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Abstract. In this paper the stability of the Vlasov-Poisson-Fokker-Planck
with respect to the variation of its constant parameters, the scaled thermal
velocity and the scaled thermal mean free path, is analyzed. For the case in
which the scaled thermal velocity is the inverse of the scaled thermal mean free
path and the latter tends to zero, a parabolic limit equation is obtained for the
mass density. Depending on the space dimension and on the hypothesis for the
initial data the convergence result in L' is weak and global in time or strong
and local in time.
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1. Introduction

The aim of this paper is to study the limit behaviour of the Vlasov-Poisson-
Fokker-Planck (VPFP) system in terms of the parameter e representing the
scaled thermal mean free path and where we have assumed that the scaled
thermal velocity is the inverse of the scaled thermal mean free path, see the
appendix for a discussion about the VPFP system and the physical constants
involved.

The VPFP, system can be written in this context in terms of the scalar dis-
tribution of particles fc(¢,2,v) > 0, the mass density pe(t, z) and the potential
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®(t, x), with (t,z,v) € R" x RY x RY, N =2 or 3, as follows

9fe
ot

62

+ e((v-Vo)fe = (Vo®e-Vi)fe) = L(fe), (1.1)
LUF) Y A + dive(vf.) = dive (e_évv (e_f)) (1.2)

—V.®. = 0Ky xp., pe = / fe dv, (1.3)
]R,N

fﬁ(o’xav) = f0,6($,v), (14)

where I defined as in (1.2) is the Fokker-Planck operator and K is the gradient
of the fundamental solution of the Laplacian in dimension N. The parameter
f = +1 in the electrostatic case and § = —1 in the gravitational case. The
potential is given by

—gL L ., N=3

o, :{ T (1.5)
05-loglx| * pe, N=2.

We will assume that the initial data satisfies

/ fo.e (L4 ]2 + |v]* + [Info]) d(z,v) +/

R

|Ve®o c|* de < +oo. (1.6)
N

Depending on the dimension we will prove two kind of results. In dimension
N = 2 or 3 we prove that there exists T* > 0 depending only on the initial data
fo.e such that for all ¢ € [0, 7] the solution f. tends strongly in L', as ¢ — 0,

to (271')_%p(t, J:)e_%, where p solves the following drift-diffusion equation
Jp .
i divy (Vep — pV®) =0 (1.7)
—p-L L N=3
@:{ ATl * O (1.8)
05-loglx|* p, N=2,
(0, 2) = pof), (19)

po being an accumulation point of pg . = ffo,e dv.
In dimension N = 2 and for § = 1, we can obtain a weak convergence result
which is global in time. Thus, in this context we will prove that

pe — p in L°=(0,T; LY(IR?)) weak* VYT >0,
where p solves (1.7)-(1.9). The same result holds for # = —1 under the additional
hypothesis
thUPe—m, t—>oo/

R

|V (t, 2)|* de < co. (1.10)
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Let us remark that the system of equations (1.7), (1.8) may blow up in finite
time in the case 6 = —1. Therefore (1.10) cannot be satisfied in general. This
assumption prevents in some sense gravitationnal collapse.

The study of the stability of solutions of the VPFP system with respect to
the variation of its constant parameters, the scaled thermal velocity and the
scaled thermal mean free path, and in particular the case analyzed in this paper
in which the scaled thermal velocity is the inverse of the scaled thermal mean
free path and the latter tends to zero, is interesting from different point of
views. Further than its intrinsic mathematical interest and its applications in
numerical simulations, the asymptotic limits here studied allow to establish some
links between models in different frameworks: Vlasov, drift-diffusion, Euler, ...
This kind of results are also related to diffusion approximation techniques which
have been used widely in various contexts: transport equation of neutronics [2],
radiative transfer [3], semiconductors physics [10, 12].

The techniques used in this paper are mainly based on the control of the
kinetic and potential energy, the entropy of the system and also of some moments
associated with the density. This implies, via the Dunford-Pettis Theorem, the
weak L*(IR*) compactness of the sequence {p}eso for every time t > 0. In the
2-D case this allows, due to the antisymmetry property of the Poisson kernel, to
pass to the limit in the nonlinear term and, hence, in the continuity equation for
the density. This cancellation property for the singularity in the Poisson kernel
was similarly observed in the study of the existence of solutions for the 2D Euler
equations in Fluid Mechanics, see [14]. For 6§ = &1 and N = 2 or 3, we also
obtain strong Ll(]RZN) compactness for {fe}eso and {pe}eso, but only locally
in time, by means of a weighted norm for the particle distribution involving the
associated Maxwellian. From this estimate we get a bound for p., independent
of €, in some Lp(]RN), with p > N/2 and, as consequence, an uniform bound in
space for the force field V,®. and 0,®..

