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Abstract

We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds
and Péclet numbers, with ill prepared initial data on R*. The Euler-Boussinesq approximation is identified as the
limit system.
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1 Introduction

Scale analysis and the associated mathematical problems of singular limits reveal the dominant features of complete
fluid systems in the regime where some characterictic parameters become small or infinitely large. We apply the
method of relative entropies developed in [5] to study the asymptotic limit in the complete Navier-Stokes-Fourier
system for low Mach and large Reynolds and Péclet numbers.

In order to avoid unnecessary technical difficulties, we consider the hypothetical situation when a compressible fluid,
described by means of the Eulerian density o = o(t, x), the velocity field u = u(t, ), and the absolute temperature
¥ = 9(t,x) occupies the entire physical space R?. The associated Navier-Stokes-Fourier system of field equations
reads:

Opo + divz(ou) =0, (1.1)
Or(ou) + div,(ou @ u) + gizvmp(g, 9) = e%div,S(¥, V,u), (1.2)
d:(05(0,9)) + div,(0s(0,9)u) + 7 div, (q(ﬁ,ﬁ%ﬁ)) = % (52+“S(19, V.u): Vyu— Eb(W,W) , (1.3)

where p = p(p,9) is the pressure, s = s(p,19) the specific entropy, while the symbol S(¢}, V,u) denotes the viscous
stress satisfying Newton’s rheological law

2
S(¥, Veu) = p(9) <V$u +Via— 3diku) , (1.4)

and q = q(¥, V,9) is the heat flux determined by Fourier’s law
q(¥,V.9) = —k(9) V0. (1.5)

Note that, again for the sake of simplicity and clarity of presentation, we have omitted the effect of any external force
in the momentum equation (1.2) as well as the bulk viscosity contribution to the viscous stress (1.4).

The scaling of the pressure in (1.2) corresponds to the Mach number proportional to a small parameter e, whereas
the Reynolds and Péclet numbers scale as e~ and e°, respectively. We consider the initial data in the form

Q(O7 ) = QO,E - §+ EQ(()27 19(07 ) = 190,6 = 5—"_ 579827 u(07 ) = u0,€7 (16)



together with the boundary conditions “at infinity”
00, ¥—17, u—0as |z| — oo. (1.7)
Under these circumstances, the limit (target) problem can be identified as the incompressible Euler system
div,v =0, (1.8)
v+ v -V,v+ V, I =0, (1.9)

supplemented with a transport equation for the temperature deviation 7',
T +v-V,T=0. (1.10)

Here, the function v is the limit velocity while T' ~ %. Note that the system (1.8 - 1.10) can be obtained as a
hydrodynamic of the Boltzmann equation, see Golse [6]. The exact statement of our results including the initial data
for the target system (1.8 - 1.10) will be given in Theorem 3.1 below.

Our approach is based on the concept of (very) weak solutions for the Navier-Stokes-Fourier system (1.1 - 1.3),
developed in [4], and extended to problems on unbounded domains in [8]. Accordingly, the convergence to the limit
problem takes place on any time interval [0,7] on which the Euler system (1.8), (1.9) possesses a regular solution.
Similar results for the compressible barotropic Navier-Stokes system were obtained by Masmoudi [12], see also the
survey paper [13] of the same author. Alazard [1], [2], [3] studies the singular limits of the compressible Euler and the
Navier-Stokes-Fourier system using the approach proposed by Klainerman and Majda [10] based on strong solutions.
To the best of our knowledge, the present paper represents the first result of this kind for compressible and heat
conducting fluids in the framework of weak solutions. The main novelty of our approach is the use of the relative
entropy for the Navier-Stokes-Fourier system discovered in [5] to establish the necessary uniform bounds independent
of the scaling parameter ¢, and, more importantly, to obtain stability of solutions to the limit system.

The paper is organized as follows. In Section 2, we collect the necessary preliminary material and introduce the
concept of very weak solution to the Navier-Stokes-Fourier system on R3. The main result on the asymptotic limit
for £ — 0 is stated in Section 3. The remaining part of the paper will be devoted to the proof of the main theorem.
In Section 4, we use the total dissipation balance associated to the Navier-Stokes-Fourier system to establish all
necessary uniform bounds independent of € — 0. The crucial ingredient of the proof is the relative entropy inequality
introduced in Section 5 that provides the necessary stability estimates for the limit system. As is typical for this kind
of problems, the most difficult part is to establish the convergence of the oscillatory gradient component of the velocity
field corresponding to the presence of acoustic waves. Since the problem is considered on the whole space R3, this can
be accomplished by the standard dispersive estimates, see Section 6. Finally, the proof of convergence towards the
limit system is finished in Section 7.

2 Preliminaries, very weak solutions for the full Navier-Stokes-Fourier
system

We start by listing the technical hypotheses imposed on constitutive relations. They are analogous to those introduced
in the framework of the existence theory developed in [4, Chapter 3], where the interested reader can find all relevant
information concerning the physical background as well as possible generalizations.

