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1. Introduction

The AdS/CFT correspondence (or more generally gauge/gravity dualities) provide a recipe

for computing correlation functions for strongly interacting field theories from classical gravity

[1, 2, 3]. The analytic properties of field theory Green’s functions are constrained by consid-

erations such as unitarity and causality. For example, causality forces the Fourier transform

of the retarded Green’s function to be analytic in the upper half of the complex frequency
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plane (with our sign conventions). If the AdS/CFT conjecture is true, these analytic prop-

erties must hold. However, without a proof of the conjecture it is an interesting question to

ask how these analytic properties arise from the gravitational side of the correspondence. In

particular, we would like to understand how sum rules for thermal Green’s functions emerge

from gravity.

Sum rules play an important if sometimes overlooked role in non-perturbative field the-

ory. There has been recent interest in applying sum rules to investigate the strongly interact-

ing quark-gluon plasma formed at the Relativistic Heavy Ion Collider (RHIC). To compute

transport coefficients from lattice QCD calculations, Euclidean Green’s functions need to be

continued to real time. In this difficult game, sum rules provide additional constraints that

the analytically continued Green’s functions must satisfy. To obtain bulk and shear viscosities

from the stress tensor two-point function, sum rule constraints were employed by for example

refs. [4, 5, 6, 7]. One may also consider sum rules for a conserved current. One famous

result is the Ferrell-Glover-Tinkham sum rule which relates the “missing area” in the real

part of the conductivity as a function of frequency to the London penetration depth of a BCS

superconductor.1

In the AdS/CFT context, there have been already a number of papers about thermal

sum rules. Romatschke and Son [8] derived a pair of sum rules for the stress tensor of N = 4

SU(N) Super Yang-Mills theory in 3+1 dimensions at large N and strong coupling. Similar

sum rules for a non-conformal theory dual to a Chamblin-Reall background were constructed

in [9, 10]. The authors of [11] numerically demonstrated an analog of the Ferrell-Glover-

Tinkham sum rule for a holographic superconductor in 2+1 dimensions, while [12] studied

an R-charge correlator sum rule for N = 4 Super Yang-Mills theory. In this paper, we will

rederive the results of [8, 11, 12] in a slightly more rigorous and general framework. Our

point of view is different; we want to see how gravity constraints enforce the sum rules more

generally rather than checking in specific cases numerically or analytically that the sum rules

are valid.

In Section 2, we present the class of gravity theories that we intend to analyze and

summarize our results. The bosonic correlation functions we study are governed through the

gravity theory by a single second order differential equation. Instead of considering scalar,

current, and stress-tensor correlators separately, we unify the analysis through studying the

behavior of this single differential equation. In contrast, for the massless fermions, we study

only correlators of objects with spin 1/2.

In Section 3 we review the conditions which lead to sum rules in field theories. Taking

the corresponding gravity point of view in Sections 4 and 5, we state our assumptions and

derive sum rules from gravity. In particular, we show that – given our assumptions – the

Green’s functions are holomorphic in the upper half of the complex frequency plane including

the real axis but not the origin.

1Recall there exists a Kubo relation between the current-current correlation function and the conductivity.

The London penetration depth is related to the superfluid density which in turn is proportional to the “missing

area”.
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Furthermore, we derive a contraction map for bosons and a contraction-like map for

massless fermions which we use to bound the large frequency behavior of the corresponding

spectral functions. From these two major results we derive general sum rules in various

dimensions and relate them to earlier results. Finally, we discuss our work and suggest some

future directions in Section 6.

2. A Class of Holographic Theories & Summary of Results

We will not be completely general and instead focus on a particular class of d+1 dimensional

space-times with the line element:

ds2 = −f(r)e−χ(r)dt2 +
r2

L2
d~x2 +

dr2

f(r)
. (2.1)

We will assume that the space-time contains a horizon at r = rh where f(rh) = 0 and

f ′(rh) = fh 6= 0. We also assume that at large r, the space-time becomes asymptotically

anti-de Sitter with a radius of curvature L:

f =
r2

L2
+ . . . , e−χf =

r2

L2
+ . . . . (2.2)

These space-times are conjectured to be dual to thermal field theories with d space-time

dimensions and have appeared many times before in the AdS/CFT literature. They are

sufficiently general to allow us to consider field theories at nonzero temperature and charge

density and also, if need be, in a superconducting or superfluid phase [13, 14, 17].

The prescription for calculating Green’s functions was provided in the original papers

[2, 3] and later extended to nonzero temperature by [18, 19]. The procedure begins by finding

a solution to a system of differential equations describing fluctuations of classical gravitational

fields. In this paper, we will consider the two-point functions for a scalar, a conserved current,

the stress tensor, and a spin 1/2 field in the space-time (2.1).

Before we describe specific examples, we present our field theory definition of the retarded

Green’s function for two bosonic operators2

G̃ij
R(t, x) ≡ iθ(t)〈[Oi(t, x),Oj(0)]〉 , (2.3)

and two fermionic operators

G̃R(t, x) ≡ iθ(t)〈{O(t, x),O†(0)}〉 . (2.4)

Our conventions for the Fourier transform are

GR(ω, k) ≡
∫

ddx eiωt−ikxG̃R(t, x) , (2.5)

2Note that our definition of the Green’s function differs from the one given in [18] by a minus sign.
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where we have taken advantage of translation invariance of the underlying theory. We define

also the spectral density to be the imaginary part of GR(ω, k):

ρ(ω, k) ≡ 1

2i

(

GR(ω, k) −GR(ω, k)†
)

. (2.6)

For bosonic fields, the following versatile second order differential equation will play a

big role in this paper:

D(φ)(r) ≡ φ′′(r) + T1(r)φ
′(r) + T0(r)φ(r) = 0 , (2.7)

where ′ denotes d/dr,

T1 =
F ′

F
+
n

r
and T0 =

ω2

F 2
− Y

F
, (2.8)

Y is a potential term specified below, and F = fe−χ/2. This differential equation can be used

to study two-point functions of scalar, vector and tensor fields from gravity.

After a brief review of sum rules in Section 3, in Section 4 we will study the analytic

structure of the Green’s functions for a scalar O, a component of a conserved current Jx, and

a component of the stress-tensor T xy using the differential equation (2.7). We discuss the

reality and positivity properties of GR(ω, k): GR(ω, k)∗ = GR(−ω,−k) and ω ρ(ω, k) ≥ 0.

We show that GR(ω, k) continued to complex ω, has no poles or branch cuts in the upper half

of the complex plane including real ω 6= 0. We discuss the large ω behavior of GR(ω, 0) from

which we can justify the sum rules. Finally, we repeat this analysis for massless fermions in

section 5.

Let us first explain how (2.7) governs the bosonic correlators and describe the results for

fermions and bosons in greater detail:

Scalars

Consider a real scalar operator O dual to a minimally coupled scalar field φ in the gravity

dual:

Sφ = −
∫

dd+1x
√−g

[
(∂µφ)(∂µφ) +m2φ2

]
. (2.9)

For n = d − 1 and Y = (m2 + k2L2/r2)e−χ/2 the differential equation (2.7) is the equation

of motion of a scalar field φ of mass m and space-time dependence φ ∼ e−iωt+ikx. The

momentum space two-point function for O can be read off from the large r expansion of φ.

The expansion takes the form

φ = ar∆−d(1 + . . .) + br−∆(1 + . . .) , (2.10)

where the ellipsis denotes higher order terms in r and ∆(∆ − d) = m2L2. Note that ∆

can be interpreted as the scaling dimension of the dual operator in the field theory. From

gravity, solving the differential equation with ingoing boundary conditions at the event horizon
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r = rh, up to an overall normalization and possible logarithmic contact terms, we have

GR(ω, k) ∼ −b/a.
While we demonstrate some general features of the scalar Green’s functions – for example

the absence of poles in the upper half of the complex frequency plane and the large frequency

asymptotics – with one exception, we do not press the analysis as far as a demonstration of

sum rules. The exception is the case m = 0, where the analysis overlaps with the stress tensor

correlator described below.

Conserved Currents

Conserved currents Jµ in field theory are dual to gauge fields Aµ in the gravity dual. If we set

n = d− 3, φ = Ax, and Y to a particular form we describe in Appendix A (see (A.10)), then

a solution to (2.7) describes the Gxx(ω, 0) component of the current-current Green’s function

in the dual field theory. Indeed, the presence of Y allows us to study GR as a function of

charge density and also follow its behavior through a superfluid phase transition.

The Green’s function can be found from the behavior of the gauge field near the boundary.

Restricting to d = 3 and 4, the x-component of the gauge field takes the form Ax = A
(0)
x +

A
(1)
x r−(d−2) +O(r−(d−1)). Being more careful about normalization than we were in the scalar

case, the Green’s function is then (see for example [18])

Gxx
R (ω, 0) =

d− 2

e2Ld−1

A
(1)
x

A
(0)
x

=
−1

e2Ld−3
lim

r→∞
Frd−3A′

x

Ax
, (2.11)

where e is a coupling constant for the U(1) gauge field strength. In d = 4, this expression

will contain a logarithmically divergent contact term that needs to be regularized.

In the cases d = 2, 3 and 4 when Y = χ = 0, and f = r2(1 − (rh/r)
d)/L2, the equation

(2.7) is exactly solvable. This case corresponds to a thermal field theory at zero charge density

(and also not in a superfluid or superconducting phase). One can explicitly verify the analytic

structure of the Green’s function. We review these known results in Appendix A.1.

The more interesting general case where Y 6= 0 we save for Section 4. Given some

assumptions about the behavior of Gxx
R (0, 0), we are able to prove that the Ferrell-Glover-

Tinkham sum rule holds from gravity considerations.

Stress Tensor

The stress tensor Tµν in field theory is dual to fluctuations of the metric in the gravity dual.

It is well known that off-diagonal metric fluctuations δgxy = φ(r)e−iωt+ikzr2/L2 that are not

functionally dependent on x or y obey the equation for a minimally coupled scalar of mass

m = 0. Thus, a solution to (2.7) for n = d− 1 allows a calculation of a particular component

of the stress-tensor two point function: Gxy,xy
R (ω,~k) where the x and y components of ~k are

set to zero. Up to contact terms and regulators we describe in more detail in Appendix B,

the retarded Green’s function is

Gxy,xy
R (ω, k) =

−1

2κ2Ld−1
lim

r→∞
Frd−1φ′

φ
, (2.12)
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where κ is the gravitational coupling constant. This correlator is of particular interest since

it is related to the shear viscosity transport coefficient [20]. Among other results, we recover

in general space-time dimension a sum rule proposed by Romatschke and Son [8] for N = 4

Super Yang Mills, i.e. the d = 4 case. For the sum rule, we restrict to Y = 0 and hence

k = 0. Note that k = 0 is still the interesting case for the shear viscosity computation.

Fermions

The operators O, Jx, and T xy are all Hermitian. By way of counterpoint, in section 5, we

consider sum rules for a non-Hermitian operator — a minimally coupled massless fermion

in an asymptotically AdSd+1 space. The relation Gαβ
R (ω, k)∗ = Gαβ

R (−ω,−k) (with α, β

spinor indices) does not hold, and this failure complicates our study of sum rules. We show

ρ(ω, k) > 0 for real ω 6= 0.3 We prove that all (quasi)normal modes must either lie in the

lower half of the complex frequency plane, or at ω = 0. (We omit the detailed branch cut

analysis that we provided in the bosonic case although we believe the results will be very

similar.) Finally, we study the large ω behavior of GR(ω, k). These are the ingredients from

which we derive a sum rule for massless, charged fermions in arbitrary d. For d = 3, the sum

rule we find is a special case of a sum rule proposed in an Appendix of [21].

