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MORITA CLASSES OF MICRODIFFERENTIAL

ALGEBROIDS

ANDREA D’AGNOLO AND PIETRO POLESELLO

Abstract. Following Kashiwara, any complex contact manifold X

can be canonically quantized. This means that X is endowed with a
canonical microdifferential algebroid – a linear stack locally equiva-
lent to an algebra of microdifferential operators.

In this paper, we prove that Morita (resp. equivalence) classes
of microdifferential algebroids on X are classified by H2(Y,C×), for
Y the symplectification of X. We also show that any stack locally
equivalent to a stack of microdifferential modules is globally equiv-
alent to the stack of modules over a microdifferential algebroid. To
obtain these results we use techniques of microlocal calculus, non
commutative cohomology and Morita theory for linear stacks.

Introduction

Let X be a complex contact manifold. By Darboux theorem, a local
model of X is an open subset of the projective cotangent bundle P ∗M
of a complex manifold M . Let EP ∗M be the sheaf of microdifferential
operators on P ∗M . A microdifferential algebra (E-algebra, for short) on
X is a sheaf of C-algebras locally isomorphic to EP ∗M .

In the strict sense, to quantize X means to endow it with an E-algebra.
This might not be possible in general. However, Kashiwara [16] proved
that X is endowed with a canonical E-algebroid EX . This means the
following. To an algebra A one associates the linear category with one
object and elements of A as its endomorphisms. Similarly, to a sheaf of
algebras on X one associates a linear stack. An E-algebroid on X is a
C-linear stack locally equivalent to one associated with an E-algebra.

Having to deal with an algebroid instead of an algebra is not very lim-
iting. For example, one can consider the stack of modules Mod(EX) and
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2 A. D’AGNOLO AND P. POLESELLO

in particular regular holonomic modules attached to Lagrangian subva-
rieties (see [16, 12] and [11] for the involutive case).

The algebroid EX is endowed with an anti-involution, corresponding to
the formal adjoint of microdifferential operators. Moreover, the graded
algebroid associated to its order filtration is trivial. It is shown in [30]
that EX is unique among such E-algebroids.

In this paper, we consider E-algebroids with no extra structures, hence
including twisted quantizations of X, i.e. filtered E-algebroids whose as-
sociated graded algebroid is non trivial (see [32]). In fact, even more
generally, we consider stacks of twisted E-modules, i.e. stacks locally
equivalent to a stack of modules over an E-algebra.

In Theorems 5.2.3 and 5.4.3, and Corollary 5.4.2 below, we prove the
following classification results.

(i) Two E-algebroids are equivalent if and only if they are Morita
equivalent, i.e. their stacks of modules are equivalent.

(ii) Any stack of twisted E-modules is globally equivalent to the stack
of modules over an E-algebroid.

(iii) The set of equivalence classes (resp. Morita classes) of E-algebroids
is canonically isomorphic to H2(Y ;C×

Y ), for Y the symplectifica-
tion of X.

(iv) The group of invertible E-bimodules is isomorphic to H1(Y ;C×
Y ).

Moreover, we give an explicit geometric realization of the isomorphisms
in (iii) and (iv).

To obtain our results, we use techniques of microlocal calculus, non
commutative cohomology and Morita theory for linear stacks.

Recall that cohomology with values in non commutative groups is used
in [2] to classify E-algebras, and cohomology with values in 2-groups is
used in [31, 32] for the classification of algebroids.

Concerning Morita theory, it is developed in [27, 29] for linear cate-
gories. The case of stacks of modules over sheaves of algebras is discussed
in [20] (see also [10]).

For symplectic manifolds, or more generally for Poisson manifolds,
some results related to ours appeared in the literature.

The existence of a canonical deformation quantization algebroid on a
complex symplectic manifold is proved in [33] (see also [24]). The general
theory of deformation quantization modules is developed in [21].

On a complex symplectic manifold, deformation quantization alge-
broids with anti-involution and trivial graded have been classified up
to equivalence in [31] (see also [4, 5] for the possibly twisted case).

Morita-type results for deformation quantization algebras are obtained
in [6, 8, 7] for real Poisson manifolds, and in [36] in the algebraic setting.
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Convention. In this text, when dealing with categories and stacks, we
will not mention any smallness condition (with respect to a given uni-
verse), leaving to the reader the task to make it precise when necessary.

Acknowledgments. We express our gratitude to Masaki Kashiwara for
useful discussions and for communicating us the key Theorem 4.3.5.

1. Non commutative cohomology

We are interested in classifying E-algebroids and stacks of E-modules.
Thanks to the existence of a canonical E-algebroid, this amounts to clas-
sify stacks locally equivalent to a given one. To this end, we recall here
some techniques of cohomology with values in a stack of 2-groups. Ref-
erences are made to [3] and to [13] for the strictly commutative case (see
also [1] for an explicit description in terms of crossed modules). We follow
the presentation of [31].

Let X be a topological space (or a site).

1.1. Stacks. A prestack C on X is a lax presheaf of categories. Lax
in the sense that for a chain of three open subsets W ⊂ V ⊂ U the
restriction functor ·|W : C(U) −→ C(W ) coincides with the composition

C(U)
·|V
−→ C(V )

·|W
−−→ C(W ) only up to an invertible transformation (such

transformations satisfying a natural cocycle condition for chains of four
open subsets).

For γ, γ′ ∈ C(U), denote by HomC(γ, γ
′) the presheaf on U given by

U ⊃ V 7→ HomC(V )(γ|V , γ
′|V ). One says that C is a separated prestack if

HomC(γ, γ
′) is a sheaf for any γ, γ′. A stack on X is a separated prestack

satisfying a natural descent condition, analogue to that for sheaves.
Given a stack C, we denote by π0(C) the sheaf associated to the

presheaf X ⊃ U 7→ {isomorphism classes of objects in C(U)}.
Let ϕ : Y −→ X be a continuous map (or a morphism of sites). For

D a stack on Y and C a stack on X, we denote by ϕ∗D and ϕ−1C the
stack-theoretical direct and inverse image, respectively. Recall that ϕ−1C

is the stack on Y associated to the separated prestack ϕ+C, defined on
an open subset V ⊂ Y by the category

Ob(ϕ+C(V )) =
⊔

U⊃ϕ(V )
U open

Ob(C(U)),

Homϕ+C(V )(γU , γU ′) = Γ(V, ϕ−1HomC(γU |U∩U ′ , γU ′ |U∩U ′)).

One checks that there is a natural equivalence (in fact, a 2-adjunction)

(1.1.1) ϕ∗Fct(ϕ
−1C,D)≈Fct(C, ϕ∗D).

Hence there are adjunction functors

C −→ ϕ∗ϕ
−1C, ϕ−1ϕ∗D −→ D.
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By using the left-hand side functor, one gets an isomorphsim of sheaves

(1.1.2) ϕ−1π0(C)
∼
−→ π0(ϕ

−1C).

1.2. Stacks of 2-groups. Let C be stack on X. Denote by Aut(C)
the stack whose objects are auto-equivalences, and whose morphisms are
invertible transformations. Proposition A.1.1 for Ci = C′

i = C|Ui
describes

how to patch objects and morphisms of Aut(C). For U = {Ui}i∈I an open
cover of X, set

Uij = Ui ∩ Uj, Uijk = Ui ∩ Uj ∩ Uk, etc.

With notations as in Proposition A.1.1, let H1(U ;Aut(C)) be the pointed
set of equivalence classes of pairs (fij , aijk)ijk∈I satisfying the cocycle
condition (A.1.1), modulo the coboundary relation described by (A.1.2).
One sets

(1.2.1) H1(X;Aut(C)) = lim−→
U

H1(U ;Aut(C)).

By Proposition A.1.1, it follows

Corollary 1.2.1. The pointed set H1(X;Aut(C)) is in bijection with the
pointed set of equivalence classes of stacks locally equivalent to C.

Let us recall how to make the construction (1.2.1) functorial.

A 2-group is a category endowed with a group structure both on ob-
jects and on morphisms. More precisely, a category G is a 2-group if it
is a groupoid (i.e. all morphisms are invertible) and it has a structure
(G,⊗,1) of monoidal category (i.e. endowed with the categorical ana-
logue of a unital product) which is rigid (i.e. each object admits the cat-
egorical analogue of an inverse with respect to ⊗). Functors of 2-groups
and transformations between them are monoidal functors and monoidal
transformations.

A stack of 2-groups is a stack G whose sections G(U) are 2-groups,
whose restrictions are functors of 2-groups and whose transformations
between restriction functors are monoidal. Functors of stacks of 2-groups
are functors of monoidal stacks.

Recall that one sets π1(G) = HomG(1,1). This and π0(G) are sheaves
of groups, the former being necessarily commutative. Any functor of
stacks of 2-groups induces a group morphism at the level of π1 and π0.

Example 1.2.2. For G a sheaf of groups, denote by G[0] the stack ob-
tained by enriching G with identity arrows, and by G[1] the stack of right
G-torsors. Then G[0] is a stack of 2-groups, and G[1] is a stack of 2-groups
if and only if G is commutative.

Another example of stack of 2-groups is given by Aut(C) for C a stack.
Let G be a stack of 2-groups and U an open cover of X. One can extend
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as follows the construction (1.2.1), where one should read “⊗” instead of
“◦” in all diagrams in Appendix A.1.

A 1-cocycle with values in G is a pair (fij , aijk)ijk∈I with fij ∈ G(Uij)
and aijk ∈ HomG(fik, fij ⊗ fjk) satisfying (A.1.1). Two such 1-cocycles
(fij , aijk)ijk∈I and (f ′ij, a

′
ijk)ijk∈I are cohomologous if there is a pair

(gi, bij)ij∈I with gi ∈ G(Ui) and bij ∈ HomG(f
′
ij ⊗ gj , gi ⊗ fij) satisfy-

ing (A.1.2).
The first cohomology pointed set of G on X is given by

H1(X;G) = lim−→
U

H1(U ;G),

whereH1(U ;G) denotes the pointed set of equivalence classes of 1-cocycles
on U , modulo the relation of being cohomologous. One can also define
cohomology in degree 0 and −1. This construction is functorial in the
sense that short exact sequences of 2-groups induce long exact cohomol-
ogy sequences (in a sense to be made precise). In particular, equivalent
2-groups have isomorphic cohomologies.

With the notations as in Example 1.2.2 one has

(1.2.2) H1(X;G[i]) ≃ H1+i(X;G) for i = 0, 1,

where the pointed set H1(X;G) is defined by Cech cohomology and
H2(X;G) is considered only for G abelian.

1.3. Crossed modules. A crossed module is the data

G• = (G−1 d
−→ G0, δ)

of a complex of sheaves of groups and of a left action δ of G0 on G−1 such
that for any f ∈ G0 and a ∈ G−1

d ◦ δ(f) = Ad(f) ◦ d, δ
(

d(a)
)

= Ad(a),

where Ad(a)(b) = aba−1. A morphism of crossed modules is a morphism
of complexes of sheaves of groups compatible with the left actions.

There is a functorial way of associating to a crossed module a stack
of 2-groups as follows. For G• a crossed module one denotes by [G•] the
stack of 2-groups associated to the separated prestack whose objects on
U ⊂ X are sections f ∈ G0(U) and whose morphisms f −→ f ′ are sections
a ∈ G−1(U) satisfying f ′ = d(a)f . Then [G•] is a stack of 2-groups, with
monoidal structure given by f ⊗ g = fg at the level of objects and by
a⊗ b = aδ(f)(b) at the level of morphisms, for a : f −→ f ′ and b : g −→ g′.

