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I. Generating Brownian increments by Skorokhod stopping times



Simulating Brownian motion B = (Bt)t≥0
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Simulating Brownian motion B = (Bt)t≥0

Algorithm 1. (Euler)

I (τ0,X0) = (0, 0)

I Draw {
Xk+1 = Xk + Nk with Nk ∼ N (0, 1)
τk+1 = τk + 1

I Gives (τk ,Xk)k≥0 =L (τk ,Bτk )k≥0



...can be seen as Skorokhod embedding
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I (τ0,X0) = (0, 0)

I Draw {
Xk+1 = Xk + Nk with Nk ∼ N (0, 1)
τk+1 = τk + 1

I Gives (τk ,Xk)k≥0 =L (τk ,Bτk )k≥0

τ1 ≡ 1 solves SEP Bτ ∼ N (0, 1)
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Algorithm 1 (Euler)
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τk+1 = τk + 1
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τ1 solves SEP Bτ ∼ N (0, 1)

Algorithm 2 (Bichteler�Karandhikar)
I (τ0,X0) = (0, 0)
I Draw{

Xk+1 = Xk + Nk with P (Nk = 1) = P (Nk = −1) = 1

2

τk+1 = τk + Dk with Dk s.t.E [expλDk ] = 1

cosh(
√
2λ)

I Gives (τk ,Xk)k≥0 =L (τk ,Bτk )k≥0

τ1 solves SEP Bτ ∼ 1

2
δ−1 + 1

2
δ1
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Root's barrier

I τ1 solution of SEP Bτ1 ∼ µ
I in algorithm 1 µ = N (0, 1)
I in algorithm 2 µ = 1

2
δ−1 + 1

2
δ1

I τ1 hitting time of time-space process t 7→ (t,Bt)

τ1 = inf {t > 0 : (t,Bt) ∈ R}

I in algorithm 1 R = {(s, x) : s ≥ 1, x ∈ R}
I in algorithm 2 R = {(s, x) : s ≥ 0, |x | ≥ 1}

Theorem (Root's barrier, 1968)

Let µ be centered and have �nite second moment. Then there

exists a closed set

R ⊂ [0,∞]× [−∞,∞]

such that τR := inf {t ≥ 0 : (t,Bt) ∈ R} solves the Skorokhod
embedding Bτ ∼ µ, Bτ = (Bt∧τ )t≥0 u.i.
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I in algorithm 1 R = {(s, x) : s ≥ 1, x ∈ R}
I in algorithm 2 R = {(s, x) : s ≥ 0, |x | ≥ 1}

Theorem (Root's barrier, 1968)

Let µ be centered and have �nite second moment. Then there

exists a closed set

R ⊂ [0,∞]× [−∞,∞]

such that τR := inf {t ≥ 0 : (t,Bt) ∈ R} solves the Skorokhod
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Better: solve SEP with µ = U [−1, 1]
Corollary

∃r ∈ C (R, [0,∞)) s.t. R = {(t, x) : t ≥ r (x)} is the Root barrier
for the SEP Bτ ∼ U [−1, 1].

0 r(Bτ ) 0.5

time t

-1

0

Bτ

1

sp
a
ce

 x

r(Bτ )



Algorithm 3

I (τ0,X0) = (0, 0)

I Draw {
Xk+1 = Xk + Uk with Uk ∼ U [−1, 1]
τk+1 = τk + r (Uk)

I Then (τk ,Xk)k≥0 =L (τk ,Bτk )k≥0.

I Trivial to simulate (once you know r)
I Increments bounded in space AND time (scaled Monte-Carlo;

example knock-out options)
I Similar schemes without SEP (Milstein�Tretyakov, Lejay,

Deaconu�Hermann, etc.)
I For more applications see Gassiat&Mijatovic&O13



Problem: Find Root barrier R for any given distribution µ
Unfortunately:

I Root's existence proof of barrier R not constructive

Rest of talk:

I 1-1 correspondence of Root barrier and solutions of nonlinear
integral equation

I 1-1 correspondence between Root barrier and viscosity solution
of parabolic obstacle problem (Dupire, Cox�Wang)

I 1-1 correspondence of R with solution of re�ected FBSDE

I Barles�Souganidis for numerical schemes parabolic obstacle
problem
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II. Root barrier and integral equations



Set

g (t, x) = ELxt =

√
2

π

√
te−

x
2

2t − xerfc

(
x√
2
√
t

)
K (r , r , x , y) =

1

2
(g (r − r , x − y) + g (r − r , x + y))

Theorem (Gassiat&Mijatovic&O13)

∃!r ∈ Cb ([−1, 1] ,R≥0) which solves the integral equation

x2 + 1

2
− x = g (r (x) , x)−

ˆ
1

x

K (r (x) , r (y) , x , y) dy

Moreover, if we extend r to R by r (x) = 0 for x ∈ R\ [−1, 1] then

R = {(t, x) : t ≥ r (x)}

is the Root barrier for the SEP Bτ ∼ U [−1, 1].