3. Sum Rules from Field Theory

Consider a retarded Green’s function GR(ω) and the corresponding spectral density, ρ(ω)

(2.6). While this section can be generalized to the case where GR(ω) has a multi-index

structure, for clarity we will assume that GR(ω) is the single component retarded Green’s

function of a scalar bosonic operator. We make two assumptions about the retarded Green’s

function:

1. GR(ω) is holomorphic in the upper half plane, including the real axis.

2. lim|ω|→∞GR(ω) = 0 if Imω ≥ 0.

The first assumption enables us to apply the Cauchy integral theorem:

GR(ω + iǫ) =

∮

C

GR(z)dz

2πi(z − ω − iǫ)
; 0 =

∮

C

GR(z)dz

2πi(z − ω + iǫ)
. (3.1)

For ω ∈ R and some r ∈ R
+, we choose C to be the contour that travels along the real axis

from −r to r and then along a semicircle in the upper half plane back to −r. Our second

3The missing factor of ω in this inequality can be traced to the different statistical distributions obeyed by

bosons and fermions. The Fourier transform of the variance, 〈O†(x)O(0)〉, is non-negative, as can be seen by

decomposing O(x) into a complete basis of eigenstates. The variance is then related to the spectral density

by a Bose-Einstein or Fermi-Dirac distribution function, depending on whether O(x) is a bosonic or fermionic

operator.
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assumption tells us that the integral along the semicircle must go to zero as r → ∞. Then

we have

GR(ω + iǫ) = lim
r→∞

∫ r

−r

GR(z)dz

2πi(z − ω − iǫ)
; 0 = lim

r→∞

∫ r

−r

GR(z)dz

2πi(z − ω + iǫ)
. (3.2)

We subtract the complex conjugate of the second integral from the first integral in (3.2) and

take the limit ǫ→ 0 to find a “spectral representation” of the retarded Green’s function:

GR(ω) = lim
ǫ→0+

∫
dz

π

ρ(z)

z − ω − iǫ
. (3.3)

If assumption 2 is not satisfied, then a modified version of (3.3) can often be constructed,

δGR(ω) = lim
ǫ→0+

∫
dz

π

δρ(z)

z − ω − iǫ
, (3.4)

where δρ = Im δGR. The precise definition of δGR(ω) depends on the regularization proce-

dure. For example, suppose

GR(ω) = δGR(ω) + c0 + c1ω + . . .+ cnω
n + (d0 + d1ω . . .+ dsω

s) log(−iω) (3.5)

where δGR(ω) does satisfy assumption 2. We take the branch cut of the log to lie along the

negative imaginary axis. The relation (3.4) then replaces (3.3). Other regularizations are

often possible. The coefficients ci and dj may be independent of a parameter in the theory,

for example temperature T . In this case, we could construct a regulated δGR by considering

the difference GR(T1) − GR(T2). Another way to regulate the large ω divergence is to take

derivatives:
∂n+1

∂ωn+1
GR(ω) = lim

ǫ→0+

∫
dz

π

(n+ 1)! ρ(z)

(z − ω − iǫ)n+2
. (3.6)

While the entire function GR(ω) is generically difficult to determine in an arbitrary quantum

field theory, it is often possible to obtain the ci and dj in the limit Imω → ∞, for example

through an operator product expansion in an asymptotically free theory.

Given an appropriately regulated version of (3.3), people often call the spectral represen-

tation evaluated at ω = 0 a sum rule:

δGR(0) =

∫
dω

π

δρ(ω)

ω
. (3.7)

By construction, this object is convergent for large ω, but in discarding the iǫ regulator,

we have to be careful about the convergence properties of the integral at ω = 0. From the

definition of the retarded Green’s function, it follows for bosonic Hermitian operators that

GR(ω, k)∗ = GR(−ω,−k) (for real ω and k). Let us restrict to the case k = 0. In a small

ω expansion of GR(ω, 0), even powers of ω have real coefficients and odd powers have pure

imaginary coefficients. Provided δGR(0, 0) is finite, the sum rule should be well defined.4

4We will see a case in the appendix, for the current-current correlation function in d = 2 space-time

dimensions, where GR(ω) ∼ i/ω at small frequencies. In this case, we have to be more creative to write a sum

rule. Note that this behavior violates assumption 1 above.
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There are also generalized sum rules that involve derivatives of GR(ω):

1

(2j)!

∂2j

∂ω2j
GR(0) =

∫
dω

πω2j+1

(

ρ(ω) −
j
∑

i=1

a2i−1ω
2i−1

)

, (3.8)

where 2j > n, s. For these generalized sum rules, the ai are chosen to ensure that the

integral converges at ω = 0. Note we have taken advantage of the reality properties of a

small ω expansion of GR(ω). Some specific examples of this type of generalized sum rule for

current-current correlators are given in the appendix, (A.27) and (A.37).

4. Sum Rules from Gravity

We would like to see how correlation functions for bosonic Hermitian operators derived from

the gravity side of the AdS/CFT correspondence satisfy sum rules of the form (3.7). (The

fermionic case is postponed to Section 5.) Consider a generic retarded Green’s function

GR(ω, k). We will establish, from gravity, thatGR(ω, k) is holomorphic in the upper half plane

and also for real ω 6= 0. We will check that GR(ω, k)∗ = GR(−ω,−k) and that ωρ(ω, k) ≥ 0

(for real ω and k). We will determine the large frequency behavior of GR(ω, 0) so that we can

appropriately regularize (3.3). We will not be able to show in general that GR(0, 0) <∞.5

There is a very good, well known physical reason to expect that GR(ω) is holomorphic

in the upper half plane. The reason is field theoretic and related to causality. Consider the

Fourier transform back to real space

G̃R(t) =

∫
dω

2π
e−iωtGR(ω) . (4.1)

If GR(ω) has poles and branch cuts only in the lower half plane, then the contour can be

closed in the upper half plane for t < 0 and the integral evaluates to zero, as expected if the

response of the system is to be causal.6

As emphasized in the introduction, we would also like to have a gravitational reason.

Assuming for the moment that GR(ω, k) is meromorphic, the only non-analyticities are poles

which ref. [18] has argued are dual to quasinormal modes in gravity. The locations ωpole
n of

poles of the boundary theory Green’s function in the complex frequency plane are exactly

the quasinormal frequencies ωqnm
n on the gravity side. A quasinormal mode is a solution

where the bulk field has ingoing boundary conditions at the event horizon of the black hole

and where the leading behavior of the field vanishes, e.g. A
(0)
x = 0 for the current-current

correlation function. Given the assumed time dependence e−iωt, a quasinormal mode in

5See footnote 4.
6Note that we could redefine our Green’s function such that the integration contour excludes all poles, even

if they lie in the upper half plane. This yields a causal Green’s function with poles in the upper half plane

indicating instabilities in the field theory. MK: This Green’s function is in general not the retarded

one due to the deformed integration contour [right???]. We thank Karl Landsteiner for pointing this

out.
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the upper half of the complex plane is a solution that is exponentially growing in time,

indicating an instability of the metric and/or matter fields in the gravity dual. An interesting

consequence of gauge/gravity duality is thus that the boundary requirement of causality

Im(ωpole
n ) ≤ 0 corresponds to the gravity requirement of stability Im(ωqnm

n ) ≤ 0.7

Just because a pole in the upper half of the complex plane would be a bad thing doesn’t

mean it can’t happen. (Indeed, such poles drive the holographic superconducting phase

transition described in [11, 13]). Given some additional mild technical assumptions, we now

prove for the class of scalar, current, and stress tensor correlation functions governed by the

differential equation (2.7) introduced above, there are poles only in the lower half of the

complex plane and at ω = 0. In particular, we make some general assumptions about (2.7).

We assume that n ≥ 0. Next, we assume F > 0 and Y ≥ 0 on the interval rh < r < ∞. We

also assume the near horizon behavior F ≈ (r − rh)Fh > 0 and Y (rh) < ∞ and the large

r behavior F ∼ r2 and Y ∼ r−2∆ where ∆ > 0. From these assumptions, it follows that

a quasinormal mode solution to this differential equation has the near boundary behavior8

A ∼ r−n−1 and the near horizon behavior

A ∼ (r − rh)−iω/Fh . (4.2)

The near horizon behavior is chosen to give a retarded rather than an advanced Green’s

function. With an implicit time dependence e−iωt, the boundary condition corresponds to a

plane wave traveling into the event horizon.

Such a differential equation (2.7) can be derived from the one dimensional effective action

SA =

∫ ∞

rh

dr Frn

[

|A′(r)|2 +

(
Y

F
− ω2

F 2

)

|A(r)|2
]

. (4.3)

Assume that there exists a quasinormal mode solution A to (2.7) with frequency ω. Because

the differential operator is real, there will be a second complex conjugate quasinormal mode

Ā with frequency ω̄. Consider 0 = SA − SA, evaluated on implicit solutions A and Ā. We

integrate by parts, using the equation of motion for Ā in the first SA, and that for A in the

second. We find that

0 = Frn
[
Ā′A− ĀA′]∣∣∞

rh
+ (ω̄2 − ω2)

∫ ∞

rh

dr
rn

F
|A|2 . (4.4)

Because of the large r behavior of A, the first term must vanish evaluated as r → ∞ for

n ≥ 0. Now if ω lies in the upper half of the complex plane, the first term will also vanish

evaluated at r = rh. In this case, ω̄2 = ω2 and we find that ω lies on the positive imaginary

7Causality can also be studied considering the front velocity, and analyzing the poles of GR(ω, k) in the

complex momentum plane (for real frequencies) [15].
8If ∆ = 0, as for example happens for a massive scalar field, we have Y ∼ m2 near the boundary. Assuming

m2 > 0, it follows that A has an even smaller exponent A ∼ r−1/2(n+1+
√

(n+1)2+4m2L2) at large r. The

argument we are about to present justifying the absence of quasinormal modes in the upper half plane continues

to hold.
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axis. For ω in the lower half plane, in contrast, the differential operator is not self-adjoint

and ω2 need not be real.

Assume now that there exists a quasinormal mode in the upper half plane for which

ω2 < 0. In this case, SA is positive definite. If we integrate by parts and use the equation of

motion (2.7), SA reduces to the boundary term

SA = FrnĀ(r)A′(r)
∣
∣∞
rh

. (4.5)

From the near boundary and near horizon behavior of F and A, SA = 0. Thus, no quasinormal

modes in the upper half of the complex plane exist.

Note if we weaken the condition on Y and allow Y to become negative and develop a

potential well, then such a quasinormal mode can exist. As an example of such a quasinormal

mode crossing into the upper half plane, consider the case where A is a charged scalar field in

the holographic superconductors [11, 13, 14, 16]. Because the scalar is charged, it does not

fall in the class of fluctuations which we address in this paper, and its instability is thus not

ruled out by our argument. As a similar example, consider the holographic superconductor

involving instability of a neutral scalar [14]. Here a negative mass squared causes Y < 0

violating our initial assumption Y ≥ 0, and this case again is not in our class of models.9 In

both cases, this scalar instability causes the phase transition to the superconducting state.

In the new stable phase, the scalar develops a nonzero expectation value. (The field which

we call Φ later in this paper could be thought of as such a condensate.)

4.1 Real ω

The observant reader will have noted that while both gravity arguments above rule out

quasinormal modes with Imω > 0, they do not rule out quasinormal modes with Imω = 0.

In section 3, however, we required the Green’s function to be holomorphic also for Imω = 0.

In this section, in addition to ruling out quasinormal modes with real ω 6= 0, we study some

other properties of the Green’s functions for real ω.