Let us summarize the literature concerning the existence results for the
VPFP problem. Classical solutions have been studied by H. D. Victory and
B. P. O’Dwyer [18] who proved the existence of a locally in time smooth so-
lution to the problem (1.1)-(1.4). G. Rein and J. Weckler [13] gave sufficient
conditions to prove the global existence of classical solutions in the three dimen-
sional case. In the more general setting of weak solutions, we can mention the
works by H. D. Victory [17] and J. A. Carrillo and J. Soler [7] with initial data in
L? spaces. F. Bouchut studied in [4] and [5] the regularity of the weak solutions
of this system. A. Majda and Y. Zheng [19] and G. Majda, A. Majda and Y.
Zheng [11] obtained the existence of global measure solutions in the 1-D case
by using the relationship with the two dimensional Euler equation with vortex
sheet initial data and constructed some relevant explicit solutions, which show
the phenomena of singularity formation in finite time. Recently, J. A. Carrillo
and J. Soler in [8] allow for measures in Morrey spaces as initial data and prove
the existence of a locally in time weak solution. Finally, J. A. Carrillo and J.
Soler introduced in [9] the concept of functional solution and proved the global
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existence of a functional solution when the initial data are only Radon measures
with bounded variation.

The rest of the paper is organized as follows: In Section 2 we obtain the a
priori estimates on the system which imply the weak L' (]RZN) compactness for
the sequences {f:}eso and {peteso. In Section 3 we study the strong Ll(]RZN)
compactness for the above sequences and uniform in space bounds for V,®,
which are local in time. Section 4 is devoted to show how the Ll(]RZN) com-
pactness of {p.}cs0 is enough to pass to the limit for N = 2. In Section 5
we obtain the parabolic limit equation. Finally, in Section 6 we motivate the
problem under consideration through the analysis of the VPFP and its physical
constants: the scaled thermal velocity and the scaled thermal mean free path.

2. A prior estimates

We start by defining the concept of weak solution to the problem (1.1)-(1.4).
Let Qr = [0,7T) x RY x RY. Given fy € Ll(]RZN) we will say that the pair
(P, fe) is a weak solution to the VPFP, problem if

1. f. € Ll(]RZN), ®. is given by (1.5),
2. fﬁvl‘q)ﬁ € Llloc(IRzN)’
3. for any ¥ € C3°(Qr), we have

/ fL( 3_‘I’+€(( Vx)\IJ—(qu)E~VU)\I!)—(U~VU)\IJ+AU\I’) d(t, x, v)
_ _/]Rm Fore(z, 0)U(0, 2, v) d(z, ) (2.11)

If (®,, fe) is a weak solution to the VPFP,, then the distribution function f.
can be equivalently obtained as a fixed point of the nonlinear integral equation

1 t x
fﬁ(ta$av) — EW/ G(E_z’z’ 3

r‘h|m

V) fo,e(€,v) d(E,v) —

s x €
€N+1/ / V.G —2 —v V) V@ (t—s,8) f(t—s,8,v) d(s, &, v), (2.12)
where ( is the fundamental solution to the linear operator
af - -
v v - L),

The fundamental solution G can be written as follows

Gt,e,v,€,v) = Gy (t,x—&’—n(t)y,v—e_ty), (2.13)
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with z,v,&, v e RV ¢ >0 and

Go(taxav) = N e—%wu(t,x,v)’
(4m)N D(t)=
where o
D() = @t_n(t)z and p(t)=1— e,

An explicit formula for ¢y was developed in [18]:

1 ¢ .,
eoltt) = g [ il —eralt s

The properties of solutions that we will study in this Section can rigorously
be obtained from (2.11) by combining the formal arguments to be exposed here
with the choice of an apropriate sequence of test functions in (2.11) for every
studied property. Since a similar rigorous approach that the one given in [1]
and [6] can be easily adapted for the properties studied in this Section, we omit
the sometimes tedious and standard regularization procedure in order to give
the main ideas. We refer to [1] and [6] to complete the proofs.

