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Abstract

Let F be a non-Archimedean locally compact field, let G be a split connected reductive

group over F . For a parabolic subgroup Q ⊂ G and a ring L we consider the G-representation

on the L-module

(∗) C∞(G/Q, L)/
∑

Q′)Q

C∞(G/Q′, L).

Let I ⊂ G denote a Iwahori subgroup. We define a certain free finite rank L-module M

(depending on Q; if Q is a Borel subgroup then (∗) is the Steinberg representation and

M is of rank one) and construct an I-equivariant embedding of (∗) into C∞(I,M). This

allows the computation of the I-invariants in (∗). We then prove that if L is a field with

characteristic equal to the residue characteristic of F and if G is a classical group, then the

G-representation (∗) is irreducible. This is the analog of a theorem of Casselman (which says

the same for L = C); it had been conjectured by Vignéras.

Introduction

Let F be a non-Archimedean locally compact field with ring of integers OF and residue field

kF . Let G be a connected split reductive group over F . Let T be a split maximal torus, N ⊂ G

its normalizer and W = N/T , the corresponding Weyl group. Let Φ ⊂ X∗(T ) be the set of

roots, let Φ+ ⊂ Φ be the set of positive roots with respect to a Borel subgroup P containing

T and let ∆ ⊂ Φ+ be the corresponding set of simple roots. For a subset J ⊂ ∆ let WJ ⊂ W

denote the subgroup generated by the simple reflections associated with the elements of J. Let

PJ denote the parabolic subgroup generated by P and by representatives (in N ) of the elements

of WJ . Any parabolic subgroup of G is conjugate to PJ for some J. For a ring L (commutative,

with 1 ∈ L) we call the G-representation

SpJ (G, L) =
C∞(G/PJ , L)∑

α∈∆−J C
∞(G/PJ∪{α}, L)

the J-special representation of G with coefficients in L. For J = ∅ this is the Steinberg rep-

resentation of G with coefficients in L. By an old theorem of Casselman, the representations
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SpJ(G,C) are irreducible for all J, they form the irreducible constituents, each with multiplic-

ity one, of C∞(G/P,C). Published proofs of this irreducibility use techniques specific for the

coefficient field L = C, see [4] ch. X, Theorem 4.11 or [10] Theorem 8.1.2. For L a field of

characteristic ℓ 6= p = char(kF ) it is known that the irreducibility of say Sp∅(G, L) depends on

ℓ. See e.g. [16] III, Theorem 2.8 (b).

In this paper we investigate the representation SpJ(G, L) for arbitrary coefficient rings L

(and on the way obtain results previously unknown even for L = C). We need the L-module

MJ(L) =
L[W/WJ ]∑

α∈∆−J L[W/WJ∪{α}]
.

Let I ⊂ G be an Iwahori subgroup adapted to P , i.e. such that we have an Iwahori decompositon

G = ∪w∈W IwP . Our first main theorem is the following (Theorem 2.3), which even for L = C

seems to have been unknown before:

Theorem 1: There exists an I-equivariant embedding

SpJ (G, L) →֒ C∞(I,MJ(L));

its formation commutes with base changes in L.

Using the Iwahori decomposition, the proof of Theorem 1 is reduced to the proof of exactness

of a certain natural sequence

⊕

α∈∆−J
w∈W/WJ∪{α}

C∞(I/I ∩ wPJ∪{α}w
−1, L) −→

⊕

w∈W/WJ

C∞(I/I ∩wPJw
−1, L) −→ C∞(I,MJ(L))

(1)

(Proposition 2.2). This exactness proof proceeds by induction along a certain filtration of (1).

The key to defining this filtration is to consider certain subsets of Φ which we call J-quasi-

parabolic: a subset D ⊂ Φ is called J-quasi-parabolic if
∏

α∈D Uα is the intersection of unipotent

radicals of parabolic subgroups which are W -conjugate to PJ . Here Uα ⊂ G denotes the root

subgroup associated to α. For such D we define a subset W J (D) of W/WJ as consisting of those

classes wWJ for which
∏

α∈D Uα is contained in the unipotent radical of the parabolic subgroup

opposite to wPJw
−1. Fixing a size-increasing enumeration of all J-quasi-parabolic subsets D,

the corresponding W J (D)’s give the said filtration of (1). The exactness of (1) is then reduced

to the exactness, for any D, of

⊕

α∈∆−J

L[W J∪{α}(D)] −→ L[W J(D)] −→ MJ(L)

(Proposition 1.2), a purely combinatorial fact on finite crystallographic reflection groups. We

mention that if L is a complete field extension of F , Theorem 1 holds verbatim, with the same

proof, for the corresponding representations on spaces of locally analytic (rather than locally

constant) functions.
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A vigorously emerging subject in current p-adic number theory is the smooth representation

theory of p-adic reductive groups, like G, on Fp-vector spaces. So far, the research has focused

mostly on the case G = GL2(F ), for finite extensions F of Qp, but even for those G the

theory turns out to be fairly complicated and is far from being well understood. However, it

already becomes quite clear that a good understanding of the theory depends crucially on a good

understanding of the functor ’taking invariants under a (pro-p-)Iwahori-subgroup’. At present

there is literally no general technique available to compute this functor. For example, although

Vignéras had proved the irreducibility of the Steinberg representation of our G’s in characteristic

p, the space of its (pro-p-)Iwahori invariants was not known (except for G = GL2(F )); this was

the motivating problem for our investigations.

As an immediate consequence of Theorem 1 we obtain that the submodule of I-invariants

SpJ(G, L)I is free of rank at most the rank of MJ(L), i.e. rkL(SpJ (G, L)I) ≤ rkL(MJ(L)), as

was conjectured by Vignéras [15]. The reverse inequality rkL(SpJ(G, L)I) ≥ rkL(MJ(L)) follows

easily by summing over all J, using that
∑

J rkL(MJ(L)) = |W |. In particular, the module of

I-invariants in the Steinberg representation is free of rank one, for any L.

The reductive group underlying G can be defined over OF ; as such we denote it by Gx0. Its

group Gx0(OF ) of OF -rational points is a subgroup of G, let G = Gx0(kF ) denote the group of

kF -rational points of the split reductive group over kF obtained by reduction. Its root system

is the same as for G. We may copy the definition of the G-representations SpJ(G, L) to define

G-representations SpJ(G, L), for all J ⊂ ∆ (replace locally constant functions on G by functions

on G). Let P ⊂ G denote the Borel subgroup obtained by reduction of I ⊂ Gx0(OF ). Then

using Theorem 1 we find a canonical identification (Proposition 3.2):

SpJ(G, L)I = SpJ(G, L)P .(2)

Our second main theorem is the analog of Casselman’s theorem for a field L with p = char(L) =

char(kF ) (of course, this analog implies and gives a purely algebraic proof of Casselman’s theo-

rem). Let I1 ⊂ I denote the pro-p-Iwahori subgroup inside I . The G-representation SpJ (G, L) is

generated by SpJ(G, L)I = SpJ(G, L)I1 (see [15]). As any smooth representation of a pro-p-group

on a non-zero vector space in characteristic p admits a non-zero invariant vector, it is enough

to show that SpJ (G, L)I is irreducible as a module under the Iwahori Hecke algebra H(G, I).

We may view SpJ(G, L)I = SpJ (G, L)P as a module under the Hecke algebra H(G, P ). In a

first step we show (Proposition 3.4) that each H(G, P )-submodule of SpJ(G, L)I = SpJ(G, L)P

contains the class of the characteristic function χIw∆PJ
of the subset Iw∆PJ ⊂ G; here w∆ ∈W

denotes the longest element. This follows from explicit formulae for the action on SpJ(G, L)P

of the Hecke operators associated to simple reflections (these formulae boil down to the Bruhat

decomposition of G and require our assumption p = char(L) = char(kF )), together with a com-

binatorial lemma (Lemma 1.5) on W . In a second step we need to show that the class of χIw∆PJ

generates SpJ(G, L)I as a H(G, I)-module. We can prove this if the root system Φ belongs to

one of the infinite series (Al)l, (Bl)l, (Cl)l or (Dl)l. Our argument uses a combinatorial result

(Proposition 1.6) on the weak (left)ordering of W (an ordering weaker than the Bruhat ordering)
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which we can prove only for such root systems. It may also hold true for the root systems of

type E6 or E7 (hence we would get the irreducibility result in these cases, too), but certainly

fails for the root systems of the types E8, F4 and G2. Thus in these cases another argument

(for the generation of SpJ (G, L)I by χIw∆PJ
) would be needed. In conclusion, what we prove is

(Corollary 4.3, Corollary 4.4):

Theorem 2: If L is a field with char(L) = char(kF ) and if the root-system Φ is of type Al,

Bl, Cl or Dl, then the G-representation SpJ(G, L) is irreducible. The SpJ(G, L) for the vari-

ous J form the irreducible constituents, each one occuring with multiplicity one, of C∞(G/P, L).

This theorem had been conjectured by Vignéras [15] (without the restriction on Φ), and, as

indicated above, she had proven the irreducibility of the Steinberg representation Sp∅(G, L).

In the final section L is arbitrary as before and we consider realizations of SpJ (G, L) as

modules of harmonic chains on the (semisimple) building X of G. It follows from the results of

[3] that if C = S(∅) denotes the set of all pointed chambers of X , the Steinberg representation

Sp∅(G, L) is the quotient of the G-representation L[C] divided by all sums of pointed chambers

which share a common pointed one-codimensional face. For general J it is still easy to see

that SpJ(G, L) is a quotient of the G-representation L[S(J)] for a suitable G-stable set S(J) of

pointed |∆ − J|-dimensional simplices in X . Indeed, using the previous notations, it not hard

to see that the G-representation SpJ(G, L) can be realized as a quotient of L[S(J)], where S(J)

denotes a certain Gx0(OF )-stable set of |∆−J|-dimensional simplices in X containing the unique

special vertex x0 of X fixed by Gx0(OF ). Now we simply endow the elements of S(J) with the

pointing by x0: then S(J) = G.S(J) works. However, for J 6= ∅ it is a hard problem to give

explicit local generators for the kernel of L[S(J)] → SpJ(G, L), i.e. the needed ’harmonicity’

relations. This problem has been solved in the case G = GLn(F ) for some J, namely for J

consisting of the first |J| simple roots in the Dynkin digram. (See [7] and [1]. The important

definitions, as well as the proof in the case char(F ) = 0, as a byproduct of another investigation,

are due to de Shalit. A later proof for general F is due to Aı̋t Amrane. In fact, the definitions

of de Shalit for such J realize SpJ (G, L) even as a quotient of the free L-module on the set of

all pointed |∆ − J|-dimensional simplices, instead of just the set S(J) considered above. For

general J this may be asking for to much.) Here we give local harmonicity relations for all J

if G = GLn(F ) (Theorem 5.1). Finally we give an explicit description of our embedding from

Theorem 1 in terms of this realization of SpJ(G, L) (if G = GLn(F )).

