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Université Libre de Bruxelles

and

International Solvay Institutes

Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium

Proceedings for the XXIX Workshop on Geometric Methods in Physics,

27.06-03.07.2010, Białowieża, Poland
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1 Introduction

Gauge systems feature prominently in theoretical physics because the four known funda-

mental interactions, electromagnetism, the weak and strong nuclear forces, general rela-

tivity, and various unifying models such as string or higher spin theories, are described

by theories of this type. It is therefore of interest to study the mathematical structure of

such systems.

More concretely, by gauge systems we mean systems of under-determined partial

differential equations deriving from variational principles. In a first approximation, one

often replaces the fields, i.e., the dependent variables, by coordinates φi on some finite di-

mensional manifold and forgets about the independent variables. For instance, the action

functional then reduces to an ordinary function S0(φ
i).

When applied to such a finite-dimensional toy model, the algebraic structure under-

lying the Batalin-Vilkovisky (BV) construction as reviewed for instance in [1] involves

formulas that are reminiscent of those that occur in the context of Lie algebroids. The gen-

eral picture is well-known: the base space is the space of solutions to the Euler-Lagrange

equations, the algebra is the algebra of field dependent gauge parameters, their image

under the anchor are the gauge symmetries; the latter form an integrable distribution and

partition solution space by gauge orbits. More precisely, let us denote by Ri
α∂/∂φi an

irreducible generating set of gauge symmetries, i.e., a set of vector fields such that

Ri
α

∂S0

∂φi
= 0 , N i ∂S0

∂φi
= 0 =⇒ N i ≈ fαRi

α ,

for some functions fα. We use Dirac’s notation for a function that vanishes when pulled

back to the surface Σ defined by ∂S0/∂φi = 0, g ≈ 0, and say that g vanishes weakly or

vanishes on-shell. It then follows that the vector fields Ri
α∂/∂φi are in involution on-shell.

Furthermore, on-shell, they determine structure functions and an associated Lie algebroid

involving the algebra of field dependent gauge parameters fα and the anchor fαRi
α∂/∂φi.

In particular for instance, the associated “longitudinal” differential γ coincides, up to

notation, with the differential occurring in the local description of a Lie algebroid as

reviewed for instance in section 2.1 of [2].

The remaining part of the BV construction consists in getting an off-shell description

of this differential by using a Koszul-Tate resolution with additional generators, the anti-

fields. In the variational case, the off-shell differential can then be shown to be canonically

generated through a generator S in terms of a suitable antibracket.

What makes the finite-dimensional toy model uninteresting per se, at least locally, is

that under standard regularity assumption one can choose local coordinates that trivialize

the whole construction. This is the content of the abelianization theorem.

The formal extension to field theories proceeds by assuming that the index i includes

the independent variables xµ and, at the same time, summations over i include integrations
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over xµ, this is the DeWitt notation, see e.g. [3]. The danger of this approach is that one

easily forgets about derivatives, and it is precisely the derivatives that make the whole

construction non trivial, even when working in a local coordinate system.

In the present note, we re-explain how irreducible gauge field theories define a par-

ticular Lie algebroid. For concreteness, we choose in this note to control the functional

aspects of the problem by working in the framework of the variational bi-complex. The

last part of the note is devoted to a summary of results that we have derived in this context.

Other approaches realizing the general picture are of course also possible. In par-

ticular, in the context of asymptotic symmetries one deals with concrete subspaces of

solutions determined by some fall-off conditions. In the conclusion, we re-interpret some

of our results on asymptotic symmetries from the perspective of Lie algebroids.

2 Generalities

In this section, we quickly review basic definitions and results on an algebraic approach

to symmetries. More details and proofs can be found for instance in [4, 5, 6, 7] and

references therein.

2.1 Jet-bundles and Euler-Lagrange derivatives

Consider a fiber bundle E with base space M . In the following, we restrict ourselves to

local coordinates xµ on M and φi on the fiber C. Coordinates on the associated jet-bundle

J k of order k are denoted by xµ, φi
(µ). Here (µ) stands for an unordered index µ1 . . . µl,

with l 6 k. For such an index, |µ| = l. The total derivative is the operator

∂ν =
∂

∂xν
+ φi

((µ)ν)

∂

∂φi
(µ)

, (2.1)

where the summation conventions for repeated indices is used. A local function is a

smooth functions on J k for some finite k. The space of local functions is denoted by

Loc(E).

