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PARABOLIC LIMIT FOR VPFP SYSTEM 2��(t; x), with (t; x; v) 2 IR+ � IRN � IRN , N = 2 or 3, as follows�2@f�@t + � ((v � rx)f� � (rx�� � rv)f�) = L(f�); (1.1)L(f�) def= �vf� + divv(vf�) = divv �e� v22 rv �e v22 f��� ; (1.2)�rx�� = �KN � ��; �� = ZIRN f� dv; (1.3)f�(0; x; v) = f0;�(x; v); (1.4)where L de�ned as in (1.2) is the Fokker-Planck operator andKN is the gradientof the fundamental solution of the Laplacian in dimension N . The parameter� = +1 in the electrostatic case and � = �1 in the gravitational case. Thepotential is given by �� = ��� 14� 1jxj � ��; N=3� 12� logjxj � ��; N=2. (1.5)We will assume that the initial data satis�esZIR2N f0;� �1 + jxj2 + jvj2 + jlnf0;�j� d(x; v) + ZIRN jrx�0;�j2 dx < +1: (1.6)Depending on the dimension we will prove two kind of results. In dimensionN = 2 or 3 we prove that there exists T � > 0 depending only on the initial dataf0;� such that for all t 2 [0; T �] the solution f� tends strongly in L1, as � ! 0,to (2�)�N2 �(t; x)e� jvj22 , where � solves the following drift-di�usion equation@�@t � divx(rx�� �rx�) = 0 (1.7)� = ��� 14� 1jxj � �; N=3� 12� logjxj � �; N=2, (1.8)�(0; x) = �0(x); (1.9)�0 being an accumulation point of �0;� = R f0;� dv.In dimension N = 2 and for � = 1, we can obtain a weak convergence resultwhich is global in time. Thus, in this context we will prove that�� * � in L1(0; T ;L1(IR2)) weak* 8T > 0;where � solves (1.7)-(1.9). The same result holds for � = �1 under the additionalhypothesis limsup�!0; t!1 ZIR2 jrx��(t; x)j2 dx <1: (1.10)



PARABOLIC LIMIT FOR VPFP SYSTEM 3Let us remark that the system of equations (1.7), (1.8) may blow up in �nitetime in the case � = �1. Therefore (1.10) cannot be satis�ed in general. Thisassumption prevents in some sense gravitationnal collapse.The study of the stability of solutions of the VPFP system with respect tothe variation of its constant parameters, the scaled thermal velocity and thescaled thermal mean free path, and in particular the case analyzed in this paperin which the scaled thermal velocity is the inverse of the scaled thermal meanfree path and the latter tends to zero, is interesting from di�erent point ofviews. Further than its intrinsic mathematical interest and its applications innumerical simulations, the asymptotic limits here studied allow to establish somelinks between models in di�erent frameworks: Vlasov, drift-di�usion, Euler, ...This kind of results are also related to di�usion approximation techniques whichhave been used widely in various contexts: transport equation of neutronics [2],radiative transfer [3], semiconductors physics [10, 12].The techniques used in this paper are mainly based on the control of thekinetic and potential energy, the entropy of the system and also of some momentsassociated with the density. This implies, via the Dunford-Pettis Theorem, theweak L1(IR2N ) compactness of the sequence f��g�>0 for every time t � 0. In the2-D case this allows, due to the antisymmetry property of the Poisson kernel, topass to the limit in the nonlinear term and, hence, in the continuity equation forthe density. This cancellation property for the singularity in the Poisson kernelwas similarly observed in the study of the existence of solutions for the 2D Eulerequations in Fluid Mechanics, see [14]. For � = �1 and N = 2 or 3, we alsoobtain strong L1(IR2N ) compactness for ff�g�>0 and f��g�>0, but only locallyin time, by means of a weighted norm for the particle distribution involving theassociated Maxwellian. From this estimate we get a bound for ��, independentof �, in some Lp(IRN ), with p > N=2 and, as consequence, an uniform bound inspace for the force �eld rx�� and @t��.Let us summarize the literature concerning the existence results for theVPFP problem. Classical solutions have been studied by H. D. Victory andB. P. O'Dwyer [18] who proved the existence of a locally in time smooth so-lution to the problem (1.1)-(1.4). G. Rein and J. Weckler [13] gave su�cientconditions to prove the global existence of classical solutions in the three dimen-sional case. In the more general setting of weak solutions, we can mention theworks by H. D. Victory [17] and J. A. Carrillo and J. Soler [7] with initial data inLp spaces. F. Bouchut studied in [4] and [5] the regularity of the weak solutionsof this system. A. Majda and Y. Zheng [19] and G. Majda, A. Majda and Y.Zheng [11] obtained the existence of global measure solutions in the 1-D caseby using the relationship with the two dimensional Euler equation with vortexsheet initial data and constructed some relevant explicit solutions, which showthe phenomena of singularity formation in �nite time. Recently, J. A. Carrilloand J. Soler in [8] allow for measures in Morrey spaces as initial data and provethe existence of a locally in time weak solution. Finally, J. A. Carrillo and J.Soler introduced in [9] the concept of functional solution and proved the global