We expect that the methods and results of this paper are indispensable for further investiga-

tions on the representations SpJ (G, L), for L a field of characteristic p. For example, if L = C,Qℓ

or if char(L) = ℓ 6= p, cohomological results on the representations SpJ (G, L) obtained in [5],

[11] and [12] have been important for understanding the cohomology of the Drinfel’d symmetric

space X associated with G = GLn(F ), see [5] and [12]. For L = kF some of the representations

SpJ(G, L) occur in the (coherent) cohomology of the natural formal OF -model of X .
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1 Reflection groups

In this section we collect some results on finite crystallographic reflection groups. Proposition 1.2

will be needed for Theorem 2.3, the embedding of SpJ(G, L) into C∞(I,MJ(L)). Lemma 1.5 will

be needed for Proposition 3.4 which concerns the H(G, P ;L)-module structure of SpJ (G, L)I,

and Corollary 1.7 will be needed for the proof of Theorem 4.2 on the irreducibility of SpJ (G, L)I

as a H(G, I ;L)-module.

Consider a reduced crystallographic root system Φ and let W be its corresponding Weyl

group. Fix a system ∆ ⊂ Φ of simple roots and denote by Φ+ ⊂ Φ the corresponding set of

positive roots. Let Φ− = Φ − Φ+. For α ∈ Φ let sα ∈ W denote the associated reflection. Let

ℓ(.) : W → Z≥0 be the length function with respect to ∆. For a subset J ⊂ ∆ let WJ ⊂ W be

the subgroup generated by all sα for α ∈ J. Let

ΦJ(1) = Φ− − (Φ− ∩WJ .J)
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where WJ .J = {wα |w ∈ WJ , α ∈ J} ⊂ Φ is the sub-root system generated by J. For w ∈ W

we then define the subset

ΦJ(w) = wΦJ(1)

of Φ. It depends only on the class of w in W/WJ . Observe ΦJ ′(w) ⊂ ΦJ(w) for J ⊂ J ′. We say

that a subset D ⊂ Φ is J-quasi-parabolic if it is the intersection of subsets ΦJ(w) for some (at

least one) w ∈W . Let

W J = {w ∈W | w(J) ⊂ Φ+}.

It is well known (cf. e.g. [15], remark after definition 6) that this is a set of representatives for

W/WJ and can alternatively be described as

W J = {w ∈W | ℓ(wsα) > ℓ(w) for all α ∈ J}.(3)

For a subset D ⊂ Φ let

W J(D) = {w ∈W J | D ⊂ ΦJ (w)}.

Let

V J = W J −
⋃

α∈∆−J

W J∪{α}.

Then W = ∪J⊂ΦV
J (disjoint union). We have

V J = {w ∈W J | w(∆− J) ⊂ Φ−}.

Lemma 1.1. For J ⊂ J ′ and w ∈W J ′
we have ΦJ(w)− ΦJ ′(w) ⊂ Φ−.

Proof: Each element in ΦJ(w)−ΦJ ′(w) = w(ΦJ(1)−ΦJ ′(1)) can be written as w(
∑

ν −αν)

with certain αν ∈ J ′. As w ∈W J ′
the claim follows. �

Let L be a ring. For a set S let L[S] denote the free L-module with basis S.

Definition: We define the L-module MJ(L) and the L-linear map ∇ by the exact sequence

of L-modules
⊕

α∈∆−J

L[W J∪{α}]
∂

−→ L[W J ]
∇
−→ MJ(L)−→0(4)

where for w ∈W J∪{α} we set

∂(w) =
∑

w′∈W J

w′WJ⊂wWJ∪{α}

w′.

Proposition 1.2. (a) ∇ induces a bijection between V J and an L-basis of MJ(L); in particular,

MJ(L) is L-free of rank |V J |, and MJ(L′) = MJ(L) ⊗L L
′ for any ring morphism L→ L′.

(b) LetD ⊂ Φ be a J-quasi-parabolic subset. We have ∂(⊕α∈∆−JL[W J∪{α}(D)]) ⊂ L[W J(D)],

and the sequence ⊕

α∈∆−J

L[W J∪{α}(D)]
∂D

−→ L[W J(D)]
∇D

−→ MJ(L)

obtained by restricting (4) is exact.
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Proof: For w ∈ W J∪{α} and w′ ∈ W J with w′WJ ⊂ wWJ∪{α} we have ΦJ∪{α}(w) =

ΦJ∪{α}(w
′) ⊂ ΦJ (w′). This shows ∂(⊕α∈∆−JL[W J∪{α}(D)]) ⊂ L[W J (D)], for any subset D of

Φ.

First Step: Let D ⊂ Φ+ be a subset. Define MJ,D(L) and ∇̃D by the exact sequence

⊕

α∈∆−J

L[W J∪{α}(D)]
∂D

−→ L[W J(D)]
∇̃D

−→ MJ,D(L)−→0.

Let V J (D) = V J ∩W J (D).

Claim: For all ℓ and all w ∈W J (D) with ℓ(w) ≥ ℓ we have ∇̃D(w) ∈ ∇̃D(L[V J (D)]).

We prove this by descending induction on ℓ. Suppose we are given such a w ∈W J (D) with

ℓ(w) ≥ ℓ. If w ∈ V J we are done. Otherwise there is some α ∈ ∆ − J with w ∈ W J∪{α}.

By Lemma 1.1 we have ΦJ (w) − ΦJ∪{α}(w) ⊂ Φ−, thus our assumption D ⊂ Φ+ implies even

w ∈W J∪{α}(D). For all w′ ∈W J −{w} with w′WJ ⊂ wWJ∪{α} we have ℓ(w′) > ℓ(w) (because

w′WJ ⊂ wWJ∪{α} implies w′WJ∪{α} = wWJ∪{α}, but in view of (3) we know that w is the

unique element of wWJ∪{α} of minimal length). Moreover we have w′ ∈ W J (D) (as noted at

the beginning of this proof), thus by induction hypothesis we get ∇̃D(w′) ∈ ∇̃D(L[V J(D)]) for

all such w′. Now

w = ∂D(w)−
∑

w′∈W J−{w}
w′WJ⊂wWJ∪{α}

w′

(inside L[W J(D)]) which shows ∇̃D(w) ∈ ∇̃D(L[V J(D)]), as desired.

The claim is proved. In particular, setting ℓ = 0, we get ∇̃D(L[V J (D)]) = MJ,D(L).

Second Step: Here we prove (a). That the image of V J generates the L-module MJ(L)

follows from the first step (with D = ∅ there). To see that it remains linearly independent we

may assume L = Z (because the situation for general L arises by base change Z → L from the

one with L = Z). But then, to prove the linear independence we may just as well assume L = Q

and our task is to show dimQ MJ(Q) = |V J |.

By definition, the Q-vector spaces Q[W J ] and Q[W J∪{α}] come with the distinguished bases

W J and W J∪{α}, hence with isomorphisms with their duals Q[W J ] ∼= Q[W J ]∗ and Q[W J∪{α}] ∼=

Q[W J∪{α}]∗. One easily checks that under these identifications, the map

L[W J ]
∂∗

−→
⊕

α∈∆−J

L[W J∪{α}]

dual to ∂ is given as follows: for w′ ∈W J the α-component of ∂∗(w′) is the unique w ∈W J∪{α}

with w′WJ∪{α} = wWJ∪{α}. Therefore the kernel of ∂∗ is the Q-vector space generated by

∩α(W J ∩ WJ∪{α}) = ∩α(W J − W J∪{α}) = W J − ∪αW
J∪{α} = V J . Thus dimQ MJ(L) =

dimQcoker(∂) = dimQker(∂∗) = |V J |.
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Third Step: Here we prove (b). As D is J-quasi-parabolic we find some w ∈ W with

wD ⊂ Φ+. We have a commutative diagram

⊕
α∈∆−J L[W J∪{α}(D)]

∼=
��

∂D
// L[W J(D)]

∼=

��

∇D
// MJ(L)

∼=

��⊕
α∈∆−J

w∈W J∪{α}
L[W J∪{α}(wD)] ∂wD

// L[W J(wD)]
∇wD

// MJ(L)

where the second and the third (resp. the first) vertical isomorphism is induced by the bijection

W J → W J , w′ 7→ (ww′)J (resp. W J∪{α} → W J∪{α}, w′ 7→ (ww′)J∪{α}); here (v)J ′
for v ∈ W

and J ′ ⊂ ∆ denotes the unique representative in W J ′
of the class of v in W/WJ ′ . Therefore

we may assume from the beginning that D ⊂ Φ+. It suffices to see that the natural map

MJ,D(L) → MJ(L) is injective. By (a) we know that the image of V J , hence in particular the

image of V J (D) in MJ (L) is linearly independent. Together with the result of the first step this

shows the wanted injectivity of MJ,D(L) → MJ(L). �

For w ∈ W let (w)J denote the unique element of W J with (w)JWJ = wWJ . Thus, (.)J is

the projection from W onto the first factor in the direct product decomposition W = W JWJ .

Loosely speaking, applying (.)J means cutting off WJ -factors on the right.

We write S = {sα |α ∈ ∆}. Consider the following partial ordering <J on W J . For w, w′ ∈

W J we write w <J w′ if there are s1, . . . , sr ∈ S such that, setting w(i) = (si . . . s1w)J for

0 ≤ i ≤ r, we have ℓ(w(i)) > ℓ(w(i−1)) for all i ≥ 1, and w(r) = w′. We denote by w∆ ∈W resp.

wJ ∈WJ the respective longest elements.

Lemma 1.3. (a) For any w ∈W we have l(w) ≥ l((w)J).

(b) For w1 ∈W J and w2 ∈WJ we have l(w1w2) = l(w1) + l(w2).

(c) For any w ∈W we have l(w∆w) = l(ww∆) = l(w∆)− l(w).

Proof: Any v ∈ W J is the unique element of minimal length in the set of representatives

for the coset vWJ ; this gives (a). For the easy statements (b) and (c) see [6] 1.8 and 1.10. �

Lemma 1.4. Let w ∈W J and s ∈ S.