The first result gives us the mass conservation property as well as an equation
for the kinetic energy, the potential energy and the entropy of the system, i.e.,
for the free energy functional.

Lemma 2.1 Assume that the initial distribution of particles verifies that (1 +
[v]? +1Info ) fo. € Ll(]RZN) and |V ®q | € Lz(]RN). Then, we have that

1. the total mass of the system, i.e. the Ll(]RZN) norm of f, is preserved;

2. the following equation is verified by (P, fc):

d |v]? 0
i — 2
‘ dt </1R2N ( 2 * lnfﬁ) Je d(x’ U) + 2 /]RN |V ®| d$)

2
= —/ o e+ 2V T d(e,v) (2.14)
]:R2N
Proof. The mass conservation
et Mermeny = [[fo,ellLrmen) (2.15)

follows formally by integrating Equation (1.1) in ]Riv, which gives the continuity
equation for the mass density

1
Otpe + —divgj. = 0, (2.16)
€
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in the sense of distributions, where j. is the current density defined by

je = / of. dv,
]R,N

and then integrating in ]ijv Also, this property can be obtained by integrating
Equation (2.12) in ]ijv X ]Riv

On the other hand, the equation for the balance of energy can be deduced
multiplying (1.1) by |v|?, integrating the result with respect to x and v and then
using the divergence theorem. Thus we obtain

o d |U|2
€ — —fed(z,v) + € (v V) fe d(z,v)
dt Jpon 2 RN

_ N/]Rw £ d(z,v) — /}Rw W2, d(e,v) (2.17)

The second term in the left hand side of (2.17) can be written as follows

/]R2N(U~vxq)e)fe d(z,v) = —/]RN ¢, div, (/}RN vf. dv) dr.

Then, taking into account the continuity equation (2.16) for p. we find

/]sz(v V@) fe d(z,v) = e/]RN @E% (/}RN f. dv) de.

Now, thanks to (1.3) we obtain

0 d
/ﬁ (v V@) fe d(z,v) = 6——1/ |V, @ |* de.
]R2N 2 dt ]RN

Using this equality, (2.17) becomes

1d
2= — / |v|2fE d(z,v) —1—9/ |Vx<I>E|2 dx
2 dt ]R,2N ]R,N

= N fe d(z,v) — / lo|2f. d(z,v). (2.18)
R2N m2N
Finally, the balance of entropy identity is formally obtained by multiplying
(1.1) by Infe, integrating in # and v and using again the divergence theorem
which yields
d
— felnfe d(z,v)

€
dt Joon

_ _/ |va€|2fi da,v) + N [ f d@, o) (2.19)

wr2N
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Adding (2.18) and (2.19) we have

d |v]® 6
i — 2
‘ dt </1RQN ( 2 * lnfﬁ) I d(x’ U) + 2 /]RN |vxq)e| dl‘)

_ / <2Nf€—|v|2f€—|vvf6|2fi) d(z, v). (2.20)
Then, since

/]Rm Nf. d(z,v) = _/ o V. d(ev),

R2N

we can write the second member of (2.20) as

_/ Nfi|vfe+vvfe|2 d(a:,v)

Using now the identity (v/fe) 'V, fe = 2V,/fc we find the announced result
(2.14).

Previous Lemma allows to deduce, due to the negativity of the right hand
side of (2.14), that the free energy functional

e 2 )
E.(t) def / . (% —|—lnf6) Je d(z,v) + §/N |V, ®|? da
R2 R

is bounded. However, to conclude that the kinetic energy, the potential energy
and the entropy of the VPFP, system are uniformly bounded with respect to
t € [0,7], VI > 0, we must prove that the above functional is also bounded
from below.

Lemma 2.2 Assume 6 = 1 and that the wnitial distribution of particles verifies
that (1+|v]*+1Info.c)fo.c € Ll(]RzN) and [V®q | € LZ(]RN). Let us also assume
for the case @ = —1 the hypothesis (1.10).

1. The functional E(t) is bounded from below and, as consequence, the fol-
lowing quantities are bounded for any t € [0,T], with bounds which are
independent of ¢ and t,

/ fellnfe] d(z,v) , / lo|*fe d(x,v) , / |V (t,x)|* de.
R2N R2N BN
2. The sequence {fc},, s weakly compact in Ll(]RZN) fort €[0,T], VT > 0.

