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Abstract

We evaluate the path integral of the Poisson sigma model on sphere and study the cor-

relators of quantum observables. We argue that for the path integral to be well-defined

the corresponding Poisson structure should be unimodular. The construction of the finite

dimensional BV theory is presented and we argue that it is responsible for the leading

semiclassical contribution. For a (twisted) generalized Kähler manifold we discuss the

gauge fixed action for the Poisson sigma model. Using the localization we prove that for

the holomorphic Poisson structure the semiclassical result for the correlators is indeed the

full quantum result.



1 Introduction

The Poisson sigma model (PSM), introduced in [21, 37], is a topological two-dimensional

field theory with target a Poisson manifold M , whose Poisson tensor we will denote by α

throughout. Recently PSM has attracted a lot of attention due to its role in the deforma-

tion quantization [6]. In particular the star product is given by a semiclassical expansion

of the path integral of the PSM over the disk. In the present paper we study the PSM

defined over the sphere.

Let us start with a brief reminder of PSM. Take Σ to be a two-dimensional oriented

compact manifold without boundary. The starting point is the classical action functional

S defined on the space of vector bundle morphisms X̂ : TΣ → T ∗M from the tangent

bundle TΣ to the cotangent bundle T ∗M of the Poisson manifold M . Such a map X̂ is

given by its base map X : Σ → M and the linear map η between fibers, which may also

be regarded as a section in Γ(Σ, Hom(TΣ, X∗(T ∗M))). The pairing 〈 , 〉 between the

cotangent and tangent space at each point of M induces a pairing between the differential

forms on Σ with values in the pull-backsX∗(T ∗M) and X∗(TM) respectively. It is defined

as pairing of the values and the exterior product of differential forms. Then the action

functional S of the theory is

S(X, η) =

∫

Σ

〈η, dX〉 + 1

2
〈η, (α ◦X)η〉 . (1.1)

Here η and dX are viewed as one-forms on Σ with the values in the pull-back of the

cotangent and tangent bundles of M correspondingly. Thus, in local coordinates, we can

rewrite the action (1.1) as follows:

S(X, η) =

∫

D

ηµ ∧ dXµ +
1

2
αµν(X)ηµ ∧ ην . (1.2)

The variation of the action gives rise to the following equations of motion

dηρ +
1

2
(∂ρα

µν)ηµ ∧ ην = 0 , dXµ + αµνην = 0 . (1.3)

In covariant language these equations are equivalent to the statement that the bundle

morphism X̂ is a Lie algebroid morphism from TΣ (with standard Lie algebroid structure)

to T ∗M (with Lie algebroid structure canonically induced by the Poisson structure). The

action (1.2) is invariant under the infinitesimal gauge transformations

δβX
µ = αµνβν, δβηµ = −dβµ − (∂µα

νρ)ηνβρ , (1.4)

which form a closed algebra only on-shell (i.e., modulo the equations of motion (1.3)).
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In order to quantize the PSM we have to resolve to the Batalin-Vilkovisky (BV) for-

malism [3] which we will review later. In what follows we will be concentrated mainly

on the case when the world-sheet Σ is two-sphere S2. Our goal is to calculate a leading

term for PSM correlators on S2. We will argue that the notion of unimodularity appear

naturally in the construction of the correlators. Indeed our construction is very similar to

the one presented in [35] and is a generalization of the correlators for A- and B-models (see

[20] for review). It is not surprising since the notion of generalized Calabi-Yau manifold

given in [18] is a complex version of the notion of unimodularity of a Lie algebroid. In

particular the unimodularity of Poisson manifold is a real analog of generalized Calabi-

Yau condition. Previously in the different context the path integral for PSM and related

models was also discussed in [28, 17, 4].

In the second part of the paper we consider a particular gauge fixing which involves

a choice of an (almost) complex structure. The whole setup is realized on (twisted)

generalized Kähler manifolds. For these gauge fixed models there exists a residual BRST

symmetry which allows to use the localization. Thus we are able to produce examples

where the leading term is a full answer for the quantum theory.

The paper is organized as follows. In Section 2 we review basic concepts of BV formal-

ism. Section 3 is devoted to overview of BV treatment of PSM. In particular we discuss

the classical observables. In Section 4 we consider the truncation of the full BV theory to

a finite dimensional BV theory which is responsible for the leading semiclassical contri-

bution in the correlators. We discuss this finite dimensional BV theory in details. In this

context the unimodularity of Poisson manifold arises naturally from the quantum master

equation. In Section 5 the specific gauge fixing is discussed. Indeed the geometrical set-up

we are using is the same as for the N = 2 supersymmetric PSM [5]. We work out the

details of gauge fixing and discuss the residual BRST transformations of the gauge fixed

action and present the calculations of the correlators for the gauge fixed model. Finally

Section 6 summarizes the results and discusses open issues.

In addition we have Appendices A and B where the relevant mathematical material

is collected. The material presented there is not entirely original and furthermore we

could not find appropriate references with all material. Many of the results presented in

Appendices are scattered throughout the literature. Moreover we would like to link two

different languages used by different communities. In particular the notion of generalized

Calabi-Yau manifold introduced by Hitchin [18] is related to the notion of unimodularity

for complex Lie algebroid.

Throughout the paper we use the language of graded manifolds which are supermani-

folds with a Z-refinement of Z2-grading, e.g. see [36] for the review.
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2 Review of BV formalism

In this Section we briefly review the relevant concepts within the general BV framework.

For further details the reader may consult the following reviews [8, 12, 16].

Definition 1 A graded algebra A with an odd bracket { , } is called an odd Poisson

algebra (Gerstenhaber algebra) if the bracket satisfies

{f, g} = −(−1)(|f |+1)(|g|+1){g, f} ,

{f, {g, h}} = {{f, g}, h}+ (−1)(|f |+1)(|g|+1){g, {f, h}} ,

{f, gh} = {f, g}h+ (−1)(|f |+1)|g|g{f, h} .

Quite often such odd Poisson bracket is called either Gerstenhaber bracket or antibracket.

Definition 2 A Gerstenhaber algebra (A, { , }) together with an odd R–linear map

∆ : A −→ A ,

which squares to zero ∆2 = 0 and generates the bracket { , } as

{f, g} = (−1)|f |∆(fg) + (−1)|f |+1(∆f)g − f(∆g) ,

is called a BV-algebra. ∆ is called odd Laplace operator (odd Laplacian).

The canonical example of BV algebra is given by the space of functions on W ⊕ ΠW ∗,

where W is a superspace, W ∗ is its dual and Π stands for the reversed parity functor.

W ⊕ ΠW ∗ is equipped with an odd non-degenerate pairing. Let ya be the coordinates

on W (the fields) and y+
a be the corresponding coordinates on ΠW ∗ (the antifields). We

denote the parity of ya as (−1)|y
a | and that of y+

a as (−1)|y
+
a | = (−1)|y

a|+1. Then the odd

Laplacian is defined as follows

∆ = (−1)|ya|
∂

∂y+
a

∂

∂ya
. (2.5)

It generates the canonical antibracket on C∞(W ⊕ ΠW ∗)

{f, g} = (−1)|y
a|

←−
∂ f

∂y+
a

−→
∂ g

∂ya
+ (−1)|y

a|

←−
∂ f

∂ya

−→
∂ g

∂y+
a

, (2.6)

where we use the notation
−→
∂ vf = ∂vf and

←−
∂ vf = (−1)|v||f |∂vf . Indeed the bracket (2.6)

is non degenerate and defines the canonical odd symplectic structure on W ⊕ ΠW ∗.
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A Lagrangian submanifold L ⊂ W ⊕ ΠW ∗ is an isotropic supermanifold of maximal

dimension. The volume form dy1...dyndy+
1 ...dy

+
n induces a well defined volume form on L.

Thus the integral
∫

L

f, f ∈ C∞(W ⊕ ΠW ∗) (2.7)

is defined for any L. The following is the main theorem of BV-formalism.

Theorem 3 If ∆f = 0, then
∫

L

f depends only on the homology class of L. Moreover
∫

L

∆f = 0 for any Lagrangian L.

The canonical exampleW⊕ΠW ∗ can be generalized to the cotangent bundle T ∗[−1]M
of any graded manifold M [38]. As a cotangent bundle, T ∗[−1]M is naturally equipped

with an odd Poisson bracket that makes C∞(T ∗[−1]M) a Gerstenhaber algebra according

to Definiton 1. The idea is that locally one can map T ∗[−1]M to W ⊕ ΠW ∗, define the

bracket on coordinates with (2.6) and then glue the patches in a consistent manner.

Now in order to define the odd Laplacian ∆ we need an integration over T ∗[−1]M.