(a) w <J (sw)J implies ℓ(w) < ℓ(sw).

(b) ℓ(w) < ℓ(sw) and w 6= (sw)J together imply sw ∈W J , hence w <J (sw)J = sw.

(c) (sw)J <J w if and only if ℓ(sw) < ℓ(w).

(d) There exists a unique maximal element zJ ∈ W J for the ordering <J ; it lies in V J . We

have zJ = w∆wJ . For any u ∈ W such that zJ ≤∅ u and for any s ∈ S with ℓ(szJ ) < ℓ(zJ) we

have ℓ(su) < ℓ(u).

Proof: (a) We have l(w) < l((sw)J) ≤ l(sw) where the first inequality follows from the

definition of <J and the second one from Lemma 1.3 (a) (applied to sw).

To prove (b) assume ℓ(w) < ℓ(sw) and sw /∈ W J . Then we find some α ∈ J with ℓ(swsα) =
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ℓ(sw) − 1 = ℓ(w). Take a reduced expression w = σ1 . . . σr with σi ∈ S. By the deletion

condition for Weyl groups we get a reduced expression for swsα by deleting some factors in

the string sσ1 . . . σrsα. Namely, as ℓ(swsα) = ℓ(w), exactly two factors must be deleted. If s

remained this would mean ℓ(wsα) < ℓ(w), contradicting w ∈ W J . If sα remained this would

mean ℓ(sw) < ℓ(w), contradicting our hypothesis. Thus swsα = w, i.e. w = (sw)J .

(c) First assume ℓ(sw) < ℓ(w). Then we get l((sw)J) < l(w) from Lemma 1.3 (a) (applied

to sw). As (s(sw)J)J = wJ = w we get (sw)J <J w from the definition of <J . Now assume

ℓ(sw) > ℓ(w) and (sw)J <J w. Then there are α1, α2 ∈ J such that ℓ(swsα1sα2) < ℓ(w). On

the other hand, w ∈ W J implies ℓ(wsα1) > ℓ(w) and ℓ(wsα2) > ℓ(w). From ℓ(sw) > ℓ(w)

(or from ℓ(wsα1) > ℓ(w)) together with ℓ(swsα1sα2) < ℓ(w) it follows that ℓ(swsα1) = ℓ(w).

As ℓ(sw) > ℓ(w) and ℓ(wsα1) > ℓ(w) this implies w = swsα as in the proof of (b). But then

ℓ(wsα2) > ℓ(w) contradicts ℓ(swsα1sα2) < ℓ(w).

(d) From Lemma 1.3 (c) it follows that (w∆)J = w∆wJ . We claim that zJ = (w∆)J = w∆wJ

is maximal in W J with respect to <J , and is uniquely determined by this property. To see this

we need to show, by (b), that for any w ∈ W J − {zJ} there is some s ∈ S with ℓ(sw) > ℓ(w)

and w 6= (sw)J . As w 6= zJ = w∆wJ we find s ∈ S with ℓ(swwJ) = ℓ(wwJ) + 1, hence

l(sw) ≥ l(swwJ)− l(wJ) = l(wwJ) + 1 − l(wJ) > l(w)

where we used l(wwJ) = l(w) + l(wJ) as recorded in Lemma 1.3 (b). If we had w = (sw)J this

would mean sw = wu for some u ∈WJ , hence l(swwJ) = l(wuwJ) ≤ l(wwJ) by Lemma 1.3 (b):

contradiction !

Finally, we have zJ = w∆wJ = wJ̌w∆ for

J̌ = {β ∈ ∆ | sβ = w∆sαw∆ for some α ∈ J}.

For u ∈ W such that zJ = wJ̌w∆ <∅ u = (uw∆)w∆ we get uw∆ ∈ WJ̌ . Similarly, zJ = wJ̌w∆

means that ℓ(szJ) < ℓ(zJ ) for s ∈ S can only happen if s = sα for some α ∈ ∆ − J̌. Therefore

l(suw∆) > l(uw∆) since uw∆ ∈WJ̌ . By Lemma 1.3 (c) this means ℓ(su) < ℓ(u). �

Lemma 1.5. For each w ∈ V J − {zJ} there is some w′ ∈ V J and some s ∈ S with w <J w
′,

with ℓ((sw)J) < ℓ(w) and with ℓ((sw′)J) ≥ ℓ(w′).

Proof: Consider the set

J ′ = {α ∈ ∆ | ℓ(sαw) > ℓ(w)}

and let wJ ′ denote the longest element of WJ ′ . For any given α ∈ ∆ we have α /∈ J ′ if and only

if ℓ((sαw)J) < ℓ(w), by Lemma 1.4.

Case (i): zJw−1 /∈ WJ ′. Take a reduced expression zJw−1 = σ1 . . . σr with σi ∈ S. Let

1 ≤ i ≤ r be maximal such that σr = sα for some α ∈ ∆ − J ′ (such an i exists since

zJw−1 /∈ WJ ′). By Lemma 1.4(c) we have ℓ(zJ) = r + ℓ(w), by Lemma 1.4(b) we then see
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w′ ∈ V J for w′ = σi+1 . . .σrw. This w′ together with s = sα is fine.

Case (ii): zJw−1 ∈ WJ ′ . Here we claim that w′ = zJ satisfies the wanted conclusion. Assume

on the contrary that ℓ(sαz
J ) < ℓ(zJ) for all α ∈ ∆−J ′ . Then we also have ℓ(sαwJ ′w) < ℓ(wJ ′w)

for all α ∈ ∆ − J ′. This follows from Lemma 1.4(d) since zJw−1 ∈ WJ ′ implies zJ ≤∅ wJ ′w.

On the other hand ℓ(sαwJ ′w) < ℓ(wJ ′w) for all α ∈ J ′, too (because ℓ(wJ ′w) = ℓ(wJ ′) + ℓ(w)

as follows from the definition of J ′), hence for all α ∈ ∆. This means wJ ′w = w∆. But then

w = w∆wJ̌ for some J̌ ⊂ ∆ (as in the proof of Lemma 1.4(d)). As V J ∩ V J̌ = ∅ for J 6= J̌ this

shows J = J̌ and w = zJ̌ , contradicting our hypothesis w 6= zJ . �

The next result concerns the partial ordering <∅ of W (i.e. <J for J = ∅), called the weak

ordering of W in [2].

Consider the following subgroup WΩ of W . We write our set of simple roots as ∆ =

{α1, . . . , αl} and denote by α0 ∈ Φ the unique highest root. Then we define the elements

ǫ1, . . . , ǫl in the R-vector space dual to the one spanned by Φ by requiring (ǫi, αj) = δij for

1 ≤ i, j ≤ l. For 1 ≤ i ≤ l we let w∆(i) ∈ W denote the longest element of the subgroup of W

generated by the set {sαj | j 6= i}. Then

WΩ − {1} = {w∆(i)w∆ | 1 ≤ i ≤ l, (ǫi, α0) = 1}.

The conjugation action of WΩ on {sα0, sα1, . . . , sαl
} identifies WΩ with the automorphism group

of the Dynkin diagram of the affine root system (see [8] pp. 18-20).

Proposition 1.6. Suppose that the underlying root-system is of type Al, Bl, Cl or Dl. There

exists a sequence w∆ = w0, w1, . . . , wr = 1 in W such that for all i ≥ 1 we have wi−1 <∅ wi, or

wi = uwi−1 for some u ∈WΩ.

Proof: We use the respective descriptions of WΩ given in [8] pp. 18-20. We write si = sαi .

Case Al: Then W can be identified with the symmetric group in {1, . . . , l + 1}. We write an

element w ∈W as the tuple [w(1), . . . , w(l+1)]. As simple reflections we take the transpositions

si = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , l] ∈W for i = 1, . . . , l. Then WΩ consists of the elements

w∆(i)w∆ = [i+ 1 . . . , l+ 1, 1, . . . , i] (0 ≤ i ≤ l).

The length ℓ(w) of w ∈W is the number of all pairs (i, j) with i < j and w(i) > w(j). We pass

from w∆ to 1 via the sequence

w∆ = [l+ 1, . . . , 1]
(∗)
7→ [1, l+ 1, . . . , 2] <∅ [l, l+ 1, l− 1, . . . , 1]

(∗)
7→ [1, 2, l+ 1, l, . . . , 3] <∅ [l− 1, l, l+ 1, l− 2, . . . , 1]

(∗)
7→ . . . <∅ [2, . . . , l+ 1, 1]

(∗)
7→ [1, . . . , l+ 1] = 1.

Here each step of type (∗) is obtained by left-multiplication with an element of WΩ.

Case Bl: Here W can be identified with the group of signed permutations of {±1, . . . ,±l}, i.e.
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with all bijections w : {±1, . . . ,±l} → {±1, . . . ,±l} satisfying −w(a) = w(−a) for all 1 ≤ a ≤ l.

We write an element w ∈ W as the tuple [w(1), . . . , w(l)]. As simple reflections we take the

elements si = [1, . . . , l − i − 1, l − i + 1, l − i, l − i + 2, . . . , l] for 1 ≤ i ≤ l − 1, together with

sl = [−1, 2, . . . , l]. Then the length of w ∈W can be computed as

ℓ(w) = |{(ij) ; i < j, w(i) > w(j)}| −
∑

j
w(j)<0

w(j)

(for all this see [2] chapter 8.1). The group WΩ consists of two elements, its non-trivial element

is

w∆(1)w∆ = [1, . . . , l− 1,−l].

For 1 ≤ i ≤ l let

ai = [−i, . . . ,−l, i− 1, . . . , 1],

bi = [−i, . . . , 1− l, l, i− 1, . . . , 1].

We pass from w∆ to 1 via the sequence

w∆ = [−1, . . . ,−l] = a1
(∗)
7→ b1 <∅ a2

(∗)
7→ b2 <∅ a3

(∗)
7→ . . .

. . . <∅ al
(∗)
7→ bl = [l, . . . , 1]

(∗∗)
7→ bl = [1, . . . , l] = 1.

Here the relations <∅ result from left-multiplications with sl−1 . . . s1, increasing the length by

l−1, as one easily checks. Each step of type (∗) is obtained by left-multiplication with w∆(1)w∆.

It remains to justify the step (∗∗). Observe that

w∆(1)w∆s1 . . . sl = [l, 1, . . . , l− 1].