If (−∂)(µ) = (−)|µ|∂(µ), the Euler-Lagrange derivative of a local function f is defined

by

δf

δφi
= (−∂)(µ)

∂f

∂φi
(µ)

. (2.2)

The adjoint of a total differential operator O = O(µ)∂(µ) is O†· = (−∂)(µ)(O
(µ)·) so that

(O†)† = O. For a collection of local functions P a, the Fréchet derivative is the matrix-

valued total differential operator defined by

DP
a
j =

∂P a

∂φ
j

(ν)

∂(ν) . (2.3)
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Note also that the Fréchet derivative can be defined for a collection of total differential

operators Oa = Oa(µ)∂(µ) through DO
a
j ≡ DO(µ)

a
j ◦ ∂(µ).

2.2 Stationary surface

Equations of motion are partial differential equations of the form Ea[φ] = 0 where Ea

are local functions that vanish when the fields and their derivatives are put to zero. The

equations of motion Ea[φ] = 0 are variational if the range of a and i are the same and if

there exists a local function L called Lagrangian such that

Ei =
δL

δφi
. (2.4)

This is the case if and only if

DEij = (DEji)
†. (2.5)

The “stationary” surface Σ is defined in the jet-bundles by the equations of motion

and their total derivatives,

∂(µ)Ea = 0. (2.6)

Under appropriate regularity conditions (see e.g. [1]) which we assume to be fulfilled,

f ≈ 0 if and only if there exists local functions ka(µ) such that f = ka(µ)∂(µ)Ea. The

space Loc(Σ) of local functions on Σ can then be identified with Loc(E)/I where I is

the ideal of local functions vanishing on Σ. The associated space of local forms on Σ is

denoted by ΩΣ.

2.3 Horizontal complex and prolongation of generalized vector fields

The horizontal complex is the Grassmann algebra generated by the odd elements dxµ with

coefficients that are local functions, Ω = Loc(E)⊗∧(dxµ). The horizontal differential is

dH = dxµ∂µ. A generalized vector field is a vector field of the form X = P µ ∂

∂xµ
+Ri ∂

∂φi
,

with P µ, Ri local functions. Its prolongation to horizontal forms is defined by

pr X = ∂(µ)Q
i ∂

∂φi
(µ)

+ P µ∂µ + dHP µ ∂

∂dxµ
, Qi = Ri − P µ∂µφ

i, (2.7)

in such a way as to commute with the horizontal differential

[pr X, dH ] = 0. (2.8)

The horizontal complex pulled back to the stationary surface is denoted by ΩΣ.
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2.4 Local functionals

The space of local functionals F is defined by F = Hn(dH , Ω). A local functional is thus

an equivalence class [L], L = Ldnx where L ∼ L+∂µk
µ, with L, kµ local functions, i.e.,

a Lagrangian L up to a total divergence. The property

δL

δφi
= 0 ⇐⇒ L = ∂µk

µ, (2.9)

allows one to characterize local functionals as equivalence classes of Lagrangians with

identical Euler-Lagrange derivatives. The action is the distinguished local functional

S0 = [L] whose associated Euler-Lagrange derivatives define the equations of motion.

2.5 Equations of motion and variational symmetries

A generalized vector field X defines an equations of motion symmetry if

pr XEa ≈ 0. (2.10)

A generalized vector field X defines a variational symmetry of the action [L] if

pr XL = dHk. (2.11)

If Qi = 0, X is both an equations of motion and a variational symmetry for all P µ. We

will thus restrict ourselves in the following to generalized vector fields in evolutionary

form, Q = Qi ∂

∂φi
, with prolongation

δQ = ∂(µ)Q
i ∂

∂φi
(µ)

. (2.12)

The following formulae which can be derived for instance from Eq. (6.42) and Eq. (6.43)

of [8], are useful in the following:

[δQ,
δ

δφj
] = −(DQ

i
j
)† ◦

δ

δφi
, (2.13)

δQ1(DQ2

i
j
)† = (DδQ1

Q2

i

j
)† − (DQ2

i
k
◦ DQ1

k
j
)†. (2.14)

By applying an Euler-Lagrange derivative to δQL = ∂µk
µ, an evolutionary vector

field defines a variational symmetry if and only if

δQ
δL

δφj
= −(DQ

i
j
)†[

δL

δφi
]. (2.15)

It follows that every variational symmetry is an equations of motion symmetry.