Consider the quantity W = A′Ā − Ā′A introduced above, which for real ω can be as-

sociated with the Wronskian. As discussed below (4.4), a necessary condition for A to be a

quasinormal mode is that rnFW must vanish in the limit r → ∞. Recall that the Wronskian

satisfies the differential equation

W ′(r) + T1(r)W (r) = 0 , (4.6)

which for T1 = (F ′/F + n/r) is solved by W ∝ r−n/F (r) up to an r-independent constant.

Assuming A ≈ (r − rh)−iω/Fh near the horizon, we find

rnF (A′Ā− Ā′A) = −iωrn
h . (4.7)

9We suspect that Y < 0 also for a third example of instability: the real scalar fluctuation of the probe

brane embedding in the D3/D7 system [22]. Based on numerical evidence, we know the Schrödinger potential

of the scalar develops a well.
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Thus the Wronskian never vanishes unless ω = 0 (or in the limit rh → 0). We conclude there

are no quasinormal modes on the real axis away from the origin for non-zero rh, and hence

no poles in GR(ω, k) for real ω 6= 0.

To understand the positivity properties of the spectral function, we use the Wronskian

to show ω ρ(ω, k) ≥ 0 (for real ω). The idea is very simple. Up to an overall normalization,

we can write the spectral density as [23]

ImGR(ω) ∼ −1

2i
lim

r→∞
Frn

(
A′

A
− Ā′

Ā

)

. (4.8)

As A and Ā are linearly independent solutions, this expression is proportional to the Wron-

skian W for the differential equation (2.7). Thus the spectral density can be written in a way

that makes its positivity properties manifest:

ImGR(ω) ∼ ω

2
lim

r→∞
rn
h

|A|2 , (4.9)

using equation (4.7).

To understand the reality property GR(ω, k)∗ = GR(−ω,−k) (for real ω), note first that

(2.7) is a real differential equation that depends on ω2 and k2, not on ω or k by themselves.

The solution A is complex only because of the near horizon boundary condition (4.2). Thus

A, up to an overall constant phase factor, is a function of iω with real coefficients. A is also

an even function of k. Given the recipe for constructing GR(ω, k) from A, the result follows.

Note there exists a physical interpretation of the quantity (4.7).10 The action (4.3)

contains a conserved Noether charge Q associated with phase rotations of A and Ā. The

left hand side of (4.7) is equal to this Q. Thus ingoing boundary conditions at the horizon

force Q 6= 0 which in turn guarantees that there are no quasinormal modes for real ω 6= 0.

In the case where A is a scalar field, this charge Q is related to the radial component of a

charge current Jr. A slightly more elaborate argument relates (4.7) to current conservation

∇aJ
a = 0: J t is independent of t which in turn forces ∇rJ

r = 1√−g
∂r
√−g Jr = 0. The left

hand side of (4.7) is
√−gJr up to normalization. The sign of ImGR(ω) is related to the sign

of the charge current Jr.

The absence of poles for real ω may seem surprising in view of some results in the liter-

ature. For example, there are Dp/Dq brane systems in black hole backgrounds that support

normal modes, i.e. poles at real ω at nonzero temperature [24, 25]. Despite the nonzero tem-

perature, these systems still have rh = 0 in (4.7).11 Another distinct class of examples, where

rh = 0 coincides with T = 0, has normal modes only in the limit T → 0. At any T 6= 0, the

modes have at least a small imaginary part. The current-current correlation function for the

10Ref. [23] was the first to notice the importance of this quantity.
11In the D3/D7 brane system with d = 4 at vanishing charge density and at sufficiently low temperature,

there are (scalar and vector) fluctuations with modes having real frequencies. At low T 6= 0 the brane ends

outside the black hole as opposed to falling into it. Thus the metric induced on the brane has rh = 0 (Minkowski

embeddings) [26, 27, 28].
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holographic superconductor with a charged scalar at the Breitenlohner-Freedman bound is in

this class [29]. Such modes were also observed in the low temperature limit of current-current

correlation functions for the D3/D7 system, at nonzero charge densities [22, 30, 31, 32].

Even if we were to allow such a loophole of poles at real ω 6= 0 here, given positivity of

the spectral function ω ρ(ω, k) > 0, provided the poles are single poles, they will not spoil the

sum rule. The single poles at ω 6= 0 must have purely real residues.12 Regularizing with an

iǫ prescription, these poles in the real part of GR(ω, k) introduce Dirac delta functions into

the spectral density which we can integrate over.

4.2 On the Absence of Branch Cuts

In field theory, retarded Green’s functions typically have branch cuts in addition to poles in

the lower half of the complex frequency plane. Because of our reliance on classical gravity and

backgrounds with non-extremal black hole horizons, the expectation is that the field theories

are in a large N strong coupling limit and at nonzero temperature. In this case, the common

lore is that the Green’s functions will have only poles [44, 45]. Indeed, the exact results (at

T 6= 0) we find in appendix A.1 lack branch cuts.13

On the gravity side, GR(ω, k) is free of branch cuts in the upper half of the complex

frequency plane essentially because the differential equation (2.7) is holomorphic in ω. In

this section, we argue that given an assumption about the singular points of the differential

equation (2.7), the singularities of GR(ω, k), possibly away from a set of discrete points on

the negative imaginary axis, are entirely determined by the quasinormal mode solutions we

studied above. The assumption is the requirement that r = rh and r = ∞ be regular singular

points of (2.7), and that there be no other “nearby” regular singular points. More specifically,

we want the Frobenius power series solutions at r = rh and r = ∞ to have an overlapping

region of validity along the real line rh < r < ∞.14 In appendix D, we outline a method

that will allow for more general types of singularities in the differential equation. This second

method does not rule out branch cuts in the lower half plane, and may be useful for studying

gravity systems away from the large N and strong coupling limit.

Given our assumption, there exists a Frobenius series solution to (2.7) at r = ∞ which is

holomorphic in ω on the interval rh < r < ∞. The series solution at r = ∞ will generically

take the form:

A(r) = ar∆−n−1
∞∑

j=0

ajr
−j + br−∆

∞∑

j=0

bjr
−j (4.10)

where −∆ and ∆ − n − 1 are called indicial exponents and satisfy the quadratic relation

∆(∆ − n− 1) = m2L2. (We are allowing Y to include a mass term.) The coefficients a and

12If the residue at ω = c has a nonzero imaginary part b, then ρ ∼ b/(ω − c). The quantity ωρ will change

sign as ω passes through the pole.
13In regulating the large frequency behavior of these exact Green’s functions, we often add logarithmic terms.

However, we are free to choose the branch cut of the regulator to lie in the lower half plane.
14This assumption can probably be weakened and the following argument made to work provided the

“nearby” singular points are regular and their indicial exponents independent of ω.
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b are arbitrary and independent of r, and we choose a0 = b0 = 1. The fact that (4.10) is

holomorphic in ω is perhaps obvious: The indicial exponents of the series do not depend on

ω, and therefore aj and bj will be polynomials in ω. Note that if 2∆ − n − 1 is an integer,

the expansion may be modified to include logarithms. But the logarithms are functions of r,

not ω.

The existence of a holomorphic series solution at r = rh is less obvious as the indicial

exponents depend on ω. We have:

A±(r) = (r − rh)±iω/Fh

∞∑

j=0

c±j(r − rh)j . (4.11)

We assume c±0 = 1. The coefficients of the ingoing Frobenius series A−(r) will involve poles

at regular intervals 2iω/Fh = N where N is a positive integer. The poles come from the

fact that for these values of ω, the two horizon power series A±(r) solutions overlap and A−
should be modified to include ln(r− rh) dependence. There is a similar problem with ω = 0.

Nonetheless, we can conclude that A−(r) is holomorphic away from these particular values of

ω and that moreover A−(r) is holomorphic in the upper half of the complex frequency plane.

To determine a and b in (4.10), and hence the Green’s function, we can match the ingoing

Frobenius power series at the horizon (4.11) (and its derivative) to the one at the boundary

(4.10) at some intermediate point rh < r <∞. The matching involves solving a linear system

of two equations and two unknowns, a and b. Because there must exist a globally well defined

solution, the determinant of the system cannot vanish, and the resulting a and b must be

holomorphic in ω, away from the special values mentioned in the previous paragraph.15

The Green’s function can be computed from the near boundary limit of A′/A where we

know a and b are holomorphic in the upper half plane and at worst meromorphic in the lower

half plane. Hence, any branch cut or singular behavior of the Green’s function in the upper

half plane must come from zeroes of a, which we studied and largely ruled out, except at

ω = 0, in the previous subsections.

If we relax any of the three initial assumptions of large N , strong coupling, or T 6= 0,

the argument above generally ceases to work. So, for example there is a possible source of

confusion regarding the T = 0 limit where we know that the Green’s functions do often have

branch cuts. From the gravity side, the regular singular point at r = rh can become an ir-

regular singular point at r = 0 in the limit T → 0. The asymptotic series expansions around

irregular singular points typically have a zero radius of convergence, and the matching argu-

ment above fails. Similarly, 1/N corrections and finite coupling are both known individually

to introduce branch cuts [44, 45] in the lower half of the frequency plane. The technique

outlined in appendix D may be useful for these cases although it does not work for T = 0.

15The determinant is the Wronskian for the two power series solutions in (4.10) for which Wf = (2∆ − n −
1)r−n/F (r). Superficially then we appear to have missed 2∆ = n + 1. In this case, an extra logarithm in one

of the series expansion guarantees that Wf does not vanish.
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4.3 Contraction Map for Bosonic Correlators

To study the large ω asymptotics of the Green’s functions from gravity, we find it convenient

first to convert (2.7) to an equivalent, nonlinear first order differential equation. If we have

functions P (r), Q(r), then we can consider the quantity

s ≡ Q′A−QA′

P ′A− PA′ . (4.12)

(Usually we want P and Q to be approximations of solutions of (2.7).) Then

s′ = −(sP −Q) [sD(P ) −D(Q)]

PQ′ − P ′Q
. (4.13)

Also, we have the identity
A′

A
=
P ′s−Q′

Ps−Q
. (4.14)

We define u =
∫∞
r

dr′

F , assuming that

F ∼ r2
(

1 − pr−d + o(r−d)
)

(4.15)

at large r and F ∼ (r − rh) for r ≈ rh.16 Having set L = 2κ2 = 1, p here can be related to

the on-shell value of the action and hence to the pressure of the field theory. For a review of

this claim, see Appendix B. We choose

P =
u1/2

rn/2
H

(2)
(n+1)/2(ωu) , (4.16)

Q =
u1/2

rn/2
H

(1)
(n+1)/2(ωu) . (4.17)

Note that17

D(P )

P
=

D(Q)

Q
=
n

2

(
2 − n

2r2
+

n+ 2

2u2F 2
− F ′

rF

)

− Y

F
. (4.18)

and that the Wronskian has the form

PQ′ − P ′Q = − 4i

πrnF
. (4.19)

Thus the equation for s becomes

s′ = E(s) ≡ π

4iF

(

sH
(2)
(n+1)/2(ωu) −H

(1)
(n+1)/2(ωu)

)2
y (4.20)

16Equation (4.15) does not hold for all AdS theories. In general it will only hold if there are no fields with

scaling dimension d/2 or lower.
17Equating the r.h.s. of equation (4.18) to zero determines those Y for which P and Q are exact solutions.

This observation may be useful for constructing potentials with exact solutions.
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where we have defined

y ≡
(
n

2

(
2 − n

2r2
+

n+ 2

2u2F 2
− F ′

rF

)

− Y

F

)

uF 2 . (4.21)

We will call the expression multiplied by n/2 above the pressure term because it depends on

p through F .