Moreover, for each w ∈W satisfying w(i) > 0 for all 1 ≤ i ≤ l we have w <∅ s1 . . . slw. Together

it follows that, to prove that the step (∗∗) is permissible, it suffices to show that (∗∗) decomposes

into left-multiplications with (powers of) [l, 1, . . . , l−1], and transpositions s1, . . . , sl−1. But this

was shown in our analysis of case Al.

Case Cl: Here W is the same as in case Bl and we take the same simple reflections. Again WΩ

consists of two elements, but this time its non-trivial element is

w∆(l)w∆ = [−l, . . . ,−1].

We pass from w∆ to 1 via the sequence

w∆ = [−1, . . . ,−l]
(∗)
7→ [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1.

Here (∗) is obtained by left-multiplication with w∆(l)w∆. To justify the step (∗∗) observe that

w∆(l)w∆slw∆(l)w∆s1 . . . sl = [l, 1, . . . , l− 1].
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Moreover, for each w ∈ W satisfying w(i) > 0 for all 1 ≤ i ≤ l we have w <∅ s1 . . . slw (as

already noted above), and

w∆(l)w∆s1 . . . slw <∅ slw∆(l)w∆s1 . . . slw.

Thus left-multiplication of [l, 1, . . . , l − 1] to such w ∈ W is a permissible operation for our

purposes. Therefore we may conclude as in the case Bl.

Case Dl: Here W can be identified with the group of signed permutations of {±1, . . . ,±l} having

an even number of negative entries, i.e. with all bijections w : {±1, . . . ,±l} → {±1, . . . ,±l}

satisfying −w(a) = w(−a) for all 1 ≤ a ≤ l, and such that the number |{i |w(i) < 0}| is even.

We write an element w ∈ W as the tuple [w(1), . . . , w(l)]. As simple reflections we take the

elements si for 1 ≤ i ≤ l− 1 used in cases Bl and Cl, together with

sl = [−2,−1, 3, . . . , l].

The length of w ∈W can be computed (see [2] chapter 8.2) as

ℓ(w) = |{(ij) ; i < j, w(i) > w(j)}|+ |{(ij) ; w(i) +w(j) < 0}|.

WΩ consists of the four elements 1, w∆(1)w∆, w∆(l−1)w∆ and w∆(l)w∆. We have

w∆(1)w∆ = [−1, 2, . . . , l− 1,−l]

and, according to the parity of l,

w∆(l)w∆ = [−l, . . . ,−1] (l even)

w∆(l)w∆ = [l, 1− l, . . . ,−1] (l odd)

(and w∆(l−1)w∆ = [l, 1 − l . . . ,−2, 1] if l is even, w∆(l−1)w∆ = [−l, . . . ,−2, 1] is l is odd). We

pass from w∆ to 1 via the sequence

w∆ = [−1, . . . ,−l]
(∗)
7→ [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1 (l even)

w∆ = [1,−2, . . . ,−l]
(∗)
7→ [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1 (l odd).

Here (∗) is obtained by left-multiplication with w∆(l)w∆. To justify the step (∗∗) observe that

w∆(1)s1 . . . sl−2 = [l, 1, . . . , l− 1].

For each w ∈ W with w(i) > 0 for all 1 ≤ i ≤ l − 2 we have w <∅ s1 . . . sl−2w. Thus left-

multiplication of [l, 1, . . . , l− 1] to such w ∈W is a permissible operation for our purposes and

we may conclude as before. �

Corollary 1.7. For each w ∈ V J there is a sequence zJ = w0, w1, . . . , wr = w in W such that

for all i ≥ 1 we have wJ
i = uwJ

i−1 for some u ∈WΩ, or [ℓ(wJ
i−1) < ℓ(wJ

i ) and wJ
i = s(wJ

i−1) for

some s ∈ S].
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Proof: Recall that zJ = (w∆)J . Furthermore observe that ℓ(w′) < ℓ(w) and w = sw′ for

some s ∈ S implies that [wJ = s(w′)J and ℓ((w′)J) < ℓ(wJ)] or wJ = (w′)J . Thus the corollary

follows from Proposition 1.6. �

Remark: For the irreducible reduced root systems of type E8, F4 and G2 we haveWΩ = {1}

by [8]. Therefore the statement of Proposition 1.6 cannot hold true in these cases. We do not

discuss the cases E6, E7.

2 Functions on the Iwahori subgroup

Let F be a non-Archimedean locally compact field, OF its ring of integers, pF ∈ OF a fixed

prime element and kF its residue field. Let G be a split reductive group over F , connected and

different from its center. (Here we commit the usual abuse of notation: what we really mean

is that G is the group of F -rational points of such an algebraic F -group scheme, similarly for

the subgroups considered below.) Let T be a split maximal torus, N ⊂ G its normalizer in G

and let W = N/T , the corresponding Weyl group. For any w ∈ W we choose a representative

(with the same name) w ∈ N . Let P = TU be a Borel subgroup with unipotent radical U . Let

Φ ⊂ X∗(T ) = Homalg(T,Gm) be the set of roots, let Φ+ ⊂ Φ be the set of P -positive roots, let

∆ ⊂ Φ+ be the set of simple roots. Since T is split this root system is reduced.

For α ∈ Φ let Uα ⊂ G be the associated root subgroup. Then U =
∏

α∈Φ+ Uα (direct product,

for any ordering of Φ+). We need the parabolic subgroups PJ = PWJP of G; each parabolic

subgroup of G containing P is of this form (for a suitable J). For w ∈ W let PJ,w = wPJw
−1

and let P−
J,w be the parabolic subgroup of G opposite to PJ,w. We then find

Φ − ΦJ (w) = {α ∈ Φ | Uα ⊂ PJ,w}

or equivalently:
∏

α∈ΦJ(w) Uα is the unipotent radical of P−
J,w. Note that PJ,w = PJ,w′ for any

w′ ∈ wWJ .

We choose an Iwahori subgroup I in G compatible with P , in the sense that we have the

Iwahori decomposition

G =
⋃

w∈W

IwP

(disjoint union). For any subgroup H in G we write H0 = H ∩ I .

Lemma 2.1. Let D ⊂ Φ be a J-quasi-parabolic subset. Then
∏

α∈D U
0
α is a subgroup of G and

is independent of the ordering of D. We denote it by U0
D.

Proof: Take any ordering of D. Then choose an ordering of Φ which restricts to this

ordering on D and such that the product map

∏

α∈Φ

Uα −→ G
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is injective. Write D = ∩w∈TΦJ (w) (some T ⊂W ). Then of course

∏

α∈D

U0
α = ∩w∈T

∏

α∈ΦJ (w)

U0
α

(all products w.r.t. the fixed ordering of Φ, and the intersection is taken inside G). Hence it

is enough to see that
∏

α∈ΦJ (w)U
0
α is independent of the ordering of ΦJ(w) — but this is clear:∏

α∈ΦJ(w)U
0
α is the intersection of I with the unipotent radical of P−

J,w. �

For a topological space T and an L-module M let C∞(T ,M) denote the L-module of locally

constant M -valued functions on T .

Applying the functor C∞(I, .) to the exact sequence (4) we obtain an exact sequence

C∞(I,
⊕

α∈∆−J

L[W J∪{α}]) −→ C∞(I, L[W J]) −→ C∞(I,MJ(L))−→0.(5)

Observe that we have natural embeddings, which we view as inclusions,

⊕

α∈∆−J

w∈W J∪{α}

C∞(I/P 0
J∪{α},w, L) ⊂ C∞(I,

⊕

α∈∆−J

L[W J∪{α}]),

⊕

w∈WJ

C∞(I/P 0
J,w, L) ⊂ C∞(I, L[W J]),

by summing over the respective direct summands.

Proposition 2.2. The sequence

⊕

α∈∆−J

w∈W J∪{α}

C∞(I/P 0
J∪{α},w, L)

∂C−→
⊕

w∈WJ

C∞(I/P 0
J,w, L)

∇C−→ C∞(I,MJ(L))

obtained by restricting (5) is exact.

Proof: Choose an enumeration D0, D1, D2, . . . of all J-quasi-parabolic subsets of Φ such

that n < m implies |Dn| ≤ |Dm|. Let (fw)w∈WJ ∈ Ker(∇C). By induction on m we show:

adding to f an element in the image of ∂C if necessary, we may assume fw|U0
Dn

= 0 for all

w ∈W J , all n ≤ m.

Assume we have fw|U0
Dn

= 0 for all w ∈W J , all n < m. Let us write D = Dm.

(i) We first claim fw|U0
D

= 0 for all w ∈ W J −W J (D). Indeed, for such w we have |D ∩

ΦJ(w)| < |D|, hence D ∩ ΦJ (w) = Dn for some n < m. Thus

fw(U0
D) = fw(U0

Dn

∏

α∈D−Dn

U0
α) = fw(U0

Dn
) = 0

where in the first equation we used that we may form U0
D with respect to any ordering of D,

where the second equation follows from U0
α ⊂ P 0

J,w for α /∈ ΦJ(w) (and the invariance property
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of fw), and where the last equation holds true by induction hypothesis.

(ii) Our sequence in question restricts to a sequence

⊕

α∈∆−J

w∈W J∪{α}(D)

C∞(I/P 0
J∪{α},w, L)

∂D
C−→

⊕

w∈WJ(D)

C∞(I/P 0
J,w, L)

∇D
C−→ C∞(I,MJ(L)).(6)

For any x ∈ U0
D, evaluating functions at x transforms (6) into a sequence isomorphic with the

one from Proposition 1.2 (b). Let us denote by (∂D
C )x resp. by (∇D

C )x the differentials of this

sequence, which by Proposition 1.2 (b) is exact. From (i) it follows that

fD(x) = (fw(x))w∈WJ(D) ∈ Ker((∇D
C )x),

hence this lies in the image of (∂D
C )x. For all x ∈ U0

D choose preimages of fD(x) under (∂D
C )x.

Since the fw are locally constant, these preimages can be arranged to vary locally constantly on

U0
D, and moreover, in view of (i) we may assume that for all x ∈ U0

D∩∪n<mU
0
Dn

these preimages

are zero.

For any α ∈ ∆ − J and w ∈ W J∪{α}(D) the natural map U0
D → I/P 0

J∪{α},w is injective.