PARABOLIC LIMIT FOR VPFP SYSTEM 4existence of a functional solution when the initial data are only Radon measureswith bounded variation.The rest of the paper is organized as follows: In Section 2 we obtain the apriori estimates on the system which imply the weak L1(IR2N ) compactness forthe sequences ff�g�>0 and f��g�>0. In Section 3 we study the strong L1(IR2N )compactness for the above sequences and uniform in space bounds for rx��which are local in time. Section 4 is devoted to show how the L1(IR2N ) com-pactness of f��g�>0 is enough to pass to the limit for N = 2. In Section 5we obtain the parabolic limit equation. Finally, in Section 6 we motivate theproblem under consideration through the analysis of the VPFP and its physicalconstants: the scaled thermal velocity and the scaled thermal mean free path.2. A priori estimatesWe start by de�ning the concept of weak solution to the problem (1.1)-(1.4).Let QT = [0; T )� IRN � IRN . Given f0 2 L1(IR2N ) we will say that the pair(��; f�) is a weak solution to the VPFP� problem if1. f� 2 L1(IR2N ), �� is given by (1.5),2. f�rx�� 2 L1loc(IR2N ),3. for any 	 2 C10 (QT ), we haveZQT f���2@	@t + � ((v � rx)	� (rx�� � rv)	)� (v � rv)	 +�v	� d(t; x; v)= � ZIR2N f0;�(x; v)	(0; x; v) d(x; v) (2.11)If (��; f�) is a weak solution to the VPFP�, then the distribution function f�can be equivalently obtained as a �xed point of the nonlinear integral equationf�(t; x; v) = 1�N ZIR2N G( t�2 ; x� ; v; �� ; �) f0;�(�; �) d(�; �) �1�N+1 Z t0 ZIR2N r�G( s�2 ; x� ; v; �� ; �) rx��(t� s; �)f�(t� s; �; �) d(s; �; �); (2.12)where G is the fundamental solution to the linear operator@ ~f@t + (v � rx) ~f � L( ~f ):The fundamental solution G can be written as followsG(t; x; v; �; �) = G0 �t; x� � � �(t)�; v � e�t�� ; (2.13)



PARABOLIC LIMIT FOR VPFP SYSTEM 5with x; v; �; � 2 IRN ; t � 0 andG0(t; x; v) = 1(4�)N D(t)N2 e� 14'0(t;x;v);where D(t) = �(2t)2 t� �(t)2 and �(t) = 1� e�t:An explicit formula for '0 was developed in [18]:'0(t; x; v) = 1D(t) Z t0 j�(s)v � e�sxj2 ds:The properties of solutions that we will study in this Section can rigorouslybe obtained from (2.11) by combining the formal arguments to be exposed herewith the choice of an apropriate sequence of test functions in (2.11) for everystudied property. Since a similar rigorous approach that the one given in [1]and [6] can be easily adapted for the properties studied in this Section, we omitthe sometimes tedious and standard regularization procedure in order to givethe main ideas. We refer to [1] and [6] to complete the proofs.The �rst result gives us the mass conservation property as well as an equationfor the kinetic energy, the potential energy and the entropy of the system, i.e.,for the free energy functional.Lemma 2.1 Assume that the initial distribution of particles veri�es that (1 +jvj2 + lnf0;�)f0;� 2 L1(IR2N ) and jr�0;�j 2 L2(IRN ). Then, we have that1. the total mass of the system, i.e. the L1(IR2N ) norm of f�, is preserved;2. the following equation is veri�ed by (��; f�):�2 ddt �ZIR2N � jvj22 + lnf�� f� d(x; v) + �2 ZIRN jrx��j2 dx�= � ZIR2N ���vpf� + 2rvpf����2 d(x; v) (2.14)Proof. The mass conservationkf�(t; �; �)kL1(IR2N ) = kf0;�kL1(IR2N ) (2.15)follows formally by integrating Equation (1.1) in IRNv , which gives the continuityequation for the mass density@t�� + 1�divxj� = 0; (2.16)



