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. An example: generating Brownian increments by Skorokhod

stopping times of minimal variance

. Calculating Root barriers with integral equations
[l.

Root/Rost barriers, viscosity solutions of obstacle problems
and FBSDEs



I. Generating Brownian increments by Skorokhod stopping times



Simulating Brownian motion B = (B;),-
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Simulating Brownian motion B = (B;),-

Algorithm 1. (Euler)
> (10,X0) = (0,0)
> Draw

Xis1 = X+ Ni with N ~ A (0,1)
Tkt1 = Tk +1

» Gives (Tk)Xk)kZO =£ (Tk’ BTk)kZO



...can be seen as Skorokhod embedding

Algorithm 1 (Euler)
> (TO7X0) = (070)

» Draw

Xir1 = X+ N with Ny ~ N (0,1)
Tk+1 — Tk + 1

» Gives (Tk,Xk)kzo =£ (ks BTk)kzo

71 = 1 solves SEP B, ~ N (0,1)
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...can be seen as a Skorokhod embedding
Algorithm 1 (Euler)
> (70,X0) = (0,0)
» Draw
{ Xir1 = X+ N with Ny ~ N (0,1)
Tk+1 = Tkx+1
» Gives (Tk,Xk)kZO =£ (7k, Btk)kZO

71 solves SEP B, ~ N (0,1)



..can be seen as a Skorokhod embedding
Algorithm 1 (Euler)
> (To,Xo) = (0,0)

» Draw

Xir1 = X+ N with Ny ~ N (0,1)
T +1

Tk+1

> Gives (Tk7Xk)k20 = (Tk, Btk)kZO
71 solves SEP B, ~ N (0,1)

Algorithm 2 (Bichteler—Karandhikar)
> (70, Xo) = (0,0)

» Draw

{xk+1 = Xy + N withP(Ny =1)=P(Ny = -1) =}
1

Tk+1 = Tk + Dk with Dy s.t.E[exp ADy] = coh (V3R

> Gives (Tk>Xk)k20 =~ (Tk, B‘rk)kzo
71 solves SEP B, ~ 0_1 + 361



Root's barrier

» 71 solution of SEP B, ~

» in algorithm 1 u = N (0,1)
> in algorithm 2 y = %(5,1 + %51



Root's barrier

» 71 solution of SEP B, ~

» in algorithm 1 u = N (0,1)
> in algorithm 2 y = %6,1 + %61

» 71 hitting time of time-space process t — (t, B;)
7 =inf{t>0:(t,B;) € R}

)

» in algorithm 1 R = {( 15>
{(s;x):s >0, |x[ > 1}

S, X
» in algorithm 2 R = {(s, x



Root's barrier

» 71 solution of SEP B, ~

» in algorithm 1 u = N (0,1)
> in algorithm 2 y = %6,1 + %61

» 71 hitting time of time-space process t — (t, B;)
7 =inf{t>0:(t,B;) € R}

» in algorithm 1 R = {(s, x) :
» in algorithm 2 R = {(s,x) :

1,x € R}

s>
s>0,|x| > 1}

Theorem (Root's barrier, 1968)

Let u be centered and have finite second moment. Then there
exists a closed set

R C [0, 0] X [—00, 9]

such that Tg == inf {t > 0: (t, Bt) € R} solves the Skorokhod
embedding B, ~ u, BT = (Bf/\T)tZO u.i.



Better: solve SEP with y = U [—1,1]

Corollary
dr e C(R,[0,00)) s.t. R ={(t,x) : t > r(x)} is the Root barrier
for the SEP B, ~ U [-1,1].

space x

time t



Algorithm 3
> (TOvXO) = (070)

» Draw

{Xk+1 = Xi + Ui with UkNU[—l,l]
Tkl = Tk+r(Uk)

> Then (Tk?Xk)kZO :[: (Tk, BTk)kEO'

» Trivial to simulate (once you know r)

» Increments bounded in space AND time (scaled Monte-Carlo;
example knock-out options)

» Similar schemes without SEP (Milstein—Tretyakov, Lejay,
Deaconu—Hermann, etc.)