We suppose that the pressure p = p(p,?) is given by the formula

o a
plo,0) = 95/2P (W) +50% a0, (2.1)



while the specific internal energy e = e(p, ) and the specific entropy s = s(p, ) read

3 193/2 0 4
o) = 50 —P (W) +av (2.2)
B 0 da 93
where
P € C*0,00) N C?3(0,00), P(0) =0, P'(Z) >0 forall Z>0, (2.4)
. P(Z) _
Zlgréo 5 = Py >0, (2.5)
SP(Z)-Pl(2)Z
0< 3 ()Z (2) < cforall Z >0, (2.6)
" iP(2) - P(2)
33:P(Z)-P(2)Z
i _ _ 23 3 —
S'(2) = 3 7 , Jim S(2) = 0. (2.7)

Let us only remark that the rather misteriously looking relation (2.6) expresses positivity and uniform boundedness
of the specific heat at constant volume.
In addition, the transport coefficients p and x vary with the temperature, specifically,

1 € C[0,00) is (globally) Lipschitz continuous, 0 < p(1+9) < u(d) for all ¥ > 0, (2.8)

k€ C0,00), 0 < k(1 +93) < k() <R+ 93 for all ¥ > 0. (2.9)

2.1 Very weak solutions

To begin, we introduce the ballistic free energy
Heo(0,9) = Q(é(@ ) — Os(p, 19))7 where © > 0. (2.10)

Following [8] we shall say that a trio of functions {0, ¥, u} represents a very weak solution of the Navier-Stokes-Fourier
system (1.1 - 1.7) on the space time cylinder (0,7T) x Q if:

e 0>0,9>0aa. in (0,T) x €,
(0—70) € L>®(0,T; L? + L°3(R3), (0 — ) € L™=(0,T; L*? + L*(R?)),
V.9, V. log(¥) € L?(0,T; L*(R?; R%)),
uc LQ(O,T; Wl’z(R?’; RB));

e the equation of continuity (1.1) is replaced by a family of integral identities

/R3 {Q(T» )e(T,+) = 00,e(0, )} dr = /OT /R3 (g@tap +ou - V,;go) dz dt (2.11)

for any 7 € [0,7] and any test function ¢ € C°([0,7] x R?);



e the momentum equation (1.2), together with the initial condition (1.6), is satisfied in the sense of distributions,
specifically,

/ [Qu(T7 ) : 30(7—7 ) - QO,EUO,ESD(Oa )i| dx (212)
R3
! 1
_ / / (ou- 00+ ou e w: Voo + (o, 0)divag — eS(9, Vo) : Vi) da di
0 R3

for any 7 € [0, 7], and any ¢ € C=°([0,T] x R3; R3);

e the entropy production equation (1.3) is relaxed to the entropy inequality

| [enestancstn o(0.) = este.0)(retr )] do (213)
+/ / E <€2+QS(19, Veu): Vyu — is) o dz dt
0 R3 19 19

T 9, V0
< —/ / (QS(& )0 + 0s(0,9)u- Voo + Ebw : Vmso) dx dt
0 R3

for a.a. 7 € [0,T] and any test function ¢ € C°([0,T] x R?), ¢ > 0;

e the total dissipation inequality
1 1 OH(p,9) B -
/ [29112 +3 (Hﬂ(g, ¥) — %7(9 —2) — Hgz(0,9) | (7,)| d= (2.14)
R3 o
—1—5/ / 1 (EGS(ﬁ,Vzu) :Veu — stW) dz dt
o Jrs ¥ 9

9H(0,9)

1 1 —
590,s|uo,e|2 + = (Hg(QO,Evﬁo,e) - T(Qo,s -0) — HMQJ”)] dx

<),
R3

holds for a.a. 7 € [0,T7.

Under the hypotheses (2.1 - 2.9), the existence of very weak solutions to the Navier-Stokes-Fourier system in
(0,T) x R® was shown in [8], along with the property that a very weak solution coincides with the strong solution
emanating from the same initial as long as the latter exists (known as the weak-strong uniqueness principle).

3 Main result

Suppose that vq is a given vector field such that
. 5 .
vo € WEH(R3, RY), k > X vollwr.2o;rs) < D, divyve = 0.

It is well-known that the Euler system (1.8), (1.9), supplemented with the initial condition

v(0,-) = vy.



possesses a regular solution v, unique in the class
v € O([0, Timax); WF2(R* R?)), 0pv € C([0, Tinax); W 12(R3; R?)), (3.1)

defined on a maximal time interval [0, Tinax), Tmax = Tmax(D), see Kato [9].

For each vector field U € L?(R3; R?) we denote by H[U] the standard Helmholtz projection on the space of
solenoidal functions.

We are ready to state the main result of this paper.

Theorem 3.1 Let the thermodynamic functions p, e, and s comply with hypotheses (2.1 - 2.7), and let the
transport coefficients p and K satisfy (2.8), (2.9). Let

1
b>0,0<a<?0. (3.2)

Furthermore, suppose that the initial data (1.6) are chosen in such a way that

{Q(()}g}g>0, {19(()}3}90 are bounded in L* N L™= (R?), Q(()}g — Q(()l), 19(()2 — 19(()1) in L*(R?), (3.3)
and
u is bounded in L*(R%; R?), ug. — ug in L?>(R3; R? 3.4
{ 0,5}£>O ) ) 0,e 0 ) )
where s
g(()l), 1961) e WH2nWwh>o(R?), Hlug] = vo € WF2(R3; R?) for a certain k > = (3.5)

Let Trnax € (0, 00] denote the mazimal life-span of the reqular solution v to the Euler system (1.8), (1.9) satisfying
v(0,-) = vo. Finally, let {o:,Y:,u:} be a very weak solution of the Navier-Stokes-Fourier system (1.1 - 1.7) in
(0,T) x B3, T < Thnax.