Potential functions
B one-dimensional Brownian motion; denote semigroup (of
transformations on measures)

(
PB
t

)
. De�ne operator UB

µ 7→ UBµ :=

ˆ ∞
0

PB
t µdt

If µ is a signed measure with µ (R) = 0 then

dUBµ

dx
= −
ˆ
R
|x − y |µ (dy) =: uµ (x)

(rhs well-de�ned also for positive measures with �nite moment).

De�nition
For probability measure µ on (R,B (R)) with �nite �rst moment,
associate with it a function uµ ∈ C (R,R≤0)

uµ (x) = −
ˆ
R
|x − y |µ (dy)

We call uµ the potential function of µ.
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u (t, x) = −E [|Bt∧τ − x |]
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I u (0, x) = uδ0 (x) = −x , u (∞, x) = uU (x) = x2+1

2

I R = {(t, x) : u (t, x) = uU (x)}



I Let R be the Root barrier for Bτ ∼ U [−1, 1], r (x)
s.t. R = {(t, x) : t ≥ r (x)} and ρ (t) = r−1 (t) (positive)

I Tanaka: ∀ (t, x)

u (t, x) = uδ (x)− E [Lxt∧τ ] = − |x | − E [Lxt + 1t>τ (Lxτ − Lxt )]

= − |x | − g (t, x)− E [1t>τ (Lxτ − Lxt )]

I At x = ρt , u (t, ρt) = uU (x) above becomes

uU (ρt) = − |ρt | − g (t, ρt)− E [1t>τ (Lρtτ − Lρtt )]

I Finished if we can write as explicit E [1t>τ (Lρtτ − Lρtt )]
functional of ρ.



I Note P (τ < t) = P (U /∈ [−ρt , ρt ]) = 1− ρt hence

P (τ ∈ dt) = −dρt
I Using Markovianity and symmetry

E [(Lxt − Lxτ ) 1t>τ ] =

ˆ t

0

E [(Lxt − Lxs ) |τ = s]P (τ ∈ ds)

= −
ˆ t

0

E [(Lxt − Lxs ) |τ = s] dρs

= −
ˆ t

0

1

2

(
E
[
Lx−ρst−s

]
+ E

[
Lx+ρs
t−s

])
dρs .

I Putting this into above

uU (ρt) = uδ (ρt)−g (t, ρt)+
1

2

ˆ t

0

=g(t−s,ρt−ρs)+g(t−s,ρt+ρs)︷ ︸︸ ︷
E
[
Lρt−ρst−s

]
+ E

[
Lρt+ρs
t−s

]
dρs

I Finish by change of variable dy = dρ (s):

uU (x) = uδ′ (x)− g (r (x) , x) +
1

2

ˆ x

1

K (r (x) , r (y) , x , y) dy



I Derivation purely probabilistic...no PDE techniques

I Extends to other target distributions (but there are limits)

I Uniqueness of solutions is hard (without using PDE
uniqueness)! see Gassiat&Mijatovich&O13

I Useful? Solving this integral equation is numerically MUCH
MUCH better than solving for free boundary via PDE

I The integral term in

x2 + 1

2
− x = g (r (x) , x)−

ˆ
1

x

K (r (x) , r (y) , x , y) dy

is very small. Hence applying d
dx

to both both sides of
x2+1

2
− x = g (r (x) , x) gives ODE for r which is a very good

approximation.



Root/Rost barriers, viscosity solutions of obstacle problems and
FBSDEs
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Recall viscosity theory

De�nition
O a locally compact subset of R, OT = (0,T )×O for T ∈ (0,∞].
Let u : OT → R and de�ne for (s, z) ∈ OT the parabolic superjet
P2,+
O u (s, z) as the set of triples (a, p,m) ∈ R× R× R which ful�ll

u (t, x) ≤ u (s, z) + a (t − s) + p (x − z)

+m
(x − z)2

2
+ o

(
|t − s|+ |x − z |2

)
as OT 3 (t, x)→ (s, z).
Similarly we de�ne the parabolic subjet P2,−

O u (s, z) such that

P2,−
O u = −P2,+ (−u).



