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Long run and numeraire Robust forward performance criteria Conclusions

Motivating questions

How to develop a robust approach to optimal investment?

A long run investor will see one path... can we make sense of
optimal investment questions pathwise?

Can we justify fractional Kelly strategies used by large
diversified funds?

The usual criterion supE[U(XT )] involves (at least) two
arbitrary choices: model P and utility U. The resulting
optimal investment strategy in an entangled result of these
two choices. Can we disentangle their influence?
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Setup
Consider

a general continuous semimartingale market (S1
t , . . . ,S

d
t )

denominated in units of a baseline asset
(i) which admits no opportunity for arbitrage of the first kind;
(ii) and there exists X ∈ A such that Xt →∞ a.s.

where A =
{

X : X = 1 +
∫ ·

0

(∑d
i=1 H i

tdS i
t

)
≥ 0
}

.

Theorem

(i) is equivalent to existence of X̂ ∈ A such that X/X̂ is a
supermartingale ∀ X ∈ A.
Then (ii) is equivalent to limt→∞ X̂t =∞ a.s.

Note that X̂ solves the log-utility problem on [0,T ]:

E
[

log

(
XT

X̂T

)]
≤ E

[
XT

X̂T

− 1

]
≤ 0.
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Background: Kelly’s strategy

Kelly argued that a long-run investor should chose X̂ – the growth
optimal portoflio (numéraire, benchmark). It has a very attractive
pathwise property that

lim
t→∞

Xt

X̂t

≤ 1 a.s., for any investment X , X0 = X̂0.

Many, including Markowitz, found this appealing.

Samuelson argued (in words of one syllable) that X̂ does not take
into account risk preferences and one should look at general utility
maximisation instead. But this requires arbitrary choices of model
and preferences.

Practically both are troublesome: estimating drift is hard and utility
elucidation often yields different and contradictory outcomes.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Background: drawdown constraints
Consider an increasing function w : R→ R with w(x)/x ≤ α < 1.
Let Aw := {X ∈ A : Xt ≥ w(supu≤t Xu), t ≥ 0}.

Theorem (Cherny & O. (2013))

Let ˜log(−x) = − log(x), x > 0. Under v mild assumptions on U:

sup
X∈Aw

RU(X ) = sup
X∈A
RU◦Fw (X ),

where RU(X ) := lim sup
T→∞

1

T
˜logE [U(XT )] ,

and Fw depends only on w. Further if Y solves the RHS then
V = MFw (Y ), the Azéma–Yor transform of Y

dVt =
(
Vt − w(sup

u≤t
Vu)
)dYt

Yt
= F ′w

(
sup
u≤t

Yu

)
dYt ,

solves the LHS.
New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Resulting ideas

Kelly’s pathwise outperformance is an attractive investment
criteria.

Drawdown constraint are an effective way of encoding
preferences, and are used in practice.

⇒ Seek pathwise outperformance and encode preferences via
pathwise constraints.

Specifically, we consider linear drawdown: w(x) = αx , α ∈ (0, 1)
and Aα = {X ∈ A : Xt ≥ α supu≤t Xu, t ≥ 0}.
In the unconstrained case Xt/X̂t is always a supermartingale.
However such process in general fails to exist within the class Aα.
A new criterion is needed!

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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The Numéraire (benchmark) property
For a stopping time T and X ,X ′ ∈ A, define

rrT (X |X ′) := lim sup
t→∞

(
XT∧t − X ′T∧t

X ′T∧t

)
= lim sup

t→∞

(
XT∧t
X ′T∧t

)
− 1,

the return of X relative to X ′ over the period [0,T ].
Note that we may have ErrT (X |X ′) ≥ 0 and ErrT (X ′|X ) ≥ 0
however ErrT (X |X ′) ≤ 0 implies ErrT (X ′|X ) ≥ 0.

Definition

We say that X ′ has the numéraire property in a certain class of
wealth processes for investment over the period [0,T ] if and only if
ErrT (X |X ′) ≤ 0 holds for all other X in the same class.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Finite horizon – existence and uniqueness

Theorem

Let T be a finite stopping time. There exists a unique Z̃ ∈ Aα
such that ErrT (Z |Z̃ ) ≤ 0 holds or all Z ∈ Aα.
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Finite horizon – existence and uniqueness

Theorem

Let T be a finite stopping time. There exists a unique Z̃ ∈ Aα
such that ErrT (Z |Z̃ ) ≤ 0 holds or all Z ∈ Aα.