» For more applications see Gassiat&Mijatovic& 013



Problem: Find Root barrier R for any given distribution p
Unfortunately:

» Root's existence proof of barrier R not constructive



Problem: Find Root barrier R for any given distribution p
Unfortunately:

» Root's existence proof of barrier R not constructive
Rest of talk:

» 1-1 correspondence of Root barrier and solutions of nonlinear
integral equation

» 1-1 correspondence between Root barrier and viscosity solution
of parabolic obstacle problem (Dupire, Cox-Wang)

» 1-1 correspondence of R with solution of reflected FBSDE

» Barles—Souganidis for numerical schemes parabolic obstacle
problem



Il. Root barrier and integral equations



Set

2 x2 X
t, = ELX:f te” 2t — xerf
g (t,x) : 7T\fe xerc(\@ﬁ)

1

K(I’,?,X,y) = §(g(r—7,x—y)+g(r—?,x+y))

Theorem (Gassiat&Mijatovic&013)
lr € Cp ([—1,1],R>0) which solves the integral equation

x24+1

1
. _X:g(r(x),x)—/ K(r(x),r(y),xy)dy

Moreover, if we extend r to R by r (x) = 0 for x € R\ [-1,1] then
R={(t,x):t>r(x)}

is the Root barrier for the SEP B; ~ U [—1,1].



Potential functions

B one-dimensional Brownian motion; denote semigroup (of
transformations on measures) (P?). Define operator UZ

MHUBM::/O PtBudt

If 1 is a signed measure with 1 (R) = 0 then

B
Lo — [ @) = )

(rhs well-defined also for positive measures with finite moment).




Potential functions
B one-dimensional Brownian motion; denote semigroup (of
transformations on measures) (P?). Define operator UZ

,u+—>UBM::/ PtBudt
0

If 1 is a signed measure with 1 (R) = 0 then

B
Lo — [ @) = )

(rhs well-defined also for positive measures with finite moment).

Definition
For probability measure p on (R, B (R)) with finite first moment,
associate with it a function u, € C (R,R<g)

——/ [x = y|u(dy)
R

We call u,, the potential function of p.



u(t,x) = —E[|Birr — x|]

o, 1
- u(0.27,2)
) r(z)
02| ___ ug (@) os
-0.4
% 0.0 p(t)
0.6 ’
-0.5]
0.8
-0y Zp(0.27) 0.5 0 05  p(0.27) 1 00 0.05 010 015 0.20 025 030 035
spac time t
2
— _ x+1
» u(0,x) = us, (x) = —x,u(00,x) = uy (x) = 5=

» R={(t,x):u(t,x)=uwy(x)}



Let R be the Root barrier for B, ~ U [—1,1], r(x)
st. R={(t,x): t>r(x)} and p(t) = r~1 (t) (positive)
Tanaka: V (¢, x)

u(t,x) = us(x) —E[Lg] = = Ix[ = E[Ly + 1esr (L7 = L7)]
= —IxI-g(t,x) - Eller (L - )]

At x = pt, u(t, pt) = uy (x) above becomes
uy (pr) = —|pe| — & (t, pr) — E[Lesr (L7 — LE")]

Finished if we can write as explicit [ [1;~, (L2" — L§*)]
functional of p.



Note P (7 < t) =P (U ¢ [—pt, pt]) =1 — pt hence
P(r € dt) = —dp;

Using Markovianity and symmetry
t
Bl - )10 = [ Bl - 1) =P (r e d)
0
t
= - [ B -5 =4,

- [ 3l en ) o

Putting this into above

=g(t—s,pt—ps)+g(t—s,pe+ps)

1t .
i () = s (pe)—g (e, )+ [ B [L257] + B [L23] d
0
Finish by change of variable dy = dp(s):
1 X
w() = s () =g ()x) 45 [ K((r ) xn)dy



Derivation purely probabilistic...no PDE techniques
Extends to other target distributions (but there are limits)
Uniqueness of solutions is hard (without using PDE
uniqueness)! see Gassiat&Mijatovich& 013
Useful? Solving this integral equation is numerically MUCH
MUCH better than solving for free boundary via PDE
The integral term in
x?+1
y X =g(r()x) ~ [ K(r()r() xp)dy

X

is very small. Hence applying d% to both both sides of
XZ—“ —x = g (r(x),x) gives ODE for r which is a very good

approximation.



Root/Rost barriers, viscosity solutions of obstacle problems and
FBSDEs



u(t,x) = —E[|Binr — x|]
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Recall viscosity theory

Definition

O a locally compact subset of R, O = (0, T) x O for T € (0, <].
Let v : O — R and define for (s,z) € Ot the parabolic superjet
77(29’+u (s, z) as the set of triples (a,p,m) € R x R x R which fulfill

u(t,x) < wu(s,z)+a(t—s)+p(x—2)
(x —2)°
2

+o(]t—s\+]x—z\2>

as Ot 3 (t,x) = (s, 2).
Similarly we define the parabolic subjet 73(29’7u (s,z) such that
PE u=—P> (~u).



Definition
A function F: O x RXxR xR x R — R is proper if
V(t,x,a,p) € Or x Rx R

F(t,x,r,a,p,m)<F (t,x,s,a,p,m’) VYm>m',s>r.

Denote the real-valued, upper semicontinuous functions on O
with USC (O