A), with indefinite hermitian inner product defined

by (& a k& n k) = S(A)Ki OOk We let

=P R bb (252)
n=0

be the corresponding (indefinite metric) standard bosooakSpace, with basis vectors
1
||1)\1k17 EERE In)\nkn> = H ;elm_)\m_km_ SRRy elm)\mkm (253)
" Te

and we Ielaﬁjik be the standard creation operators associated with the bestors, i.e.,
ajy pll1Aika, .., InAnkn) = [3vp, l1A1K, .., InAnkn) - (254)

We let hs be the 1-particle indefinite inner product space spannecbytthonormal basis
elementd; + x andk € J(S), with indefinite hermitian inner product defined by sk, fir g /) =
i€s¢ky Ok, Whereegq is the anti-symmetric tensor in 2 dimensions. We let

3t =P /\b+ (255)
n=0

be the corresponding (indefinite metric) standard fernudéiuck space, with basis vectors

1
[1181K1, ., Insnkn) = %ng’(ﬂ) flasakn @ @ flpsmkm (256)
" Te
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and we let",, be the standard creation operators associated with the esiors, i.e.,

Crpllisika,. .., Insnkn) = [Irp, l1s1K1, . .., Insnkn) - (257)

The (indefinite) metric spac#p is defined as the tensor produd = Fp @ §¢. We now define
the representatives of the fields= (A',B',C',C') as linear operators aff by

oA (x) = Y ;ﬁlkk(x)alfkk +he. (258)

N keZ()\) V(A k)

1 et
1

( (
o(C'(x) =
( (

keZS) V 2v S,k)

We define the representative(B' (x)) to be —itp(8A! (x)), and we define the representative of
any anti-field®* to be zero. Finally, we define the representative of any ehéfféu) of the
form (240) by applying a normal ordering on the represematiall creation operators to the
left or all annihilation operators). The two-point funat® of the vector and ghost fields are
then precisely given bg', resp. by®®. As in flat spacetime, it may next be checked that, for
compaciG (i.e., positive definite Cartan-Killing forrk ;) and in the ghost number O sector, the
positivity requirement of sec. 4.2 is fulfilled. Thus, theypltal Hilbert space (227) inherits a
positive definite inner product. Furthermore, it followsifin the consistency condition (239)
that it contains precisely excitation of the longitudinabaes (249). In a general, non-static
spacetimes, a similar construction can be applied by primgdhe mode functionsi, y, Uk

to solutions of the corresponding wave equation on the sipaeegM,g) by a deformation
argument as above.

We expect a similar construction to work in the case WHé(Z, ds) # 0, the only difference
being the addition of corresponding zero modes to the mogarestons. We also expect a
similar argument to work in spacetimes with non-compactdbsiesurface, but it appears that
this requires more work in general.

Uk (x)cﬁ_7k +h.c. (260)

4.3 Interacting gauge theory

In this section, we describe in detail how the general corsin of interacting Yang-Mills
theory outlined in sec. 4.1 is performed. To construct pédtively the interacting fields in
interacting gauge theory, we need to construct the timered products in the free theory
considered in the previous subsection. For time orderedymts with 1 factor, this was done
there. For time ordered products witifactors, this can be done as described in Sect. 3, and
these time ordered products will satisfy the analog of comals T1-T11.

However, in gauge theory, the time ordered products musstfgdtirther constraints related
to gauge invariance. As we have argued in section 4.2, indoggfixed formalism, we need
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to be able to define an interacting BRST-charge oper&grand we need that operator to be
nilpotent, i.e.Q|2 = 0. In order to meaningfully constru€,, we need a conserved interacting
BRST-current);. If our time ordered products only satisfy T1-T11 [with tlygsnetry property
T6 replaced by graded symmetry with respect to the Grassiparity], then there is in general
no guarantee that the interacting BRST-current is consedd = 0, nor thatQ? = 0, nor that
[Qi, W] = O for strictly gauge invariant operato¥i of ghost number 0.

We will now formulate a set of Ward identities in the free thethat will guarantee that
these conditions are satisfied, and which moreover will goige (formally) that the S-matrix—
when it exists—is BRST-invariant. As argued in the previsastion, with such a definition
of time-ordered products, the conditions of gauge invargaof the perturbative interacting
guantum field theory are then satisfied. The Ward identitias Wwe want to propose are to be
viewed as an additional normalization condition on the torgered product, and are as follows.
Consider a local operatap € P, given by an expansion of the form

O= 0p+A01+..\NON. (261)

Let f be a smooth compactly supported test functiofvhrand let

F:/[Oo+>\fol+-~+>\NfNoN]. (262)
M
Then the Ward identity that we will consider is
. L 1 i :
Q. T(e")| =—T((+FS+F)@e") modulo. (263)

Here, Qo is the free BRST-charge operator, .) is the anti-bracket (53), and] is the graded
commutator in the algebra@}. As with all generating type formula in this work, this is te b
understood as a shorthand for the hierarchy of identitiasdhe obtained when the above ex-
pression is expanded as a formal power seri@ds We now write out explicitly this hierarchy of
identities. For this, it is convenient to introduce someation. We denoté = {ki, ...,k } sub-
setson={1,...,n}, and we write = ||| for the number of elements. We s&t= (X,, ..., X ),
and we put

Or(X1) = 1! O Xy )O(Xicq s - - -, Xic, )- (264)

With these notation, the Ward-identity (263) can be exmess

<|ﬁ)t [Qo, Te(Oy1y (%1y) @+ O (%4))] =

11U--Ulk=n
B Z <i_>t_l tZ(—l)ath(Ou |(X|1)®...§OO|| |(X|k)®___o|l |(x|t))
11U---Uly=n h K=1 ! k t
i\t-2
—|1U..%|t—g<lﬁ) 1<I(Z\<n(_1)3k8|-rt—l(o|ll|(x|1)®...(O|Ik|(x|k),O||I|(X||))®...O||t|(X|t))

(265)
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modulo %, whereg, = €(01) + - - - + €(Ok_1). We will not prove the above Ward identities for
arbitrary operator® in this work, but only for certain special cases, which atevant for our
analysis of gauge invariance. These cases are

(T12a) O is given by the interaction Lagrangia®,= AL 1 + A%L»,

(T12b) Ois given by a linear combination of the interaction Lagramgiand the BRST-current
O =AL1+M°L2+yA (Jo+AJ1) (evaluation of the Ward identity to first order ine
Qg(M)).

(T12¢) O=AL1+A%Lo+YyA S AW, e PP(M) is given by a linear combination of the interaction
Lagrangian and a strictly gauge invariant oper&fos zk)\"wk of ghost number 0,i.e., of
the form given by eq. (42) (evaluation of the Ward identityitst order iny € Q P(M)).

It is only for those cases that we will prove the Ward-ideesi{265), and that proof is provided
in section 4.4. For convenience, we now give explicitly thenf of the Ward-identities in the
cases (a), (b), and (c).

Case (T12a)The Ward identities in that case are given explicitly by

<Iﬁ)t [Qo, Te(L iy (X1) @ Ly, (%))] =

11U- Dl =n o |
S 2 (7)) S0 Sl (X)L ()
_|1u..%|t—g<lﬁ)t_2 <|gtTt_1(L|ll|(X|l) (L ), L g (R ) ® - Ly (%)), (266)
modulo %.

Case (T12b)The Ward identities in that case are given explicitly by

<iﬁ>t—l [Qoth(J||1| (Y, X)) ® L||2|(X|2) ®-@Ly (Xhm _

I1U---Uli=n
t—2 ¢

o %t n( ) Zth I (¥, Xiy) @ Lyt (X)) @ Sob iy (%) @ - Ly (%)

- (—) Tt<SoJu1|<y,><u>®L||2|<x|2)®-~~®L|.t|<x|t))

11U---Ulg=n h
i\t-3
- Te2(Jpy (% Xig) @ L1, (K, L L Ly (%
+I1U-~%It—n<h) 2<gj<t =1 (I (% X)) @ Ly (K1) @ (L (%) Ly (X)) @+ Ly (%4,))
i\t—2
_ ! T 1(L @ (I 9 X), Ly () @+ Ly (X)), (267
w%t n<h> 2<Zl<tt1 12/ (X12) @ - (Jig (% X)), Ly (X)) @ - Ly (%)), (267)
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modulo %. HereJ1(y,x) = J1(y)d(X,y).

Case (T12c)let W = Wo+AW1 +-- -+ ANWy be a strictly gauge invariant local field poly-
nomial of ghost number zero. Thus, by formula (42), up tolloccavature terms which we may
ignore,W =[] Os (F, DF, D?F, .. .), whereQs are invariant polynomials of the Lie-algebra. The
Ward identities in that case are given explicitly by

i

<_)H [Qo: Te(Wyiy (% Xiy) @ L1y  (Xip) @ - @ Ly (X))] =

B\
_.lU 2 n( )t ZiTt Wiy (% Xi) @ L1, (X)) - Sobypy (%) @ - Ly (X))
_.lu..%.t_ﬁ) TS, (104, 8 Ly (Xi) @ -1y 04)
_IlU”%It_n<iﬁ)t_32<gj<t1—t—1(w||l|(y,X|l)®L||2|(X|2) (L O40), L O6)) @ L (4)

_|1u D n< )t ziTt 1L 1y (Xi2) @ - (Whag (9 X)L (X)) @ - Ly (X)), (268)
modulo %.

We will give a proof of the Ward-identities T12a—T12c in sabs4.4. We will then show
in subsec. 4.6 that the Ward identities T12a imply the caradiem of the interacting BRST-
current,dJ; = 0. We will prove in subsec. 4.7 that the Ward identities T12tHermore imply
thatQ? = 0 and we will show in subsec. 4.8 that the Ward identities Tigdy [Q;, W] = O for
strictly gauge invariant operatoks at ghost number 0. The Ward identity T12a also formally
implies the BRST-invariance of ti@matrix (see subsec. 4.5), provided the latter exists (whic
is not the case in Minkowski space, and appears even moielnin curved spacetime). We
will not analyze this existence question here, so in thiseghe BRST-invariance of thg
matrix is not a rigorous result unlike the other results im paper.

As an aside, we note that, the Ward identities T12a, T12b Td2d areincompatiblewith
the identity

[Qo, Ta(O1(x1) ® -+ ® On(%n))]
Ihzl VETh(01(X) @S0 (X) @+ On(%y)) modJ (WRONG!), (269)
unless none of the fields, contains anti-fields. The above identity has been consideséore
in the context of flat spacetime in [35], where it has been &rfMaster BRST-identity.”

It appears that it is impossible to satisfy this identitydevfor n = 1) when anti-fields are
present. It would also not imply either the conservationhefinteracting BRST curreid§ nor
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the nilpotency of the interacting BRST charge in a framewaitk anti-fields. Since the use
of anti-fields also appears to be essential in order to destifkciently strong constraints on
potential anomalies to the BRST-Ward identities, we belighat eq. (269) is not a good starting
point for the proof of gauge invariance in perturbative Yavidis theory.

4.4 Inductive proof of Ward identities T12a, T12b, and T12c

We now show that the Ward identities can be satisfied togetiier T1L—T11 by making a
suitable redefinition of the time-ordered products if neaeg The Ward identity (265) is an
identity modulof, that is, it is required to hold only on shell. For the prootftiot identity it
is actually useful to consider a more stringent “off-sh&ltsion of the identity. This off-shell
version is

A iF /h [ iF /h
soT(e'g/f)zz_hT<(so+F,So+F)®eg/f). (270)
The difference to (265) is that on the left side, we do not ltheegraded commutator witQo,
but instead we act with the free Slavnov-Taylor differelnfig whose action orP was defined
above in eq. (65) and (66), and whose action on algebra elsritefi} is defined as follows:

S

§o<: O1(x1) .. . Os(X) :w) - Zl(—l)ai L 01(x) ... RO0(X) ... Os(Xs) 1wy (271)

where O is either a field®, or an anti-fieldd*. It follows from eq. (239) that this formula
defines a graded derivation oi}, in the sense thady(F (u) x; F(v)) = $F (u) x; F(v) +
(—21)EFWIF (u) x, HF (v). On-shell, i.e. moduldp, the action ofs; on W} is identical, up
to a factorih, with that of [Qo, .], but not off-shell. Furthermore, by contrast with (265) th
sharpened Ward-identity eq. (270) not only holds on-shmlt, also off-shell, and therefore
would clearly imply eq. (265). Despite being more stringehe sharpened Ward identity is
in fact simpler to prove, as it also allows one to derive mdrigent consistency conditions
on the possible anomalies. These consistency conditibngiran essential way upon the use
of the anti-fields, and this is the principal reason why weehiaroduced such fields in our
construction.

For generaF, and a generic prescription for the time ordered produdtsfgang T1—T11,
neither the Ward identity (265), nor (270) will hold. 1t ded¢®wever, hold up to an anomaly:
We claim that

s (aF/hy 1 iF/ny 1 F\ o JF/h
oT(E") = 5 T((®+RS+Ped" )+ T(Ad)ed"),| @72
where the anomaly is given by
1
AE) =S ZA(F™), (273)
® n% n!
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and where, : PX4(M) @ - - - @ PK(M) — PXa/-/ka(M") are local functional supported on the
total diagonal, ané\(ef,) = O(h). These maps furthermore have the same general properties as
Dy in sec. 3.6 (we also use the same notation introduced there).