De�nition
A function F : OT × R× R× R× R→ R is proper if
∀ (t, x , a, p) ∈ OT × R× R

F (t, x , r , a, p,m) ≤ F
(
t, x , s, a, p,m′

)
∀m ≥ m′, s ≥ r .

Denote the real-valued, upper semicontinuous functions on OT

with USC (OT ). A subsolution of{
F
(
t, x , u, ∂tu,Du,D

2u
)

= 0
u (0, .) = u0 (.)

(1)

is a function u ∈ USC (OT ) such that

F (t, x , a, p,m) ≤ 0 for (t, x) ∈ OT and (a, p,m) ∈ P2,+
O u (t, x)

u (0, .) ≤ u0 (.) on O

The de�nition of a supersolution follows by replacing upper by
lower semicontinuous, P2,+

O by P2,−
O and ≤ by ≥ .



I If u is a classic C 1,2 ((0,T )× R,R) solution of{
F
(
t, x , u, ∂tu,Du,D

2u
)

= 0
u (0, .) = u0 (.)

then v is also a viscosity solution

I Comparison Theorem (Maximum Principle): u (0, .) ≤ v (0, .),
u sub- and v supersolution implies u ≤ v



Barles-Perthame's semi-relaxed limits

Proposition

Let (un)n ⊂ USC (OT ),O a locally compact subset of R, (Fn) a

sequence of maps

Fn : OT × R× R× R→ R

each un a subsolution of Fn
(
t, x , v , ∂tv ,D

2v
)

= 0. Assume (un)n
and (F n)n are locally uniformly bounded. Then

u (t, x) = lim inf(s,y)→(t,x),n→∞ un (s, y) is a subsolution of

F
(
t, x , u, ∂tu,D

2u
)

= 0 on O

The analogous statement holds for a sequence of LSC (OT )
functions which are supersolutions. Further, if u = u then the

convergence of (un) to u = u is locally uniform.



Theorem (O&Reis13)

Let µ, ν ∈M2 , µ ≤cx ν and denote with R the Root barrier for

the SEP

dXt = σ (t,Xt) dBt , X0 ∼ µ, XτR ∼ ν

De�ne

u (t, x) := −E [|Xt∧τR − x |] .

Then u is the unique viscosity solution of the obstacle problem{
min

(
u − uν , ∂tu − σ2

2
∆u
)

= 0,

u (0, .) = uµ (.) .
(2)

Moreover,

1. t 7→ u (t, x) is non-increasing and x 7→ u (t, x) is Lipschitz

(uniformly in time)

2. uν (x) ≤ u (t, x) ≤ uµ (x),

3. limt→∞ u (t, x) = uν (x).



Proof (Sketch).

I Show

(
∂t −

σ2

2
∆

)
u ≥ 0 on [0,∞)× R,

u − uν ≥ 0 on [0,∞)× R,(
∂t −

σ2

2
∆

)
u = 0 on Rc ,

u − uν = 0 on R,

I Step 1. u − Uν ≥ 0. By Jensen

u (t, x) = −E [|X τR
t − x |] ≥ E [E [− |XτR − x | |Ft∧τR ]]

= −E [|XτR − x |] = uν (x)



I Take (ψn),ψn ⊂ C 2 (R,R), ψn → |.| uniformly, ∆ψn (.) is
continuous,∆ψn ≥ 0 and supp (∆ψn) ⊂

[
− 1

n
, 1
n

]
;

I De�ne

un (t, x) = −E [ψn (X τ
t − x)]→n→∞ u (t, x)

unµ = −E [ψn (X0 − x)]→n→∞ uµ (x)

unν = −E [ψn (Xτ − x)]→n→∞ uν (x)

I Apply Ito to ψn (X τR
. − x)

un (t, x) = unµ (x)−
ˆ t

0

E
[
σ2 (r ,Xr )

2
∆ψn (Xr − x) 1r<τR

]
dr



I Step 2. u − Uµ = 0 on R

I By Ito, applied to ψn (X τR
. − x)

u
n (t, x) = u

n

µ (x)−
ˆ

t

0

E
[
σ2 (r ,Xr )

2
∆ψn (Xr − x) 1r<τR

]
dr

Take limt→∞

u
n

ν (x) = u
n

µ (x)−
ˆ ∞
0

E
[
σ2 (r ,Xr )

2
∆ψn (Xr − x) 1r<τR

]
dr

I Hence

u
n (t, x)− uν (x) =

ˆ ∞
t

E
[
σ2 (r ,Xr )

2
∆ψn (Xr − x) 1r<τR

]
dr

I Fix (t, x) ∈ Ro , then (t + r , x) ∈ Ro for r ≥ 0 hence

lim
n→∞

(un − u
n

ν) (t, x) =

ˆ ∞
t

E
[
σ2 (r ,Xr )

2
lim

n→∞
∆ψn (Xr − x) 1r<τR

]
dr

= 0



Step 3.
(
∂t − σ2

2
∆
)
u ≥ 0 on [0,∞)× R.