Then
ess sup || o:(t,") — o ||L2+L5/3(R3) < ec, (3.6)
t€(0,T)
Voeue — /o v in Lis,((0,T); L, (R* R)) and weakly-(*) in L>(0, T; L*(R?; R%)), (3.7)
and _
%=% 1 Lo ((0,T); L (R* R?)), 1< q <2, and weakly-(*) in L*°(0,T; L*(R?)), (3.8)

where v, T is the unique solution of the Euler-Boussinesq system (1.8 - 1.10), with the initial data

E@s(g, 9) g _ 19p(2,9) ay (3.9)

Vo = H[“O]v TO = 99 0 E 99 9o

It is worth noting that the initial distribution of the temperature deviation Ty includes a contribution proportional

to Qél). This is related to the well-known data adjustment problem observed by physicists, see Zeytounian [15] and



the discussion in [4, Chapter 5.5.3]. The rest of the paper is devoted to the proof of Theorem 3.1.

4 Uniform bounds

Thanks to the hypotheses (3.3), (3.4), the integral on the right-hand side of the total dissipation inequality (2.14)
remains bounded uniformly for ¢ — 0. On the other hand, in accordance with the structural properties of the
thermodynamic functions stated in (2.1 - 2.7), the function
aH@ (’I“, G))

H@(gaﬁ)_ ag

(e—r)— He(r,©)

enjoys the following coercivity properties: For any compact K C (0,00)? and
(r,0) € K,

there exists a strictly positive constant ¢(K), depending only on K and the structural properties of P, such that

Ho(e.9) — 21O (g — ) — Ha(r,0) > () (Jo— 12 + 19~ OF) if (0.9) € K. (@)
Ho(o.9) - 150 (1) — o, 0) (1.2

> o(K) (ele,9) + 0Ols(e,9)| +1) if (e,9) € (0,00)* \ K.

see [4, Proposition 3.2].
In view of (4.1), (4.2) it is convenient to introduce a decomposition

h = [h]ess + [A]res for a measurable function h,

where

[h}ess =h [h]res =h- hess;

1{@/2<ga<2@ V)2<0. <20}

see [4, Chapter 4.7].
Consequently, combining (2.14) with (4.1), (4.2) and the hypotheses (2.1 - 2.9) we deduce the following list of
estimates:

ess sup l/@ue(t, )2 < (43)
te(0,T)
-0 —]
ess sup [Qa Q(t,~)] +ess sup [ - (t7~)] <cg, (4.4)
te(0,T) € essllL2(R3;R3) te(0,T) € essllL2(R3;R3)
5/3
ess sup / ([gi’/3(t7~)} —l—[ﬁe(t,-)]fes—i—lres(t,-)) dz < 2¢, (4.5)
te(0,T) J R3 res
and
£%/%u, <c (4.6)
L2(0,T;W1-2(R3;R3))
(b-2)/2 (y 75‘ H (b-2)/2 (16g(9.) — log(D ’ < 47
Hs (9 ) L2(O,T;WLZ(RS;RLU)Jr c (log(0e) —log(v) L2(0,T;W1-2(R3;R3)) =6 (47)




where the symbol ¢ denotes a generic constant independent of €. We remark that (4.6) follows from the generalized
Korn’s inequality

HVIW + Vf;w — ;divzwﬂ

> ¢||[Vow||p2(psy for w e Wh2(R3 R?),
L2(R3)

combined with the estimates (4.3), (4.5). Similar arguments based on the Sobolev inequality and (4.4), (4.5) yield
(4.7).

5 Relative entropy inequality

Motivated by [5], we introduce the relative entropy

aH@(Ta 6)

£ (Q,ﬁ,u r, @,U) - /R Bmu U+ %2 (H@(g, 9) = o) H@(T,@))] da, (5.1)

where Hg was defined through (2.10). As shown in [8], any very weak solution solution {g, ¥, u} of the scaled Navier-
Stokes-Fourier system satisfies the relative entropy inequality in the form:

[2 (g,ﬂ,ur,@,U // ( S, V,u) : V u—eb_2w> de dt (5.2)
RS

)

< /T/ (Q(atU +u- VIU> - (U —u) +&S(¢,Vzu) : V1U> dz dt
0 JR3
+Ei2 /T /R [(p(r, 0) —p(e, ﬂ))divU + §(U —u) - Vep(r, @)] dzdt

/ /RS ( 9 s(r. @))@@JFQ(S(Q,@ _s(r,@))u-vx@ﬁ-gbw .Vz@> de dt

S e

for any trio of continuously differentiable “test” functions defined on [0, 7] x R3,

)+ U - Vp(r, 6)) dz dt

r>0, ©>0, r=p9, ©=1outside a compact subset of R?,

5
U e C([0,T);Wr2(R3 R?)), 0,U € C([0,T];W*12(R3; R%)), k > 3
It seems interesting to notice that the mere relative entropy inequality (5.2) could be taken as a definition of “dissipa-
tive” solutions to the Navier-Stokes-Fourier system in the spirit of a similar concept introduced by Lions [11, Chapter
4.4] in the context of the incompressible Euler system.
We take

Q = Qs, 79:"957 u = ug



and choose the functions {r,®, U} in the following way:
r=r.,=0+¢cR;,, =0, =0+¢cT,, U=U, =v +V,b,; (5.3)

where v is the solution to the incompressible Euler system (1.8), (1.9), with the initial condition (3.9), and R., T,
and ®. solve the acoustic equation:

edi(aR: + fT.) + wAD, =0, (5.4)
eV, Pe + Vo (aR: + BT.) =0, (5.5)

with the initial data determined by
RE(O7 ) = RO,Ev TE(Oa ) = TO,Ev (ps(ov ) = ¢0,67 (56)

where we have set

o Oo o Ov 0

Noting that the functions R, T. are not uniquely determined by (5.4 - 5.6), we introduce the transport equation

" 1(‘9})(@5)7 5:§3p@’§), W:g<a+52>.