Proof:
Existence via Optional Decomposition + Convexity and
boundedness in proba of Aα + Kardaras (2010) + limiting
passages + drawdown specific.
Uniqueness via strategy switching at times of maximum.
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Finite horizon – existence and uniqueness

Theorem

Let T be a finite stopping time. There exists a unique Z̃ ∈ Aα
such that ErrT (Z |Z̃ ) ≤ 0 holds or all Z ∈ Aα.

Rk: Z̃ solves the log-utility problem on [0,T ]:

E
[

log

(
ZT

Z̃T

)]
≤ E

[
ZT

Z̃T

− 1

]
= ErrT (Z |Z̃ ) ≤ 0.

Rk2: However, in general Z̃ depends on T . In particular, the
global numéraire X̂ solves the problem up to the first time it
violates the α-DD constraint.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Recall that X̂ is the global numéraire (growth optimal) portfolio. From
Cherny & O. (’13) we know that

αX̂ := MFα
t (X̂ ) solves the long-run log-utility maximisation in Aα,

the mapping X → αX := MFα
t (X ) is a bijection between A and Aα.

Theorem

For any α ∈ [0, 1) and X ∈ A, we have:

1 limt→∞(αXt/
αX̂t) exists in R+ a.s. Moreover,

rr∞(αX |αX̂ ) =

(
lim
t→∞

(
Xt

X̂t

))1−α

− 1 =
(

1 + rr∞(X |X̂ )
)1−α

− 1.

2 for σ and τ two times of maximum of X̂ with σ ≤ τ we have

E
[
rrτ (αX |αX̂ )

∣∣ Fσ] ≤ rrσ(αX |αX̂ ) a.s.

In particular, letting σ = 0, Errτ (Z |αX̂ ) ≤ 0 holds for any α ∈ [0, 1)
and Z ∈ Aα.
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More on asymptotic optimality

The previous result allows to show easily that αX̂ maximises
the growth rate in Aα, extending Cvitanic and Karatzas ’94.

We also show that αX̂ is the only process with the numéraire
property along a sequence Tn →∞ a.s.

Further, when T is large the numéraire over [0,T ] will be
close (initially in time) to αX̂ :

Theorem

Consider a sequence of stopping times Tn →∞ a.s. and let
αX̃ n ∈ Aα have the numéraire property in Aα over [0,Tn]. Then
αX̃ n → αX̂ (locally) in Emery’s topology.

Rk. This implies that both the wealth processes and the
investment strategies converge.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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The End: Moral

We obtained a framework where a long term investor’s optimal
strategy was

dαX̂t =
(
αX̂t − α sup

u≤t

αX̂u

)dX̂t

X̂t

.

Preferences (α) and model (X̂ ) are decoupled.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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So far we obtained a framework where a long term investor’s
optimal strategy was

dαX̂t =
(
αX̂t − α sup

u≤t

αX̂u

)dX̂t

X̂t

.

Preferences (α) and model (X̂ ) are decoupled but still a perfect
knowledge of X̂ is assumed.

We would like to advance a framework where

time horizon is arbitrary (neither fixed nor +∞)

X̂ is dynamically estimated and investor’s trust in the
estimate is reflected in the strategy.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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We now combine the idea of forward performance/horizon
unbiased with variational preferences under model uncertainty
(Musiela & Zariphopoulou ’09; Henderson & Hobson ’07; Gilboa &

Schmeidler ’89; Maccheroni, Marinacci & Rustichini ’06; Schied ’07).

Definition (Protagonists:)

A utility random field U : Ω× [0,∞)× R→ R is (Ft)–prog.
measurable and

∀ (ω, t) ∈ Ω× [0,∞), U(ω, ·, t) is a (nice) utility function

U(ω, x , ·) is càdlàg and U(·, x , t) ∈ L1(Ft).

A family of penalty functions

γt,T : {Q : Q� P on FT} → [0,∞]

convex, l.s.c., finite on a weakly compact set.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Definition (Dynamic consistency:)

The pair U and γt,T is a robust forward performance (or is time
consistent) if

EQ[U(T , x)] is well defined in (−∞,∞] for all T , x for Q
with γt,T (Q) <∞,

U(ξ, t) = u(ξ; t,T ) a.s. ∀0 ≤ t ≤ T <∞, ξ ∈ L∞(Ft),

where u is the value function

u(ξ; t,T ) := ess sup
π∈Abd

ess inf
Q∈QT

{
EQ

[
U

(
ξ +

∫ T

t

πudSu,T

)∣∣∣Ft

]
+ γt,T (Q)

}
.

New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Consider (Ω,F , (Ft),P) with (Ft) generated by a (1 or d-dim)
Brownian motion W , prog. measurable λ, σ and

dSt = Stσt(λtdt + dWt), t ≥ 0.