One checks that there are isomorphisms of groups

πi([G
•]) ≃ H−i(G•), i = 0, 1

and, with the notations and conventions as in Example 1.2.2, equivalences
of stacks of 2-groups

[

G[i]
]

≈G[i], i = 0, 1.
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1.4. Strictly abelian crossed modules. Denote by D[−1,0](ZX) the full
subcategory of the derived category of sheaves of abelian groups whose
objects have cohomology concentrated in degree [−1, 0]. Consider a com-
plex of abelian groups F• ∈ C[−1,0](ZX) as a crossed module with trivial
left action. Then the functor F• 7→ [F•] factorizes through D[−1,0](ZX)
and one has

(1.4.1) H1(X;F•) = H1(X; [F•]).

Let ψ : X −→ Y be a continuous map (or a morphism of sites). The
inverse and direct image of stacks of 2-groups are again stacks of 2-groups,
and one has

(1.4.2) ψ−1[G•]≈ [ψ−1G•] ψ∗[F
•]≈ [τ≤0Rψ∗F

•],

where τ≤0 is the truncation functor. In particular, for a commutative
sheaf of groups F , one gets

(1.4.3) πi(ψ∗(F [1])) ≃ R1−iψ∗F , i = 0, 1.

2. Algebroids

Mitchell [28] showed how algebras can be replaced by linear categories.
Similarly, sheaves of algebras can be replaced by linear stacks. An al-
gebroid is a linear stack locally equivalent to an algebra. This notion,
already implicit in [16], was introduced in [24] and developed in [11] (see
also [21, §2.1] and [9]). It is the linear analogue of the notion of gerbe
from [14]: an algebroid is to a gerbe as an algebra is to a group.

Let X be a topological space (or a site), and R a sheaf of commutative
rings on X.

2.1. Linear stacks. A stack C on X is called R-linear (R-stack, for
short) if for any γ, γ′ ∈ C(U) the sheaf HomC(γ, γ

′) is endowed with
an R|U -module structure compatible with composition. In particular,
EndC(γ) has an R|U -algebra structure with product given by composi-
tion. A functor between R-linear stacks is called R-linear (R-functor,
for short) if it is R-linear at the level of morphisms, while no linearity
conditions are required on transformations.

One says that twoR-stacks are equivalent if they are equivalent through
an R-functor. This implies that the quasi-inverse is also an R-functor.
We denote by ≈R this equivalence relation.

The center Z(C) of an R-stack C is the sheaf of endo-transformations
of the identity functor idC. It has a natural structure of sheaf of com-
mutative R-algebras. Note that a stack C is R-linear if and only if it is
Z-linear and its center is an R-algebra.

If C is an R-stack, then its opposite stack Cop is again an R-linear.
For D another R-stack, denote by FctR(C,D) the R-stack whose ob-
jects are R-functors and whose morphisms are transformations. The
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tensor product C⊗R D is the R-stack associated with the prestack U 7→
C(U)⊗R(U)D(U) whose objects are pairs in C(U)×D(U), with morphisms

HomC(U)⊗
R(U)

D(U)((γ, δ), (γ
′, δ′)) = HomC(U)(γ, γ

′)⊗R(U) HomD(U)(δ, δ
′).

Lemma 2.1.1. If R is an S-algebra and E an S-stack, then

FctS(C⊗R D,E)≈R FctR(C, FctS(D,E)).

(This is in fact a 2-adjunction.)

Let ϕ : Y −→ X be a continuous map (or a morphism of sites). Then
ϕ−1C is ϕ−1R-linear and there is a ϕ−1R-equivalence

ϕ−1(C⊗R D)≈ϕ−1C⊗ϕ−1R ϕ
−1D.

If E is a ϕ−1R-stack, then ϕ∗E is R-linear and there is an R-functor

(2.1.1) ϕ∗E⊗R ϕ∗F −→ ϕ∗(E⊗ϕ−1R F).

2.2. Modules over a linear stack. Denote by Mod(R) the category
R-modules and by Mod(R) the corresponding R-stack given by U 7→
Mod(R|U)

For C an R-stack, the stack of C-modules is defined by

(2.2.1) Mod(C) = FctR(C,Mod(R)).

(It follows from Lemma 2.3.5 that this definition does not depend on the
base ring. See also Lemma 3.1.6.)

The contravariant 2-functor Mod(·) is defined as follows. On objects,
it is given by (2.2.1). Consider the diagram

C

f′

77
⇓ d

f
''
D

N // Mod(R) .

To an R-functor f : C −→ D one associates the R-functor

Mod(f) : Mod(D) −→ Mod(C), N 7→ N ◦ f,

and to a transformation d : f ⇒ f ′ one associates the transformation,

Mod(d) : Mod(f)⇒ Mod(f ′),

such that Mod(d)(N ) = idN • d is the morphism associated to N ∈
Mod(D), where • denotes the horizontal composition of transformations.
In other words, for γ ∈ C one has Mod(d)(N )(γ) = N (d(γ)) as mor-
phisms from N (f(γ)) to N (f ′(γ)) in Mod(R). We use the notations

(2.2.2) f(·) = Mod(f), d = Mod(d).
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2.3. Algebras as stacks. Let A be a sheaf of R-algebras. Denote by
Aop the opposite algebra and by Mod(A) the R-stack of left A-modules.

Denote by A+ the full substack of Mod(Aop) whose objects are locally
free right A-modules of rank one. For any N ∈ A+(U) there is an R|U -
algebra isomorphism EndA+(N ) ≃ A|U . Note that the stack A+ has
a canonical global object given by A itself with its structure of right
A-module. In particular, the sheaf π0(A

+) is a singleton.
For f : A −→ B an R-algebra morphism, denote by f+ : A+ −→ B+ the

R-functor induced by the extension of scalars (·)⊗A B. We thus have a
functor between the stack of R-algebras and that of R-stacks

(·)+ : R-AlgX −→ R-StkX .

Remark 2.3.1. Let A“+” be the separated prestack U 7→ A(U)+, where
A(U)+ denotes the R(U)-category with one object and sections of A(U)
as its endomorphisms. By Yoneda lemma (see §3.1), the stack associated
to A“+” is R-equivalent to A+.

The stack R-StkX is naturally upgraded to a 2-stack by considering
transformations of functors. By enriching R-AlgX with identity transfor-
mations, the functor (·)+ upgrades to a 2-functor. With the terminology
of 2-stacks, one has

Lemma 2.3.2. The 2-functor (·)+ is faithful and locally full.

Here, locally full means that for any twoR-algebrasA and B on U ⊂ X
and any R-functor f : A+ −→ B+ there exist a cover U = {Ui}i∈I of U and
morphisms of R-algebras fi : A|Ui

−→ B|Ui
such that f|Ui

≃ f+
i .

Proof. By Remark 2.3.1, the 2-functor (·)+ is the composition of the 2-
functor (·)“+”, which is full and faithful, and of the ”associated stack” 2-
functor (·)†, which is faithful and locally full when restricted to separated
prestacks. �

Definition 2.3.3. One says that an R-stack C is equivalent to an R-
algebra A if C≈R A

+.

In Proposition 2.6.2 we characterize the condition of equivalence be-
tween algebras.

Recall that a stack C is non empty if it has at least one global object,
and it is locally connected by isomorphisms if any two objects γ, γ′ ∈
C(U) are locally isomorphic. If C is R-linear, this amounts to ask that
the sheaf HomC(γ, γ

′) is a locally free EndC(γ
′)-module of rank one.

Lemma 2.3.4. An R-stack C is equivalent to an R-algebra if and only
if it is non empty and locally connected by isomorphisms

Proof. One implication is clear. Suppose that C is non empty and let γ ∈
C(X). Then the fully faithful functor EndC(γ)

+ −→ C is an equivalence if
and only if C is locally connected by isomorphisms. �
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Let C be an R-stack. For N ∈ R+ and γ ∈ C, one defines N ⊗R γ ∈ C

as the representative of N ⊗R HomC(·, γ) ∈ Mod(Cop). Then one has
R-equivalences

R+ ⊗R C≈R C, (N , γ) 7→ N ⊗R γ,

C≈R FctR(R
+,C), γ 7→ (·)⊗R γ.

Lemma 2.3.5. The definition (2.2.1) of stack of C-modules does not
depend on the base ring R.

Proof. Let R be an S-algebra. It follows from Lemma 2.1.1 for D = R+

and E = Mod(S) that

FctS(C,Mod(S))≈R FctR(C,Mod(R)),

where we use the equivalence FctS(R
+,Mod(S))≈R Mod(R). �

2.4. Compatibility. Let A and B be two R-algebras, and ϕ : Y −→ X
a continuous map (or a morphism of sites). There are an R-algebra
isomorphism

Z(A)
∼
−→ Z(A+), a 7→ (N −→ N : n 7→ an),

and R-equivalences

(A+)op ≈R (Aop)+, N 7→ HomAop(N ,A),

Mod(A)≈R Mod(A+), M 7→ (·)⊗AM,

A+ ⊗R B
+ ≈R (A⊗R B)

+, (N ,Q) 7→ N ⊗R Q

ϕ−1A+ ≈R (ϕ−1A)+, N 7→ ϕ−1N .

For f, f ′ : A −→ B two R-algebra morphisms, the sections on U ⊂ X of
the sheaf HomFctR(A+,B+)(f

+, f ′+) are given by

(2.4.1) {b ∈ B(U) : bf(a) = f ′(a)b for each a ∈ A(V ) and V ⊂ U},

with composition of transformations given by the product in B.
For N a left B-module, denote by fN the associated left A-module.

With notations (2.2.2), one has

(2.4.2) f+N = fN , b(N ) : fN −→ f ′N : n 7→ bn.

2.5. Algebroids. Recall from Lemma 2.3.4 that anR-stack is equivalent
to an R-algebra if and only if it is non empty and is locally connected
by isomorphisms.

Definition 2.5.1. An R-algebroid is an R-stack which is locally non
empty and locally connected by isomorphisms.
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In other words, an R-algebroid is an R-stack A which is locally equiv-
alent to an algebra. It is globally an algebra if and only if it has a global
object1.

The stack Mod(A) is an example of stack of twisted sheaves, i.e. it is
a stack locally equivalent to a stack of modules over an algebra (see [20,
10]). A cocyclic description of algebroids and of their modules is recalled
in Appendix A.2 and A.3.

Note that the existence of an R-functor R+ −→ A is equivalent to the
existence of a global object for A. In this case there is a forgetful functor

Mod(A) −→ Mod(R).

Lemma 2.5.2. An R-stack C is an algebroid if and only if π0(C) is a
singleton.

It follows from (1.1.2) that inverse images of algebroids are algebroids.
Let C be an R-stack. Then for any R-algebroid A one has

π0(A⊗R C) ≃ π0(C).

In particular, the tensor product of algebroids is an algebroid.

Definition 2.5.3. (i) Let A be an R-algebra. An R-twisted form
of A is an R-algebroid locally R-equivalent to A.

(ii) An invertible R-algebroid is an R-twisted form of R.

Note that any R-functor between invertible R-algebroids is an equiv-
alence, since it is locally isomorphic to the identity of R+.

If C is an invertible R-algebroid, then R
∼
−→ Z(C) and for any R-stack

D there is an R-equivalence

Cop ⊗R D≈R FctR(C,D), (γ, δ) 7→ HomC(γ, ·)⊗R δ.

In particular, the set of R-equivalence classes of invertible R-algebroids
is a group, with multiplication given by ⊗R and inverse given by (·)op.