Thus we find an element

gD = (gα,w)α,w ∈
⊕

α∈∆−J

w∈W J∪{α}(D)

C∞(I/P 0
J∪{α},w, L)

which on U0
D assumes the preimages of the fD(x) just chosen, and which vanishes at all x ∈

∪n<mU
0
Dn

with x /∈ U0
D. We obtain

fD(x)− ∂D
C (gD)(x) = 0

for all x ∈ ∪n≤mU
0
Dn

: for x ∈ U0
D this follows from our definition of gD|U0

D
, for x ∈ ∪n<mU

0
Dn

with

x /∈ U0
D this follows from the vanishing of gD at such x together with the induction hypothesis.

Now set gα,w = 0 for all α ∈ ∆ − J and w ∈ W J∪{α} −W J∪{α}(D). By (i) and what we just

saw we find

((fw)w − ∂C((gα,w)α,w))(x) = 0

for all x ∈ ∪n≤mU
0
Dn
.The induction is complete. In other words, we have shown that, adding to

(fw)w an element in the image of ∂C if necessary, we may assume fw|U0
D

= 0 for all w ∈ W J ,

all J-quasi-parabolic subsets D. In particular we find fw|U0
ΦJ (w)

for all w ∈ W J . But U0
ΦJ(w) is

a set of representatives for I/P 0
J,w, hence fw = 0. We are done. �

Definition: Let J be a subset of ∆. We define the G-representation SpJ(G, L) by the exact

sequence of G-representations
⊕

α∈∆−J

C∞(G/PJ∪{α}, L)
∂

−→ C∞(G/PJ, L) −→ SpJ (G, L) −→ 0,

where ∂ is the sum of the canonical inclusions, and the G-action is by translation of functions

on G. We call SpJ(G, L) the J-special G-representation with coefficients in L.
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Theorem 2.3. SpJ(G, L) is L-free. There exists an I-equivariant embedding

SpJ (G, L)
λL
→֒ C∞(I,MJ(L)).

Its formation commutes with base changes: for a ring morphism L→ L′ the composite

SpJ(G, L)⊗L L
′ ∼= SpJ(G, L′)

λL′

→֒ C∞(I,MJ(L′)) ∼= C∞(I,MJ(L))⊗L L
′

is λL ⊗L L
′.

Proof: Recall that for w ∈ W we defined P 0
J,w = I ∩ wPJw

−1. Note that P 0
J,w and wPJ

depend only on the coset wWJ , not on the specific representative w ∈ wWJ . The same is true

for the isomorphism

I/P 0
J,w

∼= IwPJ/PJ ,

i 7→ iw.

It follows that for any inclusion of cosets wWJ ⊂ wWJ∪{α} we have a commutative diagram

I/P 0
J,w

∼=

��

// I/P 0
J∪{α},w

∼=
��

IwPJ/PJ
// IwPJ∪{α}/PJ∪{α}

where the horizontal arrows are the obvious projections and the vertical arrows are the above

isomorphisms. Now recall the Iwahori decompositions

G/PJ = ∪w∈WJ IwPJ/PJ , G/PJ∪{α} = ∪w∈WJ∪{α}IwPJ∪{α}/PJ∪{α}

(disjoint unions). They give

C∞(G/PJ, L) =
⊕

w∈WJ

C∞(IwPJ/PJ , L),

C∞(G/PJ∪{α}, L) =
⊕

w∈WJ∪{α}

C∞(IwPJ∪{α}/PJ∪{α}, L).

With these identifications, the above commutative diagrams (for all α ∈ ∆ − J) induce a

commutative diagram

⊕
α∈∆−J C

∞(G/PJ∪{α}, L)

∼=
��

// C∞(G/PJ , L)

∼=
��

// SpJ (G, L) // 0

⊕
α∈∆−J

w∈W J∪{α}
C∞(I/P 0

J∪{α},w, L) //
⊕

w∈WJ C∞(I/P 0
J,w, L) // C∞(I,MJ(L))

where the vertical arrows are isomorphisms. The top row is exact by the definition of SpJ (G, L),

the bottom row is exact by Proposition 2.2, and clearly all arrows are I-equivariant. Hence we

get the wanted injection λL : SpJ (G, L) →֒ C∞(I,MJ(L)). We then derive the freeness of

SpJ(G, L): first for L = Z since C∞(I,MJ(Z)) is Z-free, then by base change Z → L for any L.

Similarly we get the stated base change property. �
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Corollary 2.4. (Conjectured by Vignéras [15]) The submodule SpJ(G, L)I of I-invariants in

SpJ(G, L) is free of rank

rkL(SpJ(G, L)I) = rkL(MJ(L)) = |V J |.

Proof: The inequality rkL(SpJ(G, L)I) ≤ rkL(MJ(L)) = |V J | follows from Theorem

2.3. On the other hand, by the Iwahori decomposition again, C∞(G/PJ , L) is free of rank

|W J | ([15] Proposition 9). Now W J is the disjoint union of all V J ′
with J ′ ⊃ J. Since

C∞(G/PJ , L) admits a G-equivariant filtration whose graded pieces are the SpJ ′(G, L), the

inequalities rkL(SpJ ′(G, L)I) ≤ rkL(MJ ′(L)) = |V J ′
| for all J ′ ⊃ J imply the inequality

rkL(SpJ (G, L)I) ≥ rkL(MJ(L)) = |V J |.

Alternatively, the bijectivity of

SpJ(G, L)I −→ C∞(I,MJ(L))I ∼= MJ(L)

follows immediately from the proof of Theorem 2.3, namely from the surjectivity of

⊕

w∈WJ

C∞(I/P 0
J,w, L)I −→ C∞(I,MJ(L))I

which we get from the very definition of MJ(L). �

Corollary 2.5. Let π be a smooth irreducible (hence finite dimensional) representation of I on

a C-vector space. Then π occurs in SpJ (G,C) with multiplicity at most |VJ | dimC(π).

Proof: π occurs in C∞(I,MJ(C)) with multiplicity |VJ| dimC(π). �

Remark: If L is a complete field extension of F we may replace all spaces of locally constant

functions occuring here by the corresponding spaces of locally F -analytic functions. In particular

we may define locally analyticG-representations Span
J (G, L) and Can(I,MJ(L)). Then Theorem

2.3 and Corollary 2.4 carry over, with the same proofs: there exists an I-equivariant embedding

Span
J (G, L) →֒ Can(I,MJ(L))

and we have rkL(Span
J (G, L)I) = rkL(MJ(L)) = |V J |.

3 Special representations of finite reductive groups

Now we assume in addition that G is semisimple and that the root system Φ is irreducible. There

is a unique chamber C in the standard apartment associated to T in the Bruhat-Tits-building

of G which is fixed by our Iwahori subgroup I . Let x0 be the special vertex of C corresponding

to our Borel subgroup P (see below for what this means). Let Gx0/OF denote the OF -group
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scheme with generic fibre the underlying F -group scheme G of G = G(F ) and such that for each

unramified Galois extension F ′ of F with ring of integers OF ′ we have

Gx0(OF ′) = {g ∈ G(F ′) | gx0 = x0}

(see [13] 3.4). This Gx0 is a group scheme as constructed by Chevalley ([13] 3.4.1). Its special

fibre Gx0 ⊗OF
kF is a split connected reductive group over kF with the same root datum as G

([13] 3.8.1; compare also [9], part II, 1.17, and for adjoint G see [8] p.30/31 where the Bruhat

decomposition of G = (Gx0 ⊗OF
kF )(kF ) is discussed similarly to how we are going to use it

here). Let Kx0 = Gx0(OF ) and

Ux0 = Ker [ Kx0 −→ Gx0(kF ) ].

For H any of the groups G, PJ , P , T , N , U , Uα let

H =
(H ∩Kx0, Ux0)

Ux0

=
H ∩Kx0

H ∩ Ux0

.

Our choice of x0 above is characterized by the fact I is the preimage of P under the homomor-

phism Kx0 → G. On groups of kF -rational points we have: P J is a parabolic subgroup in G,

containing the Borel subgroup P . This P has U as its unipotent radical and contains the maxi-

mal split torus T , whose normalizer in G is N . The quotient N/T is canonically identified with

the Weyl group W = N/T , and similarly as before we choose for any w ∈ W a representative

(with the same name) w ∈ N . Let P
−

= TU
−

denote the Borel subgroup opposite to P , with

unipotent radical U
−
. For w ∈W let U

w
= U ∩ wU

−
w−1. Then

U
w

=
∏

α∈Φ+

w−1(α)∈Φ−

Uα

and U
1

= {1}. By transposition of [15] par. 4.2, Prop. 4 (b) we have

U
w
wP J = PwP J(7)

for any w ∈WJ , and the left hand side product is direct.

Lemma 3.1. Let w ∈W J and s ∈ S.

(a) If (sw)J = w then

usU
w
wP J = U

w
wP J

for each u ∈ U
s
, and these are direct products.

(b) If ℓ((sw)J) > ℓ(w) then

U
s
sU

w
wP J = U

sw
swP J

and these are direct products.

(c) If ℓ((sw)J) < ℓ(w), then w−1(β) ∈ Φ−, where s = sβ . The product

U
′
=

∏

α∈Φ+−{β}

w−1(α)∈Φ−

Uα
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(any ordering of the factors) is a subgroup of U
w
. We have

U
s
suU

′
wP J = U

w
wP J for u ∈ U

s
− {1},

usU
′
wP J = U

sw
swP J for u ∈ U

s

and all these are direct products.

Proof: We use general facts on Bruhat decompositions.

(a)We have

sU
w
wP J = sPwP J ⊂ PwP J ∪ PswP J = PwP J = U

w
wP J

where at the inclusion sign we use sPw ⊂ PwP ∪PswP , and where in the equality following it

we use the hypothesis (sw)J = w, i.e. swWJ = wWJ . Applying s we see that this inclusion is

an equality. Since u ∈ P and U
w
wP J = PwP J we get (a).

(b) ℓ((sw)J) > ℓ(w) implies ℓ(sw) > ℓ(w) and again by general properties of Bruhat decompo-

sitions we find

U
s
sU

w
wP J = U

s
sPwP J = PsPwP J = ∪v∈WJ

PsPwPvP

= ∪v∈WJ
PswPvP = PswP J = U

sw
swP J

where the assumption ℓ(sw) > ℓ(w) implied PsPwP = PswP , and where we made repeated

use of (7) (in the first and last equation with this J, and in the second equation by setting J = ∅

in (7)).