We will now derive an asymptotic expansion for s(r, ω) in the limit ω → ∞, for Imω ≥ 0.

We introduce the mapping

I(s) =

∫ r

rH

E(s(r′))dr′ . (4.22)

We will assume that Imω ≥ 0 and that y(u) = O(u2∆−1) as u → 0. For the current-current

correlator, we will assume ∆ > (d − 2)/2 (the unitarity bound for scalar operators). For

the stress-tensor correlator, we will assume that 2∆ > d. (This latter bound forces us to

consider sum rules for the stress tensor with k = 0.) Given these assumptions, we will

show in Appendix C.1 that this map (4.22) is a contraction mapping with contraction factor

O(|ω|−1). Therefore, the error in s decreases by a factor of |ω|−1 each time we iterate I.

Generally, ∆ is the scaling dimension of a field Φ that is coupled to A. (Because of

Lorentz and gauge symmetry constraints, both gauge and gravity fields typically couple to

quadratic functions of fields, hence the factor of 2.) We are particularly interested in the

effect of a nonzero pressure p, for which the effective ∆ = d/2. (In the stress tensor case

n = d− 1, the leading contribution from the pressure vanishes and ∆ > d/2.) Although our

emphasis on the gravity side of the duality obscures the point, one should be able to think

of these couplings in terms of an operator product expansion (OPE) on the field theory side.

The effect of p on the large frequency behavior of the correlation function comes from the

presence of 〈Tµν〉 in an OPE of the current-current or stress tensor-stress tensor correlation

functions. Similarly, the effect of a quadratic coupling to a field Φ of dimension ∆ corresponds

to the presence of 〈OO〉 in the OPE (where Φ is dual to O).

4.4 Explicit Computation of Correlators

Now, we actually compute the asymptotics of the correlators in question.

The first observation is that the large ω behavior of s is dominated by the large r region

of the differential equation. This observation is intuitive from the AdS/CFT correspondence

because large ω behavior corresponds to the UV of the field theory, and the UV of the field

theory is precisely this large r region. From a mathematical point of view, we notice that

H i
(n+1)/2(ωu) oscillates very rapidly when ω is large. If we expand a rapidly oscillating integral

∫∞
0 f(u)g(ωu)du as an asymptotic series in powers of ω, and f and g are C∞ functions, then

only their behavior near 0 (the AdS boundary) and ∞ (the black hole horizon) is important.

(One way to see this is to integrate by parts repeatedly.) In our case, f = n+2
u2 plus some terms

that are multiplied by F and therefore decrease exponentially for large u. So all derivatives

of f go to zero at the horizon.
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In the proof of the contraction mapping above, we neglected suppression due to these

oscillations. Typically, we expect that s will receive contributions only from the large r region

of the integral and so be of order ω−2∆. If the pressure term dominates, then 2∆ = d while if

the Y term dominates, then ∆ will typically be the dimension of a scalar operator contributing

to Y , for example the Φ in (A.10).

We will consider the current correlators in d = 3 and d = 4 and then the stress tensor

correlator in general d. We begin with the current two point function in d = 3. From

combining (2.11) and (4.14), we have that

Gxx
R (ω, 0) = iω

1 − s

1 + s
, (4.23)

(setting e = 1). Note that when d = 3, then n = 0 and there is no contribution to s from the

pressure term in (4.20). We have from the preceding discussion that a nonzero Y will induce

an s ∼ ω−2∆. We expect that the dimension should exceed the unitarity bound 2∆ > 1.

Thus, we expect the following variant of the Ferrell-Glover-Tinkham sum rule to hold for a

generic choice of Y :

Gxx
R (0, 0) =

2

π

∫ ∞

0

dω

ω
(ImGxx

R (ω, 0) − ω) . (4.24)

For the current two point function in d = 4, we find that

Gxx
R (ω, 0) = ω2

(

ln(iΛ/ω) − iπs

1 + s

)

. (4.25)

The contribution to s from the pressure term should scale as 1/ω4 while that from Y should

scale as ω−2∆ where now from unitarity ∆ > 1. Thus a Ferrell-Glover-Tinkham sum rule of

the form

Gxx
R (0, 0) =

2

π

∫ ∞

0

dω

ω

(

ImGxx
R (ω, 0) − πω2

2

)

(4.26)

should hold for generic choice of Y .

We can determine the leading contribution to s from the pressure term for this d = 4 case.

If F = r2 − pr2−d + ... for some constant p, then we have 3
4Fu2 + F

4r2 − F ′

2r = (−4p/5)u4 + ....

Then we can integrate

∫ ∞

0

−4pu4

5

−iπu
4

H
(1)
1 (ωu)2

du

u2
=

8i

15π
pω−4. (4.27)

(The integral diverges when ω is real, but we may analytically continue from the upper half

plane, where it does converge.) So the leading correction to Gxx
R (ω, 0) from the pressure term

is (−iπω2)
(

8i
15πpω

−4
)

= (8p/15)ω−2. This term agrees with an analytically solvable case

discussed in appendix A.1. See in particular (A.33). By dimensional analysis, this correction

is of the form one would expect if the first nontrivial term in the OPE of Jx with itself

contains the stress-tensor.
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For the stress tensor correlator, we are interested in the component Gxy,xy
R (ω, 0) = GR(ω).

Combining the results of Appendix B and (4.14), we find that

GR(ω) = −p− 3p

4
+ iω3 − 2iω3s

1 + s
, (4.28)

GR(ω) = −p− 6p

5
+

1

4
ω4 ln(iΛ/ω) − iπsω4

4(1 + s)
, (4.29)

in d = 3 and d = 4 respectively. Similarly to the current-current correlation function, the

presence of p in the expressions above is consistent with what one would expect if the OPE

of the stress-tensor with itself contains the stress-tensor. To eliminate the power law growth

with respect to ω and construct a sum rule, we consider the regulated Green’s function

δGR(ω) ≡ GR(ω, T ) −GR(ω, 0) , (4.30)

where p and s will generically depend on temperature T . The leading p in GR(ω) comes from

a contact term that we determined in Appendix B. The second, p dependent term comes

from a correction to Q. This correction can be generalized to arbitrary d. We have to look

at the large r limit of Q:

Q = (ur)(1−d)/2ud/2H
(1)
d/2(ωu) . (4.31)

and in particular we have (ru)(1−d)/2 = 1 − p(d−1)
2(d+1)r

−d + O(r−d−2). So
Q−Qp=0

Qp=0
= −p(d−1)

2(d+1) r
−d

and δGR(ω) = −p− p(d− 1)d/2(d+ 1) +O(s).

To understand the correction from s, note that having set k = 0 (to be consistent with

the bounds on ∆ and have a contraction map), we find Y = 0 in (4.20). As mentioned above,

in the special case n = d − 1 the leading contribution to s from the pressure term vanishes.

We would need to specify more terms in a power series expansion for F to compute s reliably,

but we know that s ∼ ω−2∆ where ∆ > d/2. Thus s will lead to corrections of GR(ω) that

vanish in the limit ω → ∞. We find

lim
ω→∞

δGR(ω) = −p− p(d− 1)d

2(d+ 1)
. (4.32)

To understand the sum rule, we also need the behavior of Gxy,xy
R (0, 0). When ω = 0, the

equation (2.7) is easy to solve, A = const. Thus from Appendix B, Gxy,xy
R (0, 0) = −p, and we

find the sum rule
1

π

∫
dω

ω
δρ(ω) =

(d− 1)d

2(d+ 1)
p . (4.33)

In d = 4 we reproduce the result of Romatschke and Son [8]: 1
π

∫
dω
ω δρ(ω) = 6

5p = 2
5ǫ. (In the

last equality, we used the fact that for a conformal field theory, the stress-tensor is traceless

and so the energy density ǫ = 3p.) Note we expect this result (4.33) to hold in arbitrary d

for a generic F satisfying our assumptions.

– 17 –



5. Fermions

We now repeat our analysis carried out in the previous section for the case of Green’s functions

of fermionic operators. Again, it has to be shown that the quasinormal modes of (now

fermionic) bulk fields exclusively lie in the lower half of the complex plane and that the

spectral function falls off fast enough at large frequencies.

Consider a fermionic operator OΨ in a field theory dual to a spinor Ψ in gravity with the

action

SΨ = −i
∫

dd+1x
√−gΨ(γaDa − Φ)Ψ , (5.1)

where Ψ is a Dirac spinor of charge q, Ψ = Ψ†γt. Φ is a real scalar field which allows

us to study fermionic fluctuations in presence of a scalar condensate, e.g. in a holographic

superconductor.18 We do not separate Φ from a possible fermion massm. When we eventually

take the metric to be of the form (2.1), we will assume that Φ goes to zero at the boundary

as mL + Φ0r
−∆ for some ∆ > 1 (which is in general different from the bound on ∆ in the

previous section) and that Φ is finite at the black hole horizon. For the sake of generality we

keep the fermion mass m 6= 0 for now, but will set it to zero soon below. Furthermore, we

assume that At is the only nonzero component of A. The covariant derivative is

Da = ∂a +
i

4
ωa,bcγ

bc − iqAa , (5.2)

where ω is the spin connection and Aa is a gauge field. For a diagonal metric that depends

only on the radial coordinate r, the spin connection can be written

ων,µr = ηµν
√
grr∂r

√

|gµν | . (5.3)

The gamma matrices γa satisfy the Clifford algebra {γa, γb} = 2gab. Vielbein indices are

underlined, and the generators of the Lorentz group are σab = i
2 [γa, γb] = iγab. The dimension

of OΨ is d/2 ±mL, where ∆Ψ ≥ (d− 1)/2 satisfies the unitarity bound [34].

Assuming the metric is diagonal and depends only on the radial coordinate r, it is con-

venient to rewrite the equations of motion in terms of a rescaled (2n)-component spinor

ψ = (−g · grr)1/4Ψ where n = ⌊(d+ 1)/2⌋. Given the above assumptions on the form of the

metric, the equation of motion for ψ is

[γa(i∂a +Aa) − iΦ]ψ = 0 , (5.4)

setting q = 1.

We suppose that the fermion has some momentum k. Because of rotational symmetry,

we may assume without loss of generality that the momentum is in the x direction. The

equation of motion for ψ is then
[√

−gttγt(ω +At) + i
√
grrγr∂r −

√
gxxγxk − iΦ

]

ψ = 0. (5.5)

18This kind of coupling along with others, and their various implications, were discussed in [33].
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We argue that (5.5) can be decomposed into a set of identical differential equations

acting on two-component spinors. Consider a Euclidean Clifford algebra, {γ̃a, γ̃b} = δab in D

dimensions. In the case D = 2, we take γ̃0 = σ3 and γ̃1 = σ2 the Pauli spin matrices. Given a

Clifford algebra γ̃a in D = 2n dimensions, a Clifford algebra Γ̃a in D+2 = 2n+2 dimensions

is

Γ̃0 = id ⊗ σ3 , Γ̃1 = id ⊗ σ2 , Γ̃a = γ̃a−2 ⊗ σ1 . (5.6)

For odd dimensions, in the usual way we identify γ̃2n+1 with the product of the other gamma

matrices (up to a factor of i). Given this construction, we can think of γ̃0 and γ̃1 as block

diagonal, consisting of σ3 or σ2 matrices along the diagonal. Additionally, γ̃2 (for D > 2)

is block diagonal, consisting of σ1 matrices along the diagonal of alternating sign. The

Lorentzian Clifford algebra can be recovered by multiplying one of the γ̃a by i. We choose

γt = iγ̃1, γr = γ̃0 and γx = γ̃2. With these choices, (5.5) reduces to two decoupled equations
[√

−gttiσ2(ω +At) + i
√
grrσ3∂r + (−1)α√gxxσ1k − iΦ

]

ψα = 0 , (5.7)

where ψα with α = 1, 2, . . . , 2n−1 are the 2(n−1) two-component spinors appearing in the

2(n−1) spinor equations, respectively, with momentum alternating between +k and −k. There-

fore the second block of equations, i.e. the one for ψ2, is related to the first block by k → −k.
A third block (if present) is identical to the first, the fourth block to the second, and so on.