By Corollary 1.2.1, the cohomology H1(X;AutR(A
+)) classifies R-

equivalence classes of R-twisted forms of A. In terms of crossed modules,
one has

AutR(A
+)≈ [(A× Ad

−→ AutR-AlgX (A), δ)],

where δ(f)(a) = f(a). In particular, AutR(R
+) ≈ R×[1] and (1.2.2)

implies

Lemma 2.5.4. The group of R-equivalence classes of invertible R-alge-
broids is isomorphic to H2(X;R×).

1If the category A(U) has a zero objects for U ⊂ X, then A|U≈0
+, where 0 denotes

the ring with 1 = 0. In particular, except for the case 0+, algebroids are not stacks
of additive categories.
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2.6. Inner forms. Let A be a central R-algebra, i.e. Z(A) = R. (If
A is not central, the following discussion still holds by replacing R with
Z(A).)

Denote by Inn (A) the sheaf of inner automorphisms of A, i.e. au-
tomorphisms locally of the form Ad(a) for some a ∈ A×. Recall that
an R-algebra B is called an inner form of A if there exists an open
cover {Ui}i∈I of X and ring isomorphisms fi : A|Ui

−→ B|Ui
such that

f−1
j fi ∈ Inn (A|Uij

).
Examples of inner forms are given by Azumaya algebras and rings of

twisted differential operators (see for example [10] for more details).
Let B be an R-algebra. Denote by EA,B ⊂ FctR(A

+,B+) the full
substack of R-equivalences. Note that Eop

A,B ≈R EB,A.

Lemma 2.6.1. B is an inner form of A if and only if EA,B is an R-
algebroid.

Proof. Since R-equivalences A+ ≈
−→ B+ are locally given by R-algebra

isomorphisms A
∼
−→ B, it follows that EA,B is locally non empty if and

only if B is locally isomorphic to A.
Let f, f ′ : A −→ B be R-algebra isomorphisms. By (2.4.1), the invert-

ible transformations from f+ to f ′+ are given by

{a ∈ A× : f−1f ′ = Ad(a)},

hence EA,B is an R-algebroid if and only if B is an inner form of A. �

Since EndEA,B
(f+) = R, if B is an inner form of A it follows that EA,B

is an invertible R-algebroid and EA,B ⊗R A
+ ≈R B

+. In particular, one
gets an equivalence of stacks of 2-groups AutR(A

+)≈AutR(B
+).

Consider the non abelian exact sequence

H1(X;A×)
b
−→ H1(X; Inn (A))

c
−→ H2(X;R×)

induced by the short exact sequence

1 −→ R× −→ A× Ad
−→ Inn (A) −→ 1.

For B an inner form of A and P a locally free Aop-module of rank one, de-
note by [B] and [P ] the associated cohomology classes in H1(X; Inn (A))
and H1(X;A×) respectively. Then b[P ] = [EndAop(P)] and c([B]) =
[EA,B].

Proposition 2.6.2. The following conditions are equivalent.

(i) The stacks A+ and B+ are R-equivalent.
(ii) There exists a locally free Aop-module P of rank one such that
B ≃ EndAop(P).

(iii) B is an inner form of A and c([B]) = 1.
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Proof. (i)⇒(ii)2 Let g : B+ −→ A+ be an R-equivalence. Recall that B+ ⊂
Mod(Bop) is the substack of locally free modules of rank one. Let β be the
canonical global object of B+, and set P = g(β). Then B is isomorphic
to EndAop(P).

(ii)⇒(iii) B is clearly an inner form of A and P has a structure of Aop⊗R

B-module by the isomorphism B
∼
−→ EndAop(P). Then (·) ⊗B P gives a

global object of EB,A and c([B]) = [Eop
B,A] = 1.

(i)⇐(iii) By Lemma 2.6.1 follows that c([B]) = 1 if and only if EA,B has
a global object.

�

3. Morita theory for linear stacks

Morita theory classically deals with modules over algebras. It is ex-
tended to modules over linear categories in [27, 29] and to stacks of mod-
ules over sheaves of algebras in [20, Chapter 19] (see also [10]). Here, we
summarize these extensions by considering stacks of modules over linear
stacks, and in particular over algebroids.

Let X be a topological space (or a site), and R a sheaf of commutative
rings on X.

3.1. Yoneda embedding. Recall that a category is called (co)complete
if it admits small (co)limits. A prestack C on X is called (co)complete if
the categories C(U) are (co)complete for each U ⊂ X, and the restriction
functors commute with (co)limits.

A prestack C on X is called a proper stack (see [19, 34]) if it is sepa-
rated, cocomplete, and if for each inclusion of open subsets v : V →֒ U ,
the restriction functors C(v) = (·)|V admits a fully faithful left adjoint

v! : C(V ) −→ C(U),

called zero-extension, such that for a diagram of open inclusions

V ∩W
v′ //

w′
��

W
w��

V
v // U,

the natural transformation v′! ◦ C(w
′) −→ C(w) ◦ v! is an isomorphism.

Lemma 3.1.1. For γ ∈ C(V ) and γ′ ∈ C(U) there is an isomorphism of
R|U -modules

v∗HomC|V
(γ, γ′|V ) ≃ HomC|U

(v!γ, γ
′).

Recall that proper stacks are stacks.

2The equivalence between (i) and (ii) can also be deduced from Corollary 3.3.8.
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Lemma 3.1.2. For any R-stack C, the R-stack Mod(C) is proper and
complete.

Proof. Recall first that Mod(R) is complete and cocomplete. It is also
proper. In fact, for v : V →֒ U an open inclusion, the restriction functor of
Mod(R) coincides with the sheaf-theoretical pull-back v−1. This admits
the direct image functor v∗ as left adjoint, and the zero-extension functor
v! as a right adjoint.

The statement follows, as Mod(C) = FctR(C,Mod(R)) inherits the
properties and structures of Mod(R). For example, for v : V →֒ U an
inclusion of open subsets, the functor v! : Mod(C|V ) −→ Mod(C|U) is given
by (v!M)(γ) = u!(M(γ|V ∩W )), where M : C|V −→ Mod(R|V ) is a C|V -
module, W ⊂ U is an open subset, γ ∈ C(W ), and u : V ∩W −→ U is the
embedding. �

Let C be an R-stack. The (linear) Yoneda embedding is the full and
faithful R-functor

(3.1.1) YC : C
op −→ Mod(C), γ 7→ HomC(γ, ·)

whose essential image are the functors C −→ Mod(R) which are repre-
sentable. In analogy with the case C = A+ for A and R-algebra, a
moduleM∈ Mod(C) which is representable is called locally free of rank
one.

As in the classical case, the full faithfulness of (3.1.1) follows from

Lemma 3.1.3. For M ∈ Mod(C)(U) there is an isomorphism of C|U -
modules

(3.1.2) M(·) ≃ HomMod(C)(YC(·),M).

Denote by C/X the fibered category associated with C. Recall that
objects of C/X are pairs (u, γ) with u : U →֒ X an open inclusion, and
γ ∈ C(U). Morphisms a : (u, γ) −→ (u′, γ′) are defined only if U ′ ⊂
U , and in that case are given by morphisms γ|U ′ −→ γ′ in C(U ′). For
a′ : (u′, γ′) −→ (u′′, γ′′) another morphism, the composition3 is given by
a′ ◦ a|U ′′ . A functor of stacks f : C −→ D naturally induces a functor
f/X : C/X −→ D/X.

For M : C −→ Mod(R) an object in Mod(C), denote for short by C
op
M

the comma category (C/Xop)M/X .By (3.1.2), objects of Cop
M are triples

(u, γ,m) with u : U →֒ X an open inclusion, γ ∈ Cop(U), and m ∈
Γ (U ;M(γ)).

Lemma 3.1.4. ForM,N ∈ Mod(C) there is an isomorphism in Mod(R)

HomMod(C)(M,N ) ≃ lim←−
(u,γ,m)∈Cop

M

u∗N (γ).

3Here we denote for short by a|U ′′ the composite γ|U ′′ ←−
∼

γ|U ′ |U ′′

a|
U′′

−−−→ γ′|U ′′ .



14 A. D’AGNOLO AND P. POLESELLO

Proof. For any open subset V ⊂ X, one has the isomorphism

HomMod(C|V )(M|V ,N|V )
∼
−→ lim←−

(u,γ,m)∈(C|op
V

)M|V

Γ (U ;N (γ)),

associating to f :M|V −→ N|V the family {f(γ)(m))}(u,γ,m). �

Lemma 3.1.5. ForM∈ Mod(C) there is an isomorphism in Mod(C)

M≃ lim−→
(u,γ,m)∈Cop

M

u!YC(γ).

Proof. This follows from the fact that for any N ∈ Mod(C) there are
R-module isomorphisms

HomMod(C)(M,N ) ≃ lim←−
(u,γ,m)∈Cop

M

u∗N (γ)

≃ lim←−
(u,γ,m)∈Cop

M

u∗HomMod(C|U )(YC(γ),N|U)

≃ lim←−
(u,γ,m)∈Cop

M

HomMod(C)(u!YC(γ),N )

≃ HomMod(C)( lim−→
(u,γ,m)∈Cop

M

u!YC(γ),N ).

Here, the first isomorphism follows from Lemma 3.1.4, the second iso-
morphism follows from (3.1.2), and the third isomorphism follows from
Lemma 3.1.1. �

Lemma 3.1.6. For C an R-stack, there is a natural isomorphism of
R-algebras Z(Mod(C)) ≃ Z(C).

Proof. The Yoneda embedding induces by adjunction a morphism of R-
algebras Z(Mod(C)) −→ Z(Cop). Its inverse associates to c ∈ Z(Cop) the
endo-transformation c̃ of idMod(C) given by c̃(M) = lim−→

(u,γ,m)∈Cop
M

YC(c(γ)).

�

3.2. Operations via Kan extensions. For non linear categories, the
following result is known as Kan extension (see for example [27, pag. 106]
or [20, Prop. 2.7.1]).

Theorem 3.2.1. For N ∈ Mod(C) consider the diagram

Mod(Cop)

tN **

C
N ��

? _
YCopoo � �

Y
op
C // Mod(C)op

hN
uu

Mod(R).

(i) There exists a unique R-functor tN (up to unique isomorphism)
commuting with colimits and zero-extensions, and making the left
hand side of the diagram (quasi)-commute.
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(ii) The functor hN = HomMod(C)(·,N ) is the only R-functor (up to

unique isomorphism) commuting with limits and making the right
hand side of the diagram (quasi)-commute.

Sketch of proof. (i) For P ∈ Mod(Cop) one has

tN (P) ≃ tN ( lim−→
(u,γ,p)∈CP

u!YCop(γ))

≃ lim−→
(u,γ,p)∈CP

u!tN (YCop(γ)) ≃ lim−→
(u,γ,p)∈CP

u!N (γ).

(ii) Similarly, forM∈ Mod(C) one has

hN (M) ≃ hN ( lim−→
(u,γ,m)∈Cop

M

u!YC(γ))

≃ lim←−
(u,γ,m)∈Cop

M

u∗hN (YC(γ)) ≃ lim←−
(u,γ,m)∈Cop

M

v∗N (γ),

so that hN = HomMod(C)(·,N ) by Lemma 3.1.4. �

As for modules over a ring, we will often use the short hand notation

HomC(·, ·) = HomMod(C)(·, ·).

Notation 3.2.2. We denote by

HomC : Mod(C⊗
R
Dop)op ⊗

R
Mod(C⊗

R
E) −→ Mod(D⊗

R
E),

⊗
C
: Mod(Cop ⊗

R
D)⊗

R
Mod(C⊗

R
E) −→ Mod(D⊗

R
E)

the R-functors obtained by picking up operators from the R-functors

HomC : Mod(C)op ⊗
R
Mod(C) −→ Mod(R),

t : Mod(Cop)⊗R Mod(C) −→ Mod(R), (P ,N ) 7→ tN (P).