PARABOLIC LIMIT FOR VPFP SYSTEM 6in the sense of distributions, where j� is the current density de�ned byj� = ZIRN vf� dv;and then integrating in IRNx . Also, this property can be obtained by integratingEquation (2.12) in IRNx � IRNv .On the other hand, the equation for the balance of energy can be deducedmultiplying (1.1) by jvj2, integrating the result with respect to x and v and thenusing the divergence theorem. Thus we obtain�2 ddt ZIR2N jvj22 f� d(x; v) + � ZIR2N (v � rx��)f� d(x; v)= N ZIR2N f� d(x; v) � ZIR2N jvj2f� d(x; v) (2.17)The second term in the left hand side of (2.17) can be written as followsZIR2N (v � rx��)f� d(x; v) = � ZIRN �� divx�ZIRN vf� dv� dx:Then, taking into account the continuity equation (2.16) for �� we �ndZIR2N (v � rx��)f� d(x; v) = � ZIRN �� @@t �ZIRN f� dv� dx:Now, thanks to (1.3) we obtainZIR2N (v � rx��)f� d(x; v) = ��2 ddt ZIRN jrx��j2 dx:Using this equality, (2.17) becomes�2 12 ddt �ZIR2N jvj2f� d(x; v) + � ZIRN jrx��j2 dx�= N ZIR2N f� d(x; v) � ZIR2N jvj2f� d(x; v): (2.18)Finally, the balance of entropy identity is formally obtained by multiplying(1.1) by lnf�, integrating in x and v and using again the divergence theoremwhich yields �2 ddt ZIR2N f� lnf� d(x; v)= � ZIR2N jrvf�j2 1f� d(x; v) + N ZIR2N f� d(x; v) (2.19)



PARABOLIC LIMIT FOR VPFP SYSTEM 7Adding (2.18) and (2.19) we have�2 ddt �ZIR2N � jvj22 + lnf�� f� d(x; v) + �2 ZIRN jrx��j2 dx�= ZIR2N �2Nf� � jvj2f� � jrvf�j2 1f�� d(x; v): (2.20)Then, since ZIR2N Nf� d(x; v) = � ZIR2N v � rvf� d(x; v);we can write the second member of (2.20) as� ZIR2N 1f� jvf� +rvf�j2 d(x; v)Using now the identity (pf�)�1rvf� = 2rvpf� we �nd the announced result(2.14).Previous Lemma allows to deduce, due to the negativity of the right handside of (2.14), that the free energy functionalE�(t) def= ZIR2N � jvj22 + lnf�� f� d(x; v) + �2 ZIRN jrx��j2 dxis bounded. However, to conclude that the kinetic energy, the potential energyand the entropy of the VPFP� system are uniformly bounded with respect tot 2 [0; T ]; 8T > 0, we must prove that the above functional is also boundedfrom below.Lemma 2.2 Assume � = 1 and that the initial distribution of particles veri�esthat (1+jvj2+lnf0;�)f0;� 2 L1(IR2N ) and jr�0;�j 2 L2(IRN ). Let us also assumefor the case � = �1 the hypothesis (1.10).1. The functional E�(t) is bounded from below and, as consequence, the fol-lowing quantities are bounded for any t 2 [0; T ], with bounds which areindependent of � and t,ZIR2N f�jlnf�j d(x; v) ; ZIR2N jvj2f� d(x; v) ; ZIRN jr��(t; x)j2 dx:2. The sequence ff�g�>0 is weakly compact in L1(IR2N ) for t 2 [0; T ]; 8T > 0.Proof. From Lemma 2.1 we deduce thatE�(t) � E�(0) (2.21)



