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We discuss the calculation of the 1-loop effective actiorf@m dimensional, canonically deformed Eu-
clidean space. The theory under consideration is a sgélarodel with an additional oscillator potential.

This model is known to be re normalisable. Furthermore, wepéman exterior gauge field to the scalar field
and extract the dynamics for the gauge field from the divertggms of the 1-loop effective action using a

matrix basis. This results in proposing an action for noncwtative gauge theory, which is a candidate for
a renormalisable model.
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1 Introduction

This talk is based on a joint work with H. Grosse. For more ifletee [1]. The two dimensional case has
been discussed in [2].

Feynman rules for Quantum Field Theory over noncommutatpaces reveal new structures. They
stem from the modification of space-time at small lengthescaPlanar contributions show the standard
singularities which can be handled by the usual renorméadisgrocedure. The non-planar one loop con-
tributions are finite for generic momenta. However, theydmee logarithmically divergent at exceptional
momenta. The usual UV divergences are then reflected in meyulsirities in the infrared, which is called
UV/IR mixing. This spoils the usual renormalisation progesl Inserting such loops to a higher order
diagram generates singularities of any inverse power. JnH3Grosse and R. Wulkenhaar were able to
give a solution of this problem for the special case of a saakory defined on the canonically deformed
Euclidean spac&; with commutation relation for the coordinates:

[x# * 2] = i6"",
whered/ = —07* ¢ R. Thex-product is given by the Weyl-Moyal product
f*g( )_Pl/QewaTu au f( ) ( )|y—>r (1)

The UV/IR mixing contributions were taken into account thgh a modification of the free Lagrangian by
adding an oscillator term with parameter

2 2
S0= [t (305 o, 1,01+ G0 (3 (0} )+ w4 Jowowono) ). @

wherez, = 60, lz* andid,f = [Z,, fl«. The model fulfills the Langmann-Szabo duality [4] relating
short distance and long distance behaviour. There aredtidits that a constructive procedure might be
possible and give a nontrivial' model, which is currently under investigation [5].
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2 Wohlgenannt: Induced Gauge Theory

In a different, interesting approach, the UV/IR singulastare interpreted in terms of an induced gravity
action [6].

In order to obtain the action for a gauge theory, which holbefis renormalisable, we extract the
divergent terms of the heat kernel expansion. Such a preeddads in the commutative case to a renor-
malisable gauge field action. We introduce the local, upig@uge grou; under which the scalar field
transforms covariantly like

o= utxdpxu, ueqg. 3)

The introduction of covariant coordinates [, = #, + A, leads to the following gauge invariant action:

B B QQ B B 2 A
5= [t (30w X 6L+ 0w (X (s + oot owon000) (@), (4
with
X#Hu**)z#*u; Ay iu" *x0u+u" x Ay *u . (5)

Secondly, we apply the heat kernel formalism. The gauge figlds an external, classical gauge
field coupled top. In the following sections, we will explicitly calculate éhdivergent terms of the one-
loop effective action. In the classical case, the divergenns determine the dynamics of the gauge
field [8,9]. There have already been attempts to generdliseapproach to the non-commutative realm;
for non-commutativey* theory see [10,11]. First steps towards gauge kinetic nsodave been done
in [12-14]. However, the results there are not completeiygarable. Our action contains an oscillator
term £ ¢ x { X, {X,, ¢}.}.. This term is crucial, it alters the free theory. Therefore, expand around
the free action-A + Q232 rather than-A. As a consequence, the Seeley-de Witt coefficients cannot be
used.

2 TheMode
The regularised one loop effective action for the model @efiby the classical action (4) is given by
€ _ 1 [>dt —tH —tH°
F”M__§/e ?Tr(e —e ) . 6)
For the effective potentiall we have the expression
646%S 0o 0

The effective action is calculated as a power series in thential V. In order to do so we employ the
Duhamel expansion which is an iteration of the identity

t t
e~tH _ o—tH’ :/ do 4 (e_"He_(t_")HO) = —/ do e 7H QV e~ (t=o)H’ (8)
0 do 0 2
Therefore, we get for the 1-loop effective action the foliog/formula:
e} 2 e} t
uo= g / dt Tr Ve A’ —% / % / dt't' Tr Ve VH e (=) H® 9)
€ € 0

6> [ dt [* v
+—/ —/ dt’/ dt’" ¢ Tr Ve " H ye= (W' =t H yyo—(t—t")H"

94 o0 dt t t/ t// "t 0 " "t 0 ! " 0 ! HO
_3_2 ?/ dt// dt/// A" " Tr Ve—t H Ve—(t —t""YH Ve—(t —t"YH Ve—(t—t)
€ 0 0 0
+O(V9).
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The calculations are performed in the matrix basis, whegestar product is just a matrix product:

Z Apgfra(@) s d(2) = Z Ppqfpa(@)

p,qEN? p,qEN?

for details see [15]. After a suitable rescaling, all therapers depend, beside @nhonly on the following
three parameters:

1-0? w20
— E=e(14+02). 2=~ 10
P=1ge €=+, T (10)
The part of the effective potential independent of the gdigi@ in the matrix basis is given by
Hgﬂm;kl _ /22 1 1 1 2 2 NG ) k) 0
112 (7+(Tl +m 4+ )—F(Tl +m+ )) 1 E10m 11 002 120,22
—,O(\/ kL 5n1+1,k15m1+1,l1 4+ vVmlinl 5n1—1,k15m1—1,l1)5n2k25m2l2
—,O(\/ k212 5n2+1,k25m2+1,l2 4+ vV'm?2n? 5n2—1,k25m2—1,l2)5n1k15m1l1 . (11)
For the field dependent potentidlwe obtain
Vkl:mn A 7 7 ~2
— = | X, x X" — n 12
(1+92) (3!(1+92)¢*¢+( * x))zm‘s’“ (12)