For A, B, C three R-algebra, and C = A+, D = B+, E = C+, the
functor ⊗A+ is isomorphic to the usual tensor product of modules ⊗A.
For example, for N ∈ Mod(A) and P ∈ Mod(Aop), the isomorphism

P ⊗
A
N = tN (P) ≃ lim−→

u : U⊂X, p∈P(U)

N ,

amounts to present P ⊗
A
N as a quotient of

⊕

u : U⊂X, p∈P(U) u!(N|U).
Most of the formulas concerning the usual hom-functor and tensor

product hold. For example,

Lemma 3.2.3. For M ∈ Mod(Cop ⊗R D), N ∈ Mod(C ⊗R E), and
P ∈ Mod(D⊗

R
F), there is an isomorphism in Mod(Eop ⊗

R
F)

HomD(M⊗C
N ,P) ≃ HomC(N ,HomD(M,P)).
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Proof. One checks that in Mod(E⊗R D)

M⊗
C
N ≃ lim−→

(u,f,n)∈FctR(E,Cop)N

u!M◦ f,

where the comma category is defined via the functor FctR(E,YC). Then,
both terms in the statement are isomorphic to

lim←−
(u,f,n)∈FctR(E,Cop)N

u∗HomD(M◦ f,P|U).

�

3.3. Morita equivalence. Let us discuss how classical Morita theory
extends to linear stacks.

Lemma 3.3.1. An R-functor h : Mod(C) −→ Mod(D) commutes with
colimits and zero-extensions (resp. limits and extensions) if and only if
it admits a right (resp. left) adjoint.

Proof. Assume that h commutes with colimits and zero-extensions. Set
P = h ◦ YC ∈ Mod(Cop ⊗

R
D). ForM∈ Mod(C) one has

h(M) ≃ h
(

lim−→
(u,γ,m)∈Cop

M

u!YC(γ)
)

≃ lim−→
(u,γ,m)∈Cop

M

u!P(γ) ≃ P ⊗C
M.

Hence h ≃ P⊗
C
(·) admitsHomD(P , ·) as a right adjoint by Lemma 3.2.3.

The converse implication is obvious, and the dual statement is similar.
�

Denote by FctrR(Mod(C),Mod(D)) the stack of R-functors admitting
a right adjoint.

Theorem 3.3.2. (i) The functor

Mod(Cop ⊗R D) −→ FctrR(Mod(C),Mod(D)), P 7→ P ⊗
C
(·),

is an R-equivalence.
(ii) For P ∈ Mod(Cop ⊗R D) and Q ∈ Mod(Dop ⊗R E) one has

(Q⊗D P)⊗C (·) ≃ (Q⊗D (·)) ◦ (P ⊗C (·)).

Proof. (i) By uniqueness of the Kan extension, a quasi-inverse is given
by h 7→ h ◦ YC.

(ii) also follows from uniqueness of Kan extension. �

Remark 3.3.3. Denoting by FctlR(Mod(C),Mod(D)) the stack of R-
functors admitting a left adjoint, one similarly gets an R-equivalence

Mod(Cop ⊗R D) −→ FctlR(Mod(D),Mod(C))op, P 7→ HomD(P , ·),

and the corresponding commutative diagram as in Theorem 3.3.2 (ii).
These constructions are interchanged by the R-equivalence

FctrR(Mod(C),Mod(D))≈R FctlR(Mod(D),Mod(C))op

sending a functor to its adjoint.
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We use the notation

(3.3.1) C ∈ Mod(Cop ⊗R C)

for the canonical object HomC(·, ·). This corresponds to the Yoneda
embedding YC via the equivalence induced by Lemma 2.1.1

FctR(C
op ⊗R C,Mod(R))≈R FctR(C

op,Mod(C)).

If C = A+, the object A+ ∈ Mod(Aop⊗RA) coincides with A, considered
as a bimodule over itself. If C is an invertible R-algebroid, then Cop ⊗

R
C≈R R

+ and C is isomorphic to R as a bimodule over itself.
Note that, by Lemma 3.1.3 the functor HomC(C, ·), and hence C⊗

C
(·),

is isomorphic to the identity.

Definition 3.3.4. (i) One says that Q ∈ Mod(Dop ⊗
R
C) is an in-

verse of P ∈ Mod(Cop⊗
R
D) if there are isomorphisms of C⊗

R
Cop-

and D⊗
R
Dop-modules, respectively,

Q⊗
D
P ≃ C, P ⊗

C
Q ≃ D.

(ii) An object P ∈ Mod(Cop ⊗
R
D) is called invertible if it has an

inverse.

One proves (see e.g. [20, §19.5]) that P is invertible if and only if one
of the following equivalent conditions is satisfied

(i) HomCop(P ,C) is an inverse of P ;
(ii) the functor P ⊗C (·) : Mod(C) −→ Mod(D) is an R-equivalence.
(iii) the functorHomCop(P , ·) : Mod(Cop) −→ Mod(Dop) is anR-equiva-

lence.

For any R-functor f : C −→ C′, denote by EndC(f) the R-stack associ-
ated to the separated prestack whose objects on U ⊂ X are those
of C(U) and Hom(γ, γ′) = HomC′(U)(f(γ), f(γ

′)). Then, considering

C ∈ Mod(Cop⊗
R
C) as a functor Cop −→ Mod(C), one has C≈R EndCop(C)

by (3.1.1). Moreover, considering P ∈ Mod(Cop ⊗R D) as a functor
Cop −→ Mod(D), the condition of P being invertible is further equivalent
to

(iv) P is a faithfully flat4 Cop-module locally of finite presentation5

and D≈R EndCop(P);
(v) P is Cop-progenerator6 locally of finite type and D≈R EndCop(P).

By reversing the role of C and D, one gets dual equivalent conditions.
Given an R-functor h : Mod(C) −→ Mod(D), we will use the same no-

tation h for the induced R-functor, obtained by picking up operators,

Mod(Cop ⊗R C) −→ Mod(Cop ⊗R D).

4P is a faithfully flat Cop-module if the functor P ⊗C (·) is faithful and exact.
5P is a C

op-module of finite presentation if the functor HomCop(P, ·) commutes
with small filtrant colimits.

6P is Cop-progenerator if the functor HomCop(P, ·) is faithful and exact.
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Corollary 3.3.5 (Morita). An R-functor h : Mod(C) −→ Mod(D) is an
equivalence if and only if P = h(C) is an invertible (Cop ⊗

R
D)-module.

Moreover, one has h ≃ P ⊗
C
(·).

Definition 3.3.6. Two stacks C and D are Morita R-equivalent if their
stacks of modules Mod(C) and Mod(D) are R-equivalent.

Hence C and D are Morita R-equivalent if and only if there exists an
invertible (Cop ⊗

R
D)-module.

Let us say that P ∈ Mod(Cop⊗RD) is locally free of rank one over Cop

if for any δ ∈ D the Cop-module P(δ) is locally free of rank one, that is
to say, the functor P(δ) : Cop −→ Mod(R) is representable.

Recall from (2.2.2) that f(·) : Mod(C) −→ Mod(D) denotes the functor
associated to an R-functor f : D −→ C.

Proposition 3.3.7. The R-functor

(3.3.2) FctR(D,C) −→ Mod(Cop ⊗R D), f 7→ fC

is fully faithful and induces an equivalence with the full substack of locally
free modules of rank one over Cop.

Proof. (i) The functor in the statement equals YCop ◦ ·. This is fully
faithful, since YCop is fully faithful.

(ii) Assume that P ∈ Mod(Cop ⊗R D) is a locally free module of rank
one over Cop. Then P ≃ fC, where f : D −→ C is the functor associating
to δ ∈ D the representative of P(δ). �

Corollary 3.3.8. Two stacks C and D are R-equivalent if and only if
there exists P ∈ Mod(Cop ⊗R D) which is invertible and locally free of
rank one over Cop.

In particular, two algebroids A and B are R-equivalent if and only if
there exists an invertible (Aop ⊗R B)-module P which is locally free of
rank one over Aop. These conditions on P are equivalent to the condition
that P is bi-invertible in the sense of [21, Corollary 2.1.10].

Remark 3.3.9. If C≈RA
+ and D≈RB

+, the functor B+ −→ A+ associated
to an Aop⊗RB-module P locally free of rank one over Aop is f = (·)⊗BP .

Note that any local isomorphism h : A
∼
−→ P of right A-modules defines

a local R-algebra morphism (isomorphism if P invertible)

(3.3.3) f : B −→ EndAop(P)
Ad(h−1)
−−−−−→ EndAop(A) ≃ A,

(the first arrow is induced by the B-module structure of P), for which

h : fA
∼
−→ P is an isomorphism of Aop ⊗R B-modules and f ≃ f+. If h is

given by a 7→ ua for a local generator u of the right A-modules P , then
f(b) = a for a such that ua = bu.
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3.4. Picard good stacks. We will use the notation

Ce = Cop ⊗
R
C.

Denote by Inv(Ce) the substack of Mod(Ce) whose objects are invertible
Ce-modules and whose morphisms are only those morphisms which are
invertible. Then ⊗C induces on Inv(Ce) a natural structure of stack of
2-groups, and (3.3.2) gives a fully faithful functor of stacks of 2-groups

(3.4.1) AutR(C)op →֒ Inv(Ce), f 7→ fC.

Here, for G a stack of 2-groups, Gop denotes the stack of 2-groups with
the same groupoid structure as G and with reversed monoidal structure.

Definition 3.4.1. An R-stack C is Picard good if (3.4.1) is an equiva-
lence.

By Proposition 3.3.7, it follows that C is Picard good if and only if all
invertible Ce-modules are locally free of rank one over Cop.

An R-algebra A is Picard good if it is so as an R-stack, hence if and
only if all invertible Ae-modules are locally free as right (or, equivalently,
left) A-modules. Since invertible bimodules are projective as right (or
left) modules, it follows that examples of Picard good rings are projective-
free rings, and in particular local rings. Note however that Picard-good
does not imply projective-free (see Remark 4.3.3).

Since the condition of being Picard good is local, an algebroid is Picard
good if and only if so are the algebras that locally represent it.

By Corollary 3.3.5, there is an equivalence of stacks of 2-groups

Inv(Ce)
≈
−→ AutR(Mod(C)), P 7→ P ⊗C (·).

We thus have a (quasi-)commutative diagram

(3.4.2) Inv(Ce)
≈

// AutR(Mod(C))

AutR(C)op,
1 Q

bbE
E
E
E
E
E
E
E + �

m

99rrrrrrrrrr

where m is induced by the functor Mod(·). It follows that C is Picard
good if and only if m is an equivalence.

Proposition 3.4.2. Let C be a Picard good R-stack.

(i) Let D be an R-stack locally equivalent to C. Then C and D are
Morita R-equivalent if and only if they are R-equivalent.

(ii) Let M be an R-stack locally R-equivalent to Mod(C). Then M≈R

Mod(D) for an R-stack D locally R-equivalent to C.

Proof. (i) Let EquivR(·, ·) denote the stack of R-equivalences, with in-
vertible transformations as morphisms. Consider the functor

EquivR(C,D) −→ EquivR(Mod(D),Mod(C))
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induced by the 2-functor Mod(·). Since D is locally equivalent to C, this
locally reduces to the functor m as in (3.4.2). It follows that this is
locally, hence globally, an equivalence.