8,(8T. — BR.) + U, - V(6T — BR.) + (6T — BR.)div,U. = 0, (5.7)
with .
_ _0s(p,9)
0=0—"%5

where the initial data are determined by (5.6). Equation (5.7) is nothing other than a convenient linearization of the
entropy balance (1.3). Now, the system of equations (5.4), (5.5), (5.7) is well-posed.

5.1 Data regularization

Our goal is to apply a Gronwall-type argument to the relative entropy inequality (5.2) to deduce the strong convergence
to the limit system claimed in Theorem 3.1. To this end, we choose the initial data

Roe = Roep = Xn * [ané}g]v To,e = Toem = Xn * [%1983]7 n>0 (5.8)

where {x,(z)},>0 is a family of regularizing kernels, and v, € C2°(R3) are the standard cut-off functions v, ~ 1.
Similarly,

Do = Doy = Xn * | YA dive[ug ]|, with VA7 div,[ug ] = H [ug]. (5.9)

To avoid excessive notation, we omit writing the parameter n in the course of the limit passage ¢ — 0.

6 Auxiliary estimates

We summarize the well known estimates for solutions of the auxiliary problems (5.4), (5.5), and (5.7).



6.1 Dispersive estimates

The acoustic equation (5.4 - 5.6) possesses a (unique) smooth solution ®., Z. = aR. + ST. satisfying the energy
equality

5 t=1
laR=(t,) + BT(t, )yrz(rsy| =0forall7>0, k=0,1,2,....  (6.1)

IV ®e(ts ) lfyrz(ro,msy + 75—
€ (R3;R3) 62 +a6 o

In addition, we have the dispersive estimates

||Vw¢)a(tv ')||W’qu(R3;R3) + ||aR5(t, ) + BTa(tv ')||Wk,q(R3) (6.2)
1

)
S c (1 + E) (”vm(PO,E”W(i-Hc,p(RS;RiS) + ||aR0,s + ﬁTO,EHWd-Hc,p(RS)) )

for all t > 0, where

1 1 1 1
2§q§005+:17d>3(_)uk207177
p g p q

see Strichartz [14]. Moreover, by virtue of the finite speed of propagation of acoustic waves, the quantities V,®.(t, )
and (aR. + BT.)(t,-) are compactly supported in R3, see (5.8), (5.9).

6.2 Estimates for the transport equation
The transport equation (5.7) reads

80T, — BR.) + (V + Vy®.) - Vo (0T — BR.) + (0T — BR.)AD, = 0.
In particular, we have

[/ 5T, — BR.J? da]” = —/ / A®.|0T. — BR.|? dz dt, (6.3)
R3 0 0 R3

and

sup 107 = BRellvsaqey < 0 T)[6T0e = SRoclprngoy» 105 o (6.4)
te|0,

Moreover, since the velocity of transport in the transport equation is bounded and since A®,(¢,-) and the initial data
8To.e — BRo,- are compactly supported, the solution (67 — BR.)(t,-) is as well compactly supported in R>.

7 Convergence
Fixing 7 > 0 our goal is perform the limit for ¢ — 0. This will be carried over in several steps.

7.1 Viscous and heat conducting terms

We show that the dissipative terms related to viscosity and to heat conductivity on the right-hand side of (5.2) are
negligible. To this end, we write

2
e*S(¥:,Vyue) : V, U, = eu(de) (Vmus +Viu, — 3divzu€]l) : V. U;

10



e [N(ﬁg) (Vmus + Vius - ;divmugﬂ>}

8(1
R3

2
ca/2 (qua + Vfcue — 3diku5]l)

2
YV, U. +£° [u(ﬁe) (vmug +Viu — 3divxugl)] .V, U.,

ess res

where
de <

2
[u(ﬂa) (una +Viu, — 3dikusﬂ)} 1V, U,

€ess

Ea/2

||VxUE||L2(R3;Rs) ;
L2(R3;R3X3)

whence, by virtue of (4.6), (6.1),

2
e [u(ﬂa) <Vmu€ +Viu, — Sdikusﬂ)} V.U, = 0in L*((0,T) x Q) as € — 0.

€ess

Similarly, in accordance with (4.5), (4.6), and hypothesis (2.8),

2l [u(ﬂs) <Vg;u5 +Viu, — ;divzusﬂﬂ : V. U;

res

2
= e/ [0c]res V] 11(92) es #59195) (kug +Viu, — 3divxug]l> V.U, — 0in L2(0,T; LY3(Q; R%)) as € — 0.

Next, we have B
Eb_2 q(ﬁ& V:vﬁs) -V,0. _ _&_b—l H(ﬁs)vaz(ﬁe - 19)

: ITE
e Ve v

= —¢b/? [a(b—2>/2'€3;’9vm(ﬁg - 19)} -V, T — 2 {Ab—?)/?’ii;%)vw(ﬁs —-9)| - V.T.,

res

where, as a consequence of (4.7), (6.2), (6.4),

b2 [5(b_2)/2I{5;’HV$(05 - 19)] -V.T. = 0in L*((0,T) x R*) as ¢ — 0.