Fermion operator Green’s functions We are interested in the retarded Green’s function

for the boundary fermion operator OΨ. The prescription we use to study this fermion corre-

lation function closely follows that of [35, 36, 37, 38] which is based on the work of [18]. In

what follows we will summarize this prescription. Consider a solution to the Dirac equation

with infalling boundary conditions at the black hole horizon. Before setting mL = 0 below,

let us consider small masses mL < 1/2 now. Decomposing ψ into eigenvectors of γr, for

mL < 1/2 we find the AdS-boundary behavior

ψα =

(

ψα,+

ψα,−

)

=

(

aα r
+mL + O(rmL−1, r−mL−1)

bα r
−mL + O(r−mL−1, rmL−1)

)

, α = 1, 2, . . . , 2(n−1). (5.8)

We are going to work in the massless limit from now on, so mL = 0 and the two spinor

components scale with the same power of r near the boundary.19

Note that for mL = 0 two quantizations are possible, choosing either aα or bα as the

sources. Here we choose to identify the number aα with the source for the operator OαΨ,

while bα = 〈OαΨ〉. Since the Dirac equation is linear, aα(ω,~k) will be linearly related to

bβ(ω,~k). In order to make this relation explicit, we define the 2n−1 component spinors ψ±.

At the boundary, ψ+ asymptotes to the sources, ψ− to the vevs:

lim
r→∞

ψ+ = a ; lim
r→∞

ψ− = b . (5.9)

19Note that the boundary expansion (5.8) would involve logarithmic sources for half integer masses mL =

1/2, 3/2, . . . , (2j + 1)/2, j ∈ N. Furthermore, for mL > 1/2 the term involving bαr−mL would become

subleading compared to O(rmL−1).
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The linear relation between vevs and sources can be written

b(ω,~k) = S a(ω,~k) . (5.10)

The implicit prescription to compute the retarded Green’s function is then [35]:

b = −iGRγ
t
bdyMa . (5.11)

Note that γt
bdy is the field theory gamma matrix. M is a change of basis matrix that allows for

a and b to transform in different representations of the Clifford algebra. In odd dimensional

AdS spaces, γt
bdy = γt|+, i.e. γt restricted to the positive eigenspace of γr, and M = id. In

this case GR is defined only on the negative eigenspace of γr and γr itself is reinterpreted

as the boundary gamma matrix which determines the chirality of the field theory spinors.

With our boundary conditions, the expectation values b are negative chirality Weyl spinors.

Choosing the other quantization would allow us to study the opposite chirality.

For even dimensional AdS spaces where d+1 = 2n, we need to construct the field theory

gamma matrices. One simple choice is to let bα transform under

γt
bdy = in+1γ̃0 · · · γ̃d ,

γc
bdy = γ̃cγt

bdy .

such that aα is related to bα via M = γt
bdy. With this choice, the Lorentz generators γλν

bdy

and γλν are compatible.

We rewrite the correlator recipe (5.11),

[GR(ω,~k)] α
α = −i bα

aα
, α ∈ {1, 2, . . . , 2(n−1)} . (5.12)

Note that in the present setup the matrix-valued Green’s function is diagonal, because the

spinors ψα decouple due to the block diagonal structure of the Dirac equation discussed above.

The poles of GR again correspond to quasinormal modes of ψ. As was the case with the

bosons, there are no poles in the upper half of the complex plane (Imω > 0). Quasinormal

modes are solutions to (5.5) that are normalizable at the boundary (aα = 0) and ingoing at

the horizon. In the upper half plane, the solutions are also normalizable at the horizon. So

quasinormal modes in the upper half plane are eigenfunctions of the Dirac operator of (5.5)

with eigenvalue ω. But in the upper half plane the Dirac operator is self-adjoint and can have

only real eigenvalues.

As mentioned in Section 2, because Ψ is not Hermitian, the retarded Green’s function

is not expected to have a reality property of the form Gαβ
R (ω, k)∗ = Gαβ

R (−ω,−k). For our

fermion, however, the Dirac equation (5.7) has a symmetry under complex conjugation plus

ω → −ω, k → −k and At → −At. Thus the diagonal components of the Green’s functions

are expected to have the symmetry GR(ω, k, µ)∗ = GR(−ω,−k,−µ) where µ is the boundary

value of At.
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5.1 Real ω

As was true for the bosonic Green’s functions, we now show that there are no poles on the

real axis, i. e. no (quasi)normal modes with real frequencies. The fermion spectral function

can be written in terms of bulk field components

ρ(ω, k) α
α =

1

2i

[

GR
α

α − (GR
α

α )†
]

= − lim
r→∞

1

2

[
ψα,−
ψα,+

+
ψα,−

∗

ψα,+
∗

]

, ω, k ∈ R . (5.13)

The spinor components ψα,± are chosen such that near the horizon they behave as ψα,± ≈
(r − rh)−iω/Fh [cα,± + O(r − rh)]. ρ has poles if ψα,+ and ψ∗

α,+ vanish simultaneously. The

quantity Wf = (ψα,−ψ∗
α,+ + ψα,+ψ

∗
α,−) is the fermionic analog of the Wronskian considered

in section 4, and has to vanish at a pole. It follows from the equations of motion that Wf

is independent of the radial coordinate, ∂rWf = 0 (see e. g. [39, 40, 41]).20 Exactly at the

horizon we find for the diagonal entries

lim
r→rh

Wf = −2 |cα,+|2 = −2 |cα,−|2 , (5.14)

because, at ω 6= 0, the leading coefficients are fixed by the infalling boundary condition to

satisfy cα,− = −cα,+. Thus there are never poles in the fermionic Green’s function along the

real axis away from ω = 0 (cα,± = 0 is the trivial case ψα,±(r) ≡ 0). In contrast, at ω = 0 the

infalling boundary condition and equations of motion no longer imply a relation between the

leading coefficients cα,±. In this case, without loss of generality one of these coefficients can

be chosen to be real, the other imaginary, and the sum Wf = [c∗α,−cα,+ + cα,−c∗α,+] vanishes.

For example, in the zero temperature limit a fermionic (quasi)particle pole sits at ω = 0 at

the Fermi momentum k = kF [36].

Positivity of the spectral function can be made manifest using equation (5.14) [41]. Con-

sider that ρ α
α = − limr→∞Wf/(2|ψα,+|2), which implies for the diagonal elements that

ρ α
α = lim

r→∞
|cα,+|2

|ψα,+(r)|2 ≥ 0 . (5.15)

Note, that the fermion spectral function (5.15) does not contain any explicit factor of ω, in

contrast to the bosonic one (4.9). Therefore, it is non-negative also for negative frequencies.21

5.2 On the Absence of Branch Cuts

Similar to the discussion of branch cuts in the bosonic case of section 4.2, we argue that there

are no branch cuts in our fermionic Green’s functions away from T = 0. Instead of working

20Similar to the bosonic case, this quantity can be related to the radial component of a conserved current

Jr = ΨγrΨ = Wf/
√−g. That ∂rWf = 0 follows from the fact that ∇aJa = 0 and the observation that the

components of Jµ depend only on r.
21Similar to the bosonic case, the sign of the spectral density is related to the direction of the radial current

Jr mentioned in footnote 20.
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with a second order differential equation, we find it simpler to work directly with the first

order system (5.7).

Comparing with the bosonic case of section 4.2, we make the same assumptions about the

regular singular points of the differential equation, and we attempt to match a power series

solution at the horizon to a power series solution at the boundary. The fermion equation of

motion (5.7) may be written

ψ′
α = Tψα (5.16)

where T is a 2 × 2 matrix encoding the coefficients from (5.7). In computing these power

series, diagonalizing the matrix T at the regular singular points may introduce square root

branch cuts. In fact, the boundary and horizon power series expansions are free of such cuts.

For the massless fermion, the boundary is actually not singular, and no diagonalization is

required. Near the horizon, we know

T ∼ −i ω

(r − rh)Fh

(

0 1

1 0

)

. (5.17)

The eigenvalues and eigenvectors of limr→rh
(r − rh)T have no square root branch cuts. The

Frobenius power series for the infalling solution will have at most logarithms and only for

the same special values of ω along the negative frequency axis that we found in the bosonic

case. Thus the horizon and boundary expansion of ψ are holomorphic in ω everywhere except

for possibly a discrete set of ω along the negative frequency axis. We can conclude the only

singularities in the fermionic Green’s function (away from these discrete values) come from

quasinormal modes.22

5.3 Asymptotic Series for the Correlator

Again, we want to determine the large frequency behavior of the Green’s function for Imω ≥ 0.

In order for a sum rule to be valid, we need Green’s functions that fall off fast enough at large

frequencies. In order to examine this large frequency behavior, we are going to introduce a

map I(ψ). Let us first define two helpful abbreviations

u = −
∫ ∞

r
dr′
√

−gttgrr , (5.18)

and

v = −
∫ ∞

r
dr′
√

−gttgrr At. (5.19)

While the method that we used for bosons can also be applied to fermions,23 we choose

to use a different method that can be generalized more readily to spinors with more than two

22It should be possible to relax the assumptions about the regular singular points of (5.7) along the lines of

appendix D.
23Suppose A, P, Q are functions that take values in a two-dimensional vector space, and A satisfies D(A) ≡

A′ + TA = 0. We define s = Q∧A
P∧A

. Then s′ = 1
P∧Q

ˆ

(P ∧ D(P ))s2 − (P ∧ D(Q) + Q ∧ D(P ))s + (Q ∧ D(Q))
˜

.
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components. We define the mapping

I(ψ) = e−i(ωu+v)ψ̃(0) + J (ψ) , (5.20)

with

J (ψ) = ieiγ
rγt(ωu+v(u))

∫ ∞

u
du′e−iγrγt(ωu′+v)γr

(√
gxx

−gtt
kγx +

iΦ
√

−gtt

)

ψ (5.21)

where ψ̃(0) satisfies

γrγtψ̃(0) = −ψ̃(0), ∂uψ̃
(0) = 0. (5.22)

Then a fixed point of I is a solution to (5.5) with infalling boundary conditions. In other

words I(ψ) = ψ is equivalent to the equation of motion (5.5), as can be shown by taking the

derivative with respect to u on both sides of I(ψ) = ψ.

We can write the first term of (5.20) as

ψ(0) = I(0) = e−i(ωu+v)ψ̃(0) . (5.23)

This is a solution to the equation of motion (5.5) for k = 0 and Φ ≡ 0. Therefore it can also

be considered an approximate solution to the full equation (5.5). We will show in Appendix

C.2 that the map I(ψ) can be iterated, using ψ(0) as an initial approximate solution, to find

such the exact solution.