(ii) Let E ⊂ M be the full substack of objects P with the property that for
any local R-equivalence h : M

≈
−→ Mod(C), the C-module h(P) is locally

free of rank one. Since C is Picard good, the R-stack E is well defined
and locally R-equivalent to Cop. Set D = Eop. Then the R-functor

M −→ Mod(D), N 7→ HomM(·,N )

is locally, hence globally, an equivalence. �

If C is an invertible R-algebroid, then it is Picard good if and only if
R is, and one has equivalences of stacks of 2-groups

(3.4.3) R×[1]
≈
−→ Inv(R)≈ Inv(Ce), P 7→ R×R× P .

(Recall that R×[1] denotes the stack of R×-torsors.) Moreover, in this
situation the stack D in (ii) above is R-equivalent to the full substack of
FctR(M,Mod(R)) whose objects are equivalences.

Examples of stacks as in Proposition 3.4.2 (ii) arise from deformations
of categories of modules as discussed in [26]. In particular, Proposition
3.4.2 applies when C is (equivalent to) the structure sheaf of a ringed
space. We thus recover results of [25].

4. Microdifferential operators

We collect here some results from the theory of microdifferential oper-
ators of [35] (see also [15, 17]). The statements about the automorphisms
of the sheaf of microdifferential operators are well known. Since we lack
a reference for the proofs, we give them here.

4.1. Microdifferential operators. Let M be an n-dimensional com-
plex manifold, T ∗M its cotangent bundle and Ṫ ∗M ⊂ T ∗M the open
subset obtained by removing the zero-section.

Denote by EṪ ∗M the sheaf of microdifferential operators on Ṫ ∗M (see
[35, 17]). Recall that EṪ ∗M is a sheaf of central C-algebras endowed with
a Z-filtration by the order of the operators, and one has

Gr EṪ ∗M ≃
⊕

m∈Z

OṪ ∗M(m),

where OṪ ∗M(m) is the subsheaf of OṪ ∗M of holomorphic functions ho-
mogeneous of degree m.

For λ ∈ C, denote by EṪ ∗M(λ) the sheaf of microdifferential operators
of order at most λ, and set

E [λ]
Ṫ ∗M

=
⋃

n∈Z

EṪ ∗M(λ+ n),
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where [λ] is the class of λ in C/Z. Note that E [λ]
Ṫ ∗M

is a bimodule over

EṪ ∗M = E [0]
Ṫ ∗M

.

In a local coordinate system (x) on M , with associated symplectic
coordinates (x; ξ) on Ṫ ∗M , a section P ∈ Γ (V ; EṪ ∗M(λ)) is determined
by its total symbol, which is a formal series

tot(P ) =
+∞
∑

j=0

pλ−j(x, ξ)

with pλ−j ∈ OṪ ∗M(V ) homogeneous of degree λ− j, satisfying suitable
growth conditions in j. If Q is a section of EṪ ∗M(µ), then PQ ∈ EṪ ∗M(λ+
µ) has total symbol given by the Leibniz formula

tot(PQ) =
∑

α∈Nn

1

α!
∂αξ tot(P )∂αx tot(Q).

Denote by

σλ : EṪ ∗M(λ) −→ OṪ ∗M(λ) and σ : E [λ]
Ṫ ∗M
−→ OṪ ∗M

the symbol of order λ and the principal symbol, respectively, where
σ(P ) = σλ(P ) for P ∈ EṪ ∗M(λ) \ EṪ ∗M(λ − 1). Note that for any
P ∈ EṪ ∗M(λ) and Q ∈ EṪ ∗M(µ) one has

σλ+µ(PQ) = σλ(P )σµ(Q).

Recall that a microdifferential operator is invertible at p ∈ Ṫ ∗M if and
only if its principal symbol does not vanish at p.

4.2. Endomorphisms of EṪ ∗M .

Lemma 4.2.1. Any C-algebra automorphism of EṪ ∗M is filtered and sym-
bol preserving.

Proof. Define the spectrum of P ∈ EṪ ∗M(V ) as the set-valued function

U ∋ p 7→ {a ∈ C : a− P is not invertible at p} ⊂ C.

One checks that the spectrum of P is singleton-valued if and only if
P ∈ EṪ ∗M(0) and its symbol σ0(P ) is not locally constant, and in this
case the only value of the spectrum of P at p is σ0(P )(p).

Let f be a C-algebra automorphism of EṪ ∗M . As the spectra of P and of
f(P ) coincide, it follows that f induces a symbol preserving isomorphism
on EṪ ∗M(0) \ σ−1

0 (CṪ ∗M).
Set for short

Em = EṪ ∗M(m) \ EṪ ∗M(m− 1).

If P ∈ E0 has a locally constant symbol, for any Q ∈ EṪ ∗M(0)\σ−1
0 (CṪ ∗M)

one has

σ0(P )σ0(Q) = σ0(PQ) = σ0(f(PQ)) = σ(f(P ))σ0(f(Q)) = σ(f(P ))σ0(Q)
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so that also f(P ) belongs to EṪ ∗M(0) and has a locally constant symbol.
Thus f induces a symbol preserving isomorphism on E0.

Pick an operator D ∈ E1 invertible at p, and let d be the degree of
f(D). Then f(D)m is an invertible operator of order dm and one has

f(Em) = f(DmE0) = f(D)mf(E0) = f(D)mE0 = Edm.

Since f is an automorphism of EṪ ∗M \ {0} =
⊔

m∈Z Em, it follows that
d = ±1. Thus f either preserves or reverses the order. Note that an
operator P with σ(P )(p) = 0 has spectrum equal to C at p if and only if
it has positive order. Hence f preserves the order.

We have proved that f is filtered and preserves the symbol of operators
in E0. As Em = DmE0, to show that f is symbol preserving it is enough
to check that σ1(D) = σ1(f(D)).

Let (x; ξ) be a local system of symplectic coordinates at p. Identifying
xi with the operator in E0 whose total symbol is xi, one has

∂ξiσ1(D) = {xi, σ1(D)} = {σ0(xi), σ1(D)} = σ0([xi, D])

= σ0(f([xi, D])) = σ0([f(xi), f(D)]) = {σ0(f(xi)), σ1(f(D))}

= {xi, σ1(f(D))} = ∂ξiσ1f((D)), for i = 1, . . . , n,

so that

σ1(D) = σ1(f(D)) + ϕ(x),

and one takes the homogeneous component of degree 1. �

Proposition 4.2.2. Any C-algebra automorphism of EṪ ∗M is locally of
the form Ad(P ) for some λ ∈ C and some invertible P ∈ EṪ ∗M(λ).

Proof. Identify Ṫ ∗M×Ṫ ∗M to an open subset of T ∗(M×M). Let (x) be a
system of local coordinates onM , and denote by (x, y) the coordinates on
M ×M . For Q ∈ EṪ ∗M , denote by Qx and Qy its pull-back to EṪ ∗M×Ṫ ∗M

by the first and second projection, respectively.
Let f : EṪ ∗M −→ EṪ ∗M be a C-algebra automorphism. By Lemma 4.2.1,

f is filtered and symbol preserving. Denote by L the EṪ ∗M×Ṫ ∗M -module
with one generator u and relations

(

xi − f(yi)
)

u =
(

∂xi
− f(∂yi)

)

u = 0, for i = 1, . . . , n.

Then the image f(Q) of Q ∈ EṪ ∗M is characterized by the relation

(4.2.1) f(Q)y u = Q∗
x u in L,

where Q∗ denotes the adjoint operator, and (L, u) is a simple module
along the conormal bundle of the diagonal ∆ in T ∗(M ×M) (see [17]).
Denote by C∆ the sheaf of complex microfunctions along the conormal
bundle of ∆. By [17, Theorem 8.21], there exists λ ∈ C and an isomor-
phism

ϕ : E [λ]
Ṫ ∗M×Ṫ ∗M

⊗E
Ṫ∗M×Ṫ∗M

C∆
∼
−→ L,
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so that ϕ(Py ⊗ δ∆) = u for some invertible P ∈ EṪ ∗M(λ). One then has

PyQyP
−1
y u = PyQyP

−1
y ϕ(Py ⊗ δ∆) = ϕ(PyQy ⊗ δ∆) = ϕ(Q∗

xP
∗
x ⊗ δ∆)

= Q∗
xϕ(P

∗
x ⊗ δ∆) = Q∗

xϕ(Py ⊗ δ∆) = Q∗
xu.

It follows by (4.2.1) that one has f = Ad(P ). �

4.3. Invertible E-bimodules. Denote by P ∗M the projective cotan-
gent bundle of M and by γ : Ṫ ∗M −→ P ∗M the projection. Set

EP ∗M = γ∗EṪ ∗M .

This is a sheaf of C-algebras endowed with a Z-filtration such that
Gr EP ∗M ≃

⊕

m∈ZOP ∗M(m), where one sets OP ∗M(m) = γ∗OṪ ∗M(m).
Note that EṪ ∗M is constant along the fibers of γ. Since these are con-
nected, the adjunction morphism gives an isomorphism

γ−1EP ∗M
∼
−→ EṪ ∗M .

Lemma 4.3.1. Let Z ⊂ Ṫ ∗M be a closed conic analytic subset. Then

HjRΓZEṪ ∗M = 0 for j < codimṪ ∗M Z.

Proof. Setting W = γ(Z), we have RΓZEṪ ∗M ≃ γ−1RΓWEP ∗M . We thus
have to show that HjRΓWEP ∗M = 0 for j < codimP ∗M W . Identify EP ∗M

with the sheaf C∆ of complex microfunctions along the conormal bundle of
the diagonal in P ∗ = P ∗(M×M). By quantized contact transformations,
C∆ can further be identified with the sheaf of complex microfunctions CS
along the conormal bundle to a hypersurface S ⊂ P ∗. One has CS ≃
OS ⊕ H

1
[S]OP ∗ ≃ O⊕Z

S . Hence HjRΓWCS = 0 for j < codimS W . �

Proposition 4.3.2. LetM be a coherent torsion-free EṪ ∗M -module. Then
M is locally free outside a closed conic analytic 2-codimensional subset.

Proof. We will reduce to the analogue statement for O-modules, which
is well-known (see [23, Corollary 5.15]).

Set for short E = EṪ ∗M , E(0) = EṪ ∗M(0) and O(0) = OṪ ∗M(0). A
coherent E(0)-submodule L ⊂M such that EL =M is called a lattice.

(a)M has a torsion-free lattice L. In fact, let F be a lattice inM∗ =
HomE(M, E). Then F∗ = HomE(0)(F , E(0)) ⊂ HomE(M

∗, E) = M∗∗

and EF∗ =M∗∗, i.e. F∗ is a lattice inM∗∗. Then L = F∗∩M is a lattice
in M. Since F∗ is reflexive (that is, F∗ −→ (F∗)∗∗ is an isomorphism),
F∗ is torsion free, and so is its submodule L.

(b) The coherent O(0)-module L = L/L(−1) is torsion-free. In fact,
consider the exact sequence

0 −→ E(−1) −→ E(0)
σ0−→ O(0) −→ 0.

ThenO(0)⊗E(0)L ≃ L. Hence (L)
∗ = HomO(0)(L,O(0)) ≃ HomO(0)(O(0)⊗E(0)

L,O(0)) ≃ HomE(0)(L,O(0)). The exact sequence

0 −→ HomE(0)(L, E(−1)) −→ HomE(0)(L, E(0)) −→ HomE(0)(L,O(0))
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thus reads

0 −→ L∗(−1) −→ L∗ −→ (L)∗.