Proof of eq.(272): The proof of the anomalous Ward-identity (272) pexteby induction
in the ordern in perturbation theory, noting that the anomalous Wardhig holds at order
n if it holds up to ordem — 1, modulo a contribution supported on the total diagonalatTh
contribution is defined to b&,. In more detail, considen local functionalsk, ..., R, with
F = J fi A O, with f; a form of compact support and form degree complementaryabadh
O € P(M). For definiteness and simplicity, we assume thatathave Grassmann parity O; in
the general case one proceeds similarly. The anomalous-Méndity (272) at orden is then
the statement that

§0Tn(F1®"'®Fn) =

n
N h
k=0 K<

n t—1

Zx Z Z (IE) Thtr1(A(Re®...R)®R,®...R_ ). (274)
t=1ky <<k l1<--<lp_t

Forn =1 this says thasyT1(F) = T1(5%F) + T1(A1(F)), and we simply definéy (F) in this

way. Since there is no anomaly in the classical limit, itdals thatA; (F) is of orderh. We

now proceed inductively to prove the equation forralAssume that it has been shown for any

number of factors up tem— 1, and theAy,...,A,_1 have consequently been defined. Take

functionalsF, ..., R, with the property that the support of the fitstunctionals is not in the

future of the support of the last—t functionals, wher¢ is not equal to 0 on. Then, using the

causal factorization property of the time ordered produaesswell as the inductive hypothesis,

it follows that the above equation holds with the last suimieated ah — 1. Consequently, the

difference between the left side, and the right side withHalsesum terminated &t— 1 must be

a functional valued i1 that is supported on the total diagonal. That functionaltrheace be

of the form (h/i)" 1Ty (An(FL® - -- ® Fq)) for someA,, which we hence take as the definition

of An.

We must next show that,(F®") is of orderh. For this, it is convenient to considErof the
form R = [ fi(®%) A Oi(P), i.e., the anti-field dependence is in thebut not in thed;. Since a
general; may be written as a sum of such terms, there is no loss of gigevsle furthermore
split the differentialsy = 5o+ 0g into the pure free BRST-differentiah, and the Koszul-Tate-
differentialag, see the table below eq. (66). Let us furthermore assumsijrylicity, that the
firstn—1 anomaly term#&\;, Ay, ..., Ay_1 vanish, as the general case is completely analogous.
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Then the definition of the-th anomaly is
§0Tn(F1 R Fn) -

k=0 k<]

n—-1
— (ﬁ) Ti(A(FL® - @F)). (275)

Arguing e.g. as in [39], one may now show that

n

oT(FL® - ®F) = Y Ta(FL®... R ...Fn) = O(h"). (276)
k=1

Moreover, we have

GoTa(FL®---@Fn) = /oo[fl(xl) <+ (%) Ta(OL(X0) @ - - @ On(Xn) ) da ... A%,

n 5 o)
_ Z/éq)—s&)*ﬂn (F1®“'5¢¢Fl((x) ®---Fn) dx, (277)
K=1
and we have
n _ n 0 OF
klen(Fl ®...00®...F) = kzl/Tn (Fl Q... 30X A 6q3¢(x) B Fn) dx, (278)

using the definition 06, see eq. (66) and the following table. Using now eq. (5.12him. 7
of [15] (or rather, its generalization to curved spacetime find from eqgs. (277), (278) that

ool(FL® @R — ZTn(F1®...ooFk®...Fn)

= - ZkihT”—l(Fl(X’ o (F R)®...F) +O(R"). (279)

Substituting egs. (276) and (279) into eq. (275), we obtaéndesired result th#,(F®") is of
orderh. We must finally show that the mapg have properties analogous to those of the maps
Dy in sec. 3.6. A similar proof of a statement of essentially ¢ame nature is given thm. 7
of [15], so we refere the reader to that work for details. O

Having demonstrated the anomalous Ward identity (272), wlenaw show that wherf
is as in the cases T12a, T12b, and T12c, then the anoftefly) in that identity can in fact be
removed by a redefinition of the time-ordered products &iast with T1—T11. Thus, in these
cases, we may achieve that the Ward identity holds exacilgowt anomaly. The first step in
order to prove this statement is to derive a suitable “cd@scy condition” on the anomaly. The
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consistency condition is obtained from eq. (272) by actitity § on that identity, using%A: 0,
and applying the anomalous Ward identity one more time. dbéhsteps are carried out, then
the following identity is obtained:

1 . i
_§T<[‘ (So+F So+F)oel)+ (50+F,A(e§>))} ®e!§/f) = T(A(A(eg) ®e) ®eg/f) ,

m i (280)
Since a time ordered produt(G ® €5, /") vanishes if and only is = 0, it follows that

(S+FAE)) +A((S+FED+F) od ) = —2A(AE) e d). (281)

This is our desired consistency condition for the anomabyteNhat, since the anomaly itself is
of orderh, the lowest order irk contribution to the “anomaly of the anomaly term” on the tigh
side is necessarily of a higher order/irthan the lowest order contribution left side. A more
stringent consistency condition can therefore obtainedhe lowest order (ir:) contribution

to the anomaly. For this, we expam;ieg) in powers of the couplingy, andh,

A = ZO)\”hm/ﬁlmm(xl,...,xn)f(xl)...f(xn)dxl...dxn, (282)

wheredn mis a local, covariant functional ¢fp, @*), and the metric that is suppored on the total
diagonal. Both sums start with positive powers, becausatioenaly vanishes in the classical
theory (i.e.,h = 0), and also in the free quantum theory (i2e= 0). LetAn(eg) be the lowest
order contribution toA(ef ) in the h-expansion, that is

An(e5) = 1™ ZO)\”/ﬁlmm(xl,...,xn)f(xl)...f(xn)dxl...dxn. (283)

Then, from our consistency condition we get the relation

(So+FAn(€) ) +An( (So+F S+F) 2 e ) 0. (284)

This is the key relation that will be used in the proofs of T1Z42b, and T12c. In those
proofs we will actually encounter several quantities lf@n, so it is convenient to introduce
the notation from sec. 3.6. As therg;, ..., ky) is a set of natural numbers. We denote by
Pki/--/%(MM) the space of all local, covariant functionals®fd*, and the metric which are
supported on the total diagonal, and which take values irbthrelle (189) of antisymmetric
tensors oveM". Thus, if B, € PX/-/kn(M"), thenB, is a (distributional) polynomial, local,
covariant functional ofb, ®* and the metric taking values in the + - - - + kn forms overM",
which is supported on the total diagonal. It igaform in the first variable;, ako-form in the
second variabley, etc. Concerning such quantities, we have a simple lemntashavill use
below.
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Lemma 4. Let B, € PX/--/kn(M"), and letf;,i = 1, ..., nbe closed forms oM of degree 4-k;.
Assume that for any such forms, we have

[ B0 AT] %) = 0. (285)
i
Then itis possible to write

n
Bo D, D¥ = 5 dB (@, DY + B4[0,0], (286)
k=1

wheredy = dx¢ A (6/6x}(1) is the exterior differential applied to theth variable.

Proof: We first consider the case= 1. If ky = 4, then the assumptions imply that=
[ B1(x) f1(x) = 0 for any closed O-fornfy, i.e., for any constant. We therefore ha&ke/d®d(x) =
0. Consider the patlp; = (1@, 1®%) in field space. ThenB;[:]/dT can be written agp; -
g—E[qJT], plusdd W] for some locally constructed 3-forth Thus,

1 1
B [®, Y = B1[0,0]+ /O %ﬂl[wr]drzﬂl[0,0]+d /O 9[ux] dt (287)
= B1[0,0]+dBy [, &7, (288)

which has the desired form. K = 0, thenf; is a 4-form, which is always closed. Thus, the
assumptions of the lemma imply thai[P, cp*] =0, which is again of the desired form. Finally,
if 0 < kg < 4, we may choosé; = dhy, implying that/ d3;(x) Ahy(x) = O for all hy, and thus
thatdB, = 0. The statement now follows from the algebraic Poincareram

The proof of the lemma fon > 1 can now be generalized from the case 1. Without loss
of generality, we may assun|® =0, oF = 0] = 0, for otherwise, we may simply subtract this
guantity. To reduce the situation to= 1, consider the form oM of degreek; that is obtained
by smearingB, as in (289), but the smearing over the first test-foromitted. Ifk; < 4,
then this form is a closed form that is locally and covariaetinstructed fronf,, fo, ..., f, and
@, d*. This 4-form then by definition obeys the assumptions of len2yso we may write

O:/Q%n(xl,...,xn)/\_ﬁ fi(xi)—dl/qsn/l(xl,...,xn)A_ﬂ fi(%) (289)

for somes,; € Pka=1/ke/--/kn_|f kg = 4 one may argue similarly. We now repeat this argument,
now omitting the integration over the second test fdamWe then get

O:/Q%n(xl,...,xn)/\_ﬁfi(xi)

_dl/@n/l(xl,...,xn)A_ﬁ fi(xi)—dz/qsn/z(xl,...,xn)A_ﬁ fi(x) (290)

for some®,, € P*1/ke=1/--/k We may continue this procedure, and thus inductively pedce
to construct the remaining, . O
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441 ProofofTl2a

We shall now prove that the anomaly can be set to 0 by a redefinithe time ordered products
in the caseO = AL1 + 2Ly, that is,F = [{AfLy+A2f2L,}, wheref € C3(M). Evidently,

whenf =1, we haveS + F = S but note that we cannot simply sét= 1 in T(eg/h), for
we might encounter infra-red divergences. However, siheeahomaly termsi, m are local,
covariant functionals ofp, d* that are supported on the total diagonal (taking valueserith
forms A" T*M" overM"™), we may without any danger sét= 1 e.g. in eq. (284), which means
that

§%)\”/ Amn(Xt, - %) dX ... A%y = 0. (291)
n> M"
We formally setdm = 5 A" m, i.€., 4m is an element in the space
TM) = P P/-/kam") (292)
n>1ky,....kn

while each4m, is an element ifP*/~/4, OnT (M) there is a natural action afgiven by

§/"‘lm,n = §Of4m,n + §1/"4m,n—1 + §254m,n—2a (293)

and a natural action of the exterior differentialson thek-th variable. Using eq. (291) and
lemma 4, we have

$m = deﬂm/k, (294)
Here, By = 3 A" B, myk is an element irg(M), and eachB, i is a local and covariant func-

consistency relations

SoAm = Z Ak By myk (295)
S%m = —-SAm+ Z dkBo m/k (296)
S9Am = —SAm—SAm+ Z B3 myk (297)
oAm = —SAm—S%Am+ Z kB4 myk (298)

(299)

We would now like to apply our Lemma 1 to this hierarchy of detency conditions, to show
that the anomaly is cohomologically trivial in a suitablese. However, as it stands, the lemma
applies to local functionals that take values in the Batf differential forms ovemM, rather
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than local functionals taking values in the sp&) (which gives rise to a multi-complex
@kH* (8 dk, T(M))). We deal with this more general situation as follows: Wet fist

am(X) = Z )\n//qm,n(X:YL sy Yn—1)dyr...dyh-1 € P(M) (300)
n>0
as well as
bm(x) = %)\n/ﬂm,n/l(xa Y1i,-- s Yn-1)dy1...dYh-1 € P(M). (301)
n>

It follows thatSay, = dby. Since the anomaly, and herag, must be odd under parity,— —¢,
and since it must have ghost numisg = +1, and dimensior\yz = 4, there is no room for
a non-trivial anomaly by lemmas 1 and ref. 1, because allesgters irH*(§|d, P(M)) are
parity even, and all representerdHri(§, 2(M)) at ghost numbe#-1 vanish when the Lie-group
has no abelian factors, as we are assuming. Thus, we mustahaves jm + dk, for some
jm, km € P. We next put

Dran = Km(X1)0(X1, -, %n)  Gnnj1 = Im(X1)0(X1, .-, Xn), (302)

and we putDm = 3 A" D, etc. It follows that, if we integratélm — $Dm — d1Gyy1 Over all but
the first spacetime variabla, then we get zero. Consequently, by lemma 4, this quantitstmu
be given by an expression of the fod® /> + d3Cm/z + - - ., hence

= 8D+ 3 deCi (303)

in the sense of formal power series. Thus, we have shownith#te present theoryy, is
cohomologically trivial in the appropriate sense. We caw mse this to remove the anomaly
by a redefinition of the time-ordered products. Assume thatanomaly occurs first at-th
order in perturbation theory, i.e4 ,» = 0 for all | < n. We have

L1 =dO; (304)

for some local 3-form field);. We now redefine

Ta(L1(%)®...01%) ®...L1(%n)) —
Ta(L1(X1)®...01(%) ®...L1(Xn)) + hmTl(@mm/k(Xl, ..yXn))  (305)

and we redefine
Ta(L1(X1)®...L1(Xn)) — Th(L1(X1) ®...L1(Xn)) + hmTl(Cmm(Xl, cesXn)) - (306)

It can be shown that this is within the allowed renormali@atireedom for the time-ordered
products described in sec. 3.6, except possibly T9, and @aaf,T11. To satisfy T9, it is

78



furthermore necessary to also change the time-orderedupt®af sub-monomials df; in
order to be consistent with T9. This causes no problems. iticpéar, T10 does not impose
any restrictions, because the free field equa@gyd® is not a sub-Wick polynomial of 1,
while T11 does not cause any problems becduses not the exterior differential of a locally
constructed 3-form.