Now we actually compute the first correction to the fermion correlator in the large ω

limit. The leading term comes from a ratio constructed from the components of ψ(0) and

ψ(1) ≡ I(ψ(0)) − ψ(0). We compute ψ(1) and obtain

ψ(1) = iei(ωu+v)

∫ ∞

u
du′e−2i(ωu′+v)γr

(√
gxx

−gtt
kγx +

iΦ
√

−gtt

)

ψ̃(0). (5.24)

Once again we have an integral that oscillates rapidly for large ω. As long as all derivatives

of e−2iv√
−gtt

γr (
√
gxxkγx + iΦ) go to zero at the horizon, the asymptotic series depends only on

the behavior near the boundary. We have
√

−gtt ∼ √
gxx ∼ u. If we let At ∼ µ, then v ∼ µu,

so v → 0 at the boundary. We also let Φ ∼ Φ0u
∆ with ∆ > 1.

The leading correction from k is

ψ
(1)
k |u=0 ∼ i

k

2iω
γrγxψ̃(0). (5.25)

The leading correction from Φ is

ψ
(1)
Φ |u=0 ∼ i

Φ0

(2iω)∆
Γ(∆)γrψ̃(0). (5.26)

The second order system A′′ + T1A
′ + T0A = 0 is just a special case with A →

 

A

A′

!

, P →
 

P

P ′

!

,

Q →
 

Q

Q′

!

, and T →
 

0 −1

T0 T1

!

.
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In our gamma matrix basis, we choose ψ̃(0) = (1, 1, . . . , 1) ⊗ (−1, 1). We find then that

ψ(1)|u=0 ∼ (k/2ω)(1,−1, 1,−1, . . . , 1,−1) ⊗ (1, 1) + o(1/ω). Therefore at large ω

GR(ω, k)α
α =

(

i± ik

ω
+ o(1/ω)

)

. (5.27)

Note that if we consider instead the trace (provided d > 2),

trGR(ω, k) = 2n−1i+ o(1/ω) . (5.28)

Thus, we can write down a sum rule of the form

lim
ω→0

ω trGR(ω, k) =

∫
dω

π
(tr ρ(ω, k) − 2n−1) . (5.29)

The left hand side will typically vanish provided trGR(ω, k) is finite at the origin.

6. Discussion

We have seen how some well established properties of Green’s function in field theory are

realized in a dual gravitational description through the AdS/CFT correspondence. While

our results are not completely general, they do apply to a class of correlation functions

involving scalars, conserved currents, the stress tensor, and massless charged fermions. Some

of these properties were easy to establish and the results were partially known in the literature

before. For example the positivity properties of the spectral function, ωρ(ω, k) ≥ 0 for bosons

and ρ(ω, k) ≥ 0 for fermions, follow from the horizon boundary conditions and a conserved

charge. That GR(ω, k)∗ = GR(−ω,−k) for Hermitian operators turns out to be an almost

trivial feature of the differential equation and horizon boundary condition governing the

Green’s function (and similarly GR(ω, k, µ)∗ = GR(−ω,−k,−µ) for fermions). Other results

were more significant. For the bosons and fermions, we established necessary conditions for

GR(ω, k) to be holomorphic in the upper half of the complex frequency plane including real

ω 6= 0. We developed a contraction map for the bosons and a contraction-like map for the

fermions that allowed us to determine the large frequency behavior of GR(ω, 0). We suspect

that these contraction maps may be useful in other contexts to study the large frequency

behavior of Green’s functions from gravity.

We were able to rederive some known current and stress tensor sum rules [8, 11, 12] but

from a different viewpoint and in a more general context. From the results of this paper, we

see that these sum rules hold not just for black D3-brane backgrounds [8, 12] and not just

for the holographic superconductor in AdS4 with a scalar operator of conformal dimension

one or two [11], but more generally, in other space-time dimensions and in cases where the

backgrounds may be deformed by expectation values of arbitrary operators (though typically

some lower bound was placed on the conformal dimension of these operators).

One interesting observation that follows from generalizing the sum rule of [8] to arbitrary

dimension is that (4.33) for the stress-tensor correlator Gxy,xy(ω, 0) can be related to a similar
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sum rule for Chamblin-Reall backgrounds [9]. The sum rule of [9] can be written in our

notation as
sT

2

1

1 + 2v2
s

=
1

π

∫
dω

ω
δρ(ω) . (6.1)

As discussed by [42], these five dimensional Chamblin-Reall backgrounds can be realized as

dimensional reductions of asymptotically AdSd+1 space-times on a d − 4 dimensional torus.

The speed of sound vs and temperature T of the Chamblin-Reall background are identified

with those of the AdSd+1 space-time, while the entropy density s and pressure p are rescaled

by the volume of the torus. For conformal field theories dual to these AdSd+1 space-times,

we expect sT = pd and v2
s = 1/(d− 1). Making these substitutions converts (6.1) into (4.33).

As pointed out by [43], this trick of dimensional reduction also works for constructing

black Dp brane solutions from higher dimensional AdSd+1 space-times. We find that black D1

and D4 brane solutions come from reducing AdS4 and AdS7 space-times on a circle, as one

might expect given the relation between M-theory and type IIA string theory. More formally,

D0 branes and D2 branes come from AdSd+1 where d = 14/5 and d = 10/3 respectively.

Thus we find predictions of Romatschke-Son type sum rules for black D0, D1, D2, and D4

branes. In general, Dp-branes are related to dimensional reductions of AdSd+1 space-times

with d = 2(p− 7)/(p− 5) [43].

In the appendices, we wrote down some mildly interesting sum rules that to our knowledge

are new. We noted that the current correlation function in d = 2 has a pole at ω = 0 that

makes the integral in the naive sum rule (3.7) divergent. One possible construction that evades

this problem is (A.26). Another more standard sum rule (A.27) involves regulating the pole

by taking derivatives. We also wrote down some new sum rules (A.37) for the current-current

correlation function in the d = 4 case, i.e. the case of N = 4 super Yang-Mills at large N and

large ’t Hooft coupling. We hope our techniques can be used and generalized to find more

new sum rules from gravity.

We did not study the full current-current or stress tensor-stress tensor correlation func-

tions, but only a single component of these multi-index objects. Our fermionic Green’s

function turned out to be diagonal in spinor indices. One would of course like to investigate

the full current-current and stress tensor-stress tensor correlation functions, and also consider

more generic cases where the fermionic Green’s function is not diagonal. Such cases would

involve solving more general coupled systems of ordinary differential equations in gravity.

Two distinct systematic approaches to such coupled systems were developed in [39, 46].

We leave the reader with the most interesting unanswered question of the paper: What

is the physical meaning of the sum rule (3.7) in gravity? Is there a dual gravitational inter-

pretation of the sum rule itself?
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A. The Holographic Conductivity Equation

In this appendix, we want to demonstrate how an equation of the form (2.7) arises in com-

puting a current-current correlation function from AdS/CFT. We also review some simple

cases where closed form expressions are available for these correlation functions.

Consider the action

S =

∫

dd+1x
√−g

[
1

2κ2

(

R+
d(d− 1)

L2

)

− 1

4e2
FabF

ab − |DaΦ|2 −m2|Φ|2
]

,

where Da = ∇a − iAa. We look for a solution to the equations of motion with the ansatz

A = At(r) dt+Ax(t, r) dx, Φ = Φ(r) (with Φ a real function) and

ds2 = −f(r)e−χ(r)dt2 +
r2

L2
d~x2 +

dr2

f(r)
+ 2gtx(t, r) dx dt . (A.1)

We will treat the components Ax and gtx as perturbations and only consider their linearized

equations of motion. As given in ref. [14], we find that the background satisfies the equations

of motion

Φ′2 +
d− 1

2

f ′

κ2rf
+

1

2e2
eχA′2

t

f
+

(d− 1)(d− 2)

2κ2r2
− d(d− 1)

2κ2L2f
+

+
eχA2

t Φ
2

f2
+
m2Φ2

f
= 0 , (A.2)

d− 1

2

χ′

2κ2
+ rΦ′2 +

reχA2
t Φ

2

f2
= 0 , (A.3)

A′′
t +

(
d− 1

r
+
χ′

2

)

A′
t −

2e2AtΦ
2

f
= 0 , (A.4)

Φ′′ +

(
d− 1

r
+
f ′

f
− χ′

2

)

Φ′ +

(
eχA2

t

f2
− m2

f

)

Φ = 0 . (A.5)

We impose the boundary conditions

f =
r2

L2
+ . . . , e−χf =

r2

L2
+ . . . , (A.6)

Φ = O∆r
−∆ + . . . , At = µ+ . . . , (A.7)

as r → ∞ where ∆ > (d − 2)/2 satisfies the unitarity bound. We also want to assume the

existence of a horizon at a radius r = rh where f(rh) = 0 and At(rh) = 0 vanish linearly

with r. The other functions χ and Φ are finite at the horizon. There is a relation between

A′
t(rh) ≡ Ah, f ′(rh) ≡ fh, χ(rh) ≡ χh and Φ(rh) ≡ Φh:

fh

rh
=

d

L2
− κ2

d− 1

(
A2

he
χh

e2
+ 2m2Φ2

h

)

. (A.8)
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Given such a black hole background, the linear fluctuations satisfy the differential equa-

tions

g′tx − 2

r
gtx +

2κ2

e2
A′

tAx = 0 , (A.9)

A′′
x +

(
f ′

f
− χ′

2
+
d− 3

r

)

A′
x +

+

[(
ω2

f2
− 2κ2

e2
A′2

t

f

)

eχ − 2e2Φ2

f

]

Ax = 0 . (A.10)

This equation (A.10) is precisely of the general form (2.7).

In the following subsections, we review the cases d = 2, 3 and 4 when Φ = At = χ = 0, and

f = r2(1− (rh/r)
d)/L2, and the equation (A.10) is exactly solvable. One can locate the poles

of the correlation function, deduce the large ω behavior, and verify the sum rules analytically.

The sum rules for the corresponding correlation function Gxx
R (ω) are often rephrased in terms

of the charge conductivity σ(ω) = Gxx
R (ω)/iω.

A.1 Current-Current Correlators in Thermal Backgrounds

We review some known and partially known results for current-current correlators calculated

from dual AdS-Schwarzschild backgrounds. These are correlation functions in a thermal bath

that preserves rotational symmetry. The first part of our treatment follows [47].

Gauge invariance puts some constraints on the form of current-current correlation func-

tions. We expect that

Gµν(ω,~k) = PL
µνΠ

L(ω,~k2) + P T
µνΠ

T (ω,~k2) , (A.11)

where

P T
00 = 0 , P T

0i = 0 , P T
ij = δij −

kikj

~k2
, (A.12)

PL
µν = Pµν − P T

µν , Pµν = ηµν − kµkν

k2
. (A.13)

These correlation functions satisfy the gauge symmetry Ward identities because kµP T
µν = 0 =

kµPL
µν .

Our d+ 1 dimensional black brane metric is

ds2 =
L2

z2

(

−f(z)dt2 + d~x2 +
dz2

f(z)

)

, (A.14)

where f(z) = 1 − (z/zh)d. Consider the action for a Maxwell field in this background:

SEM = −1

4

∫

dd+1x
√−gFabF

ab . (A.15)

We would like to consider fluctuations with a e−iωt+ikx dependence. There are two types,

longitudinal and transverse. By a gauge choice, we set Az = 0. The transverse fluctuations
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involve Aa where a 6= t, x, or z, while the longitudinal fluctuations involve both At and Ax.