(c) ℓ((sw)J) < ℓ(w) implies ℓ(sw) < ℓ(w), hence w−1(β) ∈ Φ−. One checks that U
′
= sU

sw
s,

hence this is a subgroup. Moreover, sU
′
= U

sw
s and since U

s
⊂ P and U

sw
swP J = PswP J

the last equality follows. Finally, again by general facts on Bruhat decompositions we have

sU
w
wP J ⊂ U

w
wP J ∪ U

sw
swP J

and the union on the right hand side is disjoint (since swWJ 6= wWJ). We just saw that

sU
′
wP J = U

sw
swP J , hence s(U

w
− U

′
)wP J ⊂ U

w
wP J . It follows that

U
s
suU

′
wP J ⊂ U

w
wP J

for u ∈ U
s
− {1}. To see the reverse inclusion it is enough to show U

′
wP J ⊂ U

s
suU

′
wP J .

Since U
′

= sU
sw
s this boils down to showing U

sw
sw ⊂ sU

s
susU

sw
swP J , i.e. (by (7)) to

U
sw
sw ⊂ sU

s
susP swP J . A small computation in SL2(kF ) shows that, because of u 6= 1, there

is some ũ ∈ U
s

with sũsus ∈ P . This implies the wanted inclusion. �

Definition: Similarly as before, we define the J-special G-representation SpJ(G, L) with

coefficients in L by the exact sequence of G-representations

⊕

α∈∆−J

C(G/P J∪{α}, L)
∂

−→ C(G/P J , L) −→ SpJ (G, L) −→ 0.
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Consider the natural map

C(G/P J , L) −→ C∞(G/PJ , L),

f 7→ [g = ky 7→ f(k)]

where we decompose a general element g ∈ G as g = ky with k ∈ Kx0 and y ∈ PJ (using the

Iwasawa decomposition G = Kx0PJ ), and where k denotes the class of k in G = Kx0/Ux0. We

have similar maps for the various PJ∪{α}, hence an embedding

SpJ(G, L) →֒ SpJ(G, L).(8)

For w ∈W J we write

gw = χP wP J
= χU

w
wP J

,

the characteristic function of PwP J = U
w
wP J on G. We also write gw for the class of gw in

SpJ(G, L).

Proposition 3.2. (a) The embedding (8) induces an isomorphism

SpJ(G, L)P ∼= SpJ (G, L)I.

(b) The set {gw | w ∈ V J} is an L-basis of SpJ (G, L)P .

Proof: For G = GLn(kF ) (some n) a proof of (b) is given in [12] par.6. For general G the

proof carries over (this is then similar to [15] par.4). But of course, to compute SpJ (G, L)P (i.e.

proving (b)) one may also proceed as in the proof of Corollary 2.4 above, and then (a) follows

by comparing with the very statement of Corollary 2.4. �

We define the Hecke-Algebra

H(G, P ;L) = EndL[G]L[P\G].

For a G-representation on a L-vector space V with subspace V P of P -invariants, Frobenius

reciprocity tells us that there is an isomorphism

HomL[G](L[P\G], V ) ∼= HomL[P ](L, V ) ∼= V P

which sends ψ ∈ HomL[G](L[P\G], V ) to ψ(P) ∈ V P . Hence V P becomes a right H(G, P ;L)-

module. For g ∈ G we define the Hecke operator Tg ∈ H(G, P ;L) by setting

(Tgf)(Ph) =
∑

P h′⊂P g−1Ph

f(Ph′)

for f ∈ L[P\G], where for the moment we identify L[P\G] with the L-module of functions

P\G → L. For n ∈ N the Hecke operator Tn only depends on the class of n in W = N/T . It

acts on v ∈ V P as

vTn =
∑

u∈P/(P∩n−1Pn)

un−1v.(9)

20



Notice that for s ∈ S we may identify U
s ∼= P/(P ∩ sPs). Thus formula (9) for the Hecke

operator Ts acting on gw ∈ SpJ(G, L)P becomes

gwTs =
∑

u∈U
s

(the class of χusU
w

wP J
)(10)

in SpJ(G, L)P .

For the rest of this section we assume that L is a field with char(L) = char(kF ).

Lemma 3.3. Let w ∈W J and s ∈ S.

(a) If (sw)J = w then

gwTs = 0.

(b) If ℓ((sw)J) > ℓ(w) then

gwTs = gsw.

(c) If ℓ((sw)J) < ℓ(w) then

gwTs = −gw.

Proof: This follows from Lemma 3.1 and from |U
s
| = 0 in L. For example, for (c) we

compute, using the notations of Lemma 3.1 (c), in particular the direct product decomposition

U
w

= U
s
U

′
:

gwTs =
∑

u∈U
s

[χusU
w

wP J
] =

∑

u∈U
s

∑

u′∈U
s

[χ
usu′U

′
wP J

]

=
∑

u∈U
s

∑

u′∈U
s
−{1}

[χ
usu′U

′
wPJ

] +
∑

u∈U
s

[χ
usU

′
wP J

].

Lemma 3.1 (c) together with |U
s
| = 0 in L shows that the second term vanishes and that the

first term is −[χUwP J
]. �

Proposition 3.4. Each non-zero H(G, P ;L)-submodule E of SpJ(G, L)P contains the element

gzJ . In particular, the H(G, P ;L)-module SpJ(G, L)P is indecomposable.

Proof: By Proposition 3.2 we find an element

h =
∑

w∈V J

βwgw

in E, with certain βw ∈ L, not all of them zero. Choose an enumeration zJ = w0, w1, w2, . . . of

V J such that wj <J wi implies i < j. For t ≥ 0 consider the property

P(t) = [ βwi = 0 for all i > t ].

By descending induction it is enough to show the following: If P(t) holds true for some t > 0,

then passing to another h 6= 0 if necessary, P(t′) holds true for some t > t′ ≥ 0. Notice that in

view of the decreasing nature of our enumeration, Lemma 3.3 shows that the property P(t) is
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preserved under application of Ts to h, for any s ∈ S.

Let t be minimal such that P(t) holds true (i.e. such that in addition βwt 6= 0), and assume

t > 0 (otherwise we are done). By Lemma 1.5 we find s, s1, . . . , sr ∈ S such that, setting

w(i) = (si . . . s1wt)
J for 0 ≤ i ≤ r, we have the following: ℓ(w(i+1)) > ℓ(w(i)) for all i ≥ 0, and

ℓ((sw(i))J) < ℓ(w(i)) for all r > i ≥ 0, and ℓ((sw(r))J) ≥ ℓ(w(r)). By Lemma 3.3 we may replace

h by hTs to assume βw(r) = 0 [while keeping the other hypotheses on h: in particular, βwt 6= 0

also for the new h — this follows from our induction hypothesis which tells us that for the old h

we have β(swt)J = 0 (if (swt)
J ∈ V J), therefore this old β(swt)J (if (swt)

J ∈ V J ) does not, by an

instance of Lemma 3.3 (b), contribute to the new βwt = βs(swt)J .] By descending subinduction

on 0 ≤ g ≤ r we show that, passing to another h 6= 0 if necessary, we may assume βwi = 0 for all

i > t, and βw(g) = 0. For g = 0 this is what we want. For g = r this was just shown. Now if for

0 ≤ g < r we have βw(g) 6= 0 and βw(g+1) = 0, we replace h by h+ hTsg+1 : then, inspecting once

more the formulae of Lemma 3.3, we find βw(g) = 0 for this new h, but βw(g+1) 6= 0, ensuring

h 6= 0. �

4 Irreducibility in the residual characteristic

Following our conventions we put T 0 = I ∩T and then let W̃ = N/T 0 (sometimes referred to as

the extended affine Weyl group). W̃ acts on the apartment A and can be canonically identified

with the semidirect product (T/T 0).W . It contains the affine Weyl-group W a, the subgroup of

W̃ generated by the reflections in the walls of A. On the other hand, let Ω be the subgroup

of W̃ stabilizing the standard chamber in A (i.e. the one fixed by I). Then W̃ is canonically

identified with the semidirect product Ω.W a. If G is of adjoint type the canonical projection

ϕ : W̃ →W is injective on Ω and its image WΩ = ϕ(Ω) ⊂ W coincides with the one defined in

section 1.

We define the Iwahori Hecke algebra

H(G, I ;L) = EndL[G]L[I\G].

For a smoothG-representation on a L-vector space V with subspace V I of I-invariants, Frobenius

reciprocity tells us that there is an isomorphism

HomL[G](L[I\G], V ) ∼= HomL[I](L, V ) ∼= V I

which sends ψ ∈ HomL[G](L[I\G], V ) to ψ(I) ∈ V I . Hence V I becomes a right H(G, I ;L)-

module. For g ∈ G we define the Hecke operator Tg ∈ H(G, I ;L) by setting

(Tgf)(Ih) =
∑

Ih′⊂Ig−Ih

f(Ih′)

for f ∈ L[I\G], where for the moment we identify L[I\G] with the L-module of compactly

supported functions I\G → L. The Hecke operator Tn for n ∈ N depends only on the class of
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n in W̃ , and the Tn for n running through a system of representatives for W̃ form an L-basis of

H(G, I ;L) ([14] section 1.3, example 1). They act on v ∈ V I as

vTn =
∑

u∈I/(I∩n−1In)

un−1v.

By Proposition 3.2 we have an isomorphism

SpJ(G, L)P ∼= SpJ (G, L)I.(11)

For w ∈ W we had defined a Hecke operator Tw acting on the H(G, P ;L)-module SpJ (G, L)P .

On the other hand, if we denote again by w a representative in N of the image of w in W̃ (under

the embedding W →֒ (T/T 0).W ∼= W̃ ), we get a Hecke operator Tw acting on the H(G, I ;L)-

module SpJ(G, L)I. (Note however that, for fixed Iwahori subgroup I , the embedding W → W̃

depends on the choice of x0 (or equivalently, of P ). Hence the H(G, I ;L)-elements Tw for w ∈W

depend on this choice.) It is clear from our constructions that these actions coincide under our

isomorphism (11). Recall that for w ∈ W J we wrote gw for the class in SpJ (G, L)P of the

characteristic function of PwP J on G. Now we also write gw for its image in SpJ (G, L)I under

(11), i.e. for the class in SpJ(G, L)I of the characteristic function of IwPJ on G.

For the rest of this section we assume that L is a field with char(L) = char(kF ).

Lemma 4.1. Assume that G is of adjoint type. For each u ∈ WΩ there exists a lifting ũ ∈ N

(under the canonical projections N → W̃ → W ) which normalizes I and such that for all

w ∈W J we have gwTeu−1 = g(uw)J in SpJ(G, L)I.