The redefinitions (305), (306) remove the anonﬂ,l,y(e@) at orderh™, and orden". We
now repeat the argument, and next remove the anomaly to dfdérand we inductively con-
tinue to all orders im. Thus, the anomaly can be removed to ortd®r and all orders in\,
i.e.,Am(€},) = 0. We now repeat the same argumentAgr;1(€f), i.e., ordera™ 1, and we can
proceed in just the same way for any ordefinThis shows that the anomaly can be removed
to arbitrary orders ik andA. O

4.4.2 ProofofT12b

Consider the local elemen@ = [yA (Jo+ fAJ1) andF = [(fAL1+ f2A°L,), whereyis a
smooth 1-form of compact support, amds a smooth scalar function of compact support. In

order to prove (b), we must show that we can ® /M~ o by a suitable redefinition of
X

the time-ordered products. As above, we write

AGoe ") = 5 AT sy (Y XL X)YY) ). F () dydg ... (307)
m,n>0

Let An(G® e'g/h‘) be the lowest order contribution into the anomaly. We apply the consis-

tency condition (284) to the elemeltt- TG instead ofF in that formula, and we differentiate

with respect ta and sett = 0. Then we obtain the consistency condition

(S+F,An(G®E€L)) + An((S+F,G)wef) =0. (308)
Now, we putf =1 and we take to satisfydy= 0. Then,S+ F = S and bysJ = dK,
(So+F,G):§/ y/\J:/y/\dK:—/dy/\K:O. (309)
M M M

This implies the condition
Sn;/wﬂ Amn (X0, X1, - - -, Xn)Y(X0) dXodXq ...dX%, =0 (310)

for any closed 1-forny. By lemma (4), this means that we have eq. (294) wh&ras now
defined using the quantitied,m € 2%4/-4(M"1) in eq. (307), and wher@yx = ¥ Bun/k
andBy,n k is now a local covariant functional ¢, ®*) in the spacep?/4/-4(M™1) for k=0,

and in the spac@3/4/--3/-4(M™1) for k > 1. As in the proof of T12a, let us form the quantity
am, see eq. (300), which is now an elementAiM) satisfyingsam = 0 modulod. Since the
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anomaly is odd under paritg,— —¢, and has ghost numbef2, the same must apply t,.
Using that the dimension af; is 3, it follows that the dimension &y, is likewise equal to 3.
However, by lemmas 1 and 1, there is no expression of this tbahis not cohomologically
trivial, i.e., which is not of the forma,, = Skn+djm. So, by the same argument as in the
proof of T12a, 4y, is cohomologically trivial, in the sense of eq. (303). Theqtity Dy, =

S A"Dimpn is again inT(M), and eachDyy is now in the spaca®4/-4(M™1). Similarly
Gk = 3 A" Gk IS @gain inT(M), and Gk is Now in the space?/#/-4(M™1) for k = 0,
and in the space@®4/--3/-4M™1) for k > 1. Furthermore, using that the dimensionJaf
equals 3, that the dimension bf equals 4, using the scaling properties of the corresponding
time-ordered products, T3, and using the scaling propedfethed-function, it follows that
Gmn/o €an be written in the form

Cm,n/O(yvxlv"'vxn) = Zm,n—l(Y:Xla---ax{a---axn)é(Y:Xl) (311)

M=

for someEmn_1 € P4 -4(M"), i.e., we can factor out &function without derivatives. As-
sume now that the anomaly vanshegrtoh order ink, and ton — 1-th order inA. We would
now like to remove the anomaly atth order inA. We make the following redefinitions of
time-ordered products. We redefine the time-ordered prisdmith n+ 1 arguments, one factor
of Jg, andn factors ofL 1 by

Th+1(Jo(Y) ®@L1(X1)---®L1(Xn)) —
Thra(Jo(y) ®La(xa) - - @ La(Xn)) + A" Ta(Dmn(Y, Xa, - - -, %)) - (312)

We re-define the time-ordered products witlrguments containing 1 factor &, € P2 [see
eg. (70)] anch — 1 factors ofL, € P* by

Ta(Ka(y)®@L1(x1)---®L1(%0-1)) —
Tn(K 1(y) X L]_(X]_) e ® L]_(Xn_]_)) + hmT]_(fm’n_]_(y, X1, .. .,Xn_]_)) . (313)

We redefine the time-ordered products with- 1 factors, containing 1 factor df € 22, one
factor of 01 € P (see eq. (304)), amil— 1 factors ofL1 € P by

Tn+1(Jo(y) @ L1(X1) -+ ® O1(X) - - - @ L1(Xn)) —
Thr1(Jo(y) @La(X) - @ O1(%) - - @ L1(Xn)) + AT (G (Vs X1, - - -, %)) - (314)

It then follows from these redefinition that the new anomailythe so-redefined time-ordered
products vanishes at ordein A, and ordemin h. We repeat these redefinitions at order 1

in A, and so fourth, thus showing that we can achieve that the alyovanishes to ordes™,
and all orders in\. Since we can do this for ath, we see that we can satisfy T12b above by a
suitable redefinition of the time-ordered products.
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4.4.3 ProofofTl2c

LetW =[] O (F, DF, D?F, .. .) be the gauge-invariant expression of form-degremder con-
sideration, wher®s are invariant polynomials of the Lie-algebra, so that intigatar S¥ = 0.
By analogy with T12a and T12b, the anomaly in the Ward idgftit2c can be written as

A(”’(X)®eg) = Z )\nhm/ﬂn,m(xaﬂa---aYn)f(Y1)---f(Yn)dyl---dYna (315)
n,m>1
whereF = [[AfL1+ A%f2L;], and where each termimn is now an element in the space
PP/4/-/4(M™1) As in the proofs of T12a, T12b, one now proves the consigtenndition

33 )\”/ﬂnm(x,yl,...,yn)dyl...dyn:O, (316)
n>0

wheremis the first order imh where the anomaly occurs (note that there is no integratteng
which is a consequence of the fact te#t = 0 exactly, and not just moduld). This condition
is again of conomological nature. As in T12b, it may be useshtmw that the anomaly can be
removed, ab-th order inA, by a redefinition of the time ordered products with 1 factbiOg
andn factors ofL 1, and by the time ordered products with 1 factoMéd, 1 factor of O1 [see
eq. (304)] andh — 1 factors ofL_1.

4.5 Formal BRST-invariance of theS-matrix

We consider the adiabatically switch&matrix S(F) = T(eg/ h‘) associated with the cut-off
interactionF = [, {AfL1+A?f2L,}, wheref is a smooth switching function of compact sup-

port. LetQp be the free BRST-charge operator. It follows from the degbnitS (F) = T(eg/h)
and the Ward-identities (a) that

1 iF /h
Q0. 5(F) = 5T ((S+F.S+F) e
Now consider a sequence of cutoff functions such that 1 sufficiently rapidly, i.e., the “adia-

batic limit”. Then it follows thaty+ F — S and consequently th&&+F,S+F) — (S S) =

0. Thus, formallyT ((SS+F,S+F)® e'g /h‘) — 0. Furthermore, formallys$(F) converges to
the trueS-matrix §. Consequently, assuming that all these limits exist, weldvbave

[Qo, 5] =0 modj (FORMALLY). (318)

As we have already said, the adiabatic limit does not appeaxist for pure Yang-Mills theory
in Minkowski spacetime, and there is even less reason teveethat it ought to exist in generic
curved spacetimes. Therefore, the above statement congehe BRST-invariance of th&
matrix is most likely only a formal statement, unlike the etlesults in this paper. We have
nevertheless mentioned it, because such a condition ia tdteen to be as the definition of
gauge-invariance at the perturbative level in less rigervaatments of quantum gauge field
theories in flat spacetime.

) mod % . (317)
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4.6 ProofthatdJ; =0

As above, consider the cutoff interactiBn= [, {AfL1-+A2f2L}, wheref is a smooth switch-
ing function of compact support, which is equal to one on stime-sliceMt = (—T,T) x Z.
The desired identit@dJ(x), will follow if we can show that, in the sense of formal poweriss,

0=dI(X)F = Z hin:]! Ra(dJ(x);F®M),  xe My (319)

modulo % for any such cutoff functiorf. Expanding the retarded products in terms of time
ordered products gives the equivalent relation

T<dJ( x) @ e/

which is again to be understood in the sense of formal powsgsseAt the level of classical
evaluation functionals, we have

) =0 mod% forall x € M, (320)

dI(X) = (S +F, D(x)) - (P*(x),S+F) forallx e M. (321)
Hence, (320) is equivalent to the equation
) = —T({82( (@, F) + &0 (x)- (@09, F) o el ")
~T({(F. o) (@ (9,F) }2el/") mod . (322)

T<dJo( )®e'g/h

We claim that this equation can be satisfied as a consequémce Ward identity T12a by a
redefinition of the time-ordered products. In fact, we simalv show that our Ward identity
T12a can even be used to prove the following stronger identit

<iﬁ)tTt(dJO(Y) ® Ly (X)) ®...Ly (%) =

t—1 ¢
- ( ) Zth(Lun
1LU- U|t n

®{éocb(y)~<q>*<y>,L|.i|<>qi>>+§oq>*<y>~<q><y>,L|.i|<>qi>>}®...L|.t|<>qt>)

I1U---Uli=n

2L E e
(L 06 PF)) - (P, Ly 04 @ Ly 4)) - (323)

modulo %. This identity implies (320) as may be seen by multiplyingteéerm byA"/n!,
integrating against(x ), ..., f(xn), and summing oven. Thus, it remains to be seen that (323)
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follows from the Ward identityfy. Forn =0, we get the conditiofi;(dJo(y)) = O, which is
just the condition of current conservation in the free tlyesord hence is satisfied. For> 0, we
proceed inductively. This shows that, at the order considigthe failure of (323) to be satisfied
is of the formTy(An(Y, X1, . ..,Xn)), WhereAn(Y,Xs, ..., Xn) is a local covariant functional that is
supported on the total diagonal. We now show that we can seqtiantity to 0. To do this, we
pick a testfunctiorh € C* (M) with the following propertiesh(y) = 1 in an open neighborhood
of {X1,...,X%}, h(y) = O towards the future oE., and towards the past &, whereX. are
Cauchy surfaces in the future/past{of, . . .,xn}. We may thus writelh= vy, —y_, wherey,
are 1-formsthat are supported in the future/pagt@f. . ., xn}. Now, fromQo = [y, T1(Jo) AV,
and from the causal factorization of the time-ordered potsiuve have

[ AT (@) 9Ly 06 ..L (%)) dy

[Qo, Te (L ji (K1) @ Lypy (X))
= 1hSTe(L (X)) ®...Lj (X)), (324)

where the last equation is modulg. We also have

/M h(Y)(0(x), ®*(y)) - (@(¥), O(x})) dy= (O(x), O(x;)) (325)

for any O. It follows from these equations that if we integrate (328aiasth(y), then we
get an identity that is equivalent to the known Ward idenf#tymodulof. Stated differently,
becausd(y) = 1 in a neighborhood ofxi, . ..,Xn}, and because the failufg of (323) to hold
is supported on the total diagonal, it must satisfy

/M To(An(Y, X0, -, %)) dy=0 mod. (326)

By lemma 4, it hence follows that there exists a local covdriay, supported on the total di-
agonal such thadlyT;(Dn(Y,X1,...,%n)) = T1(An(Y,X1,..., %)), WhereDy is a 3-form in the
y-entry, and a 4-form in eack-entry, and wherel, is the exterior differential acting on the
y-variable. We may now redefine time ordered products with famgor of Jo(y) and n fac-
tors of L1(X),i = 1,...,n by T1(Dn(Y,X1,...,Xy)). Then the redefined time-ordered products
satisfy (323).