The transverse fluctuations satisfy the differential equation

A′′
a +

(
f ′

f
+

3 − d

z

)

A′
a +

ω2 − k2f

f2
Aa = 0 . (A.16)

The longitudinal fluctuations satisfy the three coupled differential equations

ωA′
t + kfA′

x = 0 , (A.17)

A′′
x +

(
f ′

f
+

3 − d

z

)

A′
x +

ω2

f2
Ax +

ωk

f2
At = 0 , (A.18)

A′′
t +

3 − d

z
A′

t −
k2

f
At −

kω

f
Ax = 0 . (A.19)

The third equation follows from the first two. There is an equivalent “gauge invariant”

formulation of this system of equations constructed from E = kAt + ωAx:

E′′ +

(
ω2f ′

f(ω2 − k2f)
+

3 − d

z

)

E′ +
ω2 − k2f

f2
E = 0 . (A.20)

From solutions to the differential equations (A.16) and (A.20), we can construct ΠT and

ΠL respectively. For a retarded Green’s function, we choose ingoing boundary conditions at

the event horizon: E ∼ Aa ∼ (1 − z)−iωzh/d. At small z, Aa and E have the expansion

a(1 + . . .) + bzd−2(1 + . . .) , (A.21)

and the corresponding retarded Green’s function, up to contact terms, should be b/a for

d > 2. For d = 2, the expansion will be a little different, b−a ln z+ . . . (see for example [48]).

In the following subsections, we will work in units where zh = 1. Note that the tempera-

ture of the field theory is given by T = d/4πzh. To restore units, we shift ω → ωzh = ωd/4πT .

d=2

In d = 2 space-time dimensions, there are no transverse fluctuations, and we need solve only

(A.20). The solution with the correct ingoing boundary conditions at the event horizon can

be written in terms of hypergeometric functions [49]:

E = (1 − z2)−iω/2

[

(1 − z2)z2

(
ω2 − k2

4
+ iω − 1

)

× (A.22)

×2F1

[

2 − i(ω + k)

2
, 2 − i(ω − k)

2
, 2 − iω; 1 − z2

]

+

(
2 − iω

2
z2 − 1

)

(iω − 1)2F1

[

1 − i(ω + k)

2
, 1 − i(ω − k)

2
, 1 − iω; 1 − z2

]]

.

(The other solution is the complex conjugate.)24 The near boundary expansion of this solution

has the form E = b− a ln z. The corresponding Green’s function is then

ΠL(ω, k) = − iω

ω2 − k2
− 1

2
ψ

(
i(k − ω)

2

)

− 1

2
ψ

(

− i(k + ω)

2

)

− γ + lnΛ , (A.23)

24We would like to thank Jie Ren for discussions about this case.

– 28 –



where lnΛ is a renormalization dependent contact term and ψ(x) = Γ′(x)/Γ(x). Note that ΠL

has poles in the lower half of the complex plane at positions ω = ±k−2ni where n = 0, 1, 2, . . ..

The spectral function is

ρ(ω, k) = ImΠL =
π

4

(

coth
(π

2
(ω + k)

)

+ coth
(π

2
(ω − k)

))

. (A.24)

Since ωρ(ω, k)/(ω2 − k2) > 0, it follows that ωρ(ω, k)PL is a positive definite matrix, as it

should be.

There is a sum rule here of the form25

∫ ∞

0

dω

ω

(

ρ(ω/a, 0) − ρ(ω/b, 0) +
b− a

ω

)

=
π

2
ln
b

a
. (A.26)

Thinking of a and b as shifting the temperature, we are regulating the sum rule by comparing

the spectral density at two different temperatures and additionally subtracting off a divergent

contribution at ω = 0. Note that ρ(∞, 0) = π/2. There are also a series of generalized sum

rules of the form (3.8):

ψ(2)(1)

8
=

∫
dω

πω3

(

ρ(ω, 0) − 1

ω
− π2ω

12

)

,

−ψ
(4)(1)

384
=

∫
dω

πω5

(

ρ(ω, 0) − 1

ω
− π2ω

12
+
π4ω3

720

)

,

ψ(6)(1)

46,080
=

∫
dω

πω7

(

ρ(ω, 0) − 1

ω
− π2ω

12
+
π4ω3

720
− π6ω5

30,240

)

,

...

ψ(2n)(1)

(4n)!!
(−1)n+1 =

∫
dω

πω2n+1

(

ρ(ω, 0) − 1

ω
− 1

ω

n∑

k=1

(πω)2kB2k

(2k)!

)

. (A.27)

The subtractions here regulate the IR divergence at ω = 0.

d=3

For d > 2, an exact solution is available for (A.16) and (A.20) only in the case k = 0. Note

that when k = 0, the two equations are identical and ΠL(ω, 0) = ΠT (ω, 0).

For d = 3, the authors of [50] found the solution

Aa(z) = E(z) = exp

(

iω

∫ z

0

dy

f(y)

)

. (A.28)

25This integral is an example of Frullani’s integral (which in turn is an application of Fubini’s theorem).

Assuming that df/dx = g(x), then

Z ∞

0

dx
f(bx) − f(ax)

x
=

Z b

a

du

Z ∞

0

dx g(ux) = (f(∞) − f(0)) ln(b/a) . (A.25)

In our case, f(x) ∼ coth(x) − 1/x.
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The corresponding Green’s function is

Π(ω, 0) = iρ = iω . (A.29)

Note that the Green’s function in this case has no poles. The spectral function satisfies the

trivial sum rule ∫ ∞

−∞

( ρ

ω
− 1
)

dω = 0 . (A.30)

d=4

For d = 4, the authors of [51] found the solution

E =

(

1 − 1

z2

)−iω/4(

1 +
1

z2

)−ω/4

× (A.31)

2F1

[

1 − 1 + i

4
ω,−1 + i

4
ω, 1 − iω

2
,
1

2

(

1 − 1

z2

)]

.

(The other solution is again the complex conjugate.) The Green’s function is

Π(ω, 0) = −iω − ω2

2

[

2γ + ln Λ′ + ψ

(

−1 + i

4
ω

)

+ ψ

(
1 − i

4
ω

)]

. (A.32)

This Green’s function has poles in the lower half of the complex plane at positions ω =

2n(±1 − i) where n = 0, 1, 2, . . .. For comparison with a result in the body of the paper, we

give the large ω expansion of Π(ω, 0):

Π(ω, 0) = ω2 ln(iΛ/ω) +
8

15ω2
+O(ω−4) . (A.33)

The spectral density is

ρ =
πω2 sinh(πω/2)

2(cosh(πω/2) − cos(πω/2))
. (A.34)

An indefinite integral is known

∫
ρ

ω
dω =

πω2

4
+
ω

2
(1 − i) ln

(

1 − e−πω(1+i)/2
)

+
ω

2
(1 + i) ln

(

1 − e−πω(1−i)/2
)

+
i

π
Li2

(

e−πω(1+i)/2
)

− i

π
Li2

(

e−πω(1−i)/2
)

. (A.35)

From this integral, it is straightforward to verify the sum rule

∫ ∞

0

1

ω

(

ρ− πω2

2

)

dω = 0 . (A.36)

This integral was studied numerically by [12].
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Like in the d = 2 case, there are some more interesting sum rules of the form (3.8) that

one can write down: we have

−ζ(5)

26
=

∫
dω

πω7

(

ρ− ω − π2ω3

24
− π4ω5

2880

)

,

ζ(9)

212
=

∫
dω

πω11

(

ρ− ω − π2ω3

24
− π4ω5

2880
+

π6ω7

241,920
+

π8ω9

19,353,600

)

,

...

ζ(4n+ 1)

26n
(−1)n =

∫
dω

πω4n+3

(

ρ− ω + ω
n∑

k=1

(−1)k

(
π2ω2

2

)2k

×
(

2B4k−2

π2ω2(4k − 2)!
− B4k

(4k)!

))

. (A.37)

The subtractions regulate the IR divergence at ω = 0.

B. The Holographic T
xy Two Point Function

In this appendix, we review how an equation of the form (2.7) arises in computing a stress-

tensor two-point function from AdS/CFT. Consider the action

S =
1

2κ2

∫

dd+1x
√−g

(

R+
d(d− 1)

L2

)

+
1

κ2

∫

ddx
√
−gbry

(

K − d− 1

L

)

, (B.1)

where K = ∇µnµ (sum on only the gauge theory indices) is the trace of the extrinsic curvature

and nµ is a unit vector normal to the boundary and pointing toward larger r. We take the

ansatz for the metric

ds2 = −f(r)e−χ(r)dt2 +
r2

L2
d~x2 +

dr2

f(r)
+ 2

r2

L2
φ(r, t, z) dx dy . (B.2)

The tensor gbry is the induced metric on a constant r slice.

We define two quantities, the bulk Lagrangian and the zeroth order Einstein tensor:

L ≡
√−g
2κ2

(

R+
d(d− 1)

L2

)

, Ga
b ≡

δS

δga
b

∣
∣
∣
∣
φ=0

. (B.3)

The first observation is that

L − (2 − φ2)Gx
x = − 1

4κ2

∑

a=t,r,z

[√−g(∂aφ)(∂aφ) − 4∂a(
√−g φ∂aφ)

]

− 1

κ2
∂r

(√−gf
r

)

+O(φ3) . (B.4)

Note that this equality is only valid to order φ3. From this observation, because of the (∂φ)2

term in the Lagrangian, we conclude that (2.7) does indeed govern the stress-tensor two-point

function. Also, we find the onshell action reduces to

Sos =
1

κ2

∫

ddx
√
−gbry

(

K − d− 1

L
− nr

(
1

r
− 3

4
φ∂rφ

))

. (B.5)
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With the addition of matter fields to the action, one should include the bulk stress tensor

in making the subtraction (B.4). However, provided these matter fields have high enough

scaling dimension, they will not affect (B.5) in the large r limit.

Consider the simple case of a constant metric perturbation where φ = φ0 is a constant.

We will assume that for large r, χ ∼ r−2∆ where ∆ > d/2 and that f ∼ (r2/L2)(1 −
2κ2Ld+1p/rd + . . .). In this case, the on-shell action evaluates to

Sos =

∫

ddx p

(

1 − 1

2
φ2

0

)

. (B.6)

We conclude two things. The constant p can be interpreted as the pressure and Gxy,xy
R (0, 0) =

−p.
To see what happens when φ is space-time dependent, let’s consider the specific cases

d = 3 and d = 4. Again, this analysis should generalize to the case where there are additional

matter fields in the action, provided the matter fields have conformal scaling dimension ∆ >

d/2.

d=4

Near the boundary, φ has the expansion

φ = φ0 +
φ0L

4(ω2 − k2)

4r2
+
φ1

r4
+
φ0L

8(ω2 − k2)2

16r4
ln r + . . . (B.7)

This expansion yields the on-shell action

Sos =

∫

d4x

[
ω2 − k2

8Lκ2
φ2

0 r
2 + p

(

1 − 1

2
φ2

0

)

(B.8)

+
φ0φ1

L5κ2
+

L3

64κ2
(k2 − ω2)2(1 + 4 ln r)φ2

0 +O(r−1)

]

.