Evolutionary vector fields (EV ), equations of motion symmetries (MS) and varia-

tional symmetries (V S) are Lie algebras with bracket

[Q1, Q2]
i = δQ1Q

i
2 − δQ2Q

i
1, [δQ1 , δQ2 ] = δ[Q1,Q2] . (2.16)
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2.6 On-shell symmetries

Evolutionary vector fields such that Qi ≈ 0 define equations of motion symmetries. Such

equations of motion symmetries are considered trivial. They form a Lie ideal. Proper

equations of motion symmetries are defined as equivalence classes of equations of motion

symmetries modulo trivial ones. They restrict to well defined vector fields on Σ. We

denote the Lie algebra of proper equations of motion symmetries by PMS.

Similarly, variational symmetries such that Qi ≈ 0 form an ideal in the Lie algebra of

variational symmetries.

2.7 Generalized conservation laws

Generalized conservation laws correspond to the cohomology spaces Hn−k(dH , ΩΣ) with

k > 1 defined by

Hn−k
(

dH , ΩΣ

)

∋ [ωn−k] ⇐⇒

{

dHωn−k ≈ 0,

ωn−k ∼ ωn−k + dHηn−k−1 + tn−k, tn−k ≈ 0.
(2.17)

3 Gauge and global symmetries

3.1 Noether operators

A Noether operator is a total differential operator Na ≡ Na(µ)∂(µ) such that

Na[Ea] = 0. (3.1)

The linear space of Noether operators (NO) is a left module over the associative algebra

of total differential operators.

A set of Noether operators R†a
α is a generating set1 if every Noether operator Na can

be written in terms of the generating set on-shell, i.e., if there exists operators Oα ≡

Oα(µ)∂(µ) such that

Na ≈ Oα ◦ R†a
α . (3.2)

We assume here for simplicity of the arguments below that the generating set is irre-

ducible, i.e., that for all operators Zα,

Zα ◦ R†a
α ≈ 0 =⇒ Zα ≈ 0. (3.3)

1To agree with standard usage, the generating set is usually expressed in terms of adjoints of some

operators Ra
α.
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In the rest of this section, we concentrate on the case of variational equations associ-

ated with an action S0 = [L]. The associative algebra TDO of total differential operators

is a Lie module over V S under the action of δQ with the Leibniz rule

δQ(O1 ◦ O2) = δQO1 ◦ O2 + O1 ◦ δQO2. (3.4)

Proposition 3.1. Noether operators are a module over V S,

(Q · N)i = δQN i − N j ◦ (DQ
i
j
)†. (3.5)

Proof: Applying a variational symmetry to a Noether identity gives

0 = δQ

(

N i[
δL0

δφi
]
)

= δQ(N i(µ))∂(µ)
δL0

δφi
− (N i ◦ (DQ

j
i
)†)[

δL0

δφj
],

by using (2.15). This implies that the RHS of (3.5) is a Noether operator. That

Q1 · (Q2 · N) − Q2 · (Q1 · N) = [Q1, Q2] · N (3.6)

follows from a straightforward computation using (2.14).

It also follows directly from (3.5) that

Q · (O ◦ N) = (δQO) ◦ N + O ◦ (Q · N). (3.7)

3.2 Gauge symmetries

Standard integrations by parts show that there is a linear map ρ from the space of Noether

operators to the space of variational symmetries: if N i is a Noether operator, the charac-

teristic of the associated variational symmetry is ρ(N)i = N †i(1). Note in particular that

ρ(N ◦ D†
Q) = δρ(N)Q.