A L )
+(—3!(1 n QQ)_(b o+ (X * X 2))nk5lm + (m(blm(bnk 2pAu,lmAnk)

+p \/;(V Al(11+25n1 1kl T Vn1+ Al(ll 251+1k1+ Vn2Al(12+25 1ot ™ Vn2+1Al(12 25 nl kl)

2m2 n? k2 2m2 n? k2 12m2 n2 1k2 12m?2 n2+1k2
2 (A o+ 140 fmZAC) o2 143D
—pl\/;< LA 1k1511 11— 1A 1k15zl 141 + A 5 ml 1A 1k15 ml )a
n2k2 12 m2 n2k2 12 m?2 2k2 l2m2—1 n2k2 2m241

with the definitionsd(1%) = A + 42, AR+ — 43 4 ;A% The heat kernat—*#" of the Schrodinger
operator can be calculated from the propagator given inlf8the matrix base of the Moyal plane, it has
the following representation:

2
(e v )mn-kl = 0/2+QD)5m+k,n+l HKmini;kili OF (13)

=1

e S (BTG

1— Q m—+l—2u
x 2 ( 50 smh(zm)> Xq(t)otmHit

where

40
(14 Q)2e22% — (1 — Q)220

Xolt) = (15)

The above expressions have to be inserted into the Duhapa@hsion (9). We are only interested in gauge
theory. Hence, we concentrate on the divergent terms invplenly the gauge field and assurhe= 0.
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4 Wohlgenannt: Induced Gauge Theory

3 SomeRemarkson the Calculation
In order to extract the divergent contributions we emplog fibllowing method:
e First, expand the integrands of the Duhamel expansion (®nfall auxiliary parameterst’,t”, . ..

e Expand the infinite sums over indices occuring in the heatdddout not in the gauge field; diver-
gences stem from these infinite sums. The other contracti@nite assuming that is a traceclass
operator.

e Integrate over the auxiliary parameters.
e Convert the results to x-space using,, Tpm = ﬁ [ d*aT(x).

To first and second order in the potentidl the effective action contains both, logarithmic and qa#dr
divergences. To third and fourth order, only logarithmiesroccur. Higher powers in the potential are
already finite. This can easily be seen from a power countiggraent in the auxiliary parameters. Let us
consider the contribution to the effective action of ordebue to Eg. (9), there areauxiliary parameters.
They for themselves produce a factér!. The infinite sums over the integral kernels contribute isge
powers oft. The potentiald” may contribute in the worst case a fac(gér_zk to the infinite sums of order
k. Therefore, these sums contribute a factor

D kXt X (e — )Xo ()" (16)
1 k/2]42
<Y Xo(t*)m XoFD — ¢ ®ym X 6)™ ~ (-) : (17)
— t
where|l] is the greatest integer function. Hence, the contributboorderk is given by
1\ LE/2)+3—k
(" a®

In the case ok = 5, the exponent i§ and the integration yields a finite result. For more techrdegails
see [1].

4 Resaults and Conclusions

Let us summarise the results. In the selfdual cése; 1 the divergent contributions are of an especially
simple form. The matrix base expressions for the effecteptial and the heat kernel simplify a lot. The
effective action describes a pure matrix model.

In the cas&) £ 0, we obtain a matrix model structure and a dynamics:

€ _ ; 4 % 2 ¥ U 52

+1ne(%2<1 — P~ )X x X =) 4 61— 07 (X XH)2 — (3)?) — pFF) } ,

whererF),,, = —i[Z,, Ay]« +i[Z.,, A —i[A,, A]« . We propose the logarithmically divergent part as an
action describing the dynamics of the gauge field. Both,itiesl ine and the logarithmic ir divergent
term of the one-loop effective action turn out to be gaugeaviant. The proposed action is an interesting
candidate for a renormalisable gauge theory. The sign ofdime quadratic in the covariant coordinates
may change depending on whethér < p?. This reflects the structure of a phase transition. The case
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Q =1 (p = 0)is of course of particular interest. One obtains a pure imatodel. In the limit — 0, we
obtain just the standard deformed Yang-Mills action. Iniedd, we will attempt to study the perturbative
guantisation. One of the problems of quantising action {@8pnnected to the tadpole contribution, which
is non-vanishing and hard to eliminate. The Orsay group edssidered the 1-loop effective action in the
casef) # 0. They calculated the divergent contributions in X-spacewsjuating Feynman diagrams and
arrived at the same result [16, 17].

An appropriate rescaling, — V}ff(a andr = —/3 1;—52 leads to the equations of motion

DyF™ = 7X7 4+ 72{X7, X5 X¥}, (20)

where we have assumed for simplicity= 0 and usedD, F°* = —[X,,,[X?, X*],].. In [18], the matter
fields have been included in order to find some solutions. NMewéhe gauge part (20) alone also exhibits
a number of solutions which are currently under investiyati

For noncommutativ€/ (1) gauge theory a similar model has been discussed in [19].ribdkel includes
an oscillator potential for the gauge field€,42, and for the ghosts. Other terms occuring here are missing.
Hence, the considered action is not gauge invariant, but 8BiRvariance could be established. These
terms may nevertheless come into the game through one loogctions.
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