Namely, the choice of a volume form v on M produces the corresponding volume form

µv on T ∗[−1]M. The divergence operator is defined as a map from the vector fields on

T ∗[−1]M to C∞(T ∗[−1]M) through the following integral relation

∫

T ∗[−1]M

X(f) µv = −
∫

T ∗[−1]M

divµvX f µv , ∀f ∈ C∞(T ∗[−1]M) , (2.8)

with X being a vector field. As one can easily check, for any function f and vector field

X the divergence satisfies

divµv(fX) = fdivµv(X) + (−1)|f ||X |X(f) . (2.9)

Now the odd Laplacian of f ∈ C∞(T ∗[−1]M) is defined through the divergence of the

corresponding Hamiltonian vector field as

∆vf =
(−1)|f |

2
divµv

Xf , {f, g} = Xf (g) . (2.10)

Indeed one can check that thanks to (2.9) ∆v generates the bracket and ∆2
v = 0. Thus

C∞(T ∗[−1]M) is a BV-algebra according to Definition 2, see [25] for the explicit calcula-

tions. If the volume form is written in terms of an even density ρv as

µv = ρvdy
1 · · · dyndy+

1 · · · dy+
n ,
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then the Laplacian can be written as

∆v = (−1)|ya|
∂

∂y+
a

∂

∂ya
+

1

2
{log ρv,−} . (2.11)

There exists a canonical way (up to a sign) of restricting a volume form µv on T ∗[−1]M
to a volume form on a Lagrangian submanifold L. We denote such restriction as

√
µv and

consider the integrals of the form
∫

L

√
µv f , f ∈ C∞(T ∗[−1]M) . (2.12)

Thus the Theorem 3 will remain to be true for the general case. In particular we are

interested in the situation when the integrands in (2.12) are of the form

∫

L

√
µv ΨeS ≡ 〈Ψ〉 , (2.13)

where we assume naturally that ∆v(Ψe
S) = 0. If Ψ = 1 then we get the following relation

∆v

(

eS
)

= 0 ⇐⇒ ∆vS +
1

2
{S, S} = 0 , (2.14)

which is known as the quantum master equation. In the general case we have

∆v

(

ΨeS
)

= 0 ⇐⇒ ∆(v,S)Ψ = ∆vΨ + {S,Ψ} = 0 , (2.15)

where we refer to ∆(v,S) as the quantum Laplacian. In the derivation of (2.15) we have

used the quantum master equation (2.14). A function S that satisfies the quantum master

equation is called a quantum BV action and Ψ satisfying (2.15) is a quantum observable.

Indeed the quantum observables are elements of the cohomology H(∆(v,S)); by the above

construction it is clear that S defines the isomorphism

H•(∆v) ≈ H•(∆(v,S)) . (2.16)

If we change S to S/~, we see that in the classical limit (~ → 0) S must satisfy

the classical master equation {S, S} = 0 and the classical observables Ψ are such that

δBV Ψ ≡ {S,Ψ} = 0. Due to the classical master equation the vector field δBV squares to

zero and defines the cohomology H(δBV ) of classical observables.

IfM is a finite dimensional manifold then everything is well-defined. However in field

theory one deals withM being infinite dimensional. In fact,M is usually the space of the

physical fields, ghosts and Lagrange multipliers, that is infinite dimensional. We extend

this set of fields by adding antifields such that together they form T ∗[−1]M, where an
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odd Poisson bracket is well-defined on large enough class of functions, as described above.

However there is no well-defined measure on M and thus there is no well-defined odd

Laplace operators. In physics literature, the naive Laplacian of the form (2.6) is used.

Moreover the field theory suffers from the problems with renormalization which can be

resolved within the perturbative setup.

3 BV formalism for PSM

The quantization of PSM requires the machinery of BV formalism. In this Section we set

the notation and give a background information on the BV treatment of PSM. We mainly

review the relevant results from from [6] and [7]. Furthermore we discuss the classical

observables.

3.1 BV action

The PSM action (1.2) has gauge symmetries which do not close off-shell. Therefore one

should resort to BV formalism. We may organize the fields, ghosts and antifields into

superfields (X,η) which corresponds to the components of supermap T [1]Σ → T ∗[1]M .

Introducing the local coordinates on Σ and M the superfields read as

X
µ = Xµ + θαη+µ

α −
1

2
θαθββ+µ

αβ ,

ηµ = βµ + θαηαµ +
1

2
θαθβX+

αβµ ,

with θ being the odd coordinate on ΠTΣ, α, β are labels for local coordinates on Σ and µ

are labels for local coordinates on M . In the expansion β is a ghost with the ghost number

1, while η+, β+ and X+ are antifields of ghost number −1, −2 and −1 respectively. The

full BV action reads

SBV =

∫

d2θd2u

(

ηµDX
µ +

1

2
αµν(X)ηµην

)

, (3.17)

where D = θα∂α. An elegant way to derive this action is to use the AKSZ formalism [1]

as done in [7]. On T ∗[−1]M the odd symplectic structure is

ω =

∫

Σ

(

δX ∧ δX+ + δη ∧ δη+ + δβ ∧ δβ+
)

, (3.18)

whereM is infinite dimensional manifold corresponding to the fields (X, η, β). The action

(3.17) satisfies both classical and naive quantum master equations [6]. The corresponding
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BRST operator δBV acts on the superfields as follows

δBV X
µ = DX

µ + αµν(X)ην , (3.19)

δBV ηµ = Dηµ +
1

2
∂µα

νρ(X)ηνηρ . (3.20)

In component the BV action (3.17) has the form

SBV =

∫

Σ

ηµ ∧ dXµ +
1

2
αµν(X)ηµ ∧ ην +X+

µ α
µν(X)βν − η+µ ∧ (dβµ + ∂µα

ρν(X)ηρβν)−

−1

2
β+µ∂µα

ρν(X)βρβν −
1

4
η+µ ∧ η+ν∂µ∂να

ρσ(X)βρβσ . (3.21)

The component version of the BV transformations (3.19)-(3.20) is

δBVX
µ = αµν(X)βν , (3.22)

δBV η
+µ = −dXµ − αµν(X)ην − ∂να

µρ(X)η+νβρ , (3.23)

δBV β
+µ = −dη+µ − αµν(X)X+

ν +
1

2
∂ν∂ρα

µσ(X)η+ν ∧ η+ρβσ +

+∂ρα
µν(X)η+ρ ∧ ην + ∂ρα

µν(X)β+ρβν , (3.24)

δBV βµ =
1

2
∂µα

νρ(X)βνβρ , (3.25)

δBV ηµ = −dβµ − ∂µα
νρ(X)ηνβρ −

1

2
∂µ∂να

ρσ(X)η+νβρβσ , (3.26)

δBVX
+
µ = dηµ + ∂µα

νρ(X)X+
ν βρ − ∂µ∂να

ρσ(X)η+ν ∧ ηρβσ +
1

2
∂µα

νρ(X)ην ∧ ηρ −

−1

4
∂µ∂ν∂ρα

στ (X)η+ν ∧ η+ρβσβτ −
1

2
∂µ∂να

ρσ(X)β+νβρβσ . (3.27)

3.2 Classical observables

Next we consider the classical observables for PSM. By an observable we mean a BRST

invariant operator which is not BRST exact.

Let us take antisymmetric multivector field w ∈ Γ(∧pTM) and construct the superfield

wµ1...µp(X)ηµ1
...ηµp

. Using (3.19)-(3.20) we calculate the BRST transformation of this

superfield

δBV (wµ1...µpηµ1
...ηµp

) = D(wµ1...µpηµ1
...ηµp

)− 1

2
([α,w]s)

µ0µ1...µpηµ0
ηµ1

...ηµp
. (3.28)

The last term on the right hand side vanishes if dLPw = [α,w]s = 0. Moreover we do not

want the superfield wµ1...µpηµ1
...ηµp

to be BRST exact. Thus we have to take w to be an

element in the Lichnerowicz-Poisson cohomoogy H•
LP (M). Now assuming [w] ∈ H•

LP (M)

we can interpret (3.28) in components. The superfield has the expansion

wµ1...µp
ηµ1

...ηµp
= Op

0 + θα(Op−1
1 )α +

1

2
θαθβ(Op−2

2 )αβ
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on which the BRST differential δBV acts as

δBV (wµ1...µpηµ1
...ηµp

) = δBVO
p
0 − θαδBV (Op−1

1 )α +
1

2
θαθβδBV (Op−2

2 )αβ .

The operator D = θα∂α acts on the component fields as the de Rham differential. Thus

for [w] ∈ H•
LP (M) the condition (3.28) implies the descent equations for the components

δBVO
p
0 = 0 , δBVO

p−1
1 = −dQp

0 , δBVO
p−2
2 = dQp−1

1 . (3.29)

More explicitly for a nontrivial element [w] ∈ Hp
LP (M) we can formally define the cocycles

Op
0(w) = wµ1...µpβµ1

...βµp , (3.30)

Op−1
1 (w) = ∂ρw

µ1...µpη+ρβµ1
...βµp + pwµ1µ2...µpηµ1

βµ2
...βµp , (3.31)

Op−2
2 (w) = −1

2
∂ρ∂σw

µ1...µpη+ρ ∧ η+σβµ1
...βµp − ∂ρw

µ1...µpβ+ρβµ1
...βµp −

−p∂ρw
µ1...µpη+ρ ∧ ηµ1

βµ2
...βµp + pwµ1...µpX+

µ1
βµ2

...βµp +

+p(p− 1)wµ1...µpηµ1
∧ ηµ2

βµ3
...βµp , (3.32)

where in Op−i
i (w) the upper index stands for the ghost number and the lower index for the

degree of the differential form on Σ. Qp−i
i (w) satisfy (3.29) and thus Op

0(w) are BRST-

invariant local observables labeled by the elements of the Lichnerowicz-Poisson cohomology

H•
LP (M). From Op−i

i (w) with i > 0 we can construct BRST-invariant non-local observables

as integrals

W (w, ci) =

∫

ci

Op−i
i (w) (3.33)

where ci is i-cycle on Σ. These observables depend only on the homology class of ci. The

antibracket { , } of two non-local observables

{W (w,Σ),W (λ,Σ)} = −W ([w, λ]s,Σ) (3.34)

get mapped into the Schouten bracket between the multivector fields [6].