€ ess

Moreover, in accordance with hypothesis (2.9),

{E(bZ)/2 %ﬂs)vﬂ(ﬁg — 19)} VT

g

£b/2

res

< b2 (‘e<b*2>/2vz(1og(q95) - 1og(5)) ’ n ‘5@*2)/2 0.2V, (195 _ 5) D V. T,

res

where, by virtue of (4.5), (4.7), (6.2), and (6.4), the right-hand side tends to zero in L*((0,T) x R?).
Thus (5.2) reduces to

11



rs,@s,Us)]T (7.1)

& (029,

< / / 0= (r?tUE +u, - VZUE)(UE —u.) dz dt
0 R3

+% / : /R (P, ©2) = ples, 92) ) divU. + (UL — ) - Vap(r, ©.) | dadt

Te

__/ /R3 Qe Qs, e) (7‘5, @s))ath + 0s (8(05,195) — 8(1"57 G)E))uE . VIT€> dz di

Te — O¢
+€_2/0 /RS T (3,51)(7“5, O.) + U - Vup(re, 95)) dx dt + x.(7,n)

with
Xe(-sm) = 0in C[0,T] as € — 0 for any fixed 1 > 0.

7.2 Velocity dependent terms
Our goal is to handle the integral

/ / |:QE(UE - 115) . atUa + Qg(Ug — ug) R U : VmU5:| dz dt =
0 JR3

/ /d [Qs(Us —u.) HU:+ 0. (U; —u.) @ Uy VIUE} dz dt +/ /d 0:(Uz —u) ® (ue — Uy) : V, U, de dt,
0o JR -

where the second term on the right-hand side is bounded by

re0. U< [ et ntm)e (odou 0.0,

& (Qs» e, ue
0

€
0 LOO(Q,RSXS)

with ¢ independent of €, 7, and, by virtue of (3.1) and (6.2), x-(-,n) = 0 in C[0,T] as ¢ — 0.
On the other hand,

/ /3 |:Q€(UE - ue) -0, U, + Qe(Us - ug) ® U, : VTUs} dx dt
0 R¢

/ / QE e (atV +v-V V) dx dt +/ / Qg e — ug) -0V, P, do dt
R3 R3
// Qs € ®V(I) Vde‘i’// Qs € ®V V@ dx dt
R3 R3
//Qa —u.) -V, |V, |* dz dt.
R3

12



In view of the uniform bounds (3.1), (4.3 - 4.5), and the dispersive estimates stated in (6.2), the last three integrals
tend to zero for € — 0, uniformly with respect to 7. Accordingly, we focus on the first two terms, where the former

reads
/ / 0:(U. —u,) - ((%v—l—v Vv dr dt = / / 0:(U. —u.) - V. II dz dt
R3 R3

:/ / ocu - V11 dx dt—/ / 0:(v+V,®.) - V,II dz dt.
o Jre o Jre

As a consequence of the estimates (4.3 - 4.5), we get
0-u. — gu weakly-(*) in L>®(0,T; L? + L>*(R?; R®)), (7.2)
where, thanks to the continuity equation (2.11),
div, (7) = 0, (7.3)

in particular,
/ / 0:u.V I dz dt — 0 in L(0,T) for any 1 < ¢ < occ.
o JR3

Next, we have
/ / 0: (V+V,P.) VI dz dt
R3

—5// 0: — 0 Vdedt+5// 0=~ 0y g, Vdedt—I—//gV(I) VLI dz dt,
R3 R3 R3

where the first two integrals vanish in the limit € — 0, while

/ / V, . - V,I0 dz dt = 7/ A®. Tl dz dt = @/ 8y (aR. + BT dx dt
R3 R3 W Jo JR3

_¢e [/ (@R + BT.)T1 dx] - @/ / (aRe + BT)O,IT do dt = x(7,m),
R3 t=0 w Jo R3

w

where here and hereafter, the symbol x.(7,n) denotes a generic function satisfying

xe(-,n) — 0 in L*(0,T) as e — 0 for any fixed > 0.

/ / QE e 8tv (I’ dx dt

R3
T 1 T

= —/ / o-u. - OV, 0. dx dt+/ / 0-V - O Vo, dx dt+7/ / 0:04|V,®.|? dz dt,
o JR3 o Jrs 2Jo Jrs

where, in accordance with (4.4), (4.5), and the dispersive estimates (6.2),

/ / 0:V - 0y VP, dx dt = / / (0e —0)v -0V, P, da dt
o JR3 0o JR3

13
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// "0, Y, (aR. + BT.) du dt = ye(n,7)
RS

1 T T _ A 1 T
7/ / 0-0:|V,®.|* dz dt = 5/ / O = 09, |Vo®.)? dz dt + 7/ / 00|V, @ |* dz dt.
2 0 R3 2 0 R3 e 2 0 R3

Finally, using (5.5), we get

while

3 ), Jo B0 dsai=— [ [ SR80 V.aRe 4 5T, e
2 )0 Jrs € o JRrP €

where, by virtue of the dispersive estimates (6.2), the last integral tends to zero.
Thus relation (7.1) reduces to

[e: (o292 uc]re 02,0L)] (7.4)

1 t=1 T
< [/ §_|vzq)s|2 dx:| - / / 0:Uc - Oy V@, do dt
R3 2 t=0 0 R3

__/ /RS 0 s(0e, V) (T5;66)>atT5+Qe($(gs,195)—8(1“6765))115.VIT€:| dz dt

/ / ( - Qs 5tp(7‘e, @s) - &us : VzP(Te, Gs)> dz dt — _/ / Qsa s p(@, 5)) Ad, dx dt
R3 T R3

&)

+/ (C+X;(t77])) Ee (Q67ﬂ87u6 Tay@EaUs> dt‘i'X?(T: n),
0

where ‘
Xi(-,m) = 0in L*(0,T) as e — 0 for any fixed > 0, i = 1,2,

and where we have used the identity

/ |:(p(’l“5, @E) _p(QEaﬁe))divaa + <1 - > U, v;cp(rsa @5) + &(Ua - ua) : pr(rs, @E) dz
R3

TE g

3 Te

= _/ (p(Qsaﬂs) _P(@g))A‘bs dz — / &us . vxp(rsvaa) dx.
R3 R

Recall that V,®.(t,-) is compactly supported and div,v = 0, which justifies the by-parts integration used in the
above.