Hence L∗ ⊂ (L)∗. Then L ⊂ L∗∗ ⊂ (L∗)∗
∼
−→ (L∗)∗∗∗, so that L is

torsion-free.
(c) Since L is torsion-free, it is locally free outside a closed conic an-

alytic 2-codimensional subset S. Hence the same holds true for L by
Nakayama lemma. ThusM = EL is also locally free outside S. �

Remark 4.3.3. Since projective EṪ ∗M -modules are torsion-free, it fol-
lows that EṪ ∗M is (coherent) projective-free if dimM = 1. This is no
more true if dimM > 1.

Set

Ee
Ṫ ∗M

= Eop
Ṫ ∗M
⊗

C
EṪ ∗M .

Note that, for [λ], [µ] ∈ C/Z the morphism of Ee
Ṫ ∗M

-modules

E [λ]
Ṫ ∗M
⊗E

Ṫ∗M
E [µ]
Ṫ ∗M
−→ E [λ+µ]

Ṫ ∗M
, P ⊗Q 7→ PQ

is an isomorphism. In particular, E [λ]
Ṫ ∗M

is an invertible Ee
Ṫ ∗M

-module.

Moreover, if P ∈ EṪ ∗M(λ) has non vanishing symbol on V ⊂ Ṫ ∗M , there
is an isomorphism of EeV -modules

(4.3.1) Ad(P−1)(EV )
∼
−→ E [λ]V , Q 7→ PQ.

Lemma 4.3.4. For [λ], [µ] ∈ C/Z, one has

HomEe

Ṫ∗M
(E [λ]

Ṫ ∗M
, E [µ]

Ṫ ∗M
) =

{

CṪ ∗M for [λ] = [µ],

0 otherwise.

Proof. The problem is local and we take a system (x) = (x1, . . . , xn) of
local coordinates in V ⊂ Ṫ ∗M such that ∂1 is invertible in V . By (4.3.1)

HomEe
V
(E [λ]V , E [µ]V ) ≃ HomEe

V
(Ad(∂−λ

1 )(EV ), Ad(∂−µ
1 )(EV ))

≃ {P ∈ EV : P∂−λ
1 Q∂λ1 = ∂−µ

1 Q∂µ1P, ∀Q ∈ EV }.

Assume that there exists P 6= 0 as above. Taking for Q the operators
∂1, xi and ∂i, respectively, we deduce that [P, ∂1] = [P, xi] = [P, ∂i] = 0
for i = 2, . . . , n. It follows that P only depends on ∂1. Noting that
[∂λ1 , x1] = λ∂λ−1

1 and taking Q = x1, we get

[x1, P ] = (µ− λ)P∂−1
1 .

Write P =
∑

j≤m cj∂
j
1 with ci ∈ C and cm 6= 0. Then the above equality

gives m = µ− λ and cj = 0 for j < m. �

The following result was communicated to us by Masaki Kashiwara
(refer to [22] for related results).
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Theorem 4.3.5. Any invertible Ee
Ṫ ∗M

-module is isomorphic to L ⊗
C

E [λ]
Ṫ ∗M

, for some local system of rank one L and some locally constant

C/Z-valued function [λ].

Proof. Set for short E = EṪ ∗M . Let P be an invertible Ee-module. It
is enough to show that P is locally isomorphic to E [λ] for some locally
constant function [λ]. In fact, it will follow from Lemma 4.3.4 that L =

HomEe(E [λ],P) is a local system of rank one and L⊗
C
E [λ]

∼
−→ P .

(a) Since P is invertible, the underlying E-module •P is projective
locally of finite presentation by (iv) and (v) on page 17, and hence coher-
ent torsion-free. By Proposition 4.3.2, •P is locally free outside a closed
analytic 2-codimensional subset Z. As P is invertible, its rank is one.

(b) Suppose that •P is free of rank one. Then there exists [λ] such
that P [−λ] = P ⊗Ee E [−λ] admits a regular generator, i.e. a generator u of

•P
[−λ] such that Pu = uP for any P ∈ E . Indeed, let t be a generator

of •P and let f : E
∼
−→ E , be the C-algebra isomorphism as in (3.3.3):

f(P ) = Q for Q such that tP = Qt. By Proposition 4.2.2, f is locally
of the form Ad(P ) for some λ ∈ C and P ∈ E(λ) with never vanishing
symbol. Then u = tP−1 is a regular generator of P [−λ].

Let V be a contractible open neighborhood of a point in Z. We are
left to show that if •P is locally free of rank one on V \ Z, then •P

[−λ]

has a regular generator on V . It will follow that P|V ≃ E
[λ]
V .

(c) Since local regular generators u of P [−λ] are unique up to multi-
plicative constants, Cu ⊂ P [−λ] defines a local system of rank one on
V \Z. As V \Z is simply connected, such local system is constant. Thus
P [−λ] has a regular generator u on V \ Z.

Consider the distinguished triangle

RΓZP
[−λ] −→ P [−λ] −→ RΓV \ZP

[−λ] +1
−→

Since P [−λ] is invertible, then •P
[−λ] is flat by (vi) on page 17, so that

RΓZ(V ;P [−λ]) ≃ RΓ (V ; RΓZE ⊗E P
[−λ]).

By Lemma 4.3.1 one gets HjRΓZ(V ;P [−λ]) = 0 for j = 0, 1. It follows

that Γ(V ;P [−λ])
∼
−→ Γ(V \ Z;P [−λ]), hence the generator u of •P

[−λ] on
V \ Z extends uniquely to V .

�

In particular, since any E [λ]
Ṫ ∗M

is a locally free right EṪ ∗M -module of

rank one by (4.3.1), it follows that the C-algebra EṪ ∗M is Picard good.

Recall that the projection γ : Ṫ ∗M −→ P ∗M is a principal C×-bundle.

Theorem 4.3.6. The C-algebra EP ∗M is Picard good.

Proof. Let us prove that any invertible EeP ∗M -module P is locally free of
rank one as right EP ∗M -module.
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Since this is a local problem, we may restrict to a simply connected
open subset U ⊂ P ∗M , so that γ−1(U) ≃ U × C

×. The Eeγ−1(U)-module

γ−1P being invertible, by Theorem 4.3.5 one gets

P
∼
−→ γ∗γ

−1P ≃ γ∗(L⊗C
E [λ]γ−1(U))

for some [λ] ∈ C/Z and some local system of rank one L on γ−1(U) with
monodromy e−2πiλ on C

×.
By restricting to U ′ ⊂ U , we may assume that there exists an invertible

operator D of order 1. This defines an isomorphism of right EU ′-modules

EU ′
∼
−→ γ∗(L⊗C

E [λ]γ−1(U ′)) Q 7→ DλQ.

�

Note that, given a local system of rank one L and [λ] ∈ C/Z, one has

γ∗(L⊗C
E [λ]
Ṫ ∗M

) 6= 0 if and only if the monodromy of L along the fiber of

γ is given by e−2πiλ. In particular, γ∗E
[λ]

Ṫ ∗M
= 0 for any [λ] 6= 0.

5. Microdifferential algebroids

Here we state and prove our results on classification of E-algebroids on
a contact manifold.

5.1. Contact manifolds. Let X be a complex manifold of odd dimen-
sion, say 2n − 1. Denote by OX the sheaf of holomorphic functions
and by Ω1

X the sheaf of holomorphic 1-forms. A structure of (complex)
contact manifold on X is the assignment of a holomorphic principal C×-
bundle γ : Y −→ X, called symplectification, and of a holomorphic one-
form α ∈ Γ (Y ; Ω1

Y ), called contact form, such that ω = dα is symplectic
(i.e. ωn vanishes nowhere) and iθα = 0, Lθα = α. Here, θ denotes the
infinitesimal generator of the action of C× on Y , iθ the inner product
and Lθ the Lie derivative. One may consider α as a global section of
Ω1

X ⊗OX
OX(1), where OX(1) denotes the dual of the sheaf of sections of

the line bundle C×C× Y .
LetM be a complex manifold of dimension n. Then P ∗M has a natural

contact structure given by the Liouville one-form on Ṫ ∗M and by the
projection γ : Ṫ ∗M −→ P ∗M . By Darboux theorem, P ∗M is a local
model for a contact manifold X, meaning that there are an open cover
{Ui}i∈I of X and contact embeddings (i.e. embeddings preserving the
contact forms) ji : Ui →֒ P ∗M for any i ∈ I.

A fundamental result by [35] asserts that contact transformations (i.e. bi-
holomorphisms preserving the contact forms) can be locally quantized.
This means the following. Let N be another complex manifold of dimen-
sion n, U ⊂ P ∗M and V ⊂ P ∗N open subsets and χ : U −→ V a contact
transformation. Then any x ∈ U has an open neighborhood U ′ such that
there is a C-algebra isomorphism χ−1(EP ∗N |χ(U ′))

∼
−→ EP ∗M |U ′ .
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Definition 5.1.1. An E-algebra on a contact manifold X is a sheaf A
of C-algebras such that there are an open cover {Ui}i∈I of X, contact
embeddings ji : Ui →֒ P ∗M and C-algebra isomorphisms A|Ui

≃ j−1
i EP ∗M

for any i ∈ I.

Given an E-algebraA, the C-algebra γ−1A on Y satisfies γ−1A|γ−1(Ui) ≃

j̃−1
i EṪ ∗M for j̃i a lifting of ji : Ui →֒ P ∗M . Note that, from Proposi-
tion 4.2.2 it follows that for [λ] ∈ C/Z the invertible γ−1Ae-module
(γ−1A)[λ] is well-defined.

In the strict sense, to quantize X means to endow it with an E-algebra
(see [2]). This might not be possible in general. However, as we now
recall, Kashiwara [16] proved that X is endowed with a canonical E-
algebroid.

5.2. Microdifferential algebroids.

Definition 5.2.1. (i) An E-algebroid on X is a C-algebroid A such
that for every open subset U ⊂ X and any object α ∈ A(U), the
C-algebra EndA(α) is an E-algebra on U .

(ii) A stack of twisted E-modules on X is a C-stack M such that
there are an open cover {Ui}i∈I of X, E-algebras Ei on Ui and
equivalences M|Ui

≈
C
Mod(Ei) for any i ∈ I.

Note that a C-stack A is an E-algebroid if and only if there are an open
cover {Ui}i∈I of X, E-algebras Ei on Ui and equivalences A|Ui

≈
C
E+i for

any i ∈ I. In particular, Mod(A) is a stack of twisted E-modules.
Kashiwara’s construction of the canonical E-algebroid on X was per-

formed by patching data as explained in Appendix A.2 (see [9] for a more
intrinsic construction). More precisely, he proved in [16] the existence of
an open cover U = {Ui}i∈I of X, of E-algebras Ei on Ui, of isomorphisms
of C-algebras fij : Ej −→ Ei on Uij and of sections aijk ∈ Γ (Uijk; Ei(0)

×),
satisfying the cocycle condition

(5.2.1)

{

fijfjk = Ad(aijk)fik,

aijkaikl = fij(ajkl)aijl.

By Proposition A.2.1 (i), this implies

Theorem 5.2.2 ([16]). Any complex contact manifold X is endowed with
a canonical E-algebroid EX .

It follows that a C-stack on X is an E-algebroid (resp. a stack of
twisted E-modules) if and only if it is locally C-equivalent to EX (resp. to
Mod(EX)). In particular, if X = P ∗M then EP ∗M is C-equivalent to
EP ∗M , and E-algebroids are C-twisted forms of EP ∗M .

Recall that an algebroid is Picard good if and only if so are the algebras
that locally represent it. Hence, by Theorem 4.3.6 one gets that any E-
algebroid, and in particular EX , is Picard good. From Proposition 3.4.2,
we thus deduce the following
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Theorem 5.2.3. (i) Two E-algebroids are C-equivalent if and only
if they are Morita equivalent.