3.3 General comments on the path integral

The main task is to calculate the correlation functions of observables which can be repre-

sented as the path integral expression

〈W (w1, ci1)...W (wn, cin)〉 =

∫

L

DXDη W (w1, ci1)...W (wn, cin) e
i
~

SBV . (3.35)

For this integral to make sense at least perturbatively we have to integrate not over whole

functional space but over the ”Lagrangian” submanifold L. The choice of L is called the
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gauge fixing and it is typically generated by a gauge fixing fermion Ψ. The path integral

(3.35) is invariant under the deformations of the Lagrangian submanifold L.

However due to the absence of any well-defined measure on the space of fields we

cannot treat this integral non-perturbatively. Despite this difficulty we can address and

even sometimes to solve it completely from the different direction, namely by reducing to

an appropriate finite dimensional problem. We would expect that the correlator (3.35)

has a well-defined expansion in non-negative powers of ~. In particular there will be

a leading term in this expansion which we can evaluate by consistent reduction of the

full theory to a finite dimensional BV theory for which all objects can be defined. This

reduction will produce the leading terms in the correlators. Indeed for some models these

terms correspond to a full quantum result. In the Section 4 we will consider the finite

dimensional BV theory responsible for a leading terms in the correlators on S2.

In Section 5 we present the details for a concrete choice of L. The gauge fixed theory

will have residual BRST symmetry which allows us to localize the infinite dimensional

integrals to finite dimensional.

4 The reduced BV theory

In this Section we consider a consistent truncation of the infinite dimensional BV theory

to a finite dimensional one, that computes the contribution of constant configurations.

We conjecture that this reduced BV theory controls the leading contribution into the path

integral in the limit ~→ 0.

This procedure can be considered as a reduction of BV -manifolds and for a Riemann

surface Σg of genus g the truncation can be organized in the following fashion. We define

the submanifold C of the whole space of fields by requiring that all fields are closed forms

dX = 0 , dβ = 0 , dη = 0 , dη+ = 0 , dX+ = 0 , dβ+ = 0 . (4.36)

These equations define a set of first class constraints (the conditions dX+ = dβ+ = 0

are redundant since X+ and β+ are the top forms), i.e. C is a coisotropic submanifold.

The gauge transformations generated by the constraints (4.36) shift the field by an exact

form. Therefore the reduced BV space is obtained by going to the cohomology of Σg .

The reduced variables are then defined by the integration of the fields over all cycles of

Σg. Thus zero-forms X and β are constants, and we use the same symbols to indicate the

reduced coordinates. For one-forms we choose the basis {ca} in H1(Σg,R) = H1(Σg,R)

and introduce the reduced coordinates

ηa =

∫

ca

η , η+
a =

∫

ca

η+ .
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While two-forms X+ and β+ are integrated over whole Σ and give

X+ =

∫

Σg

X+ , β+ =

∫

Σg

β+ .

All the BV structure goes to the quotient and defines a finite dimensional BV manifold.

The space H1(Σg,R) is symplectic with the structure ωab. Therefore on the reduced finite

dimensional manifold, the odd symplectic structure (3.18) reads

ω = dXµdX+
µ + ωabdηadη

+
b + dβµdβ

+µ . (4.37)

Moreover, the BV action SBV defined in (3.21) when restricted to C depends only on the

reduced variables, i.e. it is a pull-back of a function on the reduced manifold. We use the

same notation SBV for it.

However we are interested in zero genus case, and we leave for future investigations the

case of genus g > 0. In this situation the corresponding finite dimensional BV manifold

is F = T ∗[−1]T ∗[1]M where the odd symplectic structure is written in the coordinates

z = (Xµ, βµ, X
+
µ , β

+µ) as

ω = dXµdX+
µ + dβµdβ

+µ . (4.38)

The degree of the coordinates is the one induced from the corresponding fields. Under a

coordinate change X̃i(Xµ), the new coordinates z̃ = (X̃i, β̃i, X̃
+i, β̃†i) are

β̃i = T µ
i βµ , β̃+i = T i

µβ
+µ , X̃+

i = X+
µ T

µ
i − β+µβν

∂T ν
j

∂Y i
(T−1)j

µ , (4.39)

where T µ
i = ∂Xµ/∂X̃i. The BV action (3.21) becomes

SBV = X+
µ α

µν(X)βν −
1

2
β+µ∂µα

ρν(X)βρβν , (4.40)

which obviously satisfies the classical master equation. In the following discussion we will

analyze this finite dimensional BV theory and claim that it gives the leading contribution

to PSM correlators. Later using a particular gauge fixing we will confirm this statement.

In addition to the BV reduction described above we can provide a different heuristic

argument in the support of our construction. The action (4.40) can be understood as a

leading term in the effective BV theory with the ”constant” maps as IR degrees of freedom.

The reader may consult [27, 34] for the explanation the effective actions within the BV

framework.
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4.1 Integration on finite dimensional BV manifold

We start by defining the integration over F = T ∗[−1]T ∗[1]M . This will allow us to define

an odd Laplacian which is necessary for a proper BV description, according to the lines

outlined in Section 2.

Integration on F can be defined by putting together berezinian integration in the odd

directions of X+
µ and βµ and fiberwise integration in the even directions of β+µ. Let us

choose a volume form Ω = Ωµ1···µndX
µ1 · · · dXµn = ρΩdX

1 · · · dXn on M .

We introduce the volume form µΩ = ρ4
ΩDz, whereDz = dX1 · · · dβ1 · · · dX+

1 · · · dβ+1 · · ·
is the coordinate volume form. Since under the change of coordinates (4.39) the coordinate

volume form transforms as

Dz̃ = Ber
∂z̃

∂z
Dz , Ber

(

I00 I01

I10 I11

)

=
det(I00− I01I

−1
11 I10)

det I11

it is simple to check that µΩ is well defined. By applying (2.11), we get

∆Ω =
∂

∂X+
µ

∂

∂Xµ
− ∂

∂β+µ

∂

∂βµ
+ 2{log ρΩ,−} .

The restriction to F of local and the non-local observables (3.32) associated to multi-

vector fields defines the corresponding observables on the reduced manifold F . Namely,

to w ∈ Γ(∧pTM) we associate the local observable

Op
0(w) = wµ1···µpβµ1

· · ·βµp , (4.41)

and the non-local one

Op−2
2 (w) = −∂ρw

µ1···µpβ+ρβµ1
· · ·βµp + pwµ1···µpX+

µ1
βµ2
· · ·βµp . (4.42)

It is straightforward to check that they are covariant under the transformation of coor-

dinates (4.39). The antibracket defined by the odd symplectic structure (4.37) between

local and non-local observables can be expressed in terms of the Schouten bracket; let

w ∈ Γ(ΛpTM), λ ∈ Γ(ΛℓTM), then we have that

{Op−2
2 (w), Oℓ

0(λ)} = −Op+ℓ−1
0 ([w, λ]s) {Op−2

2 (w), Oℓ−2
2 (λ)} = −Op+ℓ−3

2 ([w, λ]s) ,

(4.43)

in analogy with (3.34). The odd Laplacian ∆Ω acts on this observable as follows

∆ΩO
p−2
2 (w) = −2(DΩ(w))µ1···µp−1βµ1

· · · βµp−1
= −2Op−1

0 (DΩ(w)) , (4.44)

where DΩ is the divergence associated to the volume form Ω defined in the Appendix A.

The BV -differential also descends to the reduced manifold as δBV (F ) = {SBV , F}, for any

F ∈ C∞(F).
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The action SBV = 1/2 O0
2(α) defined in (4.40) satisfies the quantum master equation

(2.14) if the following holds

∆ΩSBV +
1

2
{SBV , SBV } = 0 ⇐⇒ DΩα = 0 , [α, α]s = 0 , (4.45)

where [ , ]s is the Schouten bracket on multivector fields, see Appendix A for the definitions.

Thus the classical and quantum master equations have to be satisfied simultaneously. The

geometrical meaning of the quantum master equation is clear: the volume form Ω must

be invariant under the flow of the hamiltonian vector fields of α. The existence of such

volume form is equivalent to the unimodularity of the Poisson tensor, see the discussion

in Appendix A. More generally, we may say that the action (4.40) is of order zero in ~ of

the solution of quantum master equation if and only if α is Poisson and unimodular. If Ω

is not invariant form then the unimodularity of α implies

DΩα = −dLP f , (4.46)

for some function f(X). This would correspond to the addition to

SBV + 2~f(X) .

Equivalently this amounts to the redefinition Ω by e~fΩ. In what follows we set ~ = 1.

By applying formulas (4.43), we see that for any w ∈ Γ(Λ•TM) we have

∆(Ω,α)O
p
0(w) = 0 ⇐⇒ dLP (w) = 0 , (4.47)

and thus the local observable associated to w is a quantum observable iff dLPw = 0. The

non-local observable Op−2
2 (w) will be quantum if the following holds

∆Ω

(

Op−2
2 (w)eSBV

)

= 0 ⇐⇒ ∆(Ω,α)(O
p−2
2 (w)) = 0 ⇐⇒ DΩw = 0 , dLPw = 0 . (4.48)

Moreover, by applying (4.43) we see that local and nonlocal observables form a subcomplex

of the quantum laplacian ∆(Ω,α) = ∆Ω + δBV . See the next subsection for the discussion

of these observables.