4.7 ProofthatQ?=0

We know that the interacting BRST-current is consengelix); = O for anyx, or equivalently,
dJ(x)r = 0 for anyxin a domainMt = (—T, T) x X where the coupling functiof is constant,
i.e., for anyx where the functiorf in F = [{AfL1 +A?f?L} is equal to 1. Thus, the definition
of the interacting BRST-charg&), = [y A J, is independent of the choice of the compactly
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supported closed 1-formdual to the Cauchy surfa@ Using our definition of the interacting
field operators, the desired equal@? is equivalent to the equation

0= = ( [y 3(0e ) =

1 |n+m

QZ R e / [Rn(J(X);F®”),Rm(J(y);F®m) Y(X)Y(y) dxdy (327)

modulo %, wherey is now chosen to be supported iir. Note that, as usual, we mean the
graded commutator, which is actually the anti-commutatathe above expression. Alterna-
tively, because the interacting BRST-chaiQe as defined using the cutoff interactiénis
independent upon the choice of the compactly supporte@dlasform iny that is dual toZ,
we may therefore write the interacting BRST-charge altévaly asQr = [P A Jg, or as
Qr = [V? AJE, and we may write

In

F—§ / Rov1(309:9(y) @ F=M )Y 00y2 (y) dxdy+ (1. 2) (328)

where in the second line we used the GLZ-formula (207). We make a particular choice for
v andy? that will facilitate the evaluation of this expression. Wmosey) = dh®) + dh(2),
whereh@ andh(® are smooth scalar functions with the following propertiés} the support

of hM is compact, (bhM = 1 on the support oft?, (c) the support oh® is contained in

the causal future of the support g#). Due to the support properties and the causal support
properties of the retarded products, the above expressiomhen be written as

QF =~ ; e Roca (000: () & F) 0y (y) dxy (329)

Below, we will show that, for anyk,y € Mt, the following identity is a consequence of the
Ward-identity (b):
R(dI09;9(y) wef/") =
iF/h

inR({ (So+F.®(9) - (@9, 3(0)) + (S0 +F, & () - (®(,3(y)) } ;€5/")  mods. (330)

We now apply this identity and use tHat) = 1 on the support oft?. Then we obtain

Q@ =2 [R((s900)€5")y? (0. (331)

However,sJ = dK, so using T11, the right side vanishesdy? = 0. Thus, we have proved
QE = 0 modulof, and it remains to prove eq. (330). That equation can beemrgtjuivalently
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in terms of time ordered products

T(dJ(x)@J(y)@eg/h) -
iF /h

T ({(S+ F.000) - (709,309 + (So-+ F.070) - (000, 3 } ") mod,

(332)

using the formulae relating time-ordered and retarded geteigiven above. We will prove it in
this form. Eqg. (332) may be written alternatively as

T (%) @ 3(y) @ ef ") = -
-T < {éocb(x) (D (%),F) + (P q,:c)} 23(y) ®eg/h)

T <{(F, (X)) - (D (%), () + (P = ¢¢)} 9 3(y) ®eg/h)

+iRkT < {§0¢(x) (D (%),(Y)) + (F, P(X) - (PF(%),I(y)) + (P q,:c)} ®eg/h) mod .

We will now show that this equation can be satisfied as a caesesp of our Ward-identity
(b). To prove this identity, we employ the same techniquenakeé previous subsection. We
first formulate a set of stronger identities that imply . Tisat of conditions is completely
analogous to egs. (323), with the difference that in eq. \32@ replacelL;(X) everywhere
by Li(X) + 1Ji(y,X), and expand the resulting set of equations to first order ir\s in the
proof of egs. (323), the resulting equations are estaldishductively inn. Forn = 0 the
identity can be verified directly using the definitions madé&ee gauge theory. Inductively, the
resulting equations will then be violated at oraeloy a potential “anomaly” term of the form
Te(An(X, Y, X1, - - -, X)), WhereA, is now an element aP*/3/4/--/4(M™2), As in the treatment
of eq. (323), the Ward identity (b) then implies that

/MAnu,y,xl,...,xn)dx:O (334)
while the GLZ-identity, together with the fact thdd, = 0 can be seen to imply the relation
/MdyA,{x,y,xl,...,xn)dxl...dxn:O. (335)

EQs.(334) and (335) can now be used to show that the timeedgeoducts can be redefined,

if necessary, to remove the anomaly. By the same argument as in the previous subsection,
the first identity (334) implies that

An(X Y, X1, - - -, Xn) = AxDn(X, Y, X1, - . -, Xn) (336)
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for someDy, € P3/3/4/-/4(M™2), We would like to redefine

Tn2(Jo(X) @ Jo(y) @ La(x1) - - @ L1(Xn))
— Tn2(Jo(X) @ Jo(y) @ L1(x1) - -- @ L1(Xn)) + Ta(Dn(X, Y. X1, - -, %n)) . (337)
In view of eq. (336), this would remove the anomaly. Howeitas not clear that we can make
this redefinition, because the time-ordered products withftee BRST-currents atandy must
be anti-symmetric inx andy, and this need not be the case Byyin (336). We will circumvent

this problem by using a modifielﬁrl in eq. (337) to redefine the time-ordered products with 2
currents. To construct the modifi€s,, we consider the quantity

BYY.¥2) = [ Dalxyzs,... VP (9yP ) dxdyd...da+(1-2),  (338)

whereyd . v(2) are now arbitrary 1-forms of compact suppof.is evidently closely related
to the symmetric part oD,, which we would like to be zero. From eq. (335), we have
B(dh), dh@) = 0 for any pair of compactly supported scalar functidfs, h?. As we shall
show presently, this implies that we can write

B, v?) =C(dyV ) + (1 2) (339)
whereC has a distributional kern€ € 22/3(M2). We now define
[A)n(X, Y. 4a,..., Zn) = Dn(X, V.4, ..., Zn) - dXC(Xv y)é(yv n,..., Zn) - (X — y) ) (340)

which is manifestly anti-symmetric iry. We use this nevD,, in order to redefine the time-
ordered products with 2 currents as in eq. (337) insteadeobttiD,,. Evidently, the new time
ordered product is now anti-symmetricxy. Furthermore, as a consequence of eq. (339), the
new anomaly for the redefined time-ordered prodégtsatisfies

/An(x,y,zl,...,zn)dzl...dzq:O. (341)

It follows from this equation that

A

n
0
An(X:Y:Zla---aZn):I;dan/l(X:Y:zla---azn) di _dzi/\a (342)

for someDy,, € P4/3/4/-/3-/4M™2). We use these quantities to make a final redefinition of
the time-ordered products. We have

SD(x1) - (PF(x1),L1(%2)) +HPF(x1) - (P(x1),L1(X2)) = d1Jo(X1)B(X1, X2) + doZ1 (X1, X2)
(343)
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for somez; € 5P3/3(M2). We redefine the time-ordered products involving these tijies by

Tnri(Jo¥)®@L1(zn) - ®21(%,2)®...L1(z))
— Thr1(Jo(X)®@L1(z1) - ®Z1(Y,2) ®...L1(zn)) +T1(Dn/| (X,¥,21,...,Z0)). (344)

This final redefinition then removes the anomaAly
It remains to prove eq. (339p.is of the form

p
BOY.¥2) = [ dx 3 prmy o, D (345)
m=0

where are tensor fields that are locally constructed ougdfl, and ®, ®*. We claim that
the conditionp(dh(),dh(?) = 0 and the symmetry of implies thatp can be put into the
form (339). Since the commutator of two derivatives givesienfann tensor, we may assume
that each tensd@ in the sum in (345) is symmetric under the exchange of theesd, ..., v,

RHVL-YmO _ RH(VL-Vm)O (346)

Now consider the contribution to (345) with the highest nembf derivativesm = p. By
varying(dh¥), dh@)) = 0 with respect td(1), h(?) there follows the additional symmetry

R(L-vp0) _ @ (347)
Consider now the vector field defined by
B = BP0, -+ Do (348)
Using the symmetry property (346), this may be rewritten as
BY = LYo,y v
+BHVEYOI 0y, - Oyo (349)
Then, using the symmetry (347), this may further be written a

BY —= B“Vl“‘VPGDVl e D[pro]

2
a p+ ZBG(WlMVp)DVl e D[pro]
2(p+1
. (FF))+ 5 ) Oy {BH(VGl...Gp*lG)DGl . Dap,lyo —(pe v)} (350)
+terms with(p — 1) derivatives ony; . (351)

Now puty = V(2 in this equation, contract both sides wigft), and integrate, to obtain an
expression for the highest derivative termnUsing this expression, we find thaty(V), y(2)
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is given by a sum of terms each of which contains eifﬁ@v\()]l) or D[uy\()]z), or which contains at
most derivative terms of ordgr— 1. Consequently, using the symmetry{lfwe can write

BV, ) = Cay,y?) +C(dy?, y V) + Rp_1 (YD, y2), (352)

whereR,_; stands for a remainder term of the form (345) containing astpe- 1 derivatives,

and whereC is also of the form (345). If we now také? = dh(¥), andy@ = dh(? in eq. (352),

and useB(dh(t), dh(?)) = 0, then we see th®,_; again satisfieR, 1(dh(?),dh?) = 0. Thus,

we may repeat the arguments just given Ry_; and conclude tha can be written as in
ed. (352) with a newC, and a remaindeR,_» containing at mosp — 2 derivatives. Thus,
further repeating this procedure, we find that (352) mustlitiof someC and a remainder of
the formRy(y\V), y(?)) = feyfll)r“"y\(,z).

Now, Ry is symmetric, sa™! = 0. Furthermore, we hav&(dh¥), dh(?) = 0 for all com-
pactly supporteth®, h(2), Varying this equation with respect b&?), we get 0= O¥(ry, 1¥h(Y).
Now, pick a poink € M, and choosiV) so thath(*) (x) = 0. Then it follows that,, I*1Vh(Y) =
0 atx. Becaused"’h(V) is an arbitrary symmetric tensor at it follows thatr(®) = 0,
and therefore that?V = 0, thus proving the desired decomposition (339). This ceteslthe
proof. O

4.8 Proofthat [Q,¥|] = 0whenW is gauge invariant

Here we show that the Ward identity T12c impli€y¥, ¥ (x)] = 0 modulof, whenevely
P(M) is a strictly gauge invariant operator of ghost number 0, We= [ Os (F, DF, .. ., DNF).
As in the proof given in the previous subsection, this propeill follow from the identity

! <d30(><) 2W(y)@e/ f) - -
_T<{§o¢(x) (@H(X),F )+ (D ¢¢)} SWy) ®e§g/h)
T ({(F, (X)) - (P*(x), W(y)) + (P - ¢¢)} 9 3(y) ®ef§/h)

iF /h

T ({8®() - (@ (9, W(y)) + (F.0() - (®F (x), W(y)) + (@ = &) } @ef ") mod 1o,
where agairF = [(AfL1+A?f2L;). One can now formulate a stronger set of local identities
analogous to eq. (323), and one can prove these identiiieg Ti$2c along the same lines as in
the previous subsection, withy) there replaced everywhere B¥(y). The potential anomaly
of the stronger identities (and therefore the possibleatioh of eq. (353)) can now be removed
by a suitable redefinition of the time ordered produgts (Jo(X) @ Wo(y) @ L1(x1) ® L 1(Xn)) at
n-th order in perturbation theory, whe¥e = Wy + AW + A2W, + . ... However, contrary to the
case in the previous subsection, we now do not have to wooytgiotential symmetry issues,
that had to be dealt with there, becalgis always distinct fromlp, the latter having ghost
number 1.
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4.9 Relation to other perturbative formulations of gauge irvariance

In the literature on perturbative quantum field theory in #pacetime, other conditions have
been proposed that ensure gauge invariance of the quantdrthigery. We now briefly discuss
some of these, and explain why these formulations are ntattdaiin curved spacetime.

Diagrammatic approaches (dimensional regularization):Historically, the first proofs of
gauge invariance of the renormalized perturbation serigmuge theories on fl&* were per-
formed on the level of Feynman diagrams. The gauge-inveeiaf the classical Lagrangian
implies certain formal identities between the diagramshat ainrenormalized level. At the
renormalized level, these identities in turn would forrg&ilimply the gauge-invariance of am-
plitudes. One must thus prove that these identities remalid &t the renormalized level. For
this, it is important to have a regularization/renormdiiza scheme that preserves these iden-
tities. Such a scheme was found by 't Hooft and Veltmann [@8,/8], namely dimensional
regularization. Because that scheme is also very handydioulations (except for certain
calculations involving Dirac-matrices), it has remainkéd most popular approach among prac-
titioners. Modern presentations of this approach basedcerHopf-algebra structure behind
renormalization in the BPHZ-approach [20, 21, 82] are [1103].

In curved space, diagrammatic expansions are problematiause there does not exist a
unique Feynman propagator. One may of course expand theythsimg any Feynman prop-
agator. However, then the problem arises that the Feynmayagator is not a local covariant
functional of the metric, but also depends upon boundaitidirtonditions, which are intrinsi-
cally non-local. This would interfere with ones ability teduce the ambiguity to local curvature
terms. One might be tempted to take the local Feynman paranit, which is local and co-
variant. But this has the undesirable property that it isaneolution of the field equation, but
only a Green'’s function modulo a smooth remainder, see app&n This severely complicates
the treatment of quantities that vanish due to field equatiand of the Ward identities. Finally,
in curved space, the Feynman propagator is only well defiseddastribution in position space,
while techniques such as dimensional regularization s&@ewotk best in momentum space-
time. Thus, a diagrammatic proof of quantum gauge invagaricrang-Mills theory in curved
spacetime seems to be difficult and somewhat unnatural.

Zinn-Justin equation: In many formal approaches to perturbative gauge theory in fla
spacetimeR?, gauge invariance of the theory is expressed in terms of @yiated condi-
tion involving the so-called “effective actionle(S) of the theory associated with the classical
actionS= S+ AS; + A2S,. The effective action is a generating functional for theattigle
irreducible Feynman diagrams of the theory. The conditmrpkrturbative gauge invariance is
simply and elegantly encoded in the relation [109]

(Cet(S), Met(S)) = 0. (354)

Bwe say “formally,” because amplitudes can have additianfedired divergences, which are very hard to treat
in a gauge-invariant manner.
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Condition (354) is referred to as the “Slavnov Taylor idgyitin “Zinn-Justin form”. It is
closely related to the “master equation” that arises in th&atn-Vilkovisky formalism [6] (see
also [59]), and it reduces to the classical conditi&S) = 0 for BRST-invariance when one
putsh = 0. At the formal level, the Slavnov-Taylor identity is mostasghtforwardly derived
from the path integral. It is also in this setting that one oaderstand relatively easily that it
formally implies the absence of (infinite) countertermstie tlassical action violating gauge
invariance. However, by itself, it does not imply the gaugeariance of physical quantities
such as scattering amplitudes, or identities mfe: 0.