PARABOLIC LIMIT FOR VPFP SYSTEM 8De�ne ln�f� def= maxf�lnf�; 0g and ln+f� def= maxflnf�; 0g, which giveslnf� = ln+f� � ln�f�: (2.22)To obtain a bound from below for E�(t), we split the domain in three partsff� > e�1g, fe�1 � f� > e�1e� 1b jvj22 g and ff� � e�1e� 1b jvj22 g to �ndf� ln�f� � �f� + e�1e� 1b jvj22 ��1 + 1b jvj22 � ; (2.23)where b > 0 is a constant to be precised. Then, combining (2.21), (2.22) and(2.23) we can obtain, see [6],�1� 1b�ZIR2N jvj2f� d(x; v) + � ZIRN jr��j2 dx + ZIR2N f� ln+f� d(x; v)� E�(0) + c;where c is a constant independent of �. This estimate together with (1.10) for� = �1 gives the �rst assertion of the Lemma.Finally, the estimates given in i) and the Dunford-Pettis theorem imply thatthe sequence ff�g�>0 is weakly compact in L1(IR2N ).As a consequence of Lemma 2.2 we have the following resultLemma 2.3 Let us assume that the initial distribution of particles veri�es that(1+ jvj2+ lnf0;�)f0;� 2 L1(IR2N ) and jr�0;�j 2 L2(IRN ) and that rx�� veri�es(1.10) for � = �1. Then, we have1. the function h� def= ��1 �vpf� � 2rvpf�� veri�eskh�(t; �; �)kL2(IR2N ) � c; (2.24)where c is a constant independent of � and t;2. the current density j� is of order � in L1(0; T ;L1(IR2N )).Proof. The �rst assertion follows from (2.14) and the uniform bounds given inLemma 2.2 for the kinetic energy, the potential energy and the entropy of thesystem.The current density can be written in terms of h� as followsj� = � ZIRN h�pf� dvwhich implies, using the �rst assertion of the Lemma and the mass consevation,that j� = O(�) in L1(0; T ;L1(IR2N ));where O(�) means order �.A similar compactness property can be deduced for the sequence of densities.



PARABOLIC LIMIT FOR VPFP SYSTEM 9Lemma 2.4 Under the hypothesis (1 + jxj2 + jvj2 + lnf0;�)f0;� 2 L1(IR2N ),jr�0;�j 2 L2(IRN ) and (1.10) for � = �1, we have that jxj�� 2 L1(IRN ) and, asconsequence, the sequence f��g�>0 is weakly compact in L1(IRN ) for t 2 [0; T ],8T > 0.Proof. To deduce that jxj�� 2 L1(IRN ) we �rst multiply (1.1) by jxj and inte-grate in IRNx � IRNv to obtain the following equation�2 ddt ZIR2N jxjf� d(x; v) = � ZIR2N xjxj ��ZIR3 vf� dv�dx:Then, aplying Lemma 2.3 ii), which gives j� = O(�) in L1(0; T ;L1(IR2N )), andthe hypothesis jxj2�0;� 2 L1(IRN ), which implies, using the mass conservation,jxj�0;� 2 L1(IRN ), we deduce the expected result.The weak compactness in L1(IRN ) is again a consequence of the �rst assertionandof the Dunford-Pettis theorem applied to the sequence f��g�>0.Remark 2.1. Let us note that under our hypothesis we cannot assure that theinertial momentum ZIR2N jxj2f� d(x; v)remains bounded for t > 0. In fact, from the equation for the inertial momentum�2 ddt ZIR2N jxj2f� d(x; v) = 2� ZIRN x ��ZIRN vf� dv� dx (2.25)we cannot obtain a bound uniform with respect to �.The above weak compactness property in L1(IRN ) is not enough to pass tothe limit on the nonlinear term of equation (1.1). Note that we cannot use Lp,p > 1, a priori estimates because of they all depend on � as it can be directlycalculated from (2.12), see also [7] and [17]. In the two next sections we will givesome results that provide some extra compactness properties which will dependon the dimension N and on the hypothesis on the initial data.3. Strong convergence in a bounded time inter-valIn this Section we will obtain bounds for �� in some Lp, p > N=2, independent of� which implies rx�� 2 L1(IRN ). These estimates give us strong convergencelocally in time. With this in mind, we de�ne the normjjjf jjjp def= �ZIR2N jf jpe(p�1) jvj22 d(x; v)�1=p : (3.26)