Finally we can evaluate the path integral. We have to choose a Lagrangian submanifold

L and the most obvious choice is L = {X+ = 0, β+ = 0}. In order to compensate the odd

integration we have to insert into the path integral the local observables
∫

L

Op1

0 (w1) .... O
pk

0 (wk) e
SBV = trΩ(w1 ∧ ... ∧ wk) , (4.49)

where the trace map is defined in the Appendix B. This expression is non-zero only if

p1 + ...+ pk = d. With this choice of lagrangian submanifold, the nonlocal observables are

identically zero.
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We conclude that in the present finite dimensional BV -theory the action (4.40) satisfies

the quantum master equation if the Poisson tensor α is unimodular. This is equivalent to

the requirement that there exists a trace map trΩ satisfying two properties in Theorem

9 of Appendix A. In Appendix A we present the mathematical discussion of these prop-

erties. Below we present ”physical” derivation of those identities. The first property of

trΩ from Theorem 9 is a consequence of the quantum master equation for SBV (i.e., the

unimodularity of Poisson structure α). Namely we have the following chain of relations

trΩ
(

dLP (w) ∧ λ− (−1)|w|+1w ∧ dLP (λ)
)

= trΩ (dLP (w ∧ λ)) =

= −2

∫

L

{eSBV , O
|w|+|λ|
0 (w ∧ λ)} = −2

∫

L

∆Ω

(

eSBV O
|w|+|λ|
0 (w ∧ λ)

)

= 0 .

This property implies that the trace map trΩ descends to the Lichnerowicz-Poisson co-

homology H•
LP (M). The second property in Theorem 9 is a simple consequence of the

fundamental BV Theorem 3. To be specific for the multivector fields w, λ we have the

following relations

trΩ
(

DΩ(w) ∧ λ− (−1)|w|w ∧DΩ(λ)
)

=

=

∫

L

(

O
|w|−1
0 (DΩw)O

|λ|
0 (λ) − (−1)|w|O

|w|
0 (w)O

|λ|−1
0 (DΩλ)

)

=

= −2

∫

L

∆Ω

(

O
|w|−2
2 (w)O

|λ|
0 (λ) −O|w|

0 (w)O
|λ|−2
2 (λ)

)

= 0 ,

where (4.45) and (4.48) have been used. This property implies that the trace descends to

the cohomology of DΩ. The cohomology of DΩ on the multivectors H•(DΩ) is isomorphic

to the de Rham cohomology H•
dR(M).

In the present context it is worthwhile to mention another interesting property of the

trace map trΩ on multivector fields. For the unimodular Poisson structure α there is the

following relation

e−αDΩe
α = dLP +DΩ , (4.50)

where eα acts on the multivector field w as

eαw = w + α ∧ w +
1

2
α ∧ α ∧ w + ... ,

and DΩe
α = 0 is used. The relation (4.50) implies the isomorphism of cohomologies,

H•(dLP + DΩ) ≈ H•
dR(M). Moreover the trace map trΩ descends to the cohomology

H•(dLP +DΩ).
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4.2 Maurer-Cartan equation and formal Frobenius manifolds

In this subsection we comment on the relation between the BV setting described above and

the construction of Frobenius manifolds from BV -manifolds which appeared previously in

mathematical works, in particular in the papers by Barannikov and Kontsevich [2] and by

Manin [32, 33]. Our observations have preliminary and speculative character. We plan to

come back to this subject elsewhere.

The BV theory discussed in the previous section can be deformed by adding to the

solution (4.40) of the quantum master equation any observable of ghost number 0. Take

w(t) ∈ Γ(Λ2TM [[t]]) with t being a formal parameter of degree zero such that w = w(0).

Consider the deformed action

SBV (t) = SBV +
t

2
O0

2(w(t)) . (4.51)

Obviously, SBV (t) satisfies the quantum master equation if and only if α + tw(t) is an

unimodular Poisson structure with the invariant volume form Ω. This is equivalent to the

Maurer-Cartan equation for w(t),

dLPw(t) +
t

2
[w(t), w(t)]s = 0 , DΩw(t) = 0 . (4.52)

At the infinitesimal level this means dLPw = DΩw = 0 and thus O0
2(w) is a quantum

non-local observable. However it is natural to allow the volume form Ω to vary and

use the argument presented around the equation (4.46). Therefore we can describe the

infinitesimal deformations as follows

dLPw = 0 , DΩw + dLP f = 0 , (4.53)

with w+f ∈ Γ(∧2TM ⊕∧0TM), where w corresponds to the deformations of unimodular

Poisson structure and f to the deformations of the volume form. The equations (4.53)

can be equivalently rewritten as follows

(dLP +DΩ)(w + f) = e−αDΩe
α(w + f) = 0 , (4.54)

where we assume that Ω is invariant volume form for α. In BV theory the deformation will

be trivial if it is in the image of the quantum Laplacian ∆(Ω,α). However the question is

to understand the geometrical description of these trivial BV deformations. For example,

the diffeomorphisms give a trivial deformation of the BV theory. Namely for w = Lξα =

dLP (ξ) and f = DΩξ for ξ ∈ Γ(TM) the deformation is trivial,

1

2
O0

2(w) + 2O0
0(f) = −∆(Ω,α)O

−1
2 (ξ) .
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However the formula (4.54) suggests that the deformations is trivial if

w + f = (dLP +DΩ)ξ = e−αDΩ(eαξ) , (4.55)

with ξ ∈ Γ(∧•TM), not just simply a vector. One has to show that the corresponding

deformations of the BV theory are trivial. Unfortunately we are unable to do it in all

generality. Nevertheless we give some plausible arguments in its favor and analyze the

problem in special cases.

The linear space of deformations defined as the condition (4.54) modulo the identifi-

cation (4.55) would be interpreted as the tangent space to some kind of modular space of

unimodular Poisson structures (if such space exists). The crucial point motivated by the

BV consideration is that the Poisson tensors may be equivalent even if they are not dif-

feomorphic. Indeed the equivalence relation (4.55) looks very natural in terms of the pure

spinor description (see Appendix B for the details). The unimodular Poisson structure

can be described in terms of closed pure spinor ρ = eαΩ. The deformation of the pure

spinor would be given by

δρ = (w + f) · ρ ,

where the finite deformation is eα+wefΩ. The property (4.54) implies that d(δρ) = 0. If

the deformation satisfies (4.55) then

δρ = (w + f) · ρ = −d (ξ · ρ) ,

where we used the Theorem 13 in the Appendix B. Thus we look at the deformations of

closed pure spinor modulo exact ones which correspond to the subspace of the de Rham

cohomology group, namely

{[(w + f) · ρ] ∈ H•
dR(M) , (w + f) ∈ Γ(∧2TM ⊕ ∧0TM)} ,

where we deal the alternative grading of the differential forms, see Appendix B. Following

a standard terminology, we refer to the corresponding space of deformations of the BV

theory modulo the trivial ones as the geometric moduli space.

Let us get back to the BV theory. More generally we want to understand the subspace

of the cohomology of the quantum Laplacian spanned by non-local observables

Hnonloc(∆(Ω,α)) = {[O2(w)] ∈ H(∆(Ω,α)), w ∈ Γ(Λ•TM)} .

In particular we want to understand if it is finite dimensional and moreover related to the

de Rham cohomology HdR(M) ≈ H(DΩ) ≈ H(dLP + DΩ). We are unable to answer this

question in all generality. However we can analyze two special cases which give a positive

answer.
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Let us discuss first the case of the trivial Poisson structure, α = 0. In this case a

quantum non-local observable Op−2
2 (w) corresponds to the multivector field w ∈ Γ(∧pTM)

such that DΩw = 0. Then we can show that Op−2
2 (DΩν), DΩν ∈ ΛpTM , is trivial. In fact

it is always possible to write ν =
∑

i fiDΩλi, for some fi ∈ C∞(M) and λi ∈ Γ(Λp+2TM).

This is obviously equivalent to say that the de Rham differential finitely generates the

module of forms. Then using the basic properties of the antibracket we arrive to

Op−2
2 (DΩν) =

∑

i

Op−2
2 ([fi, DΩλi]s) = −

∑

i

{O−2
2 (fi), O

p−1
2 (DΩλi)}

= −∆Ω(
∑

i

O−2
2 (fi)O

p−1
2 (DΩλi)) . (4.56)

Therefore the correspondence w → Op−2
2 (w) defines a surjection fromH(DΩ) toHnonloc(∆Ω).

Thus the corresponding geometrical moduli space is finite dimensional.

Next consider the case of non-trivial Poisson structure α such that two differentials

(dLP , DΩ) satisfy the ∂∂̄-lemma, i.e.

ImdLPDΩ = ImdLP ∩KerDΩ = KerdLP ∩ ImDΩ . (4.57)

The condition (4.57) is satisfied for a large class of symplectic manifolds obeying the strong

Lefschetz property (see [33]). However the ∂∂̄-lemma does not hold for a generic Poisson

manifold since HLP (M) is infinite dimensional. One of the consequence of the ∂∂̄-lemma

is the isomorphism of the cohomologies, HLP (M) ≈ HdR(M). The extreme example

of the failure for this lemma is the trivial Poisson structure. Consider w ∈ Γ(ΛpTM)

which defines a trivial class in (dLP + DΩ)-chomology, i.e. w = dLP ξp−1 + DΩξp+1, 0 =

dLP ξk−1+DΩξk+1 for k 6= p. After the straightforward calculation we arrive to the following

relation

Op−2
2 (w) = −2∆(Ω,α)(O2(ξp−1) + 4O0(ξp−3)) +O2(DΩξp+1) .

Since DΩξp+1 ∈ ImDΩ ∩KerdLP = ImDΩdLP there exists νp such that DΩξp+1 = DΩdLPνp

and O2(DΩξp+1) = 2∆(Ω,α)O2(DΩνp). Thus we conclude that also in this case the cor-

respondence w → Op−2
2 (w) defines a surjective map from the finite dimensional space

Hp
dR(M,α) to Hnonloc(∆(Ω,α)) where Hp

dR(M) is defined as follows

Hp
dR(M,α) = {[w · ρ] ∈ H•

dR(M) , w ∈ Γ(∧pTM)} .