The effective actior ¢(S) is only a formal quantity, since it involves integrationseov
all of spacetime. These integrations typically lead toanfed divergences, as is in particular
the case also in pure Yang-Mills theory. Therefore, alsoSlanov-Taylor equation (354) is
only a formal identity. If the interactionS; +A?S; is replaced by a local interactiofr, =
[{NfL1+A?f2L5}, with f a smooth cutoff function of compact support, then the imérd-
divergences are avoided, and the effective acligh(S + F) is well defined. The precise
definition of e(S+ F ) within our framework is given in Appendix C. However, for tbeatoff-
interaction, the Slavnov-Taylor identity no longer holddevertheless, it can be shown that
et (So + F) satisfies an analogous equation, given by eq. (402). Thattiegucan be used to
formally “derive” eq. (354), if one could prove that the analgnin eq. (402) vanishes. Since the
anomaly is closely related to the failure of the interactB®gST-current to be conserved, one
might expect to be able to remove the anomaly by an argummiiasito our proof of T12a, but
this has not been worked out even in flat spacetime.

In curved spacetime, we may still define an effective actia®(S + F), which now de-
pends upon the arbitrary choice of a quasifree Hadamare statee Appendix C. Hence it is
definitely not a quantity that depends locally and covalyampon the metric, but also on the
non-local choice ofo, Therefore, even at the formal level, it is not clear that$te/nov-Taylor
identity can be viewed as a renormalization condition teatdmpatible with the locality and
covariance of the time-ordered products. Also, while theev8bv-Taylor identity can again be
formally derived from our Ward-ldentity T12a, it does notetitly imply the gauge-invariance
of physical quantities such aspoint functions, and it also does not prove (even formahnat
the OPE closes among physical operators. For these reasemsefer to work with the Ward-
identities T12a, T12b, T12c in this paper, which are riga;cand have a local and covariant
character.

Causal approach: A condition expressing perturbative gauge invariance indeacetime
that is of a more local nature than (354) has been proposedsérias of papers by Ditsch
et al. [28, 30, 29, 31, 32, 93], see also [72, 73, 74, 54, 55, BBkse works are also related
to the “quantum Noether condition” [74]. L&h(xq,...,X,) be the time-ordered product of
Ta(L1(Xx1) ®---®L1(xn)). (in the above papers, the interaction Lagrangian 4-forhere iden-
tified with a scalar by taking the Hodge dual). L@g be the free BRST-charge. Then it is
postulated that there exists a set of time-ordered prodygts, . . ., Xn) With the insertioA* of

Thus in particularfy (X1, -.-,%) should be symmetric in all variables exceptand itis a 3-forming.
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some (unspecified) 3-form-valued field in théh entry such that
n
[Qo, Tn(X]_, RN Xn)] =ih Z d Tn/l (X]_, RN Xn) modulo % (355)
I=1

for all n > 0, whered, = dX{' A0/0X" is the exterior derivative acting on theth entry. The
condition is to be viewed as a normalization on the time adgroducts involving factors

of the interactionL;. Note that there are no explittt conditions imposed on time-ordered
products involvingL,. Note also that the condition is imposed only mod@e that is, on
shell. In fact, the authors of the above papers always wogkrepresentation, where the field
equations automatically hold (see section 3), rather thdneaalgebraic level, where the field
equations need not be imposed as a relation. A related elifteris that the above authors do
not work with anti-fields, without which it appears to be verymbersome to obtain powerful
consistency relations for potential anomalies of (355)oni® aspects of this difference are
addressed in [4].)

The key motivation for condition (355) is that, as our commit(a), it formally implies that
the Smatrix commutes withQg in the “adiabatic limit,” see above. Indeed, if we formally
integrate (355) ovefR*)", then the right hand side formally vanishes, being a totevetve.
This shows thag formally commutes witl)y. However, unlike our Ward identities, we do not
believe that eq. (355) would impl@? = 0 for the interacting BRST-charge, {@;,¥|] = 0 for
gauge invariant operators.

The relation (355) is apparently different from our corres@ing condition (a) (considered
in flat spacetime), so we now briefly outline how they are exlat Consider a prescription
for the time-ordered products satisfying our Ward idengdy, so that, in particular, eq. (355)
does not hold for that prescription. However, let us now mialesfollowing redefinition of the
time-ordered products containing two factord.qf that is,

To(La(x1) ®L1(X2)) — Ta(La(x1) ® L1(X2)) + Ta(L2(X1,X2)) (356)
where we recall the notatidny (x1, X2) = 2L 2(X1)d(X1, X2). Let us further note that
SoL2(X1,X2) + (L1(X1), L1(x2)) = d102/1(X1,X2) + t202/2(X1, X2) (357)

for some fields0,,; € P43 and0,/, € P¥/* supported on the diagonal, aggl 1 = d0;. Using
that[Qo, Tn] = ih&Tn modulo %, and definindry,; by

Toj(Xe,- -5 %0) = ZTn—1(L1(X1)®---02/j(><|+j—1,><|+j)®---|—1(Xn))+CVC|- perm.
412

+ Tn<L1(X1)®...01(X|)®...L1(Xn)) , (358)

15As explained in the above papers, however, implicit noreagion conditions on time ordered products with
factors ofL, arise from (355). Also, (355) apparently may even be useceterthine the form of 1, which is
simply given in our approach.
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one can then check that eq. (355) holds. Thus, our Ward igtentiplies (355) if a finite
renormalization change is made, and presumably (355) nsayls used to deduce our Ward
identity T12a. Note, however, that our identities T12b ad@dare conditions that go definitely
beyond the Ward-identities (355).

5 The Yang-Mills quantum stress tensor

An important observable in any quantum field theory is itesdrenergy tensor. For a classical
field theory, the stress tensor is the field observable obthby simply varying the classical
action with respect to the spacetime metjg¢. For classical Yang-Mills theory, this gives the
expression

oS 1
_1 m
ot = S égaBTr[F““FBV+*F““*FBV], (359)
which as we note is manifestly trace-free. The divergefigm vanishes on all classical
solutions to the Yang-Mills field equations. Another strémssor is obtained by varying the
total gauge-fixed actioB = Sm+ St + Sh+ Sse including ghosts, auxiliary fields, and anti-
fields, with respect to the metric,

g —g 155

O

Because5m, differs from the action of the gauge-fixed theory only by at@RST-variation,
and because the BRST-variation does not depend upon thie nileércorresponding two stress
tensors are also BRST-equivalent in the sense that

(360)

ol — v — sOW. (361)

for someO" € P. In the classical theory, the physical observables are R Bequivalence
classes, s@m and6" define the same observable. Furthermore, both stress seasocon-
served on-shell (up to asmexact operator). But we keep in mind that, to derive thestsfave
used that the classical BRST-variation commutes with foned derivatives with respect to the
metric, i.e.,

)

As we will see, the corresponding statement no longer isitrube quantum theory, i.e., the
guantum BRST derivatioQ, does not commute with a variation of the metric, and we will
show that this subtlety is closely related to the trace arpwfahe quantum stress tensor.
Turning now to the quantum theory, we would like to define aeriacting quantum field
which is an element in the algebra of observables, and wtastitie interpretation of the stress
tensor. To define this field, it would appear to be naturaldad $tom either the Yang-Mills stress
tensor, or the stress tensor associated with the gaugedotezh, and define a corresponding
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guantum field via the Bogoliubov formula (204). It followsm the Ward identity T12c that
either operator is BRST-closed in the quantum sense,

[Q,8"(x)] =0 (363)

(modulo %), for all x in the region where the cutoff function in the interactiér= [[AfL1 +
A2f2L,] is constant, and similarly for the Yang-Mills stress tensd@ecause of the iden-
tity (361), one might think that the two interacting fields wia differ only by a field of the
form [Q, O!"]. Furthermore, one would hope that the interacting stressotedefined in this
way is conserved (possibly up to an interacting field thahithe image ofQ, .]). Unfortu-
nately, as we shall indicate, this is not the case, so a phlfsieasonable stress tensor cannot
be obtained from eithed}m, and6™ via the Bogoliubov formula.

To demonstrate this, we shall now compute, by an indirectraent, the divergence etN,
and we show that it is not zero or BRST exact. The divergendh@interacting quantum
Yang-Mills stress tensor neither has this property, but hedlsot show this here. To analyze
the divergence of the stress tensor, we consider a renaatiain condition T13 (invented in
[65]) on the time ordered products that states how thesetdphould change under a variation
of the metric. We do not give the precise formulation of T18t bnly remark that, in [65] it
was shown that this renormalization condition can alwaysdiesfied in scalar field theory in
addition to the conditions T1—T11 of Section 3, and the saameatso be shown for the theory
described by the actiof, containing vectors and ghosts. Furthermore, it was show65h
that T13 implies the following identity for the free stressordp’ = e~16S/8g,y

oF
O

whereF = [(AfL1+A2f2L;) with f any smooth function of compact support. As shown in
[65], this in turn implies that the interacting quantum stréensol}" as defined by Bogoli-
ubov’s formulais conserved in the region whéres equal to a constant. The point is, however,
that the Ward identity T12c which is necessary in order tmstlmtel“" is a physical observ-
able [see eq. (232)] is inconsistent with (364). Thus, weshthe two unacceptable choices:
Either8}" is not BRST-invarian{Q,6}"] # 0, i.e., it is not a physical observable, or it is not
conserved.

Let us choose to satisfy the Ward identity T12c, and theeetorviolate (364). Then the
interacting stress tensor is not conserved, but one mayle#d; using an anomalous version
of (364), that

T<E\,Dueg\'®ég/h):T<(£Eg)w ®é;§/h) mod %, (364)

dai(ef))
dgv (X)
wherea = {an} is a hierarchy of local maps, : P*(M)®" — P4/4/--/4(M™). The right side is
non-zero in general, but we can now define an improved coadestress tensor by“", where

TV =W — <%eg) —a(8" ® eg)) =0" +O(h). (366)
W

0,0% (X)) = Du< —a(8™(x) ®eg)) (365)

)
|
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One may show that the improved stress tensor satigdie;"" (x)] = 0 modulof, for x located
where the cutoff functiorf is constant. Thus, the improved stress tensor is BRST-dlasthe
guantum level, and hence a physically sensible observ@lie.may show that
Sa ()
O (X)

—a@ed) = -y a1 B TIRGFP  (367)
— ygaBTr[F““FBV+*F““*FBV](X), (368)

modulodg-exact terms, for alk located where the cutoff functiohis constant. Herey;, 3,y €
R[[, 4]], and whereQ!" run through a basis of curvature polynomials of dimensiofitée last
termis a total BRST variation and can be dropped, while thma taultiplied byyis proportional
to 6 up to a total BRST variation. Thus, by possibly changing themalization of TH, we
may achieve that

0S
O

Furthermore, we may further redefifé so that all curvature term@!" are absent that are
divergence free, i.e., we may assume that the curvaturesterm

TW =¢1 + 5 a; -“V]1+}Bg“"TrFa FaB. (369)
i 4 B

w g1 0 B

Q! 50 / RupRPe (370)
wo_ 19

& = el / Rle (371)

are absent on the right side of eq. (369). Thus, urdess = 0, we see that the true conserved
stress tensor is not equivalent to the naive stress té$ofThis implies that there must exist
a trace anomaly in quantized Yang-Mills theory. Indeed, cae show that the trace @f“’
modulo a quantum BRST-variation, so, by eq. (366),

g =S aiQill + B(TrF,FP)  moduloQ -exact terms (372)

whereQ; now runs through the 3 linearly independent parity invar@amvature scalars of di-
mension 4 that are not traces of (370). Thus, the true coedgtysical stress tensor is not trace
free unless altij = B = 0. One can check that, for a free gauge theory (i.e., electgmetism

A = 0), we have3 = 0, but the constants; are non-vanishing, so there necessarily is a trace
anomaly, albeit only &number term. Furthermore, if there is an interaction, cagi~ 0 as
well, so the trace anomaly is no longer proportional to tremtdy operatorf is closely related

to the beta-function for the gauge coupling63].

Summarizing, we have shown that if one adopts a renormadizg@tescription consistent
with the BRST Ward identity T12c, then the true conservedhtjua stress tensor is not given
by applying the Bogoliubov formula to the classical expi@sgor the stress tensor (i.e., the
metric variation of the classical action), but instead t® mhodified classical formula (369). As
a consequence, the true stress tensor has a trace anomialy,isvac-number in the free case
(vanishing interaction), but which is notcanumber if there is an interaction.
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6 Summary and outlook

In this paper, we have given, for the first time, a perturleationstruction of non-abelian Yang-
Mills theory on arbitrary globally hyperbolic curved, Larzian spacetime manifolds. Follow-
ing earlier work on quantum field theory in curved spacetime,strategy was to construct the
interacting field operators and the algebra that they gémerehis was accomplished starting
from a gauge fixed version of the theory with ghost and anlildieand then defining the algebra
of observables of perturbative Yang-Mills theory as the BR8homology of the correspond-
ing algebra associated with the gauge fixed theory. To imeldrthis strategy it was necessary
to first find a prescription for defining@nservednteracting BRST-current, and for which the
corresponding conserved charge is furthermmohgotent We were able to characterize such a
prescription by a novel set of Ward identities for the tintelered products in the underlying
free theory. We furthermore showed how to find a renormabrgprescription for which the
Ward-identities indeed hold. In addition, we showed thatrenormalization prescription also
satisfies other other important properties, notably thedttam of general covariance. Alto-
gether, these constructions provide a proof that pertivbadtang-Mills theory can be defined
as a consistent, local covariant quantum field theory (tomérs in perturbation theory), for
any globally hyperbolic spacetime.