PARABOLIC LIMIT FOR VPFP SYSTEM 10Lemma 3.5 Assume that e 1p0 jvj22 f0;� 2 Lp(IR2N ), with p > N=2. Then, thereexists a �nite T � > 0 and a constant c > 0 depending on f0;� and independentof � such that1. the distribution of particles veri�esjjjf�(t; �)jjjp � c; 8t 2 [0; T �]; (3.27)2. the following estimatejj��(t; �)jjLp(IRN ) � c; 8t 2 [0; T �] (3.28)holds for the density;3. the potential veri�esk@t��(t; �)kL1(IRN ) + krx��(t; �)kL1(IRN ) <1: (3.29)Proof. Let H be a convex regular function to be precised. If we multiply theright hand side of (1.1) by H 0(e jvj22 f�), we haveZIRN �L(f�)H0(e jvj22 f�) dv = ZIRN e� jvj22 H00(e jvj22 f�) ����e jvj22 rvf�����2 dv:We de�ne qH(f�; f�) as followsqH(f�; f�) := ZIRN e� jvj22 H00(e jvj22 f�) ����rv�e jvj22 f������2 dv: (3.30)Proceeding in the same way with the other terms in equation (1.1) we �rst�nd for the nonlinear one the following estimateZIRN �(rx�� �rv)f� H 0(e jvj22 ) dv = ZIRN rx�� f� H00(e jvj22 )�rv�e jvj22 f�� dv �jrx��j ZIRN e� jvj22 H00(e jvj22 )e jvj22 f�rv�e jvj22 f��dv �jrx��j�ZIRN f2�H 00(e jvj22 )e jvj22 dv�1=2 qH(f�; f�)1=2: (3.31)Similarly for the others terms we haveZIRN @f�@t H0(e jvj22 f�) dv = @@t ZIRN H(e jvj22 f�)e� jvj22 dv (3.32)



PARABOLIC LIMIT FOR VPFP SYSTEM 11and ZIR2N (v � rx)f�H0(e jvj22 ) d(x; v) = 0: (3.33)Therefore, combining (3.30)-(3.33) we have that a solution of (1.1) satis�esddt ZIR2N H(e jvj22 f�)e� jvj22 d(x; v) + 1�2 ZIRN qH(f�; f�) dx� 1�krx��kL1(IRN ) ZIRN �Z f2�H00(e jvj22 f�)e jvj22 dv�1=2 qH(f�; f�)1=2 dx� 12�2 ZIRN qH(f�; f�)dx + 12krx��k2L1(IRN ) ZIR2N f2�H00�f�e jvj22 � e jvj22 d(x; v):Then, we obtainddt ZIR2N H �f�e jvj22 � e� jvj22 d(x; v) + 12�2 ZIRN qH(f�; f�) dx� 12krx��(t; �)k2L1(IRN ) ZIR2N �f�e jvj22 �2H00�f�e jvj22 � e� jvj22 d(x; v): (3.34)We choose, for 1 < p < 1, H(t) = tp. Then, using the norm (3.27), (3.34)becomesddt jjjf�(t; �)jjjp � 14p(p� 1)krx��(t; �)kL1(IRN )jjjf�(t; �)jjjp; (3.35)where we have used the positivity of qH(f�; f�).On the other hand, using H�older's inequality it is straightforward to �ndthat k��(t; �)kLp(IRN ) � c(p)jjjf�(t; �)jjjp;where c(p) = �ZIRN e� jvj22 dv�1=p0 :As a consequence of the Hardy-Littlewood-Sobolev Theorem (see [16]), for p >N=2, we �ndkrx��(t; �)kL1(IRN ) � c(p) �k��(t; �)kL1(IRN ) + k��(t; �)kLp(IRN )� :Therefore, combining the above estimates in (3.35) we haveddt jjjf�(t; �)jjjp � c(p) �kf0;�kL1(IR6) + jjjf�(t; �)jjjp� jjjf�(t; �)jjjp: (3.36)From (3.36) we deduce the announced result i).