7.3 Pressure terms

We write ) ) ) | op(r.T)

7"57 1>
72@6“6 ' *pr(Ta@s) = —0cU¢ - — ( P VacRs +
€ r € Te 0o

€

ap(TE7 TE)

= vxTE)

14



1 1 |:<ap(7"57T6) _ 8?(@7 19)) VIRS + (ap(rsaTE) _ ap(§7 19)) VzTE:| + égsue . rgvz (CYRg +5TE)

=gl 9o 9o a9 a9 5

o 1 i ap(Taa T.) 6])(@, 5) Op(re,T:)  Op(o, E)
Tt K do do Valte + o0 o0 VaTe

1 1 0
+g@eua Vg (OLR,;- + /BTE) + g@eua : (Q - 1) Vi (OLR,;- + /BTE) s

Te

where, by virtue of (4.3), (4.4), and the dispersive estimates (6.2),

1 0 X
o-u. (9 - 1> V. (aR. + BT.) — 0 in LI(0,T; L? + L>*(R% R%)), 1 < ¢ < o for e — 0,

Te

while, in accordance with (5.5),

1
ngue . vz (aRE + BTE) = —0:sU¢ - atva:q)5~

Finally, using the Taylor expansion formula, we obtain

TrL L[0T 0p(3.D) op(r..T.)  0p(a.D)
/0 /nggsue . K D0 o0 ) Vel T\ "oy gy ) Vele| dvdt

1 Pp(0 ) e Pole.D) 10%(0.9) ¢ o |
= [ e [3ERE D0 TG (e 4 PHED G, 12 et

where, furthermore, as g.u. satisfies (7.2), (7.3),

10? ( 9) 2y 9*p(2, V) lap(g, V) 2 o7l
/ /R3 {2 Vi R: 9000 ————V.(RT:) + 5 992 VmTE} dz dt - 0in L' (0,T).

Consequently, we may infer that (7.4) reduces to

t=7

T 1
< n— 2 o
r57@5,U5>L:0 < [/1%3 Q2|V$¢5\ dx} (7.5)

t=0

[55 (Qa,1957 u.

__/ /Rs 0 s(0e, Vc) (re,66)>8th+ge(s(gs,z9€)—s(rs,gs))us.vaE} dz dt

/ / e = Qaatp (re,©¢) da dt — —/ / p(0e, Je) p(@,@))A@E dz dt
R3 Te

+/ (C+X§(t777)) 86 (ga,ﬂ&-,uE
0

iz ©z; Us) dt + X?(T, 77),

where ‘
Xi(-,m) = 0in L*(0,T) as e — 0 for any fixed > 0, i = 1,2.

15



7.4 Replacing velocity in the convective term

Our next goal is to “replace” u. by U, in the remaining convective term in (7.5). To this end, we write

/ / 0, V) =0 g r e
0 R3 3

= / / 968(957195) - S(T57®5)UE V,T. do dt +/ / 965(95;195) - S(Teags) (ue _ Us) -V, T. dzx dt7
0 JR3 0 JR3

€ €
where . 9 o
/ / QES(«QE7 E) - 8(T57 6) (ug _ UE) . vas dx dt
0 R3 g

— / / 0- |:3(Qa;'195) - S(T€7®E):| (uE _ Ua) . VzTe dz dt
0 JR3 € ess

+/ / 0 [S@E’ﬁa) - S(TE’@E)] (0. — U,) - V,T. dz dt.
0 R3 € res

Next, we get

/ / 0c {8(95,195) — S(TE’QE)} (u. —U,) -V, T. dz dt‘
0 JR3 £ ess

r 0-— 7T > 9. —©
<o [T IV o) [ <@a|ue—Us|2+H”] +H : ]
0 R3 6 ess E ess

2
> dz dt;
whence this term can be “absorbed” by means of Gronwall argument.
As for the residual component, we have to control the most difficult term [g.$(0c, ¢ )]restle. To begin, the hypotheses
(2.3 - 2.7) imply that

ols(o,9)| < ¢ (9* + ol log(o)| + ellog(V)] ") .
Consequently, by virtue of the estimates (4.5), (4.6),
H [ﬂg]res uEHLl R3:R3 S g_a/Q H [192] resHL5/5 R3 HEG/QUEHWLQ(R3§R3)
(R%;R®) (R3)

a ].
co < 6(%75)||Ea/2u5||W1,2(R3;RS) — 0 in L?*(0,T) whenever 0 < a < ?0

Estimating the remaining integrals in a similar way, we can rewrite inequality (7.5) in the form

16



t=7

T 1
< n— 2 R
TE,@E,UEHt:O < |:/R3 92|VICI>E\ dm} (7.6)

{55 <Qaﬂ9€7 u. -

__/ /R3 Oc Qs, 5 (7”5, @s))atTe + 0¢ (8(957195) — 8(7"6, @5))U5 . VIT€:| dz dt

/ / iche Q‘fatp (re,©c) da dt — —/ / p(0e, 9c) p(@,@))A(I)E dz dt
R3 Te

+/ (1 +X5(ta 77) + ||vsz( > )||L°°(R3;R3)) Es (stﬂsyus r57@eaUs> dt+X?(7'7 Tl),
0

where ‘
Xi(-,m) = 0in L*(0,T) as e — 0 for any fixed > 0, i = 1,2.