Proof. From Lemma 2.1 we deduce that

E.(t) < Fe(0) (2.21)
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Define In~ f, = max{—Inf.,0} and In* f. = max{Inf,, 0}, which gives
Inf, = Intf. — In" f.. (2.22)

To obtain a bound from below for E(t), we split the domain in three parts

{fe>eth {e7t > fo> e_le_%%} and {f. < e_le_%%} to find

felnmf. < (fﬁ + 6—16—%'”2'2) (1 + %%) , (2.23)

where b > 0 is a constant to be precised. Then, combining (2.21), (2.22) and
(2.23) we can obtain, see [6],

(1_%)/ oS d(ae) + 0 [ VRPdr 4 [ gt de)

< E(0) + ¢
where ¢ is a constant independent of €. This estimate together with (1.10) for
f = —1 gives the first assertion of the Lemma.

Finally, the estimates given in i) and the Dunford-Pettis theorem imply that
the sequence {f.},, is weakly compact in Ll(]RZN).
As a consequence of Lemma 2.2 we have the following result

Lemma 2.3 Let us assume that the initial distribution of particles verifies that
A+ v*+Infoe)fo. € Ll(]RZN) and |V®q | € LZ(]RN) and that V,®. verifies
(1.10) for 6 = —1. Then, we have
1. the function he el (v\/ﬁ— QVU\/E) verifies
||h€(ta > ')||L2(1R2N) <e, (224)
where ¢ 1s a constant independent of ¢ and t;

2. the current density je is of order € in L>(0,T; Ll(]RZN)).

Proof. The first assertion follows from (2.14) and the uniform bounds given in
Lemma 2.2 for the kinetic energy, the potential energy and the entropy of the
system.

The current density can be written in terms of A, as follows

jﬁze/ hﬁ\/j'TE dv
]:RN

which implies; using the first assertion of the Lemma and the mass consevation,
that
je = O(e) in L=(0,T; LY(R*Y)),
where O(e) means order e.
A similar compactness property can be deduced for the sequence of densities.
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Lemma 2.4 Under the hypothesis (1 + |z|* + |[v]* + Infoe)foe € Ll(]RZN),
[V® | € LZ(]RN) and (1.10) for 6 = —1, we have that |z|p. € Ll(]RN) and, as
consequence, the sequence {pc}. . 15 weakly compact in Ll(]RN) fort €[0,T],
YT > 0.

Proof. To deduce that |z|p. € L'(IR™) we first multiply (1.1) by |#| and inte-
grate in IRY x RY to obtain the following equation

d x
2 . d = —. . dv | dez.
€ 7 ) || fe d(z,v) E/IRQN 7] (/}Ra vf, v) x

Then, aplying Lemma 2.3 ii), which gives jo = Of(e) in L*°(0,T; Ll(]RZN)), and
the hypothesis |z|?po . € Ll(]RN), which implies, using the mass conservation,
|2]po . € L*(IRY), we deduce the expected result.

The weak compactnessin L' (]RN) is again a consequence of the first assertion
andof the Dunford-Pettis theorem applied to the sequence {p6}6>0.
REMARK 2.1. Let us note that under our hypothesis we cannot assure that the

inertial momentum
/ |z|*fe d(x,v)
m2N

remains bounded for ¢ > 0. In fact, from the equation for the inertial momentum

€2i le|?f. d(z,v) = 26/ x- (/ vfe dv) dx (2.25)
dt Jpon BN BN

we cannot obtain a bound uniform with respect to e.

The above weak compactness property in Ll(]RN) is not enough to pass to
the limit on the nonlinear term of equation (1.1). Note that we cannot use L7,
p > 1, a priori estimates because of they all depend on ¢ as it can be directly
calculated from (2.12), see also [7] and [17]. In the two next sections we will give
some results that provide some extra compactness properties which will depend
on the dimension N and on the hypothesis on the initial data.