The space of gauge symmetries GS is defined as the subspace Im ρ ⊂ V S. It is a Lie

ideal in the space of variational symmetries. This follows from the crucial property

ρ(Q · N) = [Q, ρ(N)] . (3.8)

Another property of ρ which can be proved by using again formula Eq. (6.43) of [8] is

D†
ρ(N) = D†

N . (3.9)

One then can use ρ to define a bilinear map on Noether operators through N1 ⋆ N2 =

ρ(N1) · N2. Even though this map is not skew-symmetric, its image under ρ is due to

(3.8). Furthermore, as a consequence of (3.6), it satisfies N1 ⋆ (N2 ⋆ N3) − N2 ⋆ (N1 ⋆

N3) − (N1 ⋆ N2) ⋆ N3 = 0 which is mapped to the Jacobi identity for gauge symmetries

when applying ρ.
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3.3 Global symmetries

By definition, the quotient Lie algebra V S/GS of variational symmetries modulo gauge

symmetries is the Lie algebra of global symmetries.

3.4 Proper gauge symmetries

Trivial total differential operators or Noether operators are defined by operators whose

coefficients vanish on-shell. Multiplication of a Noether operator by a trivial operator

gives a trivial Noether operator. Trivial gauge symmetries are variational symmetries

that lie in the image of trivial Noether operators. They form an ideal in the Lie algebra

of gauge symmetries. Proper total differential operators, Noether operators, gauge sym-

metries are defined as total differential operators, Noether operators, gauge symmetries

modulo trivial ones.

3.5 Gauge algebroid

Proper gauge symmetries are generated by ρ(Oα ◦ Ri†
α ) with the equivalence relation

Oα ∼ Oα + tα and where TDO ∋ tα ≈ 0. Let us introduce the notations ρ(Oα ◦ Ri†
α ) =

Ri
α(fα) = Ri

f where fα = O†α(1), and also δf = δRf
. Proper gauge symmetries are thus

also generated by variational symmetries with characteristic Ri
α(fα) where fα ∈ Loc(Σ).

Note that irreducibility of Ri†
α can easily be shown to be equivalent to the statement that

if Ri
α(Oα(g)) ≈ 0 for all g ∈ Loc(E) then Oα ≈ 0. The property that Ri†

α is a generating

set is equivalent to the statement that any family of variational symmetries that depends

linearly and homogeneously on an arbitrary local function f and its derivatives, Gi(f) =

Gi(µ)∂(µ)f and δGL = ∂µk
µ(f) can be written as Gi(f) ≈ Ri

α(Oα(f)) for some Oα ∈

TDO.

Since [Rf1 , Rf2 ] defines a variational symmetry, one can easily prove from the gener-

ating property that

[Rf1 , Rf2 ]
i ≈ Ri

γ

(

Cγ
αβ(fα

1 , fβ
2 ) + δf1f

γ
2 − δf2f

γ
1

)

, (3.10)

where Cγ
αβ(fα

1 , fβ
2 ) = C

γ(µ)(ν)
αβ ∂(µ)f

α
1 ∂(ν)f

β
2 are bi-differential operators that are skew-

symmetric, Cγ
αβ(fα

1 , fβ
2 ) = −Cγ

βα(fβ
2 , fα

1 ). Introducing a linear space spanned by eα

associated with the generating set of Noether operators R†i
α and defining A as the linear

space with elements f = fαeα where fα ∈ Loc(Σ), A is a Lie algebra with bracket

[f1, f2]A =
(

Cγ
αβ(fα

1 , fβ
2 ) + δf1f

γ
2 − δf2f

γ
1 )eγ . (3.11)

Indeed, the Jacobi identity for the bracket [·, ·]A is a direct consequence of the Jacobi

identity for the bracket of evolutionary vector fields applied to Rf1 , Rf2 , Rf3 and the irre-

ducibility of the generating set.
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To an irreducible gauge theory and a choice of generating set R†i
α , one can thus as-

sociate the Lie algebroid with algebra A as a vector bundle over the stationary surface Σ

with anchor the map a(f) = δf . For want of a better name, one may call this the gauge

algebroid.