7.5 Entropy and pressure

In order to handle the remaining integrals in (7.6), we first show that all terms can be replaced by their linearization
at 0, Y. To this end, we first observe that we may neglect the “residual part” of all integrals. Indeed,

i/or /R3 {Qa (5(95,195) - S(TE’GE))L% 0,T. dz dt = / /R3 0c( s(0e,Ve) (rg,@g))}res e T dx dt,

where, by virtue of the estimates (6.2 - 6.4), the equations (5.4 - 5.7), and the identities,

(82 + ad)T = B(aR + BT) + a(6T — BR), (82 + ad)R = 6(aR + AT) — B(6T — AR), (7.7)
we get
sup |0y Re(t, )|l Loe 3y, sup el|0TL(, ")l oo (r2) < c(n), (7.8)
t€(0,T] t€[0,T]
SHatRE(t, ')HLOO(RB) — 0, €||8t E(t, ')”LOO(RS) — 0 for any t> 0, (79)

while, in accordance with (4.5),

ess sup / o [s(0e0) ~ 5(r-,0.)) ] dw <
te(0,7) J R3 res

A similar treatment can be applied to the integrals

/ / 0c [8(0e,0c) — 8(72,0¢)] s Ue - Vo T: da dt and —/ / p(0e,7:) (Q719)Les A®, dx dt.
R3 R3

1 T e — Ue
7/ / {r 2 } dip(re, ©c) da dt
€ 0 R3 Te res

_ 1 Te — 0c Op(re,0¢) Ap(re,0:) -
752/0 /Rs{ re }< gg Ot Ty ek ) dedh
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Finally,




whence (7.8), (7.9) yield the desired conclusion.
Since all remaining integrals in (7.6) can be reduced to their “essential component” it is easy to check that

_,/ /R3 0c( s(0e,Ve) (rs,GE))&sTg +95(S(Q5,195) —s(rg,ee))UE.vxTe} de dt (7.10)

1 o 0s — T 1 T L
_ ey e de dt — — 5,'[95 - ,19 ACI)E dx dt
52/0 /R3 - op(re,O;) da 62/0 /R3 (P(Q ) — (e )) x

_/O/R (6720 52" (a4 UL VL) e at

0, (ak. + BT dxdt—i—/OT /R 52ja5 (aé’sg—ﬁwﬁig)at(a&wﬂ) dz dt + y.(r,7)

|
- / ’ /R 3 (6TE _ ﬁRE)atTE dadt + / ’ | B (aRE n BTE) de dt

T V=0  L0--70 0-—7 B 0.-0
_[/ /R 5t - g 0)a, dxdt+/ /R ﬂ2+a5 e Era )8t<aR8+,BTE>dxdt]

/ / O. _ g% —re)UE.vITE dr dt + xe(7,n),
R3 €

where we have used (5.3-5.5).
In the next step, we use the identities (7.7) to compute,

/OT /Rg, (‘m - ﬁRE>5tTe dz dt + /OT . R0, (aRE + BTg) dz dt (7.11)

- / T /R [ﬁQ f o5 (07 = BRe)0u(aRe + BT ) + 5 (9. — BR: )0, (0T. - 5. )

d 8

+m<0¢Re + /BTe)at (OéRs +5Te) - m(éTe - BRE)& <04R5 —|—BTE):| dz dt
. 3 LS S Cant ]
_2ﬁ2+a5 |:/RgaRE+BTE d$:|0+262+a5 [/RS|5T5 5R€‘ dx:|0.

Similarly, we get

T e -0 _o.—0 /T B 0e-o  B5 9--9
//R 5 B )8tT6da:dt 0 R3(52+a5 R >8t<aR5+5T€>dxdt (7.12)

J Qa B
= 0| 0T — BR. ) dx dt
62+a5//Rs c )t( —p )””
Finally, the last line on the right-hand side of (7.10) reads
T J. — O —
—/ / (5 e~ Je gl TE)UE-VITE de dt (7.13)
0 R3 9 3
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N e L LR

&3 T Ve — O Qe — Te
- 5 - )U.- V. (3T. - BR.) da dt
52—1—@5/0/1{3( € P € eV e~ PR ) do
where the first term tends to zero due to the dispersion estimates (6.2).
Summing (7.12-7.13) we deduce the following result

—521045/07 /R (5722 — 5% T) (AT, — BR.) + U, - Va(OT. — BR2)) da di

. «a T V. —O. 0. —re L B
- B2+O‘5/0 /R" (6 € _6 c )Aq)f dz dt+X5(naT) _Xe(n77—)

where we have used (5.7), and, again, the dispersive estimates (6.2). Resuming the calculations in this section, we can
rewrite inequality (7.6) as follows

T

1 t=71
< o= 2 :
re,es,Ug)L:O < URP) 25|V, dx} (7.14)

t=0

[55 (95,195, u.

1 1) T 1 o T
: _+ BT.2d e 6T. — BR.|* d
+2ﬁ2+a5{/1%3|aR + BTl x}o+2ﬁ2+a5[/m‘ PR ””}o

[ (et + Tt o) € (000,
0

r, 0., UL ) dt +x3(rm),
where

Xi(-,m) = 0in L*(0,T) as & — 0 for any fixed n > 0, i = 1,2.

