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As is generally known, different quantization schemes applied to field theory on NC
spacetime lead to Feynman rules with different physical properties, if time does not

commute with space. In particular, the Feynman rules that are derived from the path
integral corresponding to the T ⋆–product (the so–called näıve Feynman rules) violate

the causal time ordering property.

Within the Hamiltonian approach to quantum field theory, we show that we can (for-
mally) modify the time ordering encoded in the above path integral. The resulting Feyn-

man rules are identical to those obtained in the canonical approach via the Gell–Mann-
Low formula (with T–ordering). They preserve thus unitarity and causal time ordering.
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1. Introductory remarks on set–up of QFT on NC spacetime

In the last 15 years, much work and effort has been devoted to the construction and

study of quantum field theories on NC spacetime. The increase in research activity

in this field can be traced back to the appearance of the seminal work by Doplicher,

Fredenhagen and Roberts,1 to an important discovery in string theory2 and last,

but not least, to its relation to non–commutative geometry,3 in general.

The nowadays most popular idea how to implement the non–commutativity of

spacetime in field theory is based on the Weyl–Moyal correspondence. The formerly

pointwise product between fields f1(x) and f2(x) is then replaced by the so–called

star product:

(f1 ∗ f2)(x) :=
[

exp(
i

2
θµν∂x

µ∂y
ν )f1(x)f2(y)

]

y=x
. (1)

Here, θµν is defined via [x̂µ, x̂ν] =: iθµν1; x̂µ, x̂ν are coordinate operators; θµν is

a real, antisymmetric, constant matrix (d = 1 + 3). The field theoretic change to a
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physical system with a, say Φ3 self–interaction is then given by the following action:

Sclass[Φ; θµν] =

∫

d4x
(1

2
∂µΦ ∗ ∂µΦ(x) −

m2

2
Φ ∗ Φ(x) −

g

3!
Φ ∗ Φ ∗ Φ(x)

)

. (2)

Since the star product is cyclic under the trace (
∫

d4x f ∗ g(x) =
∫

d4x g ∗ f(x),

f, g ǫ S(R4)), it follows that the quantum theory of the kinetic part is the free

theory of ordinary quantum field theory. However, as for the interacting theory, a

perturbative expansion of Green’s functions leads to Feynman rules that depend

on the starting point for quantization and are no longer equivalent (already at

tree level). In the following, we will see how a (slightly) different set–up of the

generating functional formula (path integral) leads to Feynman rules with different

physical properties!

2. Path integral in NC QFT corresponding to T
∗–ordering

The easiest way to set up the path integral formula for the kind of non–local model

considered here is to take over the formula of the generating functional Z(J) from

the local case and replace in the interaction term Lint(Φ) the local field products

by the star products (The free theory remains unchanged.). The resulting formula

is then given by

Z[J ] = exp
[

i

∫

d4zLint(
δ

iδJ(z)
)∗

]

exp
[−1

2

∫

d4x

∫

d4yJ(x)∆c(x − y)J(y)
]

, (3)

where Lint(Φ)∗ reads for our before mentioned example Φ ∗ Φ ∗ Φ(x) and

∆c(z) :=
∫

d4p
(2π)4

i exp(−ip·z)
p2−m2+iε

is the causal propagator of the free field. A perturbative

expansion and a subsequent setting to zero of the external sources J(x) leads to the

so–called näıve Feynman rules.4 For example, the NC analogon of the “fishgraph“

in momentum space reads

−1

4(p2 − m2 + iε)2

∫

d4k

(2π)4
1 + cos(1

2kµθµνpν)

((p − k)2 − m2 + iε)(k2 − m2 + iε)
. (4)

It is important to note that the same Feynman rules are derived within the canonical

approach by starting from the Gell–Mann - Low formula and applying the T ∗–

operator. The latter is defined as follows:6 All time derivatives associated to the

star product act after the time ordering has been carried out (multiplication by

step function.). Although these Feynman rules preserve the properties of the action

related to the spacetime symmetry, one can show that these Feynman rules violate

causal time ordering.

3. Path integral in NC QFT corresponding to T –ordering

Since, as stated in the section before, the näıve Feynman rules violate causal time

ordering, one may wonder whether it is possible to modify the derivation of the

above formula for the generating functional Z(J) such that the resulting Feynman
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rules preserve causality. It turns out that such a modification is possible by means

of the introduction of derivative shift brackets:

Z[J ] = exp
[

i

∫

d4z
[

Lint(
δ

iδJ(z)
)
]→

θ,z

]

exp
[−1

2

∫

d4x

∫

d4yJ(x)T∆+(x− y)J(y)
]

.

(5)

Here, T∆+(x − y) is defined by ϑ(x0 − y0)∆+(x − y) + ϑ(y0 − x0)∆+(y − x),

∆+(x − y) is the positive frequency solution of the Klein–Gordon equation and

ϑ(x0 − y0) Heavyside’s step function.
(

δ
iδJ(z)

)
)→

∗,z
means the following: For each

time–ordered configuration (∆+(x− y) or ∆+(y − x)), shift all time derivatives as-

sociated with θ0i through the step function which is to the right of this shift bracket.

Then, realize the time ordering by multiplying with a step function.

Finally, the resulting Feynman rules are the same as those of old–fashioned pertur-

bation theory (OTO).5 The latter are derived by starting from the Gell–Mann - Low

formula and applying the T–operator (T–operator: All time derivatives associated

with the star product act before the time ordering is applied.). For example, the

fishgraph amplitude now reads ((a, b, c) := a ∧ b + a ∧ c + b ∧ c, a ∧ b :=
aµθµνbν

2 ):

∑

λ1,2ǫ{−,+}

∫

d3q1

ω~q1

∫

d3q2

ω~q2

−i

4
(1 +

λ1p
0

ω~p

)(1 +
λ2p

0

ω~p

)δ(3)(~q1 + ~q2 − ~p)×

×
[ (

∑

sym e−i(−pλ1
,q1+,q2+)e−i(−pλ2

,q1+,q2+))

p0 − ω~q1
− ω~q2

+ iε
+

(
∑

sym e−i(−pλ1
,q1−,q2−)e−i(−pλ2

,q1−,q2−))

−p0 − ω~q1
− ω~q2

+ iε

]

,

(6)

where p± := (±ω~p, p
1, p2, p3)τ . It has been shown that these Feynman rules maintain

unitarity. By construction, they preserve also causal time ordering.

4. Summary and outlook

In this article, we tried to clarify that, within the Hamiltonian approach (We start

from a Hamilton density H with π := Φ̇.), the time ordering is not rigidly imple-

mented in the path integral.

We close this article by commenting on an aspect that has only been mentioned at

the end of the talk. As the time ordering in the path integral seems to be better

understood, one can then try to take over all formal manipulations from the Wick

rotation of local quantum field theory. However, it is not clear whether one should

also rotate θ0i (i ǫ {1, 2, 3}). It turns out that a nonlocal generalization of reflexion

positivity can be derived and that θ0i has to be rotated to ±iθ0i, correspondingly,

in order to assure reflexion positivity. These interesting findings and further results

will be reported on in future publications.7
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