Motivated by these two examples we conjecture that the space Hnonloc(∆(Ω,α)) is fi-

nite dimensional. Thus in general the action SBV can be deformed for arbitrary ghost

number, mimicking of the construction of Frobenius manifolds of [2] and [32]. Let {wk ∈
Γ(ΛpkTM)} define a basis {Opk−2

2 (wk)} of Hnonloc(∆(Ω,α)). We introduce the formal vari-

ables {tk} of degree 2 − pk and extend the full BV machinery to F ⊗ R[[tk]]. Clearly
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S(t) = SBV +
∑

k tkO
pk−2
2 (wk) solves at the infinitesimal level the quantum master equa-

tion. Interpreting Hnonloc(∆(Ω,α)) as the tangent space of the extended moduli space the

main problem is to find a finite deformation, i.e. a solution of the Maurer-Cartan equation

δBV S(t) +
1

2
{S(t), S(t)} = 0 . (4.58)

In [2, 32, 33] the solution of such equation is discussed within the BV setup. The main

difference with the setup in [2, 32, 33] is the requirement of ∂∂̄-lemma that we want

to avoid because it excludes the non symplectic cases. Is it possible to solve the Maurer-

Cartan equation (4.58) in this context ? The ∂∂̄-lemma provides the isomorphism between

the spaces of the classical and quantum observables. While for the generic unimodular

Poisson manifold the space of classical observables is infinite dimensional and the space of

quantum observables is expected to be finite dimensional.

5 Gauge fixing

In this Section we perform the gauge fixing by choosing an appropriate Lagrangian sub-

manifold. In particular we use a complex structure for the gauge fixing.

5.1 Geometrical setup

Let us start from the description of the relevant geometric setup. It turns out to be very

convenient to consider the N = 2 supersymmetric PSM [5]. The existence of the extended

supersymmetry for PSM requires a generalized complex strucrure

J =

(

J P

L −J t

)

, (5.59)

such that [R,J ] = 0, where

R =

(

1d α

0 −1d

)

. (5.60)

These conditions can be worked out completely. To be specific L = 0, J is a complex

structure and moreover the (2, 0) + (0, 2) part of α

σ =
1

2
(Jα+ αJ t) , (5.61)

is a holomorphic Poisson structure. If we switch to the complex coordinates with the

labels (i, ī) then (2, 0)-part αij is a holomorphic Poisson structure if the following holds

∂k̄α
ij = 0 , αil∂lα

jk + αjl∂lα
ki + αkl∂lα

ij = 0 . (5.62)
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Indeed the geometrical setup we will use can be summarized as follows: a Poisson manifold

(M,α, J) with a complex structure J such that (2, 0)-part of α is holomorphic. The fact

that (2, 0)-part is Poisson itself follows from this.

It may look at first that the geometry we just described is somewhat exotic. However it

is not the case and this Poisson geometry is realized always on (twisted) generalized Kähler

manifolds [31, 14, 19]. The (twisted) generalized Kähler manifold can be characterized as

a bihermitian geometry (g, J+, J−) where J± are two complex structures and g is a metric

which is hermitian with respect to both complex structure. In addition there are certain

integrability conditions on two-forms gJ±. The (twisted) generalized Kähler manifold has

two real Poisson structures π± = (J+±J−)g−1 [31]. Moreover their (2, 0)-part with respect

to J+ (or J−) is a holomorphic Poisson structure with respect to J+ (or J−), [19].

5.2 Gauge fixed action

Let us assume that the Poisson manifold (M,α) admits a complex structure J such that

(2, 0)-part of α is a holomorphic Poisson structure and the world-sheet Σ is equipped with

a complex structure. We will concentrate our attention on the case of the two-sphere

where the complex structure is unique. Introducing the complex coordinates on M and Σ

we define the following Lagrangian submanifold in the space of (anti)fields

ηzi = 0, ηz̄ī = 0, η+i
z = 0 , η+ī

z̄ = 0, X+ = 0, β+ = 0 , (5.63)

where (i, ī) stand for the complex coordinates on M and (z, z̄) are the complex coordinates

on Σ. The odd symplectic structure (3.18) is zero on (5.63). Equivalently we could write

the conditions (5.63) using the projectors constructed out of J and complex structure on

Σ, in the same fashion as in [41]. Indeed we do not need to assume that J is integrable,

it is enough for J to be an almost complex structure. However in what follows we are in

the geometrical setup described in the previous subsection. In this case many calculations

simplify drastically.

Assuming the gauge (5.63) the gauge fixed action is

SGF = i

∫

Σ

d2σ
[

ηzī∂z̄X
ī − ηz̄i∂zX

i + αījηzīηz̄j + η+i
z̄ (∂zβi + ∂iα

l̄sηzl̄βs)−

−η+ī
z (∂z̄βī + ∂īα

ls̄ηz̄lβs̄)− ∂ī∂jα
kl̄η+ī

z η+j
z̄ βkβl̄

]

, (5.64)

which is just the action (3.21) restricted to (5.63). The action (5.64) is invariant under
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the following BRST transformations

δXi = αijβj + αij̄βj̄ , (5.65)

δX ī = αīj̄βj̄ + αījβj , (5.66)

δη+i
z̄ = −∂z̄X

i − αijηz̄j − ∂kα
ij̄η+k

z̄ βj̄ − ∂kα
ijη+k

z̄ βj , (5.67)

δη+ī
z = −∂zX

ī − αīj̄ηzj̄ − ∂k̄α
ījη+k̄

z βj − ∂k̄α
īj̄η+k̄

z βj̄ , (5.68)

δβi = ∂iα
kj̄βkβj̄ +

1

2
∂iα

kjβkβj , (5.69)

δβī = ∂īα
k̄jβk̄βj +

1

2
∂īα

k̄j̄βk̄βj̄ , (5.70)

δηzī = −∂zβī − ∂īα
k̄lηzk̄βl − ∂īα

k̄l̄ηzk̄βl̄ − ∂ī∂s̄α
kl̄η+s̄

z βkβl̄ −

−1

2
∂ī∂s̄α

k̄l̄η+s̄
z βk̄βl̄ , (5.71)

δηz̄i = −∂z̄βi − ∂iα
kl̄ηz̄kβl̄ − ∂iα

klηz̄kβl − ∂i∂sα
k̄lη+s

z̄ βk̄βl −

−1

2
∂i∂sα

klη+s
z̄ βkβl , (5.72)

which are nilpotent only on-shell. The existence of such residual BRST symmetry within

BV formalism is discussed in [16, 1].

Next using the gauge fixed action (5.64) we can calculate the path integral explicitly

on the sphere. In particular let us perform the one-loop calculation around the constant

map. We take a classical solution η = 0 and X = x0 with x0 being a constant and the

rest of fields are zero. Consider the fluctuations around this configuration

X = x0 +Xf , η = 0 + ηf , β = 0 + βf , η+ = 0 + η+
f , (5.73)

where naturally by η and η+ we understand only non-vanishing components (ηz̄i, ηzī) and

(η+i
z̄ , η+ī

z ) correspondently. We take the expansion (5.73) and plug it into the gauge fixed

action (5.64) while keeping only up to the quadratic terms in the fluctuations. The bosonic

part of resulting action can be written schematically as

1

2

(

X η
)

(

0 D

−D A

)(

X

η

)

, (5.74)

where A is a part composed from the Poisson tensor α and D is a first order differential

operator

D =

(

∂z 0

0 −∂z

)

While the fermionic part of the corresponding action is written as

ηtDβ , (5.75)
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with the same D. We can perform easily the gaussian integral over the bosonic (5.74)

and the fermionic parts (5.75). The integration produces the ratio of determinants of D

which is exactly 1. Thus the result of this gaussian integration is just one. However the

integration over zero modes of D will remain. The fields η and η+ do not have any zero

modes since there are no (anti)holomorphic 1-forms on the sphere. While β have constant

zero modes and X does as well. These zero modes give an integration over the finite

dimensional graded manifold T ∗[1]M which is defined by choosing a volume form Ω on

M . In order to compensate the odd integration we have to insert the local observables

into the path integral. Thus the final result for the correlators of local observales is

〈Op1

0 (w1) .... O
pk

0 (wk)〉 = trΩ(w1 ∧ ... ∧ wk) , (5.76)

where the trace map trΩ is defined in the Appendix and the correlator agrees with (4.49).

Since the number of zero modes for β corresponds to the dimensionality of M we have

that the correlator (5.76) is non-zero only if p1 + ...pk = d. Moreover if we require that the

correlator is invariant under the BRST symmetry (5.65)-(5.72) then the Poisson tensor α

should be unimodular and Ω is the corresponding invariant volume form. To prove this

we need to remember how BRST symmetry (5.65)-(5.72) acts on the local observables and

the theorem 8 from the Appendix A. Notice that as far as the fields X and β concern the

action of BV symmetry (3.22)-(3.27) and the BRST symmetry (5.65)-(5.72) is the same.

Since the local observables are constructed from X and β only we can apply the discussion

of the subsection 3.2 to the analysis of BRST invariant observables in the present setup.

We conclude that the present calculation is in complete agreement with our previous

analysis within the finite dimensional BV framework. Although the unimodularity of α is

argued completely differently, now through the BRST invariance of the zero-mode measure.

The answer (5.76) is just the leading contribution into the full quantum correlator.