A key feature of our approach is that it is entirely local intura, in the sense that our
renormalization conditions only make reference to locargities. A local approach is essential
in a generic curved spacetime in order find the correct reabmation prescription respecting
locality and general covariance. But it is also advantageodlat spacetime in many respects
compared to other existing approaches in flat spacetimdy as@pproaches focused on the
scattering matrix, or approaches based on the path-intdgra key advantages of our approach
are the following:

e Because our approach is completely local, we can compldisipntangle the the infra-red
divergences and ultra-violet divergences of the theorys §mandatory in Yang-Mills
theory, where infra-red divergences pose a major problesm & flat spacetime.

e Because our approach is algebraic in nature, the objectsimafipy interest are the in-
teracting field operators, rather than auxiliary quandisach as effective actions or scat-
tering matrices. This makes it easy for us to prove the ingmantesult that the operator
product expansion of Yang-Mills theory closes among gaugariant fields, and that
the renormalization group flow does not leave the space of@awariant fields. On
the other hand, it tends to be much more complicated to progk statements in other
formalisms even in flat spacetime.

e Because our approach is local and covariant, we can diraciyyze the dependence
of our constructions on the metric. For example, one carctly®btain the following
result: If a non-abelian gauge theory has trivial RG-flow at 8pacetime (such as the
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N = 4 super Yang-Mills theory), then it also must have trivial /R@wv in any spacetime in
which possible renormalizable curvature couplings in thgrangian (such asRiTrd2-
type term) happen to vanish. Thus, the-M super Yang-Mills theory has trivial RG-flow
in any spacetime with vanishing scalar curvature. Note tnatke in flat spacetime, this
does by no means imply that the theory is conformally invaribecause a spacetime
with R= 0 will not in general admit any conformal isometries.

A weak point of our constructions, as for most other perttiieeconstructions in quantum
field theory, is that one does not have any control over theergence of the perturbation series.
This is in particular a problem for quantum states such asib@tates that are not expected to
have a perturbative description. A partial resolution a$ firoblem is provided by the operator
product expansion (see sec. 4.2), because it allows onertputen-point correlation functions
in terms of OPE-coefficients and 1-point functions (“fornetfas”), which one may regard as
additional phenomenological input. But a full solution idpresumably require to go beyond
perturbation theory, which seems a distant goal even inglatetime.

Apart from this problem, there remain a couple of techniassiions related to the pertur-
bation expansion, of which we list a few:

6.1 Matter fields, anomalies

In this paper, we have considered only pure Yang-Mills thior simplicity. Clearly, one
would like to add matter fields, such as fermion fields in a@spntation R of the gauge group
G. In that case, the general strategy and methods of our papestdl be applied. But it is
no longer clear that the Ward-identities formulated in {hagper can still be satisfied, as there
can now be non-trivial solutions to the corresponding cstesicy conditions in the presence
of chiral fermions. If the Ward-identities cannot be satidfione speaks of an anomaly. In
our case this would imply that the interacting BRST-curnsnto longer conserved, and that
a conserved BRST-charge cannot be defined, meaning thahdbeytis inconsistent at the
quantum level. In flat space, this can happen if the gaugepgrontains factors df) (1), for
certain representations R. By the general covariance ofanstruction, the types of anomalies
in flat space must then also be absent in any curved spaceHmsever, in curved space, a
new type of anomaly can also arise in the presence of chiralitms and abelian factors in
the gauge group. For example, even at the level of free Yaillg-Meory, one can compute
that the divergencdJ, (exterior differential) of the quantum BRST current operas not zero
as required by consistency, but it has a contribution toiitergence proportional of the type
given in eq. (58), which cannot be eliminated by finite renalization. In particular, one finds
a contributiondJ; 0 4, + ... at 1-loop order, where

A= ZTr[R(TK)] CKTr(RAR) (373)

and where the sum ov&ris over the abelian generators of the Lie-algebra only. énstiandard
model, with gauge grou = SU(3) x SU(2) x U (1), the representation of the abelian generator
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Y (charge assignments of the fermion fields) is precisely ab4h= 0, as also observed by [52,
86]. However, we do not know whether the theory remains friethis kind of anomaly to
arbitrary orders in the perturbation series. This wouldrapartant to check.

6.2 Other gauge fixing conditions

In this paper, we have worked with a specific gauge fixing diorl(the Lorentz gauge). The
important feature of this condition for our purposes wag tha field equation for the spin-1
field then becomeBJA+ --- = 0, where the dots represent terms with less derivativess Thi
was important because only in that case are we able to cahstidadamard parametrix for
the vector field, which is a key ingredient in our construeio However, one may wish to
consider other types of gauge fixing conditions, both focpcal purposes, as well as a matter
of principle. Even if a Hadamard parametrix could still bdined in such cases, it is not a
priori clear that the theories defined using different gafigj@g conditions are equivalent. In
our approach, equivalence would mean that the algebrassefadibles obtained from different
gauge fixing conditions are canonically isomorphic. We hawe investigated the question
whether this is indeed the case.

7 Background independence

In our constructions (as in all other standard approachgsetturbative Yang-Mills theory),
we have split the Yang-Mills connectiaf® = [0+ iAA into the standard flat, non-dynamical
background connectionl, and a dynamical field. At the level of classical Yang-Mills the-
ory it is evident that it is immaterial how this split is made,, classical Yang-Mills theory is
background independent in this sense. In particular, tredstrd choicél = 0 in flat spacetime
is just one possibility among infinitely many other ones. he gauge fixed classical theory
with ghosts and anti-fields, different choices of the baokgd connection give rise to different
classical actions. The difference is, however, only by a BReSact term. Since the classical
theory is defined as the BRST-cohomology, such a BRST-ezautdoes not change the brack-
ets between the physical observables, and hence the treebagkground independent also in
the gauge-fixed formalism. Unfortunately, we do not know thiee the same statement is still
true in the quantum field theory, i.e., we do not know whetherdlgebras of physical observ-
ables associated with different choices of the backgrowmehection are still isomorphic. The
difficulty is that, in quantum field theory, the backgroundnectionl] is treated very differ-
ently from the dynamical pai: The background connection would enter the definition of the
propagators, e.g., of the local Hadamard parametricegevihs a quantum field.

The question whether one is allowed to shift partsdahto [ and vice versa is closely
related to the question whether the “principle of pertuslsaagreement” formulated in [65] can
be satisfied with respect to the gauge connection. The aetiish of this principle is equivalent
to certain Ward-identities at the level of the time-ordepedducts, but we do not know in the

97



present case whether these Ward identities can be satisfiesshether there are any anomalies.
In [65], a potential violation of these identities may bentied with a certain cohomolgical
class. In our case, when the background structure in quastaogauge connection, the potential
violation would be represented by a certain 2-cocycle ongp&ce of all gauge potentials.
An anomaly of this sort could arise in theories with chiralnfédons. Thus, the question of
background independence in quantum Yang-Mills theory regnan open problem, which has
not been solved, to our knowledge, even in flat spacetime.
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A U(1)-gauge theory without vector potential

In the case of a purid (1)-gauge theory, one may consider a different starting poindéfining
the theory, using as the basic input only the field equationghie 2-form field strength tensor
rather than the action for the gauge potenfialThis is because the field equations may then
be written without reference to the gauge potential as egpsfor the field strengtk, viewed
now as the dynamical variable. The equations are of courseveléis equations, in differential
forms notatiordF = 0 andd « F = 0.

On a curved manifol®1 with nontrivial topology, not every closed forfneed to be exact,
so it does not follow from the field equatial+ = 0 thatF can be written in terms of a vector
potential a = dA Thus, using only Maxwell’s equations as the input define®eergeneral
theory classically than the actigid AA « dA, because cohomologically non-trivial solutidfs
are possible. In this section, we briefly indicate how one ouzgntize such a theory.

A globally hyperbolic spacetime always has topolddy= = x R, so closed but non-exact
2-formsF can exist orM if Z contains any non-contractible 2-cycl€s,Let us coveiM by

M= JMm; (374)

where eachM; a globally hyperbolic, connected and simply connected efjrae in its own
right, which does not contain any non-contractible 2-cgcl€onsequently on eadlj, any
closed 2-formis exact, and the classical theory defined bywé#'s equationsiF = 0,dxF is
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completely equivalent to the theory of a vector poterfialith action (31). Thus, by the results
of the previous sections, we can construct a correspondgepea of observablego(M;) for
eachi, containing gauge-invariant observables such as polyalsrof the field strength.

Each %o(M;) is only given to us as an abstract *-algebra, so we do not aixmow what
is the relation between those algebras for diffeiertiowever, ifM; is contained irM;, then
by the general covariance property, there is an embeddiatgebrasy j = ay ) ffo(Mi) —
ffo(Mj), wherey(i, j) : Mj — M; is the embedding. Thus, following ideas of Fredenhagen, and
Kusku [46, 47], we may define an algeb#ig(M) as the universal algebra

Au(M) =ind—lim Fo(M)). (375)

The universal algebra is defined as the unique algebra saththre exist *-homorphisms
ai : Fo(Mi) — Au(M) with the propertyajoaji = aj. Itis characterized by the fact there
are no additional relations ifl,(M) apart from the ones in the subalgebras. ThagM) is
generated by the symbdtg( f) where supg C M;, which we think of as smeared field strength
tensors

R(f)= fAF. (376)
M;
Their relations are
F(f)=Fj(f), ifsuppf C MinM;j, (377)

and theF(f), with suppf c M; satisfy all the relations ifo(M;), which are
[R(f),R(h] =iA(f,h) L, F(df)=0=FK(xdf), (378)

for any 1-formsf, h of compact support itM;. Here,A : Q%(M) X Q%(M) — R denotes the
advanced minus retarded fundamental solution for the lngderoperatordd + dd acting on
2-forms.
For an arbitrary compactly supported 2-forimon M, we may then define the algebra ele-
mentF(f) € 4,(M) as
F(f) =Y RWwi). (379)
|

where supi C Mj, andy; i = 1 on supg. Itis not difficult to show using eq. (377) that this
definition does not depend upon the particular choice of dwering. From eq. (378), it then
also follows that~(d f) = 0 = F(d* f) holds for arbitrary compactly supported forrhsn M.
One can also easily show that f) x; F (h) — F(h) x; F(f) = 0 for any two test-forms having
spacelike related support. Indeed, after splitting using a suitable a partition of unity, we
may assume that the supportsfoAndh are contained in setd; andM;. SinceM is assumed
to be connected, there exists therefore a globally hyperispacetimeN C M; UM; in which
every 2-cycle is contractible, and we may assumelthappears in the covering ®. We may
then view both (f) andF (h) as elements ifo(N), where they commute. Sinceis uniquely
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determined by its action on testfunctions supported in ghitrhood of a Cauchy surface, it
then also follows tha (f), F (h)] = iRA(f,h) 1.