This is “true” model, unknown. Instead agent builds her “best
prediction” or most likely model described by λ̂ with P̂ ∼ P on FT ,
for all T > 0, where

dP̂
dP

∣∣∣
FT

= E
(∫ ·

0
(λ̂s − λs)dWs

)
T

.

Observe that

dSt = Stσt(λ̂tdt + dŴt), for a P̂ Brownian motion Ŵ .

P̂ is “reasonable” in that Ê[
∫ T

0 λ̂2
sds] <∞, T > 0.

Given Q� P̂ on FT we write Q = Qη̂ where

dQ
dP̂

∣∣∣
FT

= E
(∫ ·

0
η̂sdŴs

)
T

.
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Logarithmic preferences

Propositon

Let λ̂ as above and δ ≥ 0 prog. measurable. The utility field

U(x , t) := ln x − 1

2

δt
1 + δt

∫ t

0
λ̂2
sds

and the penalty function

γt,T (Q) := EQ
[∫ T

t

δs
2
η̂2
s ds
∣∣∣Ft

]
if EQ

[∫ T

t

δs
1 + δs

λ̂2
sds

]
<∞

and +∞ elsewhere, form a robust forward criteria.
Investor’s optimal wealth process evolves as

dX π̄
t =

δt
1 + δt

λ̂t
σt

X π̄
t

dSt

St
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Remarks

The choice of learning and investor’s confidence,
i.e. choice of λ̂ and δ, arbitrary!

Under P̂ the Kelly/growth optimal portfolio is

dX̂t =
λ̂t
σt

X̂t
dSt

St

The investor follows a fractional Kelly strategy, investing a
fraction δt

1+δt
of her wealth

dX π̄
t =

δt
1 + δt

X π̄
t

dX̂t

X̂t

=
δt

1 + δt

λ̂t
λt

λt
σt

X π̄
t

dSt

St
=

δt λ̂t
1 + δt

1

σt
X π̄
t

dSt

St
.

which is the Kelly strategy under P̄ := Qη̄ for η̄t := −λ̂t
1+δt

.
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First Proof (direct)

W.l.o.g. t = 0. Given π and Q = Qη̂ define

Nπ,η̂
t := U(X π

t , t) +

∫ t

0

δu
2
η̂2
udu = ln Xπ

t −
∫ t

0
λ̂udu +

∫ t

0

δu
2
η̂2
udu

Then

u(x0; t,T ) = ess sup
π∈A

ess inf
Q∈QT

{
EQ [U (Xπ

T ,T )] + γ0,T (Q)
}
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First Proof (direct)

W.l.o.g. t = 0. Given π and Q = Qη̂ define

Nπ,η̂
t := U(X π

t , t) +

∫ t

0

δu
2
η̂2
udu = ln Xπ

t −
∫ t

0
λ̂udu +

∫ t

0

δu
2
η̂2
udu

Then
u(x0; t,T ) = ess sup

π∈A
ess inf
Q∈QT

EQ
[
Nπ,η̂
T

]
A direct computation gives ∀π ∈ A, Nπ,η̄

t is a supermartingale

u(x0; 0,T ) ≤ ess sup
π∈A

EP̄
[
Nπ,¯̂η
T

]
≤ Nπ,¯̂η

0 = U(x0, 0).
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Dual field
Consider now a general semimartingale setup, U on R and A = Abd .
Let V be the Fenchel transform of U: V (t, y) = supx∈R(U(t, x)− xy).

Definition (3rd protagonist: the Dual field)

Given a utility field U and a penalty function γ, the dual field v is

v(η; t,T ) := ess inf
Q∈QT

ess inf
M∈MQ

T

{
EQ
[
V
(
ηZMQ

t,T ,T
) ∣∣∣Ft

]
+ γt,T (Q)

}
,

for η ∈ L0
+(Ft) and where ZMQ

t,T = dM
dQ

∣∣∣FT · dQdM
∣∣∣Ft and MQ

T are Q–abs.

cont. local martingale measures.
The pair of dual field V and the family of penalty functions γt,T is
time-homogeneous if

V (η, t) = v(η; t,T ) a.s.

for all 0 ≤ t ≤ T and η ∈ L0
+(Ft).

Rk: Global inf instead of a saddle point!
New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Duality theorem

Theorem

(under some integrability and compactness assumptions) The primal
and dual value functions satisfy

u(ξ; t,T ) = ess inf
η∈L0

+(Ft)
(v(η; t,T ) + ξη) a.s.

v(η; t,T ) = ess sup
ξ∈L∞(Ft)

(u(ξ; t,T )− ξη) a.s.
(1)

for all 0 ≤ t ≤ T , ξ ∈ L∞(Ft) and η ∈ L0
+(Ft).