Finally we comment when the geometry required for the present gauge fixing is com-

patible with the unimodularity. Indeed for a generalized Calabi-Yau manifold the corre-

sponding Poisson structure is always unimodular [15]. Thus as a possible example, we can

consider the generalized Kähler geometry where one of the generalized complex structures

satisfies a generalized Calabi-Yau condition. Actually the gauge fixing can be performed

for a generalized Calabi-Yau manifold by itself with the use of an almost generalized

complex structure.

5.3 Relation to A-model

If we assume that αij = 0 and α is invertible then we are on Kähler manifold where

ω = α−1 is Kähler form and g = −ωJ is hermitian metric. Due to the fact that α is

20



invertible we can perform the integration over ηzī and ηz̄i in in the path integral with the

gauge fixed action (5.64). Introducing the following notation

ψi = −igij̄βj̄ , ψ ī = igījβj , ψi
z̄ = −iη+i

z̄ , ψ ī
z = −iη+ī

z (5.77)

the result of the integration of η is

SA =

∫

d2σ
[

∂z̄X
īgīj∂zX

j + iψ ī
zgīj∇z̄ψ

j + iψi
z̄gij̄∇zψ

k̄ −Rp̄ijn̄ψ
j
z̄ψ

ī
zψ

pψn̄
]

, (5.78)

where we adopted the following notation

∇z̄ψ
k = ∂z̄ψ

k + Γk
nl∂z̄X

nψl , ∇zψ
k̄ = ∂zψ

k̄ + Γk̄
n̄l̄∂zX

n̄ψ l̄ (5.79)

with Γ being the Levi-Civita connection and R the corresponding Riemann tensor. The

first term in the action (5.78) can be rewritten as

∂z̄X
īgīj∂zX

j =
1

2

√
hhαβ∂αX

īgīj∂βX
j +

1

2
ǫαβ∂αX

ī(igīj)∂βX
j , (5.80)

where the last term is a topological, the pull-back of the Kähler form ω. The BRST

transformations (5.65)-(5.72) become

δXi = ψi , δX ī = ψ ī , δψi = 0 , δψ ī = 0 , (5.81)

δψ+i
z̄ = i∂z̄X

i + Γi
lkψ

k
z̄ψ

l , δψ+ī
z = i∂zX

ī + Γī
l̄k̄ψ

k̄
zψ

l̄ . (5.82)

The action (5.78) with the BRST transformations (5.82) corresponds to the topological

sigma model [41] on Kähler manifold which corresponds to A-twist of N = (2, 2) super-

symmetric sigma model [42]. Previously the BV treatment of A-model has been discussed

in [1]. Here we presented the improved analysis of the relation between the BV-formulation

of PSM and the A-model.

Any symplectic manifold with symplectic structure ω is unimodular with the vol-

ume form given by Ω = ωd/2. Moreover there exists a natural isomorphism between the

Lichnerowicz-Poisson cohomology and the de Rham cohomology, H•
LP (M) ≈ HdR(M)

which is provided by the symplectic structure ω. Therefore the observable corresponding

to a multivector field can be mapped into the observable corresponding to the differential

form through the identification (5.77). Thus the correlator (5.76) can be rewritten as

trΩ(w1 ∧ ...∧ wk) =

∫

M

(♯w1) ∧ ...(♯wk) , (5.83)

where ♯wl is a differential form corresponding to a multivector field wl constructed through

the map ♯ : ∧•TM → ∧•T ∗M defined by the symplectic structure ω. Indeed the correlator
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(5.83) is the standard one for the A-model and can be interpreted as the intersection

number of the Poincaré dual cycles to ♯wl. In the full quantum theory the correlator

(5.83) gets corrections from the holomorphic maps on which the theory is localized. These

instanton corrections are related to the Gromov-Witten invariants. This is well-developed

subject, see [20] for a review.

5.4 Zero Poisson structure

As a next example we consider the case of zero Poisson structure, α = 0. In this case the

gauge fixed action (5.64) is of the form

SGF = i

∫

Σ

d2σ
[

ηzī∂z̄X
ī − ηz̄i∂zX

i + η+i
z̄ ∂zβi − η+ī

z ∂z̄βī

]

, (5.84)

while the BRST transformations (5.65)-(5.72) become

δXi = 0 , δX ī = 0 , δη+i
z̄ = −∂z̄X

i , δη+ī
z = −∂zX

ī , (5.85)

δβi = 0 , δβī = 0 , δηzī = −∂zβī , δηz̄i = −∂z̄βi . (5.86)

Now these transformations are nilpotent off-shell. The action (5.84) is reminiscent of the

action obtained through the infinite volume limit of the A-model [13]. However our BRST

symmetry differs from the one discussed in [13] and thus these are different theories. As

well the action (5.84) with the symmetries (5.85)-(5.86) has appeared in the different

context in [46] as a specific gauge fixed version of ”Hitchin sigma model” [45].

Next we argue that the correlator (5.76) is a full quantum answer for the PSM with

α = 0. We can use the BRST symmetry (5.85)-(5.86) to localize the theory on the

holomorphic maps, ∂z̄X
i = 0. Namely we can add to the action (5.84) the BRST exact

term

−tδ
∫

Σ

d2σ
(

η+ī
z gīj∂z̄X

j + η+i
z̄ gij̄∂zX

j̄
)

= t

∫

Σ

d2σ
(

∂zX
īgīj∂z̄X

j + ∂z̄X
igij̄∂zX

j̄
)

, (5.87)

where t is any real number and this exact term is positive definite. The addition of this

exact term to the action cannot change the theory and the result is independent from

the parameter t. By sending t to the infinity the dominant contribution to the path

integral will come from the holomorphic maps, ∂z̄X
i = 0 and ∂zX

ī = 0. Moreover we

can perform the integration over η which impose the conditions ∂z̄X
ī = 0 and ∂zX

i = 0

which together with the BRST argument imply that only the constant maps contribute

to the path integrals. Thus in the evaluation of the path integral on the sphere with the

insertion of local observables the only remaining integration is the integration over M and
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the corresponding zero modes of β. On the sphere there will be no zero modes for η and

η+.

Thus we have proven that for the PSM with zero Poisson structure the leading result

(5.76) for the correlators of local observables is indeed exact. Actually this should not be

surprise since the Poisson tensor controls ~-corrections. In the general action (3.17) the

fields can be rescaled in such way that ~ appears in front of α only.

5.5 Holomorphic Poisson structure

Another interesting case is when there exists such a complex structure J that α is a

holomorphic Poisson structure. In other words (1, 1)-part of α vanishes and thus the

gauge fixed action (5.64) is independent of α. The gauge fixed action for the holomorphic

Poisson structure is the same as (5.84) for the zero Poisson structure However the Poisson

structure enters into the BRST transformations. For the case of holomorphic Poisson

structure the transformations (5.65)-(5.72) become

δXi = αijβj , (5.88)

δX ī = αīj̄βj̄ , (5.89)

δη+i
z̄ = −∂z̄X

i − αijηz̄j − ∂kα
ijη+k

z̄ βj , (5.90)

δη+ī
z = −∂zX

ī − αīj̄ηzj̄ − ∂k̄α
īj̄η+k̄

z βj̄ , (5.91)

δβi =
1

2
∂iα

kjβkβj , (5.92)

δβī =
1

2
∂īα

k̄j̄βk̄βj̄ , (5.93)

δηzī = −∂zβī − ∂īα
k̄l̄ηzk̄βl̄ −

1

2
∂ī∂s̄α

k̄l̄η+s̄
z βk̄βl̄ , (5.94)

δηz̄i = −∂z̄βi − ∂iα
klηz̄kβl −

1

2
∂i∂sα

klη+s
z̄ βkβl . (5.95)

These transformations are nilpotent δ2 = 0 off-shell and the action (5.84) is invariant

under them. Indeed there is not single BRST transformation but a whole family. In

the transformations (5.88)-(5.95) we can put a complex parameter t ∈ C in front of all

terms containing αij and correspondently t̄ in front of terms with αīj̄ . This would define

a complex family of the BRST transformations δt which are nilpotent δ2
t = 0 off-shell and

the action (5.84) is invariant under δt.

We can repeat the argument from the previous subsection. Using the localization with

respect to δt for any t (including zero) and the integration over η we arrive at the conclusion

that the path integral is localized on the constant maps. Thus again the correlator (5.76)

of local observables is full quantum result.
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The example of holomorphic Poisson structure is provided by the hyperKähler manifold

which admits a holomorphic symplectic structure with respect to appropriate complex

structure. Therefore the A-model on hyperKähler manifold can be localized to constant

maps and the semi-classical result is exact.

6 Conclusions

In this work we have attempted to study the Poisson sigma model beyond the perturbative

expansion. The main lesson is that the quantum theory requires the corresponding Poisson

tensor α to be unimodular. We argued this additional property of α in different ways. In

the BV framework the unimodularity is related to the quantum master equation, which

requires an additional care in its definition. Moreover for the specific gauge fixing we

obtained the unimodularity as from the requirement of the BRST invariance of the zero

mode measure.

Alternatively one can provide a different heuristic argument1 for the unimodularity of

the Poisson tensor coming from the perturbative analysis as in [6]. In the perturbative

expansion all integrals are absolutely convergent except those containing tadpole diagrams.

One may try to regularize the tadpoles by the point-splitting using the vector field with

no zeros on Σ. However such vector does not exists on S2 and thus the tadpoles should

be dealt with differently. Since the tadpoles correspond to the bidifferential operators

involving the divergence of Poisson tensor then the unimodularity is the way to eliminate

them.