(ii) Any stack of twisted E-modules is C-equivalent to the stack of
modules over an E-algebroid.

To classify E-algebroids, we thus need to compute the first cohomology
with value in the stack of 2-groups AutC(EX) ≈ Inv(Ee

X)op, where we set
Ee
X = E

op
X ⊗C

EX .

5.3. Geometry of γ : Y −→ X.

Lemma 5.3.1. For M an abelian group, there is a distinguished triangle

MX −→ Rγ∗MY −→MX [−1]
+1
−→

Proof. As the complex Rγ∗MY is concentrated in degrees [0, 1], by trun-
cation it is enough to prove the isomorphisms

(5.3.1) H iRγ∗MY ≃MX , for i = 0, 1.

For i = 0 it is induced by the adjunction morphism MX −→ Rγ∗MY .
Set SY = Y/R>0 and consider γ as the composite of p : Y −→ SY

and q : SY −→ X, which are principal bundle for the groups R>0 and S1,
respectively. Note that Rp∗MY ≃ MSY , so that Rγ∗MY ≃ Rq∗MSY ≃
Rq!MSY . The infinitesimal generator θ of the action of C

× on Y in-
duces a trivialization of the relative orientation sheaf orSY/X . Hence
q!MX ≃ MSY [1]. Then the isomorphism (5.3.1) for i = 1 is induced by
the adjunction morphism Rq!MSY ≃ Rq!q

!MX [−1] −→MX [−1]. �

Let M = C
×. The induced long exact cohomology sequence is

H1(Y ;C×)
µ1
−→ H0(X;C×)

δ
−→ H2(X;C×)

γ#

−→ H2(Y ;C×)
µ2
−→ H1(X;C×).

Let us describe the above sequence (see also [14, Chapitre V §3.1, 3.2]),
were we use the notation [·] both for isomorphism and C-equivalence
classes.

For L a local systems of rank one on Y , µ1([L]) is the locally constant
function on X giving the monodromy of L along the fibers of γ.

Lemma 5.3.2. (i) There is a group isomorphism π0(γ∗C
+
Y ) ≃ C

×
X ,

where the group structure on the left-hand side is induced by ⊗
C
.

(ii) For any C-stack D on Y , the sheaf π0(γ∗D) is endowed with a
C

×
X-action.

Proof. (i) Recall that C+
Y is the stack of local systems of rank one on Y

and C
×
Y [1] that of C

×
Y -torsors. Then the functor

C
×
Y [1] −→ C

+
Y , P 7→ C×C× P

defines a group isomorphism π0(γ∗C
+
Y ) ≃ π0(γ∗(CY [1])). By (1.4.3), the

latter is isomorphic to R1γ∗C
×
Y , hence to C

×
X by Lemma 5.3.1.
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(ii) By using (2.1.1), one gets a C-functor

γ∗C
+
Y ⊗C

γ∗D −→ γ∗D, (L, δ) 7→ L⊗
C
δ.

This defines an action of π0(γ∗C
+
Y ) ≃ C

×
X on π0(γ∗D). �

Notation 5.3.3. Let C be a C-stack. For s a global section of π0(C),
we denote by Cs the full substack of C whose objects have isomorphism
class s in π0(C).

Note that Cs is a C-algebroid, since π0(C
s) = {s}. It is locally C-

equivalent to the algebra EndC(γ) for any local representative γ of s.

By Lemma 2.5.4, the cohomology group H2(X;C×) classifies equiva-
lence classes of invertible CX-algebroids. Then, for m ∈ H0(X;C×) ≃
Γ (X, π0(γ∗C

+
Y )), one has

δ(m) = [(γ∗C
+
Y )

m].

Here (γ∗C
+
Y )

m is identified with the CX-algebroid of local systems L ∈
γ∗C

+
Y with µ1([L]) = m. In particular, C

+
X is equivalent to (γ∗C

+
Y )

1

via the adjunction functor C
+
X −→ γ∗C

+
Y and one has a decomposition

γ∗C
+
Y ≈C

∐

m∈C×
X
(γ∗C

+
Y )

m.

For S an invertible CX-algebroid, γ
#([S]) = [γ−1S].

Proposition 5.3.4. For T an invertible CY -algebroid, µ2([T]) is the class
of the local systems of rank one C×C× π0(γ∗T).

Proof. By Lemma 5.3.2, there is an action of π0(γ∗C
+
Y ) ≃ C

×
X on π0(γ∗T).

Since R2γ∗C
×
Y = 0, the stack γ∗T is locally C-equivalent to γ∗C

+
Y , hence

π0(γ∗T) is a C
×
X-torsor. It follows that C ×C× π0(γ∗T) is a local system

of rank one on X.
Choose an open covering {Ui} of X in such a way that T is described,

by means of the Proposition A.1.1 (i), by the data (C+
Vi
, (·)⊗

C
Mji, aijk),

where Vi = γ−1(Ui) and Mji are local sistem of rank one on Vij. Then
C ×C× π0(γ∗T) is represented by the 1-cocycle {µ1(Mji)} with values in
C

×, which gives a Cech representative of the class µ2([T]). �

5.4. Classification results. Set

EY = γ−1EX .

This can be described by patching the C-algebras γ−1Ei along the pull
back on Y of the data (5.2.1).

Let Ee
Y = E

op
Y ⊗C

EY . For [λ] ∈ C/Z, the algebroid version of the

invertible bimodule E [λ]
Ṫ ∗M

is the Ee
Y -module E

[λ]
Y defined by

(α, β) 7→ EndEY
(β)[λ/2] ⊗End

EY

(β) HomEY
(α, β)⊗End

EY

(α) EndEY
(α)[λ/2].

It is invertible, as being invertible is a local property.
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Consider the direct image functor

γ∗ : γ∗Mod(Ee
Y ) −→ Mod(Ee

X)

and recall the morphism H1(Y ;C×)
µ1
−→ H0(X;C×) ≃ H0(X;C/Z) from

§5.3.

Theorem 5.4.1. The functor

(5.4.1) γ∗Inv(CY ) −→ Inv(Ee
X), L 7→ γ∗(L⊗C

E
µ1(L∗)
Y )

is an equivalence of stacks of 2-groups.

Proof. (a) A priori, γ∗(L ⊗C
E
µ1(L∗)
Y ) is an object of Mod(Ee

X). This is

locally, hence globally, invertible with inverse given by γ∗(L
∗ ⊗

C
E
µ1(L)
Y ).

(b) The sheaf CY is sent to EX , since γ∗(EY ) ≃ EX as Ee
X-modules.

Moreover, the natural morphism

γ∗(L⊗C
E
µ1(L∗)
Y )⊗EX

γ∗(L
′ ⊗

C
E
µ1(L′∗)
Y ) −→ γ∗(L⊗C

L′∗ ⊗
C
E
µ1(L∗)+µ1(L′∗)
Y )

is locally, hence globally, an isomorphism. Hence (5.4.1) is monoidal.
(c) For an invertible Ee

X-module P , define its exponential as the unique
locally constant C/Z-valued function ǫ(P) on X such that γ−1P is lo-

cally isomorphic to E
ǫ(P)
Y (this is well-defined by Theorem 4.3.5.). Then

ǫ(γ∗(L⊗C
E
µ1(L∗)
Y )) = µ1(L

∗), and by using the Lemma 4.3.4 one gets that
the functor

P 7→ HomEe
Y
(E

ǫ(P)
Y , γ−1P)

is a quasi-inverse of (5.4.1). �

Let Pic(Ee
X) denote the set of isomorphism class of invertible Ee

X-
modules, endowed with the group structure induced by ⊗EX

.

Corollary 5.4.2. There is a group isomorphism Pic(Ee
X) ≃ H1(Y ;C×

Y ).

Theorem 5.4.3. The set of C-equivalence classes (resp. Morita classes)
of E-algebroids is canonically isomorphic, as a pointed set, to H2(Y ;C×

Y ).

Proof. Since EX is Picard good, by Theorem 5.4.1 there is an equivalence
of stacks of 2-groups

AutC(EX)≈ γ∗Inv(CY )op.

The right-hand term is equivalent to γ∗Inv(CY ) by the functor L 7→ L∗.
Since CY is Picard good, from (3.4.3) and by using (1.4.2) one gets an
equivalence of stacks of 2-groups

γ∗Inv(CY )≈ [Rγ∗C
×
Y [1]].

It then follows from (1.4.1) that

(5.4.2) H1(X;AutC(EX)) ≃ H2(Y ;C×
Y ).

�
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We end by giving a geometric realization of the isomorphism (5.4.2).

First, let us explain how to twist EY by a local system of rank one L
on X, obtaining a C-algebroid EL

Y on Y locally C-equivalent to EY .
Choose an open covering {Ui} of X in such a way that L is represented

by a 1-cocycle {[λij]} with values in C/Z. Set Vi = γ−1(Ui) and consider

the data (EVi
, (·)⊗EVij

E
[λij ]
Vij

,mijk), where mijk denotes the invertible trans-

formation induced by the canonical isomorphism of Ee
Vijk

-modules

E
[λij ]
Vijk
⊗EVijk

E
[λjk]
Vijk

∼
−→ E

[λik]
Vijk

.

Then EL
Y is the C-stack on Y obtained from these data by Proposi-

tion A.1.1 (i). Note that (EL
Y )

op ≈
C
EL∗

Y and EL
Y ≈C

EY if L is trivial.
Recall from Lemma 5.3.2 that π0(γ∗E

L
Y ) is endowed with a C

×
X-action,

and denote by L× the C
×-torsor associated to L.

Lemma 5.4.4. π0(γ∗E
L
Y ) ≃ L× ×C× π0(γ∗EY ) as C

×-sheaves.

Proof. Let {[λij]} be a 1-cocycle with values in C/Z representing L on
an open covering {Ui} of X. Then γ∗E

L
Y |Ui
≈

C
γ∗EY |Ui

and the associ-
ated glueing C-equivalences γ∗EY |Uij

−→ γ∗EY |Uij
are given by (·) ⊗EVij

E
[λij ]
Vij

, where Vi = γ−1(Ui). We thus get isomorphisms of C
×-sheaves

π0(γ∗E
L
Y )|Ui

≃ π0(γ∗EY )|Ui
, with associated glueing automorphisms of

π0(γ∗EY )|Uij
given by multiplication by e2πiλij . This follows from the

commutative diagram of stacks of 2-groups

C/ZX [0]

��

≃ // C×
X [0]

��
γ∗AutC(EY )

π0 // Aut(π0(γ∗EY ))[0],

where the left-hand vertical arrow is the functor [λ] 7→ (·) ⊗EY
E
[λ]
Y and

the right-hand one is the C
×-action. Hence π0(γ∗E

L
Y ) is isomorphic to

π0(γ∗EY ) twisted by the C
×-torsor L×. �

Let T be an invertible CY -algebroid. Recall that we denote by µ2(T)
the local system of rank one on X associated to the C

×-torsor π0(γ∗T).

Lemma 5.4.5. π0(γ∗(T⊗C
E
µ2(Top)
Y )) ≃ π0(γ∗EY ) as C

×-sheaves.

Proof. By using the functor (2.1.1), one gets a morphism

π0(γ∗T)× π0(γ∗E
µ2(Top)
Y ) −→ π0(γ∗(T⊗C

E
µ2(Top)
Y ))

which is C×-equivariant on each term. Hence it factors through π0(γ∗T)×C×

π0(γ∗E
µ2(Top)
Y ). By Lemma 5.4.5, this is isomorphic to π0(γ∗EY ), since
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π0(γ∗T
op) is isomorphic to the C

×-torsor opposite to π0(γ∗T). It follows
that we have a morphism

π0(γ∗EY ) −→ π0(γ∗(T⊗C
E
µ2(Top)
Y ))

of C×-sheaves, which is locally, hence globally, an isomorphism. �

Corollary 5.4.6. π0(γ∗(T⊗C
E
µ2(Top)
Y )) has a canonical global section.