Proof: Follows the ideas in Schied ’07 but using duality in
Zitkovic ’09 instead of Kramkov & Schachermayer ’99.

Corollary

U and γ are time-consistent if and only if V and γ are.
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To model uncertainty and back
Consider again a Brownian filtration, estimated model P̂, and

γt,T (Q) := EQ

[∫ T

t

gu(η̂u)du
∣∣∣Ft

]
,

gt convex, l.s.c., gt(η) ≥ −a + b|η|2. If U, γ are time-consistent and a
saddle point (π̄, η̄) exists we have

U(x , t)+

∫ t

0

gu(η̄u)du = sup
π∈A

EQ̄

[
U

(
x +

∫ T

t

πudSu

)
+

∫ T

0

gu(η̄u)du
∣∣∣Ft

]
and hence, in the spirit of Skiadas ’03, the problem is equivalent to

non-robust forward performance criteria Ū(x , t) = U(x , t) +
∫ t

0
gu(η̄u)du

under Q̄. Or yet, to the (non-robust) forward problem under P with

Ũ(x , t) :=
dQ̄
dP

∣∣∣
Ft

· Ū(x , t) =
dQ̄
dP

∣∣∣
Ft

(
U(x , t) +

∫ t

0

gu(η̄u)du

)
.

Note that Ũ necessarily has non-trivial volatility.
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Note that Ũ necessarily has non-trivial volatility.
New perspective on fractional Kelly Vienna, Aug 2013 Jan Ob lój
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Non-volatile criteria

Time consistency of the dual field boils down to

V (yZMQ
t , t) ≤ EQ

[
V
(

yZMQ
T ,T

) ∣∣∣Ft

]
+ γt,T (Q)

with equality for some M̄, Q̄.

We expect V to follow

dV (y , t) = b(y , t)dt + a(y , t)dWt

which should lead to SPDE for V (or U).

In the non-robust setting (g ≡ 0) we recover

dU(x , t) =
1

2

|λtUx(x , t) + σtσ
′
t ãx(x , t)|2

Uxx(x , t)
dt + ã(x , t)dWt
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Non-volatile criteria (cont.)
Now, if a ≡ 0 the submartingale property ⇒ a random PDE

Vt(y , t) + inf
η

{
g(η) +

y 2Vyy (y , t)

2
(η + λ)2

}
= 0, a.s., t ≥ 0.

Existence? Two difficulties:

non-linearity: optimal η̄ in function of Vyy

solving for all t ≥ 0: even if g ≡ 0, changing variables
Vy (y , t) = −h(ln y + 1

2

∫ t
0 λ

2
udu,

∫ t
0 λ

2
udu), we obtain

ht(y , t) +
1

2
hyy (y , t) = 0, a.s., t ≥ 0

the backward heat equation. Solutions characterised by
Widder’s thm.

Taking V (y , t) = − ln y +
∫ t

0 budu and g quadratic leads to the
logarithmic example.
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Existence? Two difficulties:

non-linearity: optimal η̄ in function of Vyy

solving for all t ≥ 0: even if g ≡ 0, changing variables
Vy (y , t) = −h(ln y + 1

2

∫ t
0 λ

2
udu,

∫ t
0 λ

2
udu), we obtain

ht(y , t) +
1

2
hyy (y , t) = 0, a.s., t ≥ 0

the backward heat equation. Solutions characterised by
Widder’s thm.

Taking V (y , t) = − ln y +
∫ t

0 budu and g quadratic leads to the
logarithmic example.
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Conclusions

We present two portfolio choice problems which avoid the classical
pitfalls and produce practically relevant strategies.

Long run investor can both use pathwise outperformance and
encode risk preferences by setting drawdown constraints. This
decouples the ambiguity in specification of model (finding growth
optimal portfolio) and preferences (setting drawdown level α).

We consider variational preferences in the setting of model
uncertainty and focus on time-consistent (forward) criteria. In
particular, we show that fractional Kelly strategies which use a
(dynamic) estimate of the true model are optimal.

⇒ It would be interesting to find another instances where preferences
are effectively encoded via restrictions on the set of trading
strategies.

⇒ Is it true that complexity of decision criteria (e.g. stochastic
utilities) can be understood as simpler criteria but under model
uncertainty? Can analyse the (S)PDEs which arise?
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THANK YOU!
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and long-term growth optimality for drawdown-constrained
investments, arXiv:1206.2305.
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