Consequently, in accordance with the energy balances (6.1), (6.3), and dispersive estimates (6.2), inequality (7.14)
reduces to

T

rs,@E,Usﬂt:O (7.15)

= / ¢ (14 x2(tm) + IVaTe(t, oo rs;rs)) Ee (Qs,ﬁs,us
0

|- (0292,

re, O, Us) dt + x2(7,n),
where

Xi(-,m) — 0 in L*(0,T) as e — 0 for any fixed n >0, i = 1,2.

7.6 Conclusion

Summarizing (4.3), (4.4) and (7.2), we obtain

Vo:u. — /ou weakly in L*(0,T; L*(R?; R?))

96_9_[96_9] +[Q€_Q] ’
€ € ess € res
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where

[Qe;@} — R weakly-(*) in L*>°(0, T; L*(R?)),
while 3
[QE;Q} 0 in L®(0,T; L3 (R%)).
Similarly B
V. — 10
{} — T weakly-(*) in L>(0,T; L*(R?)),
€ €ess
and _
9o — 0 ,
{ - } — 0in L>(0,T; LY(R?)) for any 1 < ¢ < 2.
€ res

On the other hand,
V.®. — 0in LY(0,T; W"P(R3; R®)) N LS.((0, T); WFP(R3; R?)) for any 2 < p < o0, k=0,1,...
whereas

R. — Ry, T- — T, in L*(0,T; WH(R?)) N LS, ((0, T]; W (R?)),

loc

where, in view of the dispersive estimates (6.2),
aR, + BT, =0, (7.16)

and due to (5.7),

0¢(0T,, — BRy) + v -V, (6T, — BR,) =0 (7.17)
with the initial data . .

RO,n = Xn * Wq@é )]7 TO,’r] = Xn * Wnﬂ(() )]

Now, applying Gronwall’s lemma to (7.15) we obtain

1
/ |:§ |\/ OcUc — 4/ 0:V P, — Vi @5V|2 (Ta )] dz (7.18)
R3

1 6H@ (Tm@s) Qe — 0
5 H 5’196 - = - fle | — H gy Ve )" d

+52 RS{ o.(0:,7) B0 - R 0.(re,©c)| (7,) dz

! 1
< exp (/ c (L4 xi(tn) + |VaTe(t, )| L (r2: %)) dt) [X?(T; n) + 5/ 00,e U, — VP — vol? dx}
0 R3
reexp ([ (20 + IVl i) 80 ) o6 = Rac[, o + 062 = Toc [, |
0 ’ ’ "Lz (re) ’ “llLz(rs)

for any 7 € [0, 7.

Thus, letting ¢ — 0 in (7.18) and making use of the convergence relations established earlier in this section, we
get

lim sup </K B ‘\/@us - \/Exz’2 (r, -)} do (7.19)

e—0
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1 _8H@E(r€,@5) 0 —0 _
+ 5 [ [t (o0 - om0 (222 R ) e 0] () o

< exp (/0 c (1 + ||Vngn(t, ')||L°°(R3;R3)) dt) |:§ A3

VA [div,u] — V, (Xn * (wnA—l[dikuo])) ‘2 dx}

’ () ) |I? (1) ON
teesp (| e (U IVLTy ) e o) ) | ol == @),y + 9687 o e @nt)],
for any 7 € (0, 7] and any compact K C R3.
Finally, in accordance with (7.16), (7.17),
_0s(p,9 19p(o,9
0Ty +v-VoT, =0, Ty(0,-) = ¢ (5.79 )Xn * [1/’171951)] - QE'M)X" * [wngél)]; (7.20)

whence, by virtue of hypothesis (3.5),
V2Tl oo (r3;R3) is bounded in L>°(0,T") uniformly for n — 0.

Consequently, making use of the estimate

1

? |:H®5(QE;196) -
K

aH@EéZ)Ea@E) (QE — 0 _ R5> —HC—)E (7"87@5):| (7_7.) dx

g
= 2
(e |
€ ess L2(K)

we may let 7 — 0 in (7.19) to obtain the desired conclusion (3.7), (3.8). Thus, passing to the limit 7 — 0 in (7.20) and
letting € — 0 in the momentum equation (2.12) for solenoidal test functions ¢ completes the proof of Theorem 3.1.

9 _
Y — 0
L2(K) € ess

8 Concluding remarks
Similar results can be obtained on a general (unbounded) domain  C R?® as soon as the following conditions hold:
e the velocity field u satisfies the complete slip conditions
u-njpg =0, (S(¥, Vyu)n) x n|pg =0,
or Navier’s boundary conditions
u-nlpg =0, [S(J, Vyu)n]ian + Bulaq =0,
where 8 > 0 is a “friction” coefficient;

o the target Euler system (1.8), (1.9) possesses a regular solution on [0, Tiax);

e the acoustic equation (5.4), (5.5) admits the dispersive estimates (6.2);
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e the generalized Korn inequality holds: For any M > 0 there exists ¢(M) > 0 such that
2

2
‘|WH%/I/1’2(Q;R3) S C(M) (Hvzw + V;W — glewW]I + /g;\v |W|2 d,’L‘) , W S W172(Q;R3)7

L2(Q;R3%3)
for any measurable set V.C Q, |[V| < M.

These conditions are satisfied, for example, if Q C R? is an ezterior domain with Lipschitz boundary, see Alazard
[1], Isozaki [7], and [4, Appendix].
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