To regulate the ln(r) and r2 divergences, we can add boundary counter-terms

Sct =
L

4κ2

∫

d4x
√
−gbry

(

R− L2 lnΛ′

2
RµνRµν

)

, (B.9)

where Rµν and R are the boundary Ricci tensor and Ricci scalar respectively. At leading

order in φ,

R =
1

2

(
L2k2

r2
− ω2eχ

f

)

φ2 +O(φ3) , (B.10)

RµνRµν =
1

2

(
L2k2

r2
− ω2eχ

f

)2

φ2 +O(φ3) . (B.11)

The end result is that

Sos + Sct =

∫

d4x

[

p

(

1 − 1

2
φ2

0

)

+
φ0φ1

L5κ2
+
L3φ2

0

16κ2
(k2 − ω2)2 lnΛ

]

. (B.12)
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d=3

Near the boundary, φ has the expansion

φ = φ0 +
L4ω2

2r2
φ0 +

φ1

r3
+ . . . (B.13)

This expansion yields the on-shell action

Sos =

∫

d3x

[
ω2

4κ2
φ2

0 r + p

(

1 − 1

2
φ2

0

)

+
3

4L4κ2
φ0φ1

]

. (B.14)

To regulate the r divergence, we can add a boundary counter-term

Sct =
L

2κ2

∫

d4x
√
−gbry R , (B.15)

where R is the boundary Ricci scalar. At leading order in φ,

R = −1

2

eχω2

f
φ2 + . . . (B.16)

The end result is that

Sos + Sct =

∫

d3x

[

p

(

1 − 1

2
φ2

0

)

+
3φ0φ1

4L4κ2

]

. (B.17)

C. Contraction Maps

C.1 Bosons

We prove

I(s) =

∫ r

rH

E(s(r′))dr′ (C.1)

is a contraction mapping. First, we restrict the set of s that I acts on to a domain D = {s :

||s||∞ < K} for some constant K where ||s||∞ ≡ supr∈[rH ,∞[ |e−2iωus(r)| We will show first

that I(s) ∈ D. Then, we will show that for sufficiently large ω, I is a contraction mapping

with contraction factor O(|ω|−1). More specifically, we show that

|I(s) − I(s0)| ≤
c

|ω| ||s− s0||∞ ∀ s, s0 ∈ D , (C.2)

Note that

|I(s)| ≤ ||s||2∞
∫ ∞

rh

dr′
|e4iωuPD(P )|
|PQ′ − P ′Q| (C.3)

+||s||∞
∫ ∞

rh

|e2iωuPD(Q)| + |e2iωuQD(P )|
|PQ′ − P ′Q| +

∫ ∞

rh

|QD(Q)|
|PQ′ − P ′Q| .
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We will show below that each of these four integrals scales as 1/|ω| in the large ω limit,

provided Imω ≥ 0:

∫ ∞

rh

dr′
|e4iωuPD(P )|
|PQ′ − P ′Q| ≤ CPP

|ω| ,

∫ ∞

rh

dr′
|e2iωuPD(Q)|
|PQ′ − P ′Q| ≤ CPQ

|ω| ,
∫ ∞

rh

dr′
|e2iωuQD(P )|
|PQ′ − P ′Q| ≤ CQP

|ω| ,

∫ ∞

rh

dr′
|QD(Q)|

|PQ′ − P ′Q| ≤
CQQ

|ω| .

The inequality (C.3) reduces to

|I(s)| ≤ 1

|ω|
(
K2CPP +K(CPQ + CQP ) + CQQ

)
. (C.4)

Thus if K is of order one compared to ω, then I(s) ∈ D.

Next we evaluate the l.h.s. of equation (C.2)

|I(s) − I(s0)| ≤ ||s− s0||∞
(

||s+ s0||∞
∫ ∞

rh

dr′
∣
∣
∣
∣

e4iωuPD(P )

PQ′ − P ′Q

∣
∣
∣
∣
+ (C.5)

+

∫ ∞

rh

dr′
|e2iωu(PD(Q) +QD(P ))|

|PQ′ − P ′Q|

)

≤ (2KCPP + CPQ + CQP )

|ω| ||s− s0||∞ . (C.6)

is a contraction mapping with c = 2KCPP + CPQ + CQP .

A Lemma

To demonstrate that

∫ ∞

rH

∣
∣
∣
∣

e4iωuPD(P )

PQ′ − P ′Q

∣
∣
∣
∣
dr =

∫ ∞

0

∣
∣
∣
∣

e4iωuPD(P )

PQ′ − P ′Q

∣
∣
∣
∣
Fdu ≤ CPP

|ω| , (C.7)

we first perform a change of variables so that the integral is over u. Then we split the

integral. The Hankel functions H
(i)
(n+1)/2(x) have the property that |H(i)

(n+1)/2(x)| = O(x−1/2)

as x → ∞, |H(i)
(n+1)/2(x)| = O(x−(n+1)/2) as x → 0. The quantity y(u) has the property that

|y(u)| = O(u−1) as u → ∞. We assume that y(u) = O(u2∆−1) as u → 0 for some ∆. We

split the integral into three parts according to whether u is greater or smaller than some fixed

value u0, and according to whether |ω|u (the absolute value of the argument of the Hankel

function) is greater or smaller than one. So the three regions are (u0,∞), (|ω|−1, u0), and

(0, |ω|−1).

On (u0,∞) we get a bound of
∫∞
u0
O((|ω|u)−1)O(u−1)du = O(|ω|−1). On (|ω|−1, u0) we

get a bound of
∫ u0

|ω|−1 O((|ω|u)−1)O(u2∆−1)du, which is O(|ω|−1) if 2∆ > 1. On (0, |ω|−1) we

get a bound of
∫ |ω|−1

0 O((|ω|u)−n−1)O(u2∆−1)du, which is O(|ω|−2∆) if 2∆ > n + 1. So, for

n ≥ 0, 2∆ > n+ 1, the integral converges and is O(|ω|−1) for large ω.
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For the current-current correlator, we have n = d−3, so we have convergence if 2∆ > d−2.

For the stress tensor correlator, n = d− 1, so we have convergence if 2∆ > d.

The result for CPQ, CQP , and CQQ and the other three integrals follow analogously. So,

assuming ∆ is sufficiently large, s 7→
∫
E(s) is a contraction mapping with contraction factor

O(|ω|−1). We can use this mapping to find an asymptotic expansion in powers of |ω|−1 for

the solution to (4.20).

C.2 Fermions

We show that I(s) (5.20) is a contraction-like mapping. (We assume Imω ≥ 0.)

ψ(2) = I(I(I(0))) − I(I(0)) , (C.8)

...

ψ(j) = I◦(j+1)(0) − I◦j(0) (C.9)

where I◦j(0) = I(I(...I
︸ ︷︷ ︸

j

(0))). Equivalently, I◦j(0) = ψ(0) + ψ(1) + ... + ψ(j−1). These con-

tributions are the corrections, which extend the solution ψ(0) to nonzero momentum k and

introduce a non-vanishing scalar Φ. If
∑∞

i=0 ψ
(i) converges, then it converges to a solution of

(5.5).

We would like to show that ψ(j) decreases exponentially with j, which would imply that

the sum converges. First, we observe from the definitions of I and J that I(ψ1) − I(ψ2) =

J (ψ1)−J (ψ2) = J (ψ1−ψ2). We apply this identity to the right hand side of (C.9) to obtain

ψ(j) = J (I◦j(0) − I◦(j−1)(0)) = J (ψ(j−1)). (C.10)

It turns out that J (ψ) is not necessarily smaller than ψ. However, we can still show that

J (J (ψ)) is smaller than ψ by a factor of O(ω−min(1,∆)), where ∆ is the scaling dimension of

Φ. Given our assumption ∆ > 1, we have that min(1,∆) = 1. We write

J (J (ψ)) = −
∞∫

u

du′
u′
∫

u

du′′
[

e−iγrγt(ω(u′′−u)+v(u′′)−v(u))γr
(√
gxxkγx + iΦ

)√−gtt

∣
∣
u′′

]

×
[

e−iγrγt(ω(u′−u′′)+v(u′)−v(u′′))γr
(√
gxxkγx + iΦ

)√−gtt

∣
∣
u′

]

ψ (C.11)

= −
∞∫

u

du′J (u, u′)ψ ,

(C.12)

where we have changed the order of integration and defined a new function J (u, u′).
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Another Lemma

We now examine the properties of J (u, u′) defined in equation (C.12) in order to prove the

fact that the corrections converge, i.e. that

‖ψ(i)‖ ≤ C|ω|−1‖ψ(i−2)‖ (C.13)

is satisfied for some C, where we define ‖ψ‖ = sup |ei(−ωu+v)ψ|.
Consider

J (u, u′) = eiγ
rγt(ω(u+u′)+(v(u)+v(u′))

[(√
gxxkγx + iΦ

)√−gtt

]∣
∣
u′

·
u′
∫

u

du′′e−2iγrγt(ωu′′+v(u′′))
[(
−√

gxxkγx + iΦ
)√−gtt

]∣
∣
u′′ (C.14)

Once again we have a rapidly oscillating integral. We can bound the integral using integration

by parts. Let f be the integrand in (C.14).
∣
∣
∣
∣
∣

∫ u′

u
eiωu′′

f(u′′)du′′
∣
∣
∣
∣
∣

=
1

|ω|

∣
∣
∣
∣
∣
−ieiωu′′

f(u′′)|u′

u + i

∫ u′′

u
eiωu′′

f ′(u′′)du′′
∣
∣
∣
∣
∣

≤ |ω|−1

(

2 sup |f(u′′)| +
∫ ∞

0
|f ′(u′′)|du′′

)

= O(|ω|−1). (C.15)

since f and f ′ decrease exponentially as u becomes large. The quantity on the first line of

(C.14) decreases exponentially as u′ becomes large. Then
∫ ∞

u
J(u, u′)ψ(u′)du′ =

∫ ∞

u
O(|ω|−1e−u′

)ψ(u′)du′

= O(|ω|−1)‖ψ‖. (C.16)

We have thus shown that
∞∑

j
ψ(j) converges to a solution of the equation of motion (5.5).

D. An Extended Class of Models

We outline a technique for demonstrating the absence of branch cuts in the upper half of

the complex plane; we consider only Imω ≥ 0 and ω 6= 0. In proving the absence of branch

cuts before, recall that we restricted our differential equations to have a very limited class of

singular behavior in section 4.2 and 5.2. We believe this restriction is consistent with field

theories at T 6= 0, large N and strong coupling. The technique here is valid for an extended

class of models where the Green’s functions come from solving differential equations with

worse types of singularities. Such singularities may occur in moving away from the large N

and strong coupling limit in field theory. However, this particular technique will fail at T = 0.

We make the following assumptions:
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• 1
F and Y are integrable on the interval (rH ,∞), and F is positive.

• Near the horizon, F ∼ r − rH and the integral of Y converges.

• Near the boundary, F ∼ r2 and Y = O(r−2).

Let s = −iFrnA′

A , then the differential equation for s is

is′ − s2

Frn
+
ω2rn

F
+ Y rn = 0. (D.1)

Suppose we write s as a Taylor series about some ω0 in the upper half plane:

s(r, ω) =
∞∑

k=0

sk(r)(ω − ω0)
k. (D.2)

If the Taylor series has a nonzero radius of convergence, then s is analytic in a neighborhood

of ω0. We can write an infinite sequence of differential equations:

is′k =
k∑

j=0

sjsk−j

Frn
− (δk0ω

2
0 + 2δk1ω0 + δk2)

rn

F
− Y rnδk0 (D.3)

From our analysis in section 4.3 and appendix C.1, we know how s0 behaves. Note that, for

k > 0, all of the equations are linear in sk. Since the imaginary part of s0(rH)
Frn is non-positive,

there exists a solution for each sk that remains finite at the horizon. We see that the sk

obey a recurrence relation similar to that of the Catalan numbers. It is not hard to show

using generating functions that the sk grow at most exponentially, and thus the radius of

convergence is finite.

In the limit r → ∞, we have to worry about the sk diverging. Generically, the terms

s0, s1, s2 are O(rn−1). Because of the Frn in the denominator of (D.3), subsequent terms

diverge successively more slowly, and for sufficiently large k there is no divergence. So we

may renormalize s by subtracting a function that is polynomial in ω.

Since
∫

1
Frn and

∫
sk

Frn are bounded as r → ∞ and all but finitely many sk are bounded

as r → ∞, our argument that the sk grow at most exponentially works in the limit r → ∞
as well.
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