3. Strong convergence in a bounded time inter-
val
In this Section we will obtain bounds for p, in some L, p > N/2, independent of

€ which implies V,®, € LOO(]RN). These estimates give us strong convergence
locally in time. With this in mind, we define the norm

o2 1/p
Al ([ e d ) (3.26)




PARABOLIC LIMIT FOR VPFP SYSTEM 10

a1 Jvl?
Lemma 3.5 Assume that e7 2 foe € LP (]RZN), with p > N/2. Then, there
exists a finite T > 0 and a constant ¢ > 0 depending on fy . and independent
of € such that

1. the distribution of particles verifies

e e < e, vE e [0,T7]; (3.27)
2. the following estimate
elt, Ml oguny < e, V2 € [0,77] (3.28)
holds for the density;
3. the potential verifies
100t Moy + Vol gy <00 (3:29)

Proof. Let H be a convex regular function to be precised. If we multiply the
right hand side of (1.1) by H’(e%fﬁ), we have

/N—L(fe)H'(eH ) dv = /Ne—@me%;) ‘

We define qg(fe, fc) as follows
[v]? ’
Vo (e 2 fﬁ)‘ dv. (3.30)

Proceeding in the same way with the other terms in equation (1.1) we first
find for the nonlinear one the following estimate

H(feafe) ZZ/NG’_@HH(C‘@fE)

/ (Vo®e Vo) f. H'(e"F) dv = Vo0, f. H'(e"5) .V, G%fﬁ) dv <
RV BN

|V<I>|/ U(egfﬁ)dvg

9 gy L2 el e 1/2
|V, ®| (/NfEH (e )erv) qi (fe, f)V2. (3.31)

Similarly for the others terms we have

65 6 12 _U2
/}RN;; 1) d :E/]RNH(elJ Y=t du (3.32)
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and
lvl?

27 ) d(x,v) = 0. (3.33)

/}Rw(wvx)feH’(e

Therefore, combining (3.30)-(3.33) we have that a solution of (1.1) satisfies

d lo|? w® 1
E/QN H(e 2 fe)e_ 2 d(l‘,v) + 6_2/NqH(fE’fE) dx

1 102 INE 1/2
<Al [ ([ ) g

€

1 lvl?
[R— 2

1 L2 le?
<3 2/ qgu(fe, fe)dr + —||Vx<I>E||iw(mN)/ fZH" (fﬁe 2 )e d(z,v).
€ rN 2 R2N

Then, we obtain

d LY L 1
E/]R2NH (fee )e d(x,v) + ;/]RN qu(fe, fe) dx

1 v12 2 N vl2
< IVl Wiy [ (fee%) it (fﬁe'z' )e—'z' dev). (3.34)

We choose, for 1 < p < oo, H(t) = tP. Then, using the norm (3.27), (3.34)
becomes

d 1
gl Il < 7p(p = DIVa®e(t, o [H1fe(, ), (3.3)

where we have used the positivity of qm (fe, fe)-
On the other hand, using Holder’s inequality it is straightforward to find
that

lloe(t, M Leiry < e@IFe(t)p,

o(p) = (/RN@—'”JQ dv)w.

As a consequence of the Hardy-Littlewood-Sobolev Theorem (see [16]), for p >
N/2, we find

where

1V ®e(t, Mo mvy < ep) (loe(t, Mz + loe(t, Mlzrmn)) -

Therefore, combining the above estimates in (3.35) we have

%Illfe(t, M < @) (1 fo.ellLrimey + MFet ) MFet )1 (3.36)

From (3.36) we deduce the announced result 1).
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These bounds ensure that p. is uniformly bounded in L*°(0,7™; Ll(]RN) N
Lp(]RN)), with p > N/2, and j. in LOO(O,T*;L‘](]RN)), for ¢ €]1,p]. As a
consequence, we have (3.29).

The estimates given in Lemma 3.5 imply the strong convergence in L! (]RZN)
of the sequence of functions {f.}, ., for t € [0,7%], by applying a result of F.
Bouchut and J. Dolbeault, see [6]. Also, (3.29) allows to pass to the limit in the
nonlinear term.

Let us now give some consequences of the previous Lemma 3.5 which will be
useful in Section 5 to deduce the limit equation and that improve the estimates
in Lemma 2.3.

Lemma 3.6 Under the hypothesis of Lemma 3.5, we have

1. qu(fe, fe) verifies
qu(fe, fo) = O(€?) in L=(0,T%; L' (IR*Y));

2. the current density je is of order € in L*(0,T%; LZ(]RN)).
Proof. The first assertion can be deduced form (3.34), which also implies

[t e ()]
ff Vo f662

Then, for p = 2 in (3.37) we obtain that

| 2

eI g1 d(e,v) = O(eY). (3.37)

v, (fﬁe@) = O(¢) in L™=(0,T%; L*(R*Y))

and, hence, we have that

Je :/ Vo (fee%) e~
[RN

is O(e) in L®(0,T*; L*(R™)).