PARABOLIC LIMIT FOR VPFP SYSTEM 12These bounds ensure that �� is uniformly bounded in L1(0; T ?;L1(IRN ) \Lp(IRN )), with p > N=2, and j� in L1(0; T ?;Lq(IRN )), for q 2]1; p]. As aconsequence, we have (3.29).The estimates given in Lemma 3.5 imply the strong convergence in L1(IR2N )of the sequence of functions ff�g�>0, for t 2 [0; T ?], by applying a result of F.Bouchut and J. Dolbeault, see [6]. Also, (3.29) allows to pass to the limit in thenonlinear term.Let us now give some consequences of the previous Lemma 3.5 which will beuseful in Section 5 to deduce the limit equation and that improve the estimatesin Lemma 2.3.Lemma 3.6 Under the hypothesis of Lemma 3.5, we have1. qH(f�; f�) veri�esqH(f�; f�) = O(�2) in L1(0; T �;L1(IR2N ));2. the current density j� is of order � in L1(0; T �;L2(IRN )).Proof. The �rst assertion can be deduced form (3.34), which also impliesZIR2N fp�2� ����rv�f�e jvj22 �����2 e(p�3) jvj22 dt d(x; v) = O(�2): (3.37)Then, for p = 2 in (3.37) we obtain thatrv�f�e jvj22 � = O(�) in L1(0; T �;L2(IR2N ))and, hence, we have thatj� = ZIRN rv �f�e jvj22 � e� jvj22 dvis O(�) in L1(0; T �;L2(IRN )).4. Global in time weak convergence in N=2>From Lemma 2.4 we have that�� (1 + jxj+ jln��j) is bounded in L1(0; T ;L1(IR2)) (4.38)with bounds independent of �, which gives the weak L1(IR2) convergence of thesequence f��g�>0 for t 2 [0; T ]; 8T > 0. This property is enough to pass to thelimit in dimension N = 2 on the continuity equation for the density. In fact,



PARABOLIC LIMIT FOR VPFP SYSTEM 13as we will see in the next Section the following nonlinear term appears in theequation for �� rx���� = � 12� xjxj2 � ��� ��;or, by using (1.3), in a weak senseZ T0 ZIR2 rx��(t; x)��(t; x)'(t; x) dt dx= 12� Z T0 ZIR4 x� yjx� yj2 ��(t; y)��(t; x)'(t; x) dt d(y; x);where ' 2 C10 ([0; T )� IR2).Note that due to the antisymmetric property of the kernel K2 we can writeZ T0 ZIR4 	(t; x; y) dt d(y; x) = � Z T0 ZIR4 	(t; y; x) dt d(y; x);being 	(t; x; y) = 12� x� yjx� yj2 ��(t; y)��(t; x)'(t; x):Hence, the nonlinear term can be written as followsZ T0 ZIR4 	(t; x; y) dt d(y; x) = Z T0 ZIR4 	(t; x; y)� 	(t; y; x)2 dt d(y; x)� 12� Z T0 ZIR4 ��(t; y)��(t; x) j'(t; x)� '(t; y)j2jx� yj dt d(y; x):Since ' is regular, in particular Lipschitz, the above expression for the nonlinearterm allows to pass to the limit with the only property of the weak L1(IR2)convergence of the sequence f��g�>0, for t 2 [0; T ]; 8T > 0. Then, we haverx���� = � 12� xjxj2 � ��� �� * � 12� xjxj2 � �� � = rx�� in D0: (4.39)This cancellation property of the 2-D Poisson kernel was used previouslyin the framework of the study of weak solutions for the Euler equations, seeS.Schochet [14] and the references therein. We also remark that the above proofshows that rx�� * 12� xjxj2 � �



PARABOLIC LIMIT FOR VPFP SYSTEM 145. The parabolic limit equation>From the results in Section 2 we have thatf� �1 + jxj+ jvj2 + jlnf�j� is bounded in L1(0; T ;L1(IR2N )); (5.40)rx�� is bounded in L1(0; T ;L2(IRN )) (5.41)and h� = 1� �2rvpf� + vpf�� is bounded in L1(0; T ;L2(IR2N )); (5.42)for all T > 0.Using (5.40), the fact that the current density is O(�) in L1(0; T ;L1(IRN )),which is given in Lemma 2.3, and the continuity conservation law for �� in thesense of distributions @t�� + 1�divxj� = 0;we can deduce that �� lies in a weakly compact set of L1 and @t�� is boundedin L1(0; T ;W�1;1(IRN )), which provides the continuity in time of the sequencef��g�>0.We will try to obtain the convergence properties of j�=�, as � ! 0, to ob-tain the parabolic limit from the continuity equation for ��. Then, multiplyingequation (1.1) by v=�, we �nd that�@tj� + divx ZIRN v 
 vf�dv + Nrx���� = N� j� (5.43)is satis�ed in the sense of distributions.Taking into account thatZIRN v 
rvf� dv = �N��IN ;where IN is the identity matrix of IRN , we haveZIRN v 
 vf� dv � N��IN= � ZIRN h� 
 vpf� dv = O(�) in L1(0; T ;L1(IRN )): (5.44)In the same way, using now Lemma 3.6 we haveZIRN v 
 vf� dv � N��IN = O(�) in L1(0; T �;L2(IRN )): (5.45)



PARABOLIC LIMIT FOR VPFP SYSTEM 15Also, for the strong convergence result we have that the current density j� is oforder � in L1(0; T �;L2(IRN )), see Lemma 3.6 and the nonlinear term convergesin L1(IR2N ) for t 2 [0; T �]. We pass to the limit in a similar way in both cases ofweak convergence (N = 2 and t 2 [0;1)) and of strong convergence (N = 2; 3and t 2 [0; T �]), with more properties in the strong convergence case. Thereforewe omit the continuous reference to every case from now on.Thus, we pass to the limit in (5.43). For the nonlinear term we �ndrx���� = (�KN � ��) �� * (�KN � �) � = rx��: (5.46)On the other hand, (5.44) or (5.45) implyZIRN v 
 vf�dv * N� Id (5.47)Therefore, we conclude 1� j� * �rx� �rx��: (5.48)Taking into account this relation in the continuity equation for ��, we obtainthat � veri�es @t�� divx(rx� +rx��) = 0 (5.49)in the sense of distributions.Since �� lies in a compact set of C0(0; T ;W�1;1(
)) for every compact 
 �IRN , we have also that�0;�(x) = ZIRN f0;�(x; v) dv * �(0; x) (5.50)which gives the Cauchy data. We also get :rx�� *KN � � (5.51)Then, we have proved the following resultTheorem 5.7 Assume thatZIR2N f0;� �1 + jxj2 + jvj2 + jlnf0;�j� d(x; v) + ZIRN jrx�0;�j2 dx < +1:(5.52)Then, we have that1. for � = 1 and N = 2 the sequence f��g�>0 converges in L1((0;1); L1(IR2)weak)weak� towards a solution � of (5.49), (5.51) with initial data givenby (5.50); the same result is still valid assuming for � = �1 the followinghypothesis limsup�!0; t!1 ZIR2 jrx��(t; x)j2 dx <1; (5.53)