The universal algebra contains certain central elememdisdarry information about the
topology ofM. They arise as follows. L&t be a 2-cycle irM, and let{y;} be a partition of
unity subordinate to the coverirfgvi; } of M. By Poincare duality, we can find a closed 1-form

hc onM such that
/ he Ad = / a (380)
M C

for any closed 2-fornt, and we may arranga: to have support in a neighborhood®©f The
2-form Yihc has compact support M;, and we may define

Ze[C] = F(hc) = ) Fi(Wihc) € Au(M). (381)

We claim thatZg[C] is independent of the particular choicehgf, and of the partitiod Ui, ; }.
Independence of the partition was already shown above fogrgé2-forms. To show indepen-
dence ofhc, consider anotheln; with the same properties, and lat — h; = w. Thenw is
closed, of compact support anflwA a = 0 for any closed 2-forna. By the well-known fact
that the pairing

/:H2(M)®H§(M) LR (382)

is non-degenerate, we therefore must have [t 0 in H3(M), i.e.,w = dp for some 1-form
B of compact support. IndependenceZgfC] on the particular form ofic then follows from
F(dp) =0.
It then also follows thaZe|C] only depends upon the homotopy clas<oi.e., Z¢[C] may
be viewed as a map
Ze: Ho(M; Z) — Ay(M),  [C]— Ze[C]. (383)

In particularZe|[C] = 0 for any 2-cycleC that can be deformed into a point. Becau¢C|
only depends upon the clags] of C in H2(M), it follows that, given any sufficiently small
compact regiork C M, we may defornC so as to be in the causal complemenKgfthat is
C c J"(K)uJ~(K). By choosingc to be supported in a sufficiently small neighborhoo€of
it then follows that

[Ze[C],F(f)] =0, VfeQ3(K), (384)

But then this also holds for arbitrafyof compact support, becausemay be written ag ; f,
with each supg; so small thaC and hence sugr: can be deformed so as to lie in the causal
complement. ThusZe[C] is in the centerz(A4,(M)) of 4,(M). By taking the dual ohc in
eq. (381), we may similarly define

ZalCl = 3 Ri(Wi*hc) € Z(Au(M)), (385)
and this quantity has similar propertiesz$C].
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The center-valued quantitie&|C],Zm|C] correspond to the electric and magnetic fluxes
through a 2-cycleC. They are analogous to the classical quantifieb respectively |- xF
and satisfy the same additivity relations under the addlitibcycles. Other interesting derived
quantities may also be defined. For exampleCletC,, ... be a basis of 2-cycles id>(M;Z),
and let

Q Yk =1(Cj,C) (386)

be the matrix of their intersection numbers. Then we may defin
by
Ghop = ZQJkZe[Ci]Ze[Ck] € Z(Au(M)) (387)
I,

and this is analogous to the classical topological quantity

qdaSS:/MF/\F:;Qik</ch)</CkF) (388)

Js

by the so-called “Riemann identity” for closed differehfiarms.
In any factorial representatiam: 4,(M) — End(#) on a Hilbert spacé{, the representers
corresponding t&e|C|, Zm[C] are by definition represented by multiples of the identity,i

MZe[C]) = GelCJ- 1, T(Zn[C]) = Cm[C] 1. (389)

wherece, Cyy are valued in the complex numbers. By DeRahm’s theorem, ¢haybe repre-
sented by 2-formse and fr, both of which must be closed. Choosing a bgsig} of H?(M),
for example dual to a basis of 2-cyclgs; }, we may thus expantt = 3 giw, andfm = Si giw
with numerical constantg;,gi € R depending upon the representation. These constants are
then the (canonically normalized) numerical values of tleeteic and magnetic flux through
the respective cycle in the representation

The above construction of Maxwell theory (without a vectotgmtial) is somewhat abstract,
and we now discuss an equivalent description. As abovejuBt be a set of closed forms
forming a basis oH?(M). Any closed fornF may thus be written uniquely &&= dA+ Yi qiw.
Substitution into the actio8 gives

1 .
S é/olAA *dA+ j A %A (390)

wherej = zqiéwi is considered as an external (conserved) current coupléd Tde quanti-
zation of this theory now proceeds along similar lines aslieractionS without the external
current. We correspondingly get an algebra of observaide®!), which now depends upon the
choice ofg = {q;} and{w'} through the external current. The algebra is spanned byrgtas

[ f AdA and

lf(f):/f/\dA+Zqi</w‘/\f)]1. (391)
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They satisfy the same relations as the generd&t¢fg above in the algebra,(M). From this it
may be seen that the algebfig(M) only depends upogy and the equivalence clasdesd]. This
algebra also has further relations not preseniiiM), because the elemenZs|C] € A4(M)
defined in the same way as the central elemggts| € 4,(M) above, are now represented by
multiples of the identity, namely

2] = ya( [@)1 e, (392)

while the element&,[C] € 4,(M) are only in the center, but not necessarily proportionath#o t
identity. Thus,4,(M) andA4(M) are not isomorphic. Instead, we have

@ b2
A= [ T]da aM). (393)

By contrast, the magnetic fluxﬁsn[C], defined as above, are not proportional to the identity
but only elements in the center gf(M). This apparent asymmetry between the electric and
magnetic fluxes arises from the fact that we have chosen tatigeahe theory starting from a
potential forF, rather«F, which would also be possible. Then the roles of electricraagnetic
fluxes would be reversed.

A physically relevant example of a spacetimlewith a non-trivial 2-cycle is the Kruskal

extension of the Schwarzschild spacetime. It has line aiéme
32Mm3¢ /M .

ds* = f(—dedeXz)+r2(d62+5|r126d¢2) r>o0, (394)
and topologyM = R x R x &, wherer is defined througi? — X2 = (1—r/2M)d/?M Itis a
globally hyperbolic spacetime with a non-trivial 2-cydmmotopic toS?. Hence, the universal
algebra possesses non-trivial central elem2g&], Zm[S?], and this gives rise to the possibility
of having non-trivial electric and magnetic fluxes in thaasptime, as also realized by Ashtekar
etal. [3].

We now sketch an argument that arbitrary values of the etesrtid magnetic charges may be
realized in representatiomscarrying a unitary representation of the time-translasgmmetry
group. The spacetime is a solution to the vacuum EinsteuratonR,, = 0, with static timelike
Killing field K = a/at, witht = 4Mtanh (X /T). By the standard identitﬂ[u(svc]aBD“KB) =
2Ry pKPe% o valid for any Killing fieldK, @ = 7=0,K,, is therefore a static (meaniig ¢ =
0) solution to the classical Maxwell equations. Givgg € R, we defineypq: F(f) — F(f)+
dJs, f A@L+g[s, f Ax@L. This is an automorphism of,(M). Let us assume that there
is a factorial vacuum staté.)o on 4,(M) invariant under the action of the time-translation
isometries (which can presumably be constructed by thentqaks of Junker et al. [77]), and
let us assume thdZe[S])o = 0= (Zm[])o. Then the states )qg= (Yqq( - ))o are also factorial
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and the corresponding GNS-representation carry a uniggmesentation of the time-translation
symmetries, with invariant vacuum vector. Furthermore/gy@= 1, we have

Tg(Ze[S]) =al, Tqg(Zm[S]) =gl. (395)

in the corresponding GNS-representatiogg of these states. Thus, the representatimyg
carry electric fluxqg and magnetic fluxg. In this sense, the numbegsg may be viewed as
superselection charges, as also noted by Ashtekar et al. [3]

B Effective Actions in curved spacetime

We here give the definition of the effective action in our feork following [14, 15] and a
derivation of a set of consistency conditions. We also ersjglkahat the effective action is a
state dependent quantity, and therefore, unlikeTtigroducts, does not have a local, covariant
dependence upon the metric.

In the path integral formulation of quantum field theory, #ffective action in a scalar field
theory is formally defined as follows (see e.g., [107]). liet C3(M) be an external current
density, and define, formally,

exp(ZS(j)) = / [Dgjexp(is/h -+ / i9). (396)

Then the effective actiol ¢ is defined, again formally, as the Legendre transformation o
Z%(j): Define@throughe=0Z%(j)/dj, andlest = [ jo— Z°(]). The quantityl ¢ is a formal
power series i depending orp (and the actiorg), and may thus be viewed as an element of
F. The above construction is formal in several ways: The gteif(j) is typically viewed
as the generating functional for the hierarchy of truncaiteeé-ordered-point functions of the
guantum fieldp. It thus depends upon a choice of state, and the same is amrgqtrue for
the effective action. This is obscured in the above funaiomtegral formulation. Here, the
choice of state would enter the precise choice of the forratii{integral measurgDgq|. Also,
because the path-integral derivation does not specify theige definition of the path-integral
measureDq), it necessarily disregards all issues related to renomatdin. \We therefore now
give a precise definition of the effective action in curvedsgtime.

For this, we define, following [14], the quantiti& : A*" — U} (A the space of local
actions) implicitly by

n

T(exp,(F/h)) = %% : To(expy F) - - Ts(exp, F) iw, (397)

n>

where then-th term has factors. UnlikeT, the quantityTS is not local and covariant, but
depends upon the global choicecaf It can be shown that,(F=") = lim;_o TS(F®") /A" ¢
A exist. Next, define a functionél, : A" — Wy implicitly by

GRS B {C AR (398)
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It can be shown that, fdf € A
Fw(ll) =0, T[uF)=F, (399)

as well as
Fo(eh) =F+0(h). (400)

Given an interactiofr € A, we define an “effective action” (with respect to the stajeassoci-
ated withS + F by

Feti(So+F) = So+To(€) = S+ F+0(h), (401)

Again, the higher order terms fndepend upon the staé@ and are not local and covariant. This
property makes the effective action in general unsuitabkotve the renormalization problem
in curved spacetime, since the local and covariance priegest the renormalization procedure
cannot be controlled.

The effective action obeys a useful identity that can preshlynbe used to analyze potential
anomalies in the Ward identities (as an alternative to opragch), at least in flat spacetime. To
formulate this identity, consider any local field polynoinig and the modified actio§+F —
S+F + JyhA O, whereh € Qg(M) is a compactly supported smooth form. Then we have the
identity [14]

/ Ol eit(So+F + (h, 0)) A Ol eii(So+F + (h, 0))
M oh(x) 3¢(x)

h=0

) (402)

d
= /M6h—(x)reﬁ(SO+F+(h,06(So+F)/6cp+Ao>) .

whereAo (X) = Ao (€5)(x) € Ais the anomaly corresponding @in the corresponding anoma-
lous “Master Ward Identity,” [14, 15]. It is viewed here as dofm. The anomalous Master
Ward ldentity is derived in [14, 15] for the case of flat spaoet but the proof probably goes
through in curved spacetime.

C Wauve front set and scaling degree

We here recall the basic definition of the wave front set ofsriiution and some of its ele-
mentary properties. For details, see [71]ulif a compactly supported function &, then by
standard theorems of distribution theory, its Fourier sfarm, u(p) = (2rm)~"2u(exp(ip.)) is
an analytic function ofR" falling off faster than any inverse power pfi.e.,

atp)| <en(1+[t) ™, teR (403)
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for somecy not depending upop, and anyN. Conversely, this bound implies that a compactly
supported distributiom is in fact smooth. The idea of the wave front set is to use tlssipo
ble failure of this bound to characterize the non-smootbdsa distribution. For compactly
supported distributions, one defines the set of singular directions by

S(u)={peR"\ 0] |G(tp) > cn(1+t))~N forsomeN, allt > 0} . (404)
We define the wave front set of any distribution at a paigtR" by

WR(U =[] Z(u). (405)
Yixesuppy

where the intersection is over all smooth compactly sugabdutoff functions). The wave
front set is clearly invariant under dilatation, and therefa cone, and it only depends on the
behavior ofu in an arbitrary small neighborhood &f For distributionau defined on a smooth
n-dimensional manifolX one defines the wave front set as follows. ket be a coordinate
chart covering. Then, choosing a smooth cutoff functighsupported irJ that is 1 neak, we
can defina<* (u), which is now a distribution that is defined &Y. We define the wave front
set to be the set

WFx(u) = (K_l)*WFK(x)(K*(qJU)) CTX (406)

It can be proved that this definition does not depend upon thiérary choice ofk, ), and
one defines Wgu) to be the union of all WiK{u). One relevant application of the wave front
set in perturbative quantum field theory is the followingdhem [71] about the product of
distributions.

Theorem 5. Let u, v be distributions orX. If 0 ¢ WF(u) + WF(V), then the pointwise product
uvis defined in some neighborhoodxfand Wk (uv) C WF(u) + Wk (V).

Clearly, if the assumption holds for alle X, then the pointwise product is globally defined
on X. Another useful theorem about wave front sets is the folhguji71]. LetK c R" be a
convex open cone, and lefx+iy) be analytic inR" +iK for |y| < & and some3, with the
property thatu(x +iy)| < C|y|~N for someN, and ally € K with |y| < &. Then the boundary
valueu(x) = B.V.y_.ou(x+iy), with the limit take fory € K defines a distribution oR".

Theorem 6. The wave front set afi(x) = B.V.y_ou(x+iy) with the limit taken within the cone
K, i.e.,y € K, is bounded by
WF(u) c R"x KP, (407)

whereKP = {k € R™ | k-y < 0Vy € K} is the dual cone.

In applications, one often deals with distributions th& swlutions to some partial differen-
tial equationAu= 0, whereA is partial differential operator oK (or even a pseudo-differential
operator), i.e.,

N
A= ;a“l“'“”(X)D(ul...Dpn). (408)

n
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Under this condition, it can be shown that the wave front §etrust be restricted to the set
WF(u) C {(x,K) | a“l---“N(x)kul ...k =0} (409)

In case wher is the wave operator on a Lorentzian manifold, we hence l#ahany distri-
butional solutionu of the wave equation can only have vectors of the f¢rk) in the wave
front set wherk is a null-vector. Another important application of the wdkant set for quan-
tum field theory in curved spacetime is the propagation ofdizrities theorem. Consider a
distributionu on a spacetiméM, g) that is a solution to the wave equatidiu = f, with f a
smoothsource. The wave operator defines a 1-particle Hamiltonmfpbase spaceT*M by
h(x, p) = g"(x) pupv, and Hamilton’s equations, defined with respect to the sgutju structure
dx¥Adpy,

Pu = —ZFVpp(X)prp (410)
= 2gM(X)py (411)

define a flow in phase spade;~ @, which is just the geodesic flow. The propagation of singu-
larities theorem now states in this example that this flowtrtessse the wave front set WE)
invariant, in the sense thgf WF(u) C WF(u). Thus, the propagation of singularities theorem
gives information how singularities propagate along theharacteristic flow. The theorem as
just stated is in fact just a special case of the celebratest®maat-Hormander propagation
of singularities theorem [27], which holds for much more gexh operator#\ of real principal
type (including e.g. the massive wave equation). The Hamdin is then given simply by
h(x, k) = a-IN(x)ky, ...k, in the general case, whekeis the degree of the operator.