4. Global in time weak convergence in N=2
i From Lemma 2.4 we have that
pe (1 + || + |Inpe|) is bounded in L (0, T; L*(IR?)) (4.38)

with bounds independent of ¢, which gives the weak Ll(]Rz) convergence of the
sequence {p¢}esp for t € [0,T], VI > 0. This property is enough to pass to the
limit in dimension N = 2 on the continuity equation for the density. In fact,
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as we will see in the next Section the following nonlinear term appears in the

equation for p,
1 =z
qu)epe = ( |l‘|2 pe) Pes

or, by using (1.3), in a weak sense

/T/QV D (t,x)pe(t, 2)p(t, x) dt da

- 271'/ / |2Pe (t,y)pe(t, 2)p(t, x) dt d(y, ),

where ¢ € C3°([0,T) x IR?).

Note that due to the antisymmetric property of the kernel K5 we can write

T
0 R* 1R4

1 x—

y
5Pl y)pe(t, t,x).
2F|$_y|2p( y)pe(t, v)p(t, v)

being
U(t,z,y) =

Hence, the nonlinear term can be written as follows

t — Wt
/ / (t,z,y) dt d(y,=z) / / ,9) (t,y,2) dt d(y, =)
R4 R*

1 T/ lo(t, x) — o(t, )|
< (Y pe(t, x : : dt d(y, z).
S m4p( )pe(t, x) 2 =l (y,2)

Since ¢ is regular, in particular Lipschitz, the above expression for the nonlinear
term allows to pass to the limit with the only property of the weak Ll(]Rz)
convergence of the sequence {p.}eso, for ¢ € [0,T], VT > 0. Then, we have

1 1
Ve®epe = ( i pﬁ) pe — (—i*p)p = V,.Pp inD. (4.39)

or |x|? 2 |a|?

This cancellation property of the 2-D Poisson kernel was used previously
in the framework of the study of weak solutions for the Euler equations, see
S.Schochet [14] and the references therein. We also remark that the above proof
shows that

x

1
Ve®e = ———xp

2 |a|?
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5. The parabolic limit equation

., From the results in Section 2 we have that

fe (1+ ||+ |v* + [Infe]) is bounded in L*(0,T; L (IR*Y)), (5.40)
V. ®. is bounded in L°°(0, T; L*(RY)) (5.41)
and
he = % (QVU\/E—H) fﬁ) is bounded in L(0,T; L2(R2Y)),  (5.42)
for all 7" > 0.

Using (5.40), the fact that the current density is O(e) in L*°(0, T} Ll(]RN)),
which is given in Lemma 2.3, and the continuity conservation law for p. in the
sense of distributions

1, .
8tpe + —divgje =0,
€

we can deduce that pe lies in a weakly compact set of L' and Ot pe 18 bounded
in L*°(0, T W‘l’l(]RN)), which provides the continuity in time of the sequence

{p6}6>0~
We will try to obtain the convergence properties of j./¢, as ¢ — 0, to ob-

tain the parabolic limit from the continuity equation for p.. Then, multiplying
equation (1.1) by v/e, we find that

N
edrje + divx/ v@ufedv + NV, P.p. = —7J. (5.43)
RN €

1s satisfied in the sense of distributions.
Taking into account that

/ v@ Vyfe dv = —Np:lIn,
i
where Iy is the identity matrix of IR™, we have

/ v®@vfe dv— Npcly
RV

= E/Nhﬁ(g@v\/ﬁ dv = Ofe) in L*(0,T; L*(RY)). (5.44)

In the same way, using now Lemma 3.6 we have

/ v@uf. dv— Np.dy = O(e) in L®(0,7%; L*(RY)). (5.45)
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Also, for the strong convergence result we have that the current density j. is of
order € in L*°(0,T™; LZ(]RN)), see Lemma 3.6 and the nonlinear term converges
in Ll(]RZN) fort € [0, T*]. We pass to the limit in a similar way in both cases of
weak convergence (N = 2 and ¢ € [0,00)) and of strong convergence (N = 2,3
and ¢ € [0, T*]), with more properties in the strong convergence case. Therefore
we omit the continuous reference to every case from now on.