I First show that un solves{ (
∂t − σ2

2
∆
)
un − 1

2
In = 0 on (0,∞)× R

un (0, .) = unµ (.) .

I un (t, x) has a right- and left derivative ∀ (t, x) ∈ [0,∞)× R
and continuous derivative ∆un (t, x)

I limn→0 I
n = 0 loc. uniformly

I Apply the method of semi-relaxed limits: un → u and
unµ (.)→ uµ (.) uniformly hence u is viscosity supersolution of{ (

∂t − σ2

2
∆
)
u = 0 on [0,∞)× R

u (0, .) = uµ (.)
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Step 4.
(
∂t − σ2

2
∆
)
u = 0 on Rc :

I need to show that u is a subsolution (supersolution follows
from above

I R is a Root barrier, hence

(τR + r ,XτR ) ∈ R ∀r ≥ 0,

hence if (t, x) ∈ Rc and t ≥ τR then XτR 6= x . Therefore

lim
n→∞

sup
(t,x)∈K

∆ψn (XτR − x) 1t≥τR = 0 for every compact K ⊂ Rc



c) From PDE to barrier



Proposition

Under (TC) there exists a v∞ ∈ C ([0,∞)× R,R) which is a

viscosity solution of{
min

(
v − h, ∂tv − σ2

2
∆v
)

= 0, (t, x) ∈ (0,∞)× R
v (0, x) = u0 (x) , x ∈ R.

Moreover, for T <∞
1. ∀ (t, x) ∈ [0,T ]× R ∃!

(
X t,x
s ,Y t,x

s ,Z t,x
s ,K t,x

s

)
s∈[t,T ] of

{F t
s }-progressively measurable processes, solution of the

rFBSDE
X t,x
s = x +

´ s
t
σ
(
T − r ,X t,x

r

)
dWr ,

Y t,x
s = u0

(
X t,x
T

)
+ K t,x

T − K t,x
s −

´ T
s
Z t,x
r dWr ,

Y t,x
s ≥ h

(
X t,x
s

)
, t < s ≤ T ,

´ T
t

(
Y t,x
s − h

(
X t,x
s

))
dK t,x

s = 0,

2.
(
K t,x
s

)
s∈[t,T ] increasing, continuous, and K t,x

t = 0.

3. v∞|[0,T ]×R(t, x) ≡ Y T−t,x
T−t .



Theorem (O&Reis13)

Let µ, ν have a second moment, µ ≤cx ν and σ Lip+LG. Then the

the free boundary R

R = {(t, x) : u (t, x) = uν (x)}

of the obstacle problem{
min

(
u − uν , ∂tu − σ2

2
∆u
)

= 0,

u (0, .) = uµ (.) .
(3)

solves the SEP

dXt = σ (t,Xt) dBt , X0 ∼ µ, XτR ∼ ν.



Proof.
(sketch)

I Under above assumptions the PDE has exactly one solution
O (uµ, uν , σ) = {u}

I R (µ, ν, σ) = {R}
I From previous Theorem u (t, x) = −E [|Xt∧τR − x |]
I By proof of previous theorem, hence

R ⊂ {(t, x) : u (t, x) = uν (x)}
I To see R ⊃ {(t, x) : u (t, x) = uν (x)} use the representation

u (t + r , x)− u (t, x) = E
[
Lxt − Lxt+r

]



(d) Numerics



Assume µ, ν support in interval [a, b] ⊂ R

Sh
[
uh
]

(t, x) :=


uµ (x) in [0,∆t)× (a, b)

uh (t, x) + ∆tσh(t,x)
2(∆x)2

(
uh (t, x + ∆x)− 2uh (t, x) + uh (t, x −∆x)

)
, [∆t,T ]× (a, b)

uµ (x) = uν (x) in [0,T ]× {a, b}

Proposition (O&Reis13)

Let T <∞ and let µ, ν have second moments, compact support,

µ ≤cx ν. If ∆t |σ|∞;[a,b]×[0,T ] < (∆x) 2Then

uh ∈ B ([0,T ]× R,R) and∣∣∣uh − u
∣∣∣
∞;[0,T ]×R

→ 0 as h→ (0, 0)

on [0,T ], {u} ∈ O (uµ, uν , σ).
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