Another useful concept in perturbative quantum field thastat of the scaling degree of
a distribution. Letu be a distribution ofiR". The scaling degreesth(u) at the origin ofR" is
defined as

sth(u) =inf{3cR | ti%1+t6u(tx) =0} (412)

where the limitis understood in the sense of distributiars, after smearing with a testfunction.
One similarly defines the scaling degsak(u) at an arbitrary poink by first translatings by x.
On a manifoldX, the scaling degree is defined by first localizingvith a cutoff function and
then pulling it back with a coordinate chaxt;(yu), as in the definition of the wave-front set.
One again verifies that the definition does not depend upochibiee of coordinates.

D Hadamard parametrices

In this appendix, we review the definition of the scalar Hadedrparametrid®, and the vec-
tor Hadamard parametrix]¥, as well as the local expressions for the advanced and estard
propagators in curved spacetime.
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D.1 Scalar Hadamard parametrix

In a general curved spacetime, it is not possible to find aeddsrm expression foAa R,
but it is still possible to present a local expressteqr involving certain recursively defined
coefficients, which locally coincides witha g moduloC®. The distributiondHa r are called
“Hadamard parametrices” fakag. To construct them, let,y € M, and consider the length

functional
b
s(x,y) = /
a

for Cl-curvesy: [a,b] — M with the property thay(a) = x andy(b) =y, which are either
spacelike, timelike, or null (but do not switch from one te tbther). The functionad(p, q)

is invariant under reparametrizations of the curve, so wg amose a parametrization so that
gwY'y’ = 1 along the curve wheyis either spacelike or timelike (such a parameter is calied a
“affine parameter”). The Euler-Lagrange equations for tivecfional are then given by

VO =0, (414)

and curves satisfying this equation are “geodesics™* lare the components gfin a local
chart, then the geodesic equation reads

W+ THLYY =0. (415)

Two given pointsx,y may in general be joined by several geodesics, but one cam [§aj
that every point irM has a neighborhodd such that any pair of pointx,y) € U x U may be
joined by a unique geodesic lying entirely witHih For (x,y) € U x U, we defineg(x,y) to

be the value of the functiosts(x, y)? evaluated on the unique geodesic joininandy, where

+ is chosen for a spacelike, andis chosen for a timelike geodesic. In Minkowski spacetime,
the functiono is equal to the invariant distance between the poirys In any spacetime, the
functiono has the important property that

1/2
G (Y)W (Y’ (1) dt (413)

g Ouolyo = 4o, (416)
where the derivative can act on either the first or secondraeg. Now lefl : M — R be a time

function. By analogy with flat spacetime, we seek Hadamaramatrices for the advanced and
retarded propagators by the following ansatz:

HA,R(Xv y) = %Te(:Ft(Xv y)) U(X, y)é(O'(X, y)) _V(X7 y)e(_O(X7 y)) ’ (417)

Here,u,vare as yet unknown smooth, symmetric functiontlonU andt(x,y) = T(x) — T (y).
This ansatz is consistent with the support properties oath@nced and retarded propagators,
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and it does not depend on the particular choice of time fonctiThe unknown functions, v
are to be determined imposing in addition the Klein-Gordgueation,

(O—mP)xHar(Xy) = 3(x,y) moduloC®, (418)
(O—mP)yHar(Xy) = 3(x,y) moduloC®. (419)

Using the identity (416) one finds thih, Hr solve these equations ih x U moduloC® if the
following identities hold foru, v:

20M00yu = (8—o)u. (420)
as well as
(O—mP)v=0, (421)
moduloC®, and
20Mo0v+ (Do —4)v=—(0O—nP)u, ondl*(y) (422)

where the derivative operators act on the pair®ne can show that the unique smooth solution
to the equation fou is given byu = D¥/2, whereD(x,y) is the so-called “VanVleck determi-
nant”, which is defined as follows. L&ty € U, and letA,, = (0, ® Oy)0, so thatA,dx' @ dy’

is a tensor inf,’M ® T"M. We can consider the 4-th antisymmetric tensor power oftémsor,
which may be viewed as a map

NALATM = AYTM, (423)

whereA"TpM denotes the space of totally antisymmetric tensors of y . Clearly, forr = 4
this space is 1-dimensional (in 4 dimensions), so if we pitlasis element at pointsy, we
can identifyA*A with a scalar. A choice of the basis element depending onbnupe metric
(up to a sign) is the Levi-Civita tensar With this choice D is defined as the scalar obtained
from A*A. In local coordinates,
1

D = EAV]'ulAVZHZAVSH3AV4L14€“1“2“3M8V1V2V3V4 . (424)
where thee tensors are evaluated atandy, respectively. While it is not possible to give a
similarly explicit solution to the equation faf it is possible to obtain a solutionin the form
of a convergent power series

v= oivnx(c/otn)o”, (425)

Here,x is an arbitrary function of compact support that is equal tod neighborhood of 0, and
{an} is a sequence growing sufficiently rapidly so as to enforeectinvergence of the series.
The coefficients are determined recursively as the solstofithe “transport equations”

20,00 — (0,00 logD — 4)vp = — (0 — mA)DY2, (426)
u u
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from eq. (421) and, fon > 0
1
ZDHODHM—(DHODWogD——m1—4)m::—H(D——n?)m_l (427)
from eq. (422). The solutions to these differential equatiare unique if one assumes, as we

have done that, are smooth (i.e., in particular regularnat y). These solutions can be given
in integral form as

112 [H(O-MDY2 ,
and, forn> 0 i
1 1O - V1,012
V=D A-—Tﬁy—m dA (429)

where the integrand is evaluated at the pgi(h),y), wherex(A) = Exp,(Ag), and wherg;, €
TyM is chosen so that(1) = x. Thus, in terms of the Riemannian normal coordinatex of
relative toy, then the integrand is thought of as evaluated at the rescalemal coordinates.
Despite the apparent asymmetry in the constructiam afit can be shown that these functions
are symmetric irx,y [50, 87], and one shows that, indeed,

Har(X,Y) = Aar(X,y) moduloC” (430)

inU x U. (Itcan be proved that exact Greens functidag exist globally, for which the power
series expressions therefore define local asymptotic expas)

From the advanced and retarded parametrices one can defiherparametricellg p (for
“Feynman” and “Dyson”), given by

1 <u(x, y)

Hrp(Y) = 55 (o700 +v(xy) log(a £i0)) (431)

These parametrices are symmetrixig. Using the transport equations fayv, one shows that
these, too, are local Green’s functions (Watfunction source) modul@®. The wave-front sets
of HarF,p are described by the following theorem:

Theorem 7. The wave front set of the 4 Hadamard parametrices are given by

WF(Har) = {(x1,ki;X, ko) | ki~ —ko, X1 € J5(x2)}

U {(xkx,—k)} (432)
WF(Hep) = {(X1,ki; X, ko) | k1~ —kp, ki € VEiff X € J5(x2)}

U {(xkx,—k)} (433)

The proof of this theorem is similar to that of the next lemnhtacan also be proved that
the four parametricelda r F p are uniquely characterized by their wave front propertie$act,
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there is a similar classification of parametrices for anyrafme or real principal type, as shown
by a profound theorem by Duistermaat and Hormander [27].

In the body of the paper, we use a combinatibn,of the above Hadamard parametrices,
which is called simply the “local (scalar) Hadamard parairefor the operator] — m?. It is
the distribution orJ x U defined by eq. (121) in terms of the same coefficientghat appear
above in the local expressions for the advanced and retamgégators. From identities like

%D(O:im) — £(t)8(0), %{D(mg(oﬂm)) — £(1)8(—0), (434)

we get the relations
Hf —Hr= —iH =Ha—Hp. (435)

In view of the symmetry oHg p, there follows the commutator property (443). Furthermore
sinceHa rFp are local Green’s functions modul®® with a d-function source, there follow the
equations of motion

(O—mP)xH(x,y) =0 moduloC®, (O—nP)yH(x,y)=0 moduloC®, (436)
The local Hadamard parametdik is important because it characterizes the short distance be

havior of any Hadamard state, see Appendix E.

D.2 Vector Hadamard parametrix

The vector Hadamard paramethi (x,y) = Hjy, (X, y)d¥*Ady" is constructed by analogy to the
scalar case. It now satisfies the equations

dd+0d)xH"(x,y) =0 moduloC®, (dd+dd)yHY(x,y)=0 moduloC”, (437)
y

whered = «dx. In component form, the equations of motion are given by therator (86).
The local vector Hadamard parametrix has an expansionasitoithat of the scalar Hadamard
parametrix:

1 /uw(XY)
Vv _ = F\VARAT}
H (y) = 2n2< o-+i0t

The coefficientsi,, vy have expansions that are analogous to the scalar case. @hgtgu,y
is given explicitly by

Vi (X, y) log(o + iOt)) : (438)

U = DY21 (439)

wherel : TxM — T'M is the holonomy of the Levi-civita connection along the wdgeodesic
connecting, y (“bitensor of parallel transport”). The expansion coeéittis ofv,, as in eq. (425)
are again determined by transport equations. The solutmtiseese equations take exactly the
same form as in the scalar case, eq. (429), with the onlyrdiffee that the scalar Klein-Gordon
operato] — n?¥ in those expressions is replaced by the vector wave-opagata + Ry.
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E Hadamard states

In the body of the paper, Hadamard 2-point functions playyark&e. They were introduced in
Sec. 3.1 as bidistributions that are solutions to the wavatagn in both entries, that satisfy the
commutator property, and that have a certain wave frontégte we show that these conditions
allow one to identify the short distance behavior of any Hadal 2-point function with that of
the local parametri¥ introduced in the previous subsection.

Lemma 5. Let w(x,y) be a 2-point function of Hadamard form, i.e., the wave fratt&Hw)
is given by (89). Then locally (i.e., whek¢ is defined)w— H is smooth, i.e.,

1 <U(X, y)

w(X,y) = o2 o+it0+v(x’y) Iog(0+|t0)) + (smooth functionirx,y). (440)

Furthermore, any two Hadamard states can at most differ bytatly smooth function irx, y.

Proof: We first show that, where it is defineH, has a wave front set WH) of Hadamard
form, i.e., is given by eq. (89). Sinagare smooth functions on a convex normal neighborhood,
it suffices to prove that Wifo +i0t] 1) and WHlog[o +i0t]) have the desired form. To deter-
mine the wave front set of such distributions, we use the altlom. 6. We apply this lemma to
the distributions in question as follows. First, we pick edbcoordinate systerf,U ) in a con-
vex normal neighborhodd. WithinU, we pick a tetrady, . . ., e3 which we use to identify each
TxM with R* via the map sending§= (£°,...,&3) inR* to the poiniex (&) = E%p|x+ - - -+ &3e3x

in TyM. For each giverx € U, we can then write a pointe U uniquely asy = exp, ex(§) for
somef € R*. The mappingx,y) € U x U — ((x),&) thus defines a local coordinate chart in
M x M, which we call againp. Evidently, it then follows that the pull-back 66 +i0t)~ under

Y is given by the distribution

1 1
—~ = B.V. S
(y+i0€)2 nevin—o(§+in)?

(441)

wheree = (1,0,0,0), which is of the form to which we can apply our lemma. Usingt tifne
dual cone of the open future lightcole™ in Minkowski spacetime is the closure of the past
lightconeV—, it follows

WF([o+i0t] 1) € w*[(R* x 0) x (R*xV7)]. (442)

From this, the desired wave front set follows. The logarithierm is treated in exactly the
same fashion. Consider now the distributtba- w— H. The anti-symmetric part ab is given
byiA, and the anti-symmetric part &f is given by

H(xy) —H(y,x) = i(t) {u(x,¥)3(0) + v(x,y)8(0)} , (443)
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whereg(t) = 1 fort > 0, ande(t) = —1 fort < 0. It can be shown that the right side of the
equation is equal t&A modulo a smooth function. Thud(x,y) is symmetric inx,y modulo a
smooth remainder. On the other hand, since we knowkihlaas the same wave front set@s
we know that

WF(d) C {(X]_, k]_,Xz, kz) eET*M x T*M;
X1 andxy can be joined by null-geodesyc (444)
ki = y(0) andky = —y(1), andk; €V} . (445)

which is evidently not a symmetric set. Thus, the only paBsilis that, in fact, WRd) = 0,
meaning that € C*, or equivalently, thato = H modulo smooth. This proves the lemma]

Another proposition about Hadamard 2-point function uhdeg the “deformation argu-
ment construction” of Hadamard states given in subsectidims4he following:

Theorem 8. Let wbe a distributional bi-solution such that \¢b) has the Hadamard wave front
property in an open neighborhooddf %, whereX is a Cauchy surface. Then \B) has the
Hadamard form globally oM x M.

The proof of the theorem is a simple application of the pr@p@g of singularities theorem
for solutions of the Klein-Gordon equation described inphevious subsection.

A (quasifree) Hadamard state is a 2-point function that isddition positive definite,
w(f, f) > 0 for any testfunction. The positivity implies an even sggen“local-to-global theo-
rem” than the one given above [92]:

Theorem 9. Let w be a bi-solution to the Klein-Gordon equation in both emstrieith anti-
symmetric partA, and with the property that any poixe M has a globally hyperbolic neigh-
borhoodN such that Wiw) is of Hadamard form ilN x N. Then WRw) has the Hadamard
form globally inM x M.
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