Proof: By [8] Proposition 2.10 we can lift u ∈ WΩ to an element ũ ∈ N which normalizes

I . Therefore Teu−1 acts on SpJ (G, L)I simply through the action of ũ ∈ N ⊂ G and for w ∈W J

we compute ũIwPJ = IũwPJ = I(uw)JPJ . The Lemma follows. (The hypothesis that G be of

adjoint type should be superfluous here, but [8] assumes this.) �

Theorem 4.2. If the underlying root-system is of type Al, Bl, Cl or Dl then the H(G, I ;L)-

module SpJ(G, L)I is irreducible.

Proof: By Proposition 3.4 we know that each non-zero H(G, I ;L)-submodule of SpJ (G, L)I

contains the element gzJ . Therefore it is enough to show that SpJ (G, L)I is generated as a

H(G, I ;L)-module by the element gzJ .

(a) We first asume that G is of adjoint type. We claim that for each subspace E of SpJ (G, L)I

containing gzJ and stable under all Tw for w ∈ W , and stable under all Teu−1 for ũ ∈ N

normalizing I as in Lemma 4.1, we have E = SpJ (G, L)I. Indeed, we know that SpJ (G, L)I is

generated as an L-vector space by all gw for w ∈ V J . By Lemmata 4.1 and 3.3 it is therefore

enough to find for each w ∈ V J a sequence zJ = w0, w1, . . . , wr = w in W such that for all i ≥ 1

we have wJ
i = uwJ

i−1 for some u ∈ WΩ, or [ℓ(wJ
i−1) < ℓ(wJ

i ) and wJ
i = s(wJ

i−1) for some s ∈ S].

But this is the content of Corollary 1.7 which is available since we assume that G be of adjoint

type.
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(b) In the general case we find a central isogeny π : G → G′ with G′ split, connected,

semisimple and of adjoint type, and with the same root system. We find a split maximal

torus T ′ with normalizer N ′, a Borel subgroup P ′ and an Iwahori subgroup I ′ in G′ such that

π−1(T ′) = T , π−1(P ′) = P , π−1(I ′) = I and such that W ∼= N ′/T ′. As ker(π) ⊂ T it is

clear that π induces a G-equivariant isomorphism SpJ(G′, L) ∼= SpJ (G, L) which restricts to an

isomorphism of Iwahori invariant spaces SpJ(G′, L)I′ ∼= SpJ(G, L)I (both of dimension |V J |, by

Corollary 2.4).

We identify the Bruhat-Tits buildings of G and G′; then C is fixed by I ′, and x0 corresponds

to P ′ ⊂ G′ (just as it corresponds to P ⊂ G). Let ũ ∈ N ′ as in Lemma 4.1, in particular

normalizing I ′. For n′ ∈ N ′ we have

Tn′Teu−1 = Tn′eu−1 = Teu−1Teun′eu−1 in H(G′, I ′;L)(12)

by general facts on H(G′, I ′;L) (the ’braid relations’), or just by the definition of the Tg’s. Now

ũπ(N )ũ−1 = π(N ) and this is contained in N ′. Since H(G, I ;L) is generated by the Tn with

n ∈ N (see, e.g. [14] section 1.3, example 1), the relations (12) imply

H(G, I ;L)Teu−1 = Teu−1H(G, I ;L)(13)

inside EndLSpJ(G, L)I (here we keep the names of H(G, I ;L) and Teu−1 also for their images in

EndLSpJ(G, L)I). We get

(gzJH(G, I ;L))Teu−1 ⊂ (ũgzJ )H(G, I ;L)(14)

inside SpJ(G, L)I (recall that Teu−1 acts from the right on SpJ(G, L)I by left multiplication with

ũ). By Proposition 3.4 we have gzJ ∈ (ũ−1gzJ )H(G, I ;L). We apply Teu−1, by equation (13)

again this gives ũgzJ ∈ gzJH(G, I ;L), and together with (14) we get

(gzJH(G, I ;L))Teu−1 ⊂ gzJH(G, I ;L).

By what we have seen in (a) this proves the Theorem. �

Remark: In conclusion, it turns out that, in case the root system isAl, Bl, Cl orDl (possibly

also in case it is E6, E7), to prove the irreducibility of the H(G, I ;L)-module SpJ(G, L)I it is

enough to use the action of H(G, P ;L) together with the Hecke operators Teu−1 of Lemma 4.1.

To deal with the remaining exceptional groups where the operators Teu−1 are not availabe one has

to work out the action of sufficiently many other Hecke operators (besides those in H(G, P ;L)).

We remark that Corollary 2.4 together with [15] Proposition 10 provides us with an isomorphism

of H(G, I ;L)-modules

SpJ (G, L)I ∼=
C∞(G/PJ , L)I

∑
α∈∆−J C

∞(G/PJ∪{α}, L)I
.(15)

In the case G = SLn(F ) (or G = (P)GLn(F )) Rachel Ollivier found an independent proof of the

irreducibility of the right hand side of (15).
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Corollary 4.3. Suppose that the underlying root-system is of type Al, Bl, Cl or Dl. The G-

representation SpJ(G, L) is irreducible.

Proof: Let I1 ⊂ I denote the pro-p-Iwahori subgroup in I , where p = char(kF ). Then I

is generated by I1 and T 0 = T ∩ I . As T acts trivially on SpJ (G, L), the spaces of invariants

under I and I1 are the same:

SpJ (G, L)I = SpJ(G, L)I1.

Replacing I by I1 in our definition of the Iwahori Hecke Algebra H(G, I ;L) we obtain the

algebra H(G, I1;L). Similarly as before, SpJ(G, L)I1 is an H(G, I1;L), and the irreducibility

of SpJ (G, L)I as an H(G, I ;L)-module (Theorem 4.2) immediately implies the irreducibility

of SpJ (G, L)I1 = SpJ(G, L)I as an H(G, I1;L) module. Now recall the well known fact that

for every smooth representation of a pro-p-group — like I1 — on a non-zero L-vector space

E the subspace EI1 of I1-invariants is non-zero (since char(L) = p). Applied to a non-zero

G-subrepresentation E of SpJ (G, L), the irreducibility of SpJ (G, L)I1 as a H(G, I1;L) module

implies EI1 = SpJ (G, L)I1. But SpJ (G, L) is generated as a L[G]-module by SpJ(G, L)I1; this

follows from [15], Proposition 9, where it is shown that even the L[G]-module C∞(G/PJ, L) is

generated by its I1-fixed vectors. Thus E = SpJ(G, L) and we are done. �

Remark: For any J with |V J | = 1, like J = ∅, we get the irreducibility of SpJ(G, L) for

any G (not necessarily of type Al, Bl, Cl or Dl). The irreducibility of the Steinberg repre-

sentation Sp∅(G, L) had been obtained earlier by Vignéras [15]. In fact she conjectures [15]

the irreducibility of SpJ (G, L) for any J, without any restrictions on Φ (like those imposed in

Corollary 4.3).

Corollary 4.4. (a) (Vignéras) The G-representations SpJ(G, L) for the various subsets J ⊂ ∆

are pairwise non-isomorphic.

(b) Suppose that the underlying root-system is of type Al, Bl, Cl or Dl. The G-representations

SpJ(G, L) with J running through all subsets J ⊂ ∆ form the irreducible constituents of the

G-representation C∞(G/P, L), each one occuring with multiplicity one.

Proof: The irreducibility of the SpJ (G, L) in (b) is Theorem 4.3, everything else can be

found in the paper [15]. Namely, there it is shown that each SpJ(G, L) admits a P -equivariant

filtration, with factors the natural P -representations C∞
c (PwP/P, L) for w ∈ V J . These factors

are shown to be irreducible ([15] Proposition 1, Theorem 5). They are non-isomorphic for

different w ∈ W . Indeed, let R(w) = {α ∈ Φ+ |w−1(α) ∈ Φ+}. Let U− denote the unipotent

radical of the Borel subgroup P− oppposite to P . For w ∈W let

Uw = U ∩ wU−w−1 =
∏

α∈Φ+−R(w)

Uα.

Similarly to (7) we have Uw = PwP/P . Therefore R(w) is the set of all α ∈ Φ+ for which Uα

acts trivially on C∞
c (PwP/P, L). But R(w) uniquely determines w. �
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Question: Is the theory of extensions between the various G-representations SpJ(G, L) (for

L a field with char(L) = char(kF )) parallel to the theory of extensions between the various

G-representations SpJ(G,C) (as worked out in [11], [12]) ?

Corollary 4.5. Suppose that the underlying root-system is of type Al, Bl, Cl or Dl. Let OK be a

complete discrete valuation ring with fraction field K and residue field kK. Suppose char(kK) =

char(kF ). Up to K×-homothety, SpJ (G,OK) is the unique G-stable OK-lattice inside SpJ (G,K).

Proof: (I thank Marie-France Vignéras for completing my (originally incomplete) argu-

ment here.) Let N be another G-stable OK-lattice inside SpJ (G,K). Let pK ∈ OK be a

uniformizer. Since SpJ(G, kK) is irreducible by Corollary 4.3, the image of pn
KN ∩ SpJ(G,OK)

in SpJ (G,OK)⊗OK
kK = SpJ(G, kK) for n ∈ Z must be either (a) zero, or (b) all of SpJ(G, kK).

Case (a) implies pn−1
K N ⊂ SpJ (G,OK). Case (b) implies

SpJ(G,OK) ⊂ pKSpJ (G,OK) + pn
KN.(16)

Now SpJ(G,OK) is finitely generated as an OK [G]-module (e.g. by OK-generators of SpJ(G,OK)I ,

as was already used in the proof of Corollary 4.3), therefore there exists some m >> 0 with

pm
KSpJ(G,OK) ⊂ N . This means that (16) simplifies as SpJ (G,OK) ⊂ pn

KN . In view of this

dichotomy (a)/(b) for any n ∈ Z we get pn
KN = SpJ (G,OK) for some n ∈ Z since ∩np

n
KN = 0

and ∪np
n
KN = SpJ(G,K). �

5 Harmonic Chains

Here L is an arbitrary ring again and G = GLd+1(F ) (some d ≥ 1). Let X denote the semisimple

Bruhat-Tits building of G. Let X0 denote the set of vertices of X . For x ∈ X0 let

Kx = {g ∈ G | gx = x and det(g) ∈ O×
F }

and let Ux be the unique maximal normal open subgroup of Kx. Let PJ,x = Kx∩PJ . The group

Kx acts on the set of simplices of X containing x. Let σx = σx(J) denote the unique maximal

such simplex which is fixed by PJ,x. It is k-dimensional, where k = |∆−J| = d−|J|. Inside the

set of all k-dimensional simplices of X we define

Xx(J) = {gσx | g ∈ Kx}.