Up to details related to the treatment in the context of the variational bi-complex, there

is of course no claim of originality. Indeed, in some way or the other, this is known to most

people familiar with the Batalin-Vilkovisky construction, see for instance [9]. Related

considerations have appeared for instance in [10]. Note that the off-shell description gives

rise to an sh-Lie algebroid, while L-stage reducible gauge theories are L-Lie algebroids.

This is most transparent in the antifield formalism to which we now turn.

4 BV description

Both in the variational and the non-variational case, a description with antifields and

ghosts originating from the Batalin-Vilkovisky approach [11, 12, 13, 14, 15] to the quan-

tization of Lagrangian gauge field theories turns out to be useful.

Various elements of the construction appear in [16, 17, 18, 19] and are summarized

in [1]. The non-variational case has been studied in [20]. Aspects related to locality and

jet-bundles are treated in [21, 22, 23, 24, 8, 25].

4.1 Homological resolution of on-shell functions

For an irreducible set of Noether operators, the fiber is extended to include the “anti-

fields” φ∗
a (even) and C∗

α (odd), of resolution degrees 1 and 2 respectively with all other

variables of degree 0. We denote the space of local functions on this extended space by

Loc(EAF ). The homology of the (evolutionary) homological vector field

δ = ∂(µ)R
†a
α [φ∗

a]
∂

∂C∗

α(µ)

+ ∂(µ)Ea
∂

∂φ∗

a(µ)

, δ2 = 0, (4.1)

is

Hk(δ, Loc(EAF )) =







0 for k > 0

C∞(Σ) for k = 0.
(4.2)

It follows that

Proposition 4.1. The Lie algebra PMS of proper equations of motion symmetries is

isomorphic to H0([δ, ·]), the adjoint cohomology of δ in the space of evolutionary vector

fields acting on Loc(EAF ) in resolution degree 0 equipped with the induced Lie bracket

for evolutionary vector fields.

Furthermore, Hk([δ, ·], EVEAF ) = 0, k > 1.



10 BARNICH

4.2 Longitudinal differential

Consider a subset of equations of motion symmetries δA with characteristic QA that are

integrable on-shell,

[δA, δB] ≈ fC
ABδC , (4.3)

where fA
BC are local functions.

Consider the pure ghost number, i.e., the degree for which CA are Grassmann odd

generators of degree 1 with all other variables in degree 0. On the space Loc(Σ)⊗∧(CA),

the associated homological vector field (“longitudinal differential”) is

γ = CAδA −
1

2
CACBfC

AB

∂

∂CC
, γ2 ≈ 0. (4.4)

4.3 Homological perturbation theory

Consider the space Loc(EAF )⊗∧(CA) with total degree (“ghost number”) the pure ghost

number minus the resolution degree. The main theorem on the off-shell description of

the longitudinal differential and its cohomology says that perturbatively in the resolution

degree, there exists a differential s (“BRST differential”) on this space

s = δ + γ + s1 + . . . , s2 = 0, (4.5)

such that

Hk(s, Loc(EAF ) ⊗ ∧(CA)) =







0 for k < 0

Hk(γ, Loc(Σ ⊗ ∧(CA)) for k > 0.
(4.6)

4.4 Longitudinal differential for proper gauge symmetries

For proper gauge symmetries associated to the generating set Ri†
α we extend the fiber by

odd generators Cα “ghosts” and the associated longitudinal differential can be written as

γ = ∂(ρ)(R
i
α(Cα))

∂

∂φi
(ρ)

−
1

2
∂(ρ)(C

γ
αβ(Cα, Cβ))

∂

∂C
γ

(ρ)

, (4.7)

with Cγ
αβ(fα

1 , fβ
2 ) = C

γ(µ)(ν)
αβ ∂(µ)f

α
1 ∂(ν)f

β
2 total bi-differential skew-symmetric operators.

This differential is of course just the standard Lie algebroid differential in the particular

case of the gauge algebroid.