The unimodulary of Poisson tensor reformulated in terms of pure spinors allows us

to treat the PSM exactly in the same fashion as A- and B-models [20] together with

their generalized complex relatives [22, 29, 35]. Indeed the Poisson structure defines a

real analog of generalized complex structure and the unimodulary of α is a real analog of

generalized Calabi-Yau condition. We believe that it is important that all these models

can be treated uniformly and there is intricate interrelation between all these models.

There are several open questions we would like to address in future, in particular

the generalization the construction of Frobenius manifolds from [2] and [32] for the case

when the ∂∂̄-lemma fails, as in a generic Poisson case. Also we plan to use further the

localization for PSM along the lines presented in Section 5. There is an indication that

the Gromov-Witten story can be generalized for PSM defined over the generalized Kähler

manifold. Furthermore it would be interesting to develop the present analysis for PMS for

the higher genus surfaces.

1We thank Alberto Cattaneo for sharing this argument with us. Also see [11] for the related discussion.
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A The multivector calculus

Through out the Appendices A and B we consider mainly the case of compact manifold

M . This condition can be relaxed if we require the appropriate integrals to be defined and

the integration by parts should work without any boundary contributions.

In this Appendix we review the relevant structures on the multivector fields Γ(∧•TM)

over a smooth manifold M . For further details the reader may consult the textbook by

Vaisman, [39].

The Lie bracket on the vector fields can be extended to a bracket on the multivectors.

This bracket is called the Schouten bracket. In local coordinates the multivector fields P

and Q are written as

P = P µ1...µp∂µ1
∧ ... ∧ ∂µp

Q = Qµ1...µq∂µ1
∧ ... ∧ ∂µq

and their Schouten bracket is defined by the following expression2

[P,Q]s = (pP µ1 ...µp−1ρ∂ρQ
µp...µq+p−1 − q ∂ρP

µ1...µpQρµp+1...µq+p−1) ∂µ1
∧ ... ∧ ∂µq+p−1

. (A.1)

The algebra (Γ(∧•TM), ∧, [ , ]s) is a Gerstenhaber algebra (see the definition 1).

If further we specify a volume form Ω on M and a closed one-form λ then we can

introduce an operator DΩ,λ

DΩ,λP = divΩP + iλP ,

where div is a divergence operator defined by Ω and iλ is a contraction with one-form λ.

In local coordinates with the volume form written as Ω = ρ dx1 ∧ ...∧ dxd the divergence

operator is

(divΩP )µ2...µp = −p1

ρ
∂µ1

(ρ P µ1µ2...µd) .

2Our definition differs by the overall factor (−1)p−1 compared to the one in [39].
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Equivalently, in coordinate free notation, the divergence can be written as

divΩP = − ∗−1 d ∗ P ,

where ∗P = iPΩ provides a map from Γ(∧pTM) to differential forms and d is de Rham

differential.

Assuming that dλ = 0 we have (DΩ,λ)
2P = 0 and moreover

[P,Q]s = (−1)pDΩ,λ(P ∧Q) + (−1)p+1(DΩ,λP ) ∧Q− P ∧DΩ,λQ . (A.2)

IndeedDΩ,λ is most general operator which generates the Schouten bracket [43]. Therefore

the algebra (Γ(∧•TM), ∧, [ , ]s, DΩ,λ) is a BV algebra (see the definition 2).

Definition 4 The bivector α ∈ Γ(∧2TM) is called a Poisson structure if it satisfies

[α, α]s = 0 .

The manifold with such α is called a Poisson manifold.

The Poisson structure defines a Lichnerowicz-Poisson differential dLP on multivector fields

dLPP ≡ [α, P ]s , P ∈ Γ(∧•TM) .

The corresponding cohomology H•
LP (M) is called the Lichnerowicz-Poisson cohomology

group.

We assume that M is orientable and thus we can choose a volume form Ω. Then we can

study how the Hamiltonian vector fields Xf = α(df), f ∈ C∞(M) act on Ω. In particular

there exists a vector field φΩ such that

LXf
Ω = φΩ(f)Ω .

φΩ is named the modular vector field. Indeed the vector field φΩ defines a class [φΩ] ∈
H1

LP (M). This class is independent of Ω,

LXf
(egΩ) =

(

φΩ +
1

2
dLP g

)

(f)egΩ

and [φΩ] is called the Poisson modular class.

Definition 5 A Poisson manifold (M,α) is called unimodular [40] if [φΩ] = 0. In other

words there exists such Ω that LXf
Ω = 0 for any Hamiltonian vector field Xf . We refer

to such Ω as an invariant volume form.
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For a Poisson manifold (M,α) we can introduce a (Koszul-)Brylinski differential δB on the

differential forms Ω•(M)

δB = iαd− diα ,

where iα is contraction with a Poisson tensor α and d is de Rham differential [26].

Theorem 6 A Poisson manifold (M,α) is unimodular if and only if there exists a volume

form Ω such that δBΩ = 0 or alternatively DΩα = 0.

Proof: We use notation DΩ ≡ DΩ,0. The proof of the theorem follows straightforwardly

from the relation δBΩ = −iφΩ
Ω. This relation arises from the definition of the modular

vector field φΩ given above and the following identities

d(iXf
Ω) = −df ∧ δBΩ , φΩ(f)Ω = df ∧ iφΩ

Ω .

Moreover using the definition of DΩ the modular vector field can be also defined using the

divergence operator with respect to Ω as DΩα = −φΩ. For more details and the related

discussion the reader may consult [40, 24]. �

Thus we refer to an unimodular Poisson manifold as a triple (M,α,Ω), where Ω is a

volume form which is closed under the Brylinski differential.

Definition 7 For a manifold M with a volume form Ω we define a trace map over the

multivector fields

trΩ : Γ(∧topTM)→ R

as follows

trΩ(P ) =

∫

M

Ω ∧ iPΩ .

Theorem 8 For a Poisson manifold (M,α) with a trace map trΩ the relation

trΩ(dLPP ∧ Q) = (−1)p+1trΩ(P ∧ dLPQ)

is satisfied if and only if (M,α) is unimodular and Ω is invariant volume form.

Proof: To prove this statement we use the formulas from Vaisman’s textbook [39]. The

relation in the theorem is equivalent to the following statement

∫

M

Ω ∧ i(dLP W )Ω = 0 , W ∈ Γ(∧d−1TM).
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For this to hold it would be enough to show that Ω ∧ i(dLP W )Ω is an exact d-form. Using

the Lichnerowicz definition of the Schouten bracket (see the formula (1.16) in [39]) we

rewrite

Ω ∧ i(dLP W )Ω = −Ω ∧ iW δBΩ + (−1)d−1Ω ∧ δB(iWΩ) .

Assuming that one-form iWΩ = fdg and using the properties of the Brylinski differential

we recast the two terms in the above expression as follows

−Ω ∧ iW δBΩ = (−1)d−1fLXgΩ ,

(−1)d−1Ω ∧ δB(fdg) = (−1)d{g, f}Ω = (−1)dLXg(fΩ) + (−1)d−1fLXgΩ .

To derive the first relation we have used δBΩ = −iφΩ
Ω. If we require that the above forms

are exact for any g and f then the manifold should be unimodular and Ω is invariant

volume form. Since any one form can be written as sum of the terms like fdg we can

extend our proof for a generic situation. �

We can summarize the relevant properties of an unimodular Poisson manifold in the

following theorem.

Theorem 9 If (M,α,Ω) is unimodular Poisson manifold then (Γ(∧•TM), ∧, [ , ]s, DΩ, dLP )

is a graded differential BV algebra such that

DΩdLP + dLPDΩ = 0 .

Moreover there exists a trace map trΩ such that

trΩ(dLPP ∧Q) = (−1)p+1trΩ(P ∧ dLPQ) ,

trΩ(DΩP ∧ Q) = (−1)ptrΩ(P ∧DΩQ) .

Proof: The first part of the theorem has been discussed in [43, 24]. We have explained

most of the statements already. The relation between dLP and DΩ is derived as follows

DΩdLPP = DΩ (DΩ(α ∧ P )− α ∧DΩP ) = −DΩ(α ∧DΩP ) = −dLPDΩP ,

where we use the unimodularity, DΩα = 0. The property of trace with the respect to the

divergence operator DΩ is valid for any manifold with a volume form and is just simple

consequence of the Stokes theorem for the differential forms. �
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B Poisson geometry and pure spinors

In this Appendix we reformulate the previous Appendix in a different language. This

allows us to put the whole formalism into the wider context which is related to generalized

geometry on the sum TM⊕T ∗M ≡ T ⊕T ∗ of the tangent and contangent bundles. Below

we review very briefly the notion of generalized complex structure, generalized Calabi-

Yau condition and their real analogs. For more details we refer the reader to the reviews

[14, 15, 44].

The sum of tangent and cotangent bundles T⊕T ∗ has a natural O(d, d) structure given

by the natural pairing

〈v + ξ, s + λ〉 =
1

2
(ivλ+ isξ) ,

where we adopt the notation (v + ξ), (s + λ) ∈ Γ(T ⊕ T ∗). We are interested in a real

(complex) Dirac structure which is defined as a maximally isotropic subbundle of T ⊕ T ∗

(or (T ⊕ T ∗) ⊗ C) and this subbundle is involutive with respect to the Courant bracket.

The Dirac structure is an example of the Lie algebroid with the bracket originated from

the restriction of the Courant bracket. In particular we are interested in the case when

tangent plus cotangent bundles (or its complexification) can be decomposed as a sum two

real (complex) Dirac structures

T ⊕ T ∗ = L⊕ L∗ , (T ⊕ T ∗)⊗ C = L⊕ L∗ .