Proof. The adjunction functor EX −→ γ∗EY defines a morphism π0(EX) −→
π0(γ∗EY ). Since π0(EX) is a singleton, this gives a global section of

π0(γ∗EY ), hence of π0(γ∗(T⊗C
E
µ2(Top)
Y )) by Lemma 5.4.5. �

Denote by can the canonical global section of π0(γ∗(T ⊗C
E
µ2(Top)
Y )).

Then the inverse of the isomorphism (5.4.2) is realized as

[T] 7→ [(γ∗(T⊗C
E
µ2(Top)
Y ))can],

where [·] denotes the C-equivalence class and we use the Notation 5.3.3.
If S be an invertible CX-algebroid, then µ2(γ

−1Sop) is trivial and the
above isomorphism reduces to

[γ−1S] 7→ [(γ∗γ
−1(S⊗

C
EX))

can] = [S⊗
C
EX ].

Remark 5.4.7. Replacing EX by an E-algebroid in the previous con-
struction, one gets an action of H2(Y ;C×

Y ) on the set of C-equivalence
classes (resp. Morita classes) of E-algebroids. In such a way, the latter
becomes an H2(Y ;C×

Y )-torsor and the canonical isomorphism (5.4.2) is
obtained by choosing the C-equivalence class of EX as base point.

Appendix A. Cocycles

In this Appendix we recall the descent condition for stacks and detail
the case of algebroids, as in [16]. This is parallel to the case of gerbes,
which is discussed for example in [3].

Let X be a topological space (or a site), and R a sheaf of commutative
rings on X. If U = {Ui}i∈I is an open cover of X, we set Uij = Ui ∩
Uj , Uijk = Ui ∩ Uj ∩ Uk etc. We use the notation • for the horizontal
composition of transformations.

A.1. Glueing of stacks. Let us recall here how to recover R-stacks and
R-functors from collections of local data.

Proposition A.1.1. Let U = {Ui}i∈I be an open cover of X.

(i) Consider the data (Ci, fij, aijk)ijk∈I , where Ci are stacks on Ui,
fij : Cj −→ Ci are equivalences on Uij, and aijk : fik −→ fij ◦ fjk are
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invertible transformations on Uijk, such that

(A.1.1)

fij ◦ fjk ◦ fkl fik ◦ fkl
aijk•idfkl

oo

fij ◦ fjl

idfij •ajkl

OO

fil

aikl

OO

aijloo

commutes.

Then, there exists a stack C on X endowed with equivalences
fi : C|Ui

−→ Ci and invertible transformations aij : fi −→ fij ◦ fj on
Uij, such that

fij ◦ fjk ◦ fk fij ◦ fj
idfij •ajk

oo

fik ◦ fk

ajkl•idfk

OO

fi.

aij

OO

aikoo

commutes.

The stack C is unique up to an equivalence unique up to a unique
invertible transformation.

(ii) Let C be as above, and let C′ be associated with the data (C′
i, f

′
ij , a

′
ijk)ijk∈I .

Consider the data (gi, bij)ij∈I , where gi : Ci −→ C′
i are functors on

Ui, and bij : f
′
ij ◦ gj −→ gi ◦ fij are invertible transformations on

Uij, such that
(A.1.2)

gi ◦ fij ◦ fjk gi ◦ fik
idgi •aijk

oo

f ′ij ◦ gj ◦ fjk

bij•idfjk

OO

f ′ij ◦ f
′
jk ◦ gk

idf′
ij

•bjk
oo f ′ik ◦ gk

bik

ggOOOOOOOOOOOO
a′
ijk

•idgkoo

commutes.

Then, there exists a functor g : C −→ C′ endowed with invertible
transformations bi : f

′
i ◦ g −→ gi ◦ fi on Ui, such that

gi ◦ fij ◦ fj gi ◦ fi
idgi •aij

oo

f ′ij ◦ gj ◦ fj

bij•idfj

OO

f ′ij ◦ f
′
j ◦ g

idf′
ij

•bj
oo f ′ig

bi

ffLLLLLLLLLLLLa′ij•idgoo

commutes.

The functor g : C −→ C′ is unique up to a unique invertible trans-
formation.

(iii) Let g : C −→ C′ be as above, and let g̃ : C −→ C′ be the functor

associated with the data (g̃i, b̃ij)ij∈I . Consider the data (di)i∈I ,
where di : gi −→ g̃i are transformations on Ui such that

(A.1.3)

gi ◦ fij

di•idfij
��

f ′ij ◦ gj
bij

oo

idf′
ij

•dj

��
g̃i ◦ fij f ′ij ◦ g̃j

b̃ijoo

commutes.
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Then, there exists a unique transformation d : g −→ g̃ such that
d|Ui

= di.

A.2. Algebroid cocycles. We give here a description of R-algebroids
andR-functors between them in terms ofR-algebras andR-algebra mor-
phisms.

Let A be an R-algebroid on X. By definition, there exists an open
cover {Ui}i∈I of X such that A|Ui

is non-empty. For αi ∈ A(Ui) and Ai =
EndA(αi), there areR-equivalences fi : A|Ui

−→ A+
i . Choose quasi-inverses

f−1
i and invertible transformations id −→ f−1

j ◦ fj . Set fij := fi ◦ f
−1
j : A+

j −→

A+
i on Uij . On Uijk there are invertible transformations aijk : fik −→ fij ◦

fjk induced by id −→ f−1
j ◦ fj. On Uijkl one checks that the diagram

(A.1.1) commutes. By Proposition A.1.1 (i), the data (Ai, fij, aijk)i,j,k∈I
are enough to reconstruct A, in the sense that the stack obtained by
glueing these data is R-equivalent to A.

The R-equivalence fij : A
+
j −→ A+

i on Uij is locally induced by R-
algebra isomorphisms. There thus exist an open cover {Uα

ij}α∈A of Uij

such that fij = (fα
ij)

+ on Uα
ij for fα

ij : Aj −→ Ai isomorphisms of R-

algebras. On triple intersections Uαβγ
ijk = Uα

ij ∩ U
β
ik ∩ U

γ
jk, the invertible

transformations aijk : (f
β
ik)

+ −→ (fα
ijf

γ
jk)

+ are given by invertible sections

aαβγijk ∈ Ai(U
αβγ
ijk ) such that fα

ijf
γ
jk = Ad(aαβγijk )fβ

ik. On quadruple inter-

sections Uαβγδǫϕ
ijkl = Uαβγ

ijk ∩U
αδǫ
ijl ∩U

βδϕ
ikl ∩U

γǫϕ
jkl , the commutative diagram

(A.1.1) is equivalent to the equality aαβγijk a
βδϕ
ikl = fα

ij(a
γεϕ
jkl )a

αδε
ijl .

One can treat in the same manner R-functors and transformations.
We summarize the results in the next proposition. However, as indices
of hypercovers are quite cumbersome, we will not write them explicitly
anymore. Instead, we will assume that X is such that covers are cofinal
among hypercovers, as is for example the case for paracompact spaces.

Proposition A.2.1. Let {Ui}i∈I be a sufficiently fine open cover of X

(i) AnyR-algebroid A is reconstructed from the data (Ai, fij, aijk)i,j,k∈I ,
where Ai are R-algebras on Ui, fij : Aj|Uij

−→ Ai|Uij
are R-algebra

isomorphisms, and aijk ∈ Ai(Uijk) are invertible sections, such
that

(A.2.1)

{

fijfjk = Ad(aijk)fik, in HomR-Alg(Ak,Ai)(Uijk),

aijkaikl = fij(ajkl)aijl, in Ai(Uijkl).

(ii) Let A be as above, and let A′ be an R-algebroid constructed from
the data (A′

i, f
′
ij, a

′
ijk)i,j,k∈I . Any R-functor g : A −→ A′ is re-

constructed from the data (gi, bij)i,j∈I , where gi : Ai −→ A′
i are

R-algebra morphisms, and bij ∈ A
′
i(Uij) are invertible sections,
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such that

(A.2.2)

{

gifij = Ad(bij)f
′
ijgj, in HomR-Alg(Aj,A

′
i)(Uij),

gi(aijk)bik = bijf
′
ij(bjk)a

′
ijk, in A′

i(Uijk).

(iii) Let g : A −→ A′ be as above, and let g′ : A −→ A′ be constructed from
the data (f ′

i , b
′
ij)i,j∈I . Any transformation of R-functors d : g −→

g′ is reconstructed from the data (di)i∈I , where di ∈ A
′
i(Ui) are

sections such that

(A.2.3) dibij = b′ijf
′
ij(dj), in A′

i(Uij).

In particular, the families (Ai, fij , aijk)i,j,k∈I and (A′
i, f

′
ij, a

′
ijk)i,j,k∈I

describeR-equivalent stacks if and only if there exists a family (gi, bij)i,j∈I
satisfying (A.2.2) with gi isomorphisms of R-algebras.

Viceversa, let A be as in Proposition A.2.1 (i). For i, j ∈ I let A′
i be

R|Ui
-algebras, gi : Ai −→ A

′
i isomorphisms ofR-algebras and bij ∈ A

′
i(Uij)

invertible sections. Then equalities (A.2.2) define a family (A′
i, f

′
ij , a

′
ijk)i,j,k∈I

describing an R-algebroid R-equivalent to A.

Remark A.2.2. Note that (A.2.1) implies the relations

fijfji = Ad(aijiaiii), aijj = fij(ajjk) for any i, j, k ∈ I,

and in particular
fii = Ad(aiii), aiij = aijj.

Let Bi = Ai, hi = idAi
, and cij = aiji. Then (A.2.2) gives

gij = Ad(a−1
iji )fij, bijk = gij(a

−1
jkjajki).

The family (Ai, gij, bijk)i,j,k∈I describing A satisfies the relations

gii = idAi
, biij = bijj = 1,

of a normalized cocycle as in [3].

A.3. Module cocycles. Let A be the R-algebroid described over the
open cover {Ui}i∈I of X by the family (Ai, fij , aijk)i,j,k∈I . The stack of
left A-modules Mod(A) is then described as in Proposition A.1.1 (i) by
the family

(Mod(Ai), Mod(f+
ji ), Mod(akji))i,j,k∈I

(note the inversion of indices due to the fact thatMod(·) is contravariant).
By Morita theory, the functor Mod(f+

ji ) is isomorphic to Pij ⊗Aj
(·) for

an invertible Ai ⊗R A
op
j -module Pij . We thus recover the description of

twisted sheaves given in [18] (see also [10]).

Proposition A.3.1. Let A be as above. An object of Mod(A) is de-
scribed by a family (Mi, ϕij)i,j∈I , where Mi ∈ Mod(Ai), and ϕij ∈
HomAi

(fjiMj|Uij
,Mi|Uij

) are isomorphisms, such that for any uk ∈Mk

one has
ϕij(fjiϕjk(uk)) = ϕik(a

−1
kjiuk).
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Proof. Let C be an R-stack as in Proposition A.1.1 (i). The statement
follows by noticing that objects of C(X) are described by data

(αi, aij)i,j∈I ,

where αi ∈ Ci(Ui), and aij : fij(αj) −→ αi are isomorphisms in Ci(Uij),
such that

aij ◦ fij(ajk) = aik ◦ a
−1
ijk(αk)

as isomorphisms fijfjk(αk)
∼
−→ αi in Ci(Uijk). �
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