Thus, we pass to the limit in (5.43). For the nonlinear term we find

Ve®@epe = 0Ky *p)pe — (KN xp)p = Vi Pp. (5.46)
On the other hand, (5.44) or (5.45) imply

/ v@ufedv — Np Id (5.47)
RN
Therefore, we conclude

1

zjﬁ = —Vgep— V. Pp. (5.48)

Taking into account this relation in the continuity equation for p., we obtain
that p verifies
Oep — divy (Vep + Vi @p) =0 (5.49)

in the sense of distributions.
Since p. lies in a compact set of C°(0,T; W~=11(2)) for every compact Q C
IRY, we have also that

poclz) = /mN foe(z,v) dv — p(0,2) (5.50)
which gives the Cauchy data. We also get :
Ve = Ky *p (5.51)
Then, we have proved the following result

Theorem 5.7 Assume that

[ (bRl o) dee) + [ 1900, do < oo
]:R2N ]:RN

(5.52)
Then, we have that

1. for® =1 and N = 2 the sequence {p }eso converges in L°°((0,00); L' (IR?)
weak) weakx towards a solution p of (5.49), (5.51) with initial data given
by (5.50); the same result is still valid assuming for 8 = —1 the following
hypothests

R

|Vo®(t,2)|* de < oo (5.53)
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[v]?

2. if the initial data also satisfies 7 foe € LP(R™Y), with N =2 or 3
and p > N/2, then there exists a finite T* > 0 such that the sequence
{feteso converges strongly in Ll(]RZN) towards (271')_%p(t,x)e_%, for
t €[0,7%], and p € L*(RN) N LP(RYN) solves (5.49), (5.51) with initial
data given by (5.50).

6. Appendix: The VPFP system and the phys-
ical constants

The idea of this section is to write the VPFP system in terms of the physical
constants: the scaled thermal velocity and the scaled thermal mean free path.
This will allow to study the behavior of solutions with respect to these constants,
see [15]. Consider the VPFP system in the case of charged particles interacting
through electrostatic forces.

g_{+(v.vx)f+%(vx<b~vv)f = L() (6.54)
—egA,® = —bp, p(t,z) = f(t,z,v) dv (6.55)
F0,2,v) = fo(z,v) (6.56)

where
—lv]? lvl?

L(f) = gvv(e BV, (e

),

f# = 1, m is the particle mass, ¢; the permitivity of vacuum, 7 the relaxation
time and where /it is the thermal velocity.

There is a microscopic variation of v which is |/t and a macroscopic mean
velocity associated with the distribution of particles f given by

_ me vf dv
Uy = m

Hence, we choose a scaling such that
v — QU

r — Rx

t— Tt
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with % = up. To adimensionalize the Poisson equation, we introduce a charac-
teristic value of concentration M and a characteristic variation of the potential
®g over a typical length R. We perform the change of unknowns

M
f— 1.
v
P — PP,
choosing ®¢ = %MRZ, to obtain
AP = bp

We remark that we control only two constants (the rest are physical con-
stants) M, which depends on the size of the initial data and R (or ug). We are
now ready to adimensionalize the Fokker-Planck equation by using the re-scaling

Vi

a =
up
for the scaled thermal velocity, and
_ TVH
b= R
for the scaled thermal mean free path. Then, our system reads
of 1 a
— Vg —(Ve® - -Vo,)f = =L(/f), 6.57
Aol VoS + 5 ) = S0 (6.57)
A, = 8p, (6.58)
f(0’$av) = f0($av)a (659)
where
[v]? L?

L(f) = Vo(e™= Vile = f).

The same result holds (with different physical constants) for massive particles
interacting through gravitationnal forces. In this case § = —1.

Now, the idea is to study the stability of solutions to the VPFP system with
respect to « and (3.

As soon as we choose a = 1/ equation (6.57) becomes equation (1.1),
which has been studied in this paper. The analysis of solutions to the system
(1.1)-(1.5) as 3 goes to zero leads to the parabolic limit of the VPFP system.

The hyperbolic limit consists in assuming that ¢« = 1 and 3 — 0. We
conjecture that in this case we will find the following limit behaviour

N _lv—veel?
f— (2m)=p(t,x)e 2
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where p(t, ) satisfies the following continuity equation with non-bounded en-

ergy:

dp

L V. (pV.®) = 0,
g T Ve(pVa®)

which will be studied in a forthcoming publication.
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