This decomposition gives us a real (complex) bialgebroid. Furthermore there is the struc-

ture a differential Gerstenhaber algebra [23, 30]

(Γ(∧•L∗),∧, { , }, dL) ,

where { , } is the extension of the Lie bracket from L∗ to ∧•L∗ and dL is the Lie algebroid

differential. In the complex case it is natural to impose an extra condition, namely the

dual space L∗ is complex conjugate of L. Thus the corresponding bialgebroid is

(T ⊕ T ∗)⊗ C = L ⊕ L̄ .

This special case corresponds to the notion of generalized complex structure [18, 14].

Alternatively the Dirac structures can be described by means of the pure spinor lines.

We define the action of a section (v + ξ) ∈ Γ(TM ⊕ T ∗M) on a differential form ρ ∈
Γ(∧•T ∗M)

(v + ξ) · ρ ≡ ivρ+ ξ ∧ ρ ,

which corresponds to the action of Cl(T ⊕ T ∗) on ∧•T ∗. Thus the differential forms form

a natural representation of Cl(T ⊕ T ∗). Consider the Dirac structure L and define a
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subbundle U0 of ∧•T ∗ as follows

L = {(v + ξ) ∈ Γ(T ⊕ T ∗) , (v + ξ) · U0 = 0} .

We refer to U0 as a pure spinor line. The Dirac structure L induces the alternative grading

on the differential forms

∧•T ∗ =
dimM
⊕

k=0

Uk , Uk = (∧kL∗) · U0 ,

where · stands for the extension of Cl(T ⊕ T ∗) action to ∧•T ∗. The property that L is

involutive under the Courant bracket is equivalent to the following

d(Γ(U0)) ⊂ Γ(U1) ,

where d is de Rham differential. Indeed we can define a Dirac structure through the

subbundle U0 of ∧•T ∗ with above properties. With respect to the alternative grading we

can decompose the de Rham differential as follows

d = ∂̄ + ∂ , Γ(Uk−1)
∂← Γ(Uk)

∂̄→ Γ(Uk+1) ,

such that ∂2 = 0 and ∂̄2 = 0. We borrow the notation from the generalized complex

geometry and in present context bar over ∂ does not mean the complex conjugation.

From now on we assume that the bundle U0 is trivial and there exists a global section,

a pure spinor form ρ which defines L completely. The integrability of L is equivalent to

the statement

dρ = (v + ξ) · ρ ,

for some section (v + ξ) ∈ Γ(L∗). Since for given L the pure spinor ρ is defined non

uniquely, namely for any f ∈ C∞(M) the form efρ is also a pure spinor. Thus there is

a cohomology class [(v + ξ)] ∈ H1(dL), which is just proportional to the modular class of

the Lie algebroid [10]. Thus we arrive to the following theorem.

Theorem 10 The Dirac structure L admits the description in terms of closed pure spinor

if and only if the corresponding U0 bundle is trivial and Lie algebroid L is unimodular.

Since U0 is a line bundle then its triviality analyzed differently in the real and complex

cases. For instance, in the complex case we have to require the trivial first Chern class,

c1(U0) = 0. In generalized complex case (T ⊕ T ∗) ⊗ C = L ⊕ L̄ the ability to describe L

in terms of a closed pure spinor corresponds to the generalized Calabi-Yau condition, the

notion introduced by Hitchin [18]. Thus the generalized Calabi-Yau condition is equivalent

to two requirements, c1(U0) = 0 and the unimodularity of Lie algebroid L.
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From now on we assume that L admits the description in terms of closed pure spinor

ρ. For A ∈ Γ(∧•L∗) and a closed pure spinor ρ there are the following relations

(dLA) · ρ = ∂̄(A · ρ) , (DA) · ρ = ∂(A · ρ) ,

where the last relation can be regarded as the definition of the operator D such that

D2 = 0. Indeed D generate the bracket { , } on ∧•L∗. Therefore one can show that

(Γ(∧•L∗),∧, { , }, D, dL) is differential BV-algebra [43, 22, 29]. In addition the closed

pure spinor provides the isomorphisms of the cohomologies, H•(dL) ≈ H•(∂̄) andH•(D) ≈
H•(∂).

There exists an invariant form on spinors which, in the present context, corresponds

to the Mukai pairing of the differential forms

(ρ, φ) =
∑

j

(−1)j(ρ2j ∧ φn−2j + ρ2j+1 ∧ φn−2j−1) ,

where n = dimM and the forms decomposed by the standard degree ρ =
∑

ρi, φ =
∑

φi.

We can introduce the trace map as

trρ(A) =

∫

M

(ρ, A · ρ) , A ∈ Γ(∧nL∗) .

We can summarize these observation in the following theorem.

Theorem 11 For a Lie bialgebroid T ⊕ T ∗ = L ⊕ L∗ with L being a Dirac structure

described by the a closed pure spinor ρ

(Γ(∧•L∗),∧, { , }, D, dL)

is differential BV-algebra and there exists trace map with the following properties

trρ(dLA ∧B) = (−1)|A|+1trρ(A ∧ dLB) ,

trρ(DA ∧ B) = (−1)|A|trρ(A ∧DB) ,

where A,B are sections of ∧•L∗.

Proof: The proof of this theorem is straightforward and the different elements of the

proof are scattered in the literature, see [43, 22, 29]. Let us sketch the main idea behind

the proof. For any differential form ρ ∈ Γ(∧•T ∗) and any sections A,B ∈ Γ(T ⊕T ∗) there

is the following identity

A · B · dρ = d(A · B · ρ) +B · d(A · ρ) −A · d(B · ρ) + [A,B]c · ρ − d〈A,B〉 ∧ ρ ,
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where [ , ]c is the Courant bracket and 〈 , 〉 is the natural pairing on T ⊕T ∗. If we have a

Lie bialgebroid T ⊕T ∗ = L⊕L∗ with L being a Dirac structure described by the a closed

pure spinor ρ then the above formula implies

d(A · B · ρ) +B · d(A · ρ) −A · d(B · ρ) + {A,B} · ρ = 0 ,

where now A,B ∈ Γ(L∗) and { , } is a Lie bracket on L∗, which is a restriction of the

Courant bracket to L∗. This formula can be extended to the general case when A,B are

sections of definite degree in Γ(∧•L∗). This extension together with the definition

(dL +D)A · ρ = d(A · ρ) , ∧k L∗ dL→ ∧k+1L∗ , ∧k L∗ D→ ∧k−1L∗

we recover that D generates the bracket on Γ(∧•L∗) and moreover Γ(∧•L∗) is differential

BV algebra. The properties of the trace map can be proven easily using also above

properties. �

Using this language we now recast the previous definitions in Poisson geometry in a

new language. Let us start from the following theorem.

Theorem 12 The manifold M is unimodular Poisson manifold if and only there exists a

closed pure spinor of the form

ρ = eαΩ = Ω + iαΩ +
1

2
i2αΩ + ... ,

where α is a bivector and Ω is a volume form.

Proof: If we have a unimodular Poisson manifold (M,α,Ω) then we can construct a pure

spinor ρ = eαΩ which satisfies

dρ = δBΩ +
1

2
δB(iαΩ) + ... = 0 ,

since δBΩ = 0 and δBiα = iαδB. In opposite direction we can start from a closed pure

spinor ρ = eαΩ which defines the following maximally isotropic subbundle of T ⊕ T ∗

L = eα(T ∗) = {iξα+ ξ : ξ ∈ Γ(T ∗)} .

Since ρ is closed L is a Dirac structure and thus α is Poisson structure. Moreover the

volume Ω would be an invariant volume form with respect to the unimodular Poisson

structure α. �

Thus the Poisson structure on M gives the real Lie bialgebroid T ⊕ T ∗ = eα(T ∗)⊕ T .

If the Poisson structure is unimodular then there exists a closed pure spinor ρ = eαΩ

and Γ(∧•T ) is differential BV algebra. Indeed the trace map trΩ defined in the previous
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appendix coincides with the one defined here trρ since the only top form part contributes

in ρ.

On an unimodular Poisson manifold (M,α,Ω) with the pure spinor ρ = eαΩ we can

calculate the differentials ∂ and ∂̄ associated with the alternative grading on the differential

forms

∧•T ∗ =
dimM
⊕

k=0

(∧kT ) · eαΩ .

Indeed in this case we have ∂̄ = −δB and ∂ = d+ δB, see the following theorem.

Theorem 13 For unimodular Poisson manifold (M,α,Ω) with the closed pure spinor

ρ = eαΩ the following relations hold

(DΩP ) · ρ = −(d+ δB)(P · ρ) ,

(dLPP ) · ρ = δB(P · ρ) .

Proof: Let us start from the proof of the first relation. If α = 0 then this is just a definition

of DΩ given in the previous appendix. In general case α 6= 0 a simple calculation produces

the following formula [9]

d+ δB = eαde−α ,

which together with the definition of DΩ gives the desired relation.

Next we prove the second relation in the theorem. Using the fact that DΩ generates

the Schouten bracket and the manifold is unimodular, DΩα = 0 we get

(dLPP ) · ρ = (DΩ(α ∧ P )− α ∧DΩP ) · ρ = −(d+ δB)(iαiPρ)+ iα(d+ δB)(iPρ) = δB(iPρ) ,

where we used the previously proved relation and the property iαδB = δBiα. �

This theorem implies the isomorphism of certain cohomologies. For any Poisson man-

ifold (M,α) there are the following isomorphisms

H•
dR(M) ≈ H•(DΩ) ≈ H•(d+ δB) ,

while for the unimodular Poisson manifold in addition we have

H•
LP (M) ≈ H•(δB) .
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