In each σ ∈ Xx(J) we distinguish the vertex x ∈ σ, its pointing. Kx acts on Xx(J). We let

X(J) =
∐

x∈X0

Xx(J)

and call this the set of pointed J-simplices (so by definition this is a disjoint union, i.e. each

element of σ ∈ X(J) comes with a distinguished vertex x ∈ σ, its pointing). G acts on X(J).

Let x ∈ X and α ∈ ∆−σ. For σ ∈ Xx(J) and τ ∈ Xx(J ∪{α}) (i.e. pointed at the same vertex
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x) we write τ < σ if τ ⊂ σ. Now let x, x′ ∈ X0 such that {x, x′} ∈ X1 (i.e. is a 1-simplex in X ;

we identify simplices in X with their sets of vertices). Let

Ux,x′ = Ux′,x = (Ux, Ux′),

the subgroup of G generated by Ux and Ux′ . Then Ux,x′ ⊂ Kx and Ux,x′ ⊂ Kx′ . For k ∈ Kx and

k′ ∈ Kx′ such that k−1k′ ∈ PJ we say that the families of pointed J-simplices

F = Ux,x′kσx = {σ ∈ Xx(J) | σ = ukσx for some u ∈ Ux,x′} ⊂ Xx(J)

and F′ = Ux,x′k′σx′ ⊂ Xx′(J) are adjacent in X(J).

Definition: harJ (1) and harJ (2) are the minimal L-submodules of L[X(J)] satisfying:

(1) For each α ∈ ∆ − J, each τ ∈ X(J ∪ {α}), if we let B(τ) = {σ ∈ X(J) | τ < σ}, then

∑

σ∈B(τ )

σ ∈ harJ(1).

(2) If F and F′ are adjacent families in X(J), then

∑

σ∈F

σ −
∑

σ′∈F′

σ′ ∈ harJ (2).

We let harJ = harJ (1) + harJ(2) and define

HJ (L) =
L[X(J)]

harJ
.

We call HJ(L) the L-module of L-valued J-chains on X . It carries an obvious G-action.

Theorem 5.1. There exists a G-equivariant isomorphism

HJ(L) ∼= SpJ(G, L).

Proof: For x ∈ X0 we have the Kx-equivariant isomorphism

L[Xx(J)] ∼= C(Ux\Kx/PJ,x, L),(17)

gσx 7→ χUxgPJ,x

(g ∈ Kx) where χUxgPJ,x
denotes the characteristic function of UxgPJ,x. The Iwasawa decom-

position G = KxPJ (which holds since x, like all vertices in X , is a special vertex) provides a

natural isomorphism

C(Ux\Kx/PJ,x, L) ∼= C(Ux\G/PJ, L).

Together we obtain an isomorphism

L[Xx(J)]

L[Xx(J)] ∩ harJ (1)
∼=

C(Ux\G/PJ , L)∑
α∈∆−J C(Ux\G/PJ∪{α}, L)

.
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Furthermore, for {x, x′} ∈ X1 the isomorphisms (17) for x and x′ induce an isomorphism

harJ(2) ∩ (L[Xx(J)] ⊕ L[Xx′(J)]) ∼= C(Ux,x′\G/PJ , L).

Together we deduce a G-equivariant exact sequence

⊕

{x,x′}∈X1

C(Ux,x′\G/PJ , L) −→
⊕

x∈X0

C(Ux\G/PJ , L)∑
α∈∆−J C(Ux\G/PJ∪{α}, L)

−→ HJ (L) −→ 0.(18)

On the other hand we have according to [12] section 6, Theorem 8 a G-equivariant exact sequence

⊕

{x,x′}∈X1

SpJ (G,Z)Ux,x′ −→
⊕

x∈X0

SpJ(G,Z)Ux −→ SpJ (G,Z) −→ 0.

Using [12] section 6 Proposition 15 we see that by base extension Z → L we derive an exact

sequence

⊕

{x,x′}∈X1

C(Ux,x′\G/PJ , L) −→
⊕

x∈X0

C(Ux\G/PJ , L)∑
α∈∆−J C(Ux\G/PJ∪{α}, L)

−→ SpJ (G, L) −→ 0.(19)

Comparing the exact sequences (18) and (19) we conclude. �

Remarks: (a) We may identify X0 with the set of homothety-classes [Λ] = {λΛ | λ ∈ F×}

of free OF -submodules Λ of rank d + 1 in a fixed (d + 1)-dimensional F -vector space. A k-

dimensional simplex in X is then given by the set of its k + 1 vertices. This set carries a

canonical cyclic ordering, namely the cyclic ordering . . . , [Λ0], . . . , [Λk], [Λ0], . . . if we can choose

the representatives Λj such that

Λ0 ) Λ1 ) . . . ) Λk ) pF Λ0.

Giving a pointing of the simplex amounts to fixing this cyclic ordering into a true total ordering

([Λ0], . . . , [Λk]) (here [Λ0] is the pointing). For {x0, x
′
0} ∈ X1 and pointed k-simplices (x0, . . . , xk)

and (x′0, . . . , x
′
k) (represented as indicated) the families Ux0,x′

0
(x0, . . . , xk) and Ux0,x′

0
(x′0, . . . , x

′
k)

are adjacent if and only if {xi, x
′
i} ∈ X1 for all 0 ≤ i ≤ k.

(b) Let X̂k denote the set of all pointed k-dimensional simplices inX . One may define a G-stable

submodule ĥarJ of L[X̂k] as the minimal submodule of L[X̂k] containing harJ and all relations

of the following kind. Let σ = (Λ ) Λ1 ) . . . ) Λk ) pF Λ) ∈ X̂k (pointed at [Λ]) and set

C(σ) = {σ′ = (Λ ) Λ′
1 ) . . . ) Λ′

k ) pF Λ) ∈ X(J) |

for all 1 ≤ j ≤ k we have Λ′
j ⊂ Λj or Λj ⊂ Λ′

j}.

Then

σ −
∑

σ′∈C(σ)

σ′ ∈ ĥarJ .
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One may ask for which J the inclusion L[X(J)] ⊂ L[X̂k] induces an isomorphism

HJ(L) ∼=
L[X̂k]

ĥarJ

.

In the case where J consists of the first d − k simple roots (in the Dynkin diagram) this holds

true: this follows from work of de Shalit [7] (he works with a different but equivalent defi-

nition of ĥarJ in this case). For these J Theorem 5.1 has been obtained by de Shalit in the

case char(F ) = 0, and by Aı̋t Amrane (as the main result of [1]) for F of arbitrary characteristic.

Formula: Let J be arbitrary again (and G = GLd+1(F )). We conclude with an explicit

description of the embedding λL : SpJ (G, L) →֒ C∞(I,MJ(L)) of Theorem 2.3 in terms of the

isomorphism HJ (L) ∼= SpJ(G, L) of Theorem 5.1, without giving proofs. We identify W with

the automorphism group of the set {0, . . . , d} and ∆ with the set of transpositions (s− 1, s) for

1 ≤ s ≤ d. For 0 ≤ i ≤ d let ei ∈ X∗(T ) denote the cocharacter ei : Gm → T sending y ∈ Gm to

the diagonal matrix ei(y) with ei(y)ii = y and ei(y)jj = 1 for j 6= i. Let {s1 < . . . < sk} denote

the set, in increasing enumeration, of all s ∈ {1, . . . , d} such that the transposition (s − 1, s)

does not belong to J. In particular, k = d− |J|. For 1 ≤ i ≤ k let

ξJ
i =

∑

0≤j≤si−1

ej ∈ X∗(T ).

For w ∈W J let

Ỹ 0
A(J, w) = {

k∑

i=1

miw(ξJ
i ) |mi ∈ Z≥0} ⊂ X∗(T ).

Under the natural projection

X∗(T ) ⊗ R
π

−→ X∗(T )⊗ R/(e0 + . . .+ ed) = A

the set Ỹ 0
A(J, w) projects to a set Y 0

A(J, w) of vertices in the standard apartment A of X . This

Y 0
A(J, w) is the set of vertices of a connected full simplicial subcomplex YJ,w of X all of whose

maximal simplices are k-dimensional. We let YA(J, w) denote the subset ofX(J) consisting of all

pointed J-simplices in X having all their vertices in Y 0
A(J, w). Thus the simplex underlying an

element of YA(J, w) is a chamber in YJ,w. We may assume that I fixes the chamber in X whose

set of vertices is {π(ξ∅0), π(ξ∅1), . . . , π(ξ∅d)}, where we set ξ∅0 = 0 ∈ X∗(T ). Let I.YA(J, w) ⊂ X(J)

denote the union of all I-orbits of elements of YA(J, w) and then put

Y (J) =
⋃

w∈WJ

I.YA(J, w)

(this is a disjoint union inside X(J)). For σ ∈ Y (J) there exists a unique w ∈ W J , a unique

σ′ ∈ YA(J, w) and some g ∈ I such that σ = gσ′. Here g is not uniquely determined, but the

coset gVσ′ in I is independent of the choice of g, where Vσ′ ⊂ I denotes the stabilizer of σ′ in

I . There is a unique element σ(w) ∈ YA(J, w) which is pointed at the central vertex (i.e. at
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π(0) ∈ A). Let m(σ(w), σ′) ∈ Z≥0 denote the gallery distance between σ(w) and σ′ (i.e between

their underlying chambers in YJ,w). Let

λ̃L(σ) = (−1)m(σ(w),σ′)χgVσ′ ⊗∇(w)

(with ∇ as in the exact sequence (4)), an element of C∞(I, L)⊗ MJ(L) = C∞(I,MJ(L)). By

L-linearity we obtain a map λ̃L : L[Y (J)] → C∞(I,MJ(L)). One can show:

(i) The canonical map L[Y (J)] → HJ (L), induced by the inclusion L[Y (J)] ⊂ L[X(J)], is

surjective. (More precisely, for w ∈W J the image of L[I.YA(J, w)] in HJ(L) corresponds, under

the isomorphism HJ(L) ∼= SpJ (G, L), to the image of C∞(I/P 0
J,w, L) in SpJ (G, L), cf. the proof

of Theorem 2.3.)

(ii) The composition

L[Y (J)] −→ HJ(L) ∼= SpJ(G, L)
λL
→֒ C∞(I,MJ(L))

is the map λ̃L just described.
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