4.5 Master action

In the extended fiber with ghosts and antifields, Cα are of ghost number 1, φ∗
i of ghost

number −1 and C∗
α of ghost number −2. All other variables are of ghost number 0.
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Let za = (φi, Cα). There is an odd graded Lie algebra structure “antibracket” on the

space of local functionals [A = adnx] defined by

(·, ·) : Fg1 ×Fg2 → Fg1+g2+1,

([A1], [A2]) =
[

(δRa1

δza

δLa2

δz∗a
− (z ↔ z∗)

)

dnx
]

. (4.8)

The evolutionary vector field associated with a functional A is then

(A, ·)alt =
(

∂(µ)
δRa

δza

∂L

∂z∗
a(µ)

− (z ↔ z∗)
)

. (4.9)

In the variational case, the BRST differential s is canonically generated by a master

action S of ghost number 0,

s = (S, ·)alt,
1

2
(S, S) = 0,

S =
[

(

L + φ∗
i R

i
α(Cα) +

1

2
C∗

γf
γ
αβ(Cα, Cβ) + . . .

)

dnx
]

. (4.10)

4.6 Local BRST cohomology

The cohomology space H∗(s,F) of the BRST differential in the space of local functionals

is an odd graded Lie algebra for the antibracket induced in cohomology. Under suitable

assumptions, one can prove the following results for irreducible gauge theories considered

here:

1. Hg(s,F) ∼= Hn+g(dH , ΩΣ) = 0 for g 6 − 3.

2. H−2(s,F) ∼= Hn−2(dH , ΩΣ) is isomorphic to the space of equivalence classes of

reducibility parameters [fα], where fα are collections of local functions such that

Ri
α(fα) ≈ 0 with fα ∼ fα + tα and where tα ≈ 0.

3. H−1(s,F) ∼= Hn−1(dH , ΩΣ) is isomorphic to the space of global symmetries.

4. Every variational symmetry with weakly vanishing characteristic is a gauge sym-

metry and thus trivial as a global symmetry. It follows that global symmetries are a

sub-Lie algebra of proper equations of motion symmetries, V S/GS ⊂ PMS.

Furthermore, up to a suspension, the antibracket induced in H−1(s,F) coincides with the

Lie bracket of global symmetries. The Lie bracket induced in the space of equivalence

classes of conserved currents Hn−1(dH , ΩΣ) is defined by

[[j1], [j2]] = [−δQ1j2] , (4.11)
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where Q1 is the variational symmetry associated with j1. Together with item 3 above, this

provides a complete and generalized version of Noether’s first theorem for irreducible

gauge theories.

More generally, via the antibracket induced in cohomology, Hg(s,F) is a module

over the Lie algebra of global symmetries.

In addition, when [S(1)] ∈ H0(s,F), there is a derived (even) Lie bracket in H−2(s,F)

defined by

[[A−2], [B−2]] = [(A−2, (S(1),B−2))]. (4.12)

Through the isomorphism, it also induces a Lie algebra structure in Hn−2(dH , ΩΣ).

5 Discussion

From the definition of reducibility parameters in item 2 above and the perspective of the

present note, it follows that this space is precisely the kernel of the anchor a. Further-

more, reducibility parameters at a particular solution have also been considered. From

the point of view of Lie algebroids, they correspond to the isotropy Lie algebra at a given

point. They are related to the reducibility parameters associated with the linearized gauge

theory around this solution. Together with the associated generalized conservation laws,

they have important physical applications. In gravity for instance, they are the Killing

vectors of the solution and the associated conservation laws, also called surface charges,

are related for instance to the ADM energy-momentum. In the discussion of integrability

of these surface charges, paths in solution and gauge parameter spaces have been consid-

ered [26, 27]. It should prove most instructive to try to understand better the relation to

the Lie algebroid paths and integrability discussed for instance in [2].

In the context of asymptotic symmetries, one does not work in the framework of

the variational bi-complex but one restricts oneself to concrete and physically relevant

subspaces of solutions. The claim is the following:

From the point of view of Lie algebroids, the results of [28, 29] on asymptotically

anti-de Sitter space-times in three dimensions at spatial infinity or asymptotically flat

spacetimes in three or four dimensions at null infinity can be interpreted the sense that the

associated gauge algebroid reduces to an action Lie algebroid for the Virasoro algebra

in the former case and a suitable contraction or extension thereof in the latter two.
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