PARABOLIC LIMIT FOR VPFP SYSTEM 162. if the initial data also satis�es e 1p0 jvj22 f0;� 2 Lp(IR2N ), with N = 2 or 3and p > N=2, then there exists a �nite T � > 0 such that the sequenceff�g�>0 converges strongly in L1(IR2N ) towards (2�)�N2 �(t; x)e� jvj22 , fort 2 [0; T �], and � 2 L1(IRN ) \ Lp(IRN ) solves (5.49), (5.51) with initialdata given by (5.50).6. Appendix: The VPFP system and the phys-ical constantsThe idea of this section is to write the VPFP system in terms of the physicalconstants: the scaled thermal velocity and the scaled thermal mean free path.This will allow to study the behavior of solutions with respect to these constants,see [15]. Consider the VPFP system in the case of charged particles interactingthrough electrostatic forces.@f@t + (v � rx)f + qm (rx� � rv)f = L(f) (6.54)��0�x� = ���; �(t; x) = ZIRN f(t; x; v) dv (6.55)f(0; x; v) = f0(x; v) (6.56)where L(f) = �� rv(e�jvj22� rv(e jvj22� f));� = 1 , m is the particle mass, �0 the permitivity of vacuum, � the relaxationtime and where p� is the thermal velocity.There is a microscopic variation of v which is p� and a macroscopic meanvelocity associated with the distribution of particles f given byu0 = RIRN vf dvRIRN f dv :Hence, we choose a scaling such thatv �! p�vx �! Rxt �! T t



PARABOLIC LIMIT FOR VPFP SYSTEM 17with RT = u0. To adimensionalize the Poisson equation, we introduce a charac-teristic value of concentration M and a characteristic variation of the potential�0 over a typical length R. We perform the change of unknownsf �! Mp�3f;� �! �0�;choosing �0 = 1�0MR2, to obtain �x� = ��We remark that we control only two constants (the rest are physical con-stants) M , which depends on the size of the initial data and R (or u0). We arenow ready to adimensionalize the Fokker-Planck equation by using the re-scaling� = p�u0for the scaled thermal velocity, and� = �p�Rfor the scaled thermal mean free path. Then, our system reads@f@t + �(v � rx)f + 1� (rx� � rv)f = �� L(f); (6.57)�x� = ��; (6.58)f(0; x; v) = f0(x; v); (6.59)where L(f) = rv(e�jvj22 rv(e jvj22 f)):The same result holds (with di�erent physical constants) for massive particlesinteracting through gravitationnal forces. In this case � = �1.Now, the idea is to study the stability of solutions to the VPFP system withrespect to � and �.As soon as we choose � = 1=� equation (6.57) becomes equation (1.1),which has been studied in this paper. The analysis of solutions to the system(1.1)-(1.5) as � goes to zero leads to the parabolic limit of the VPFP system.The hyperbolic limit consists in assuming that � = 1 and � ! 0. Weconjecture that in this case we will �nd the following limit behaviourf �! (2�)N2 �(t; x)e� jv�rx�j22



PARABOLIC LIMIT FOR VPFP SYSTEM 18where �(t; x) satis�es the following continuity equation with non-bounded en-ergy: @�@t +rx(�rx�) = 0;which will be studied in a forthcoming publication.AcknowledgmentsThe second author want to express its gratitude to Jos�e L. L�opez and Jos�e A.Carrillo for some useful discussions.References[1] Bonilla L. L., Carrillo J. A. , Soler J., Asymptotic behaviour of theinitial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math. 57-5 (1997), pp. 1343-1372.[2] Bardos C., Santos R., Sentis R., Di�usion approximation and com-putation of the critical size of a transport operator, Trans. of the Amer.Math. Soc. 284 (1984), pp. 617-649.[3] Bardos C., Golse F., Perthame B., Sentis R., The non accretiveradiative transfert equation, existence of solutions and Rosseland approxi-mation , J. Funct. Anal, 88 (1988) pp. 434-460.[4] Bouchut F., Existence and Uniqueness of a Global Smooth Solution forthe VPFP System in Three Dimensions, J. of Func. Anal. 111 (1993), pp.239-258.[5] Bouchut F., Smoothing e�ect for the non-linear VPFP system, J. Di�.Equations 122 (1995), pp. 225-238.[6] Bouchut F., Dolbeaut J., On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system withcoulombic and newtonian potentials, Di�. and Integ. Equations, 8 (1995),pp. 487-515.[7] Carrillo J. A., Soler J., On the initial value problem for the VPFPsystem with initial data in Lp spaces, Math. Meth. in the Appl. Sci. 18(1995), pp. 825-839.[8] Carrillo J. A., Soler J., On the Vlasov-Poisson-Fokker-Planck equa-tions with measures in Morrey spaces as initial data, J. Math. Anal. Appl.207 (1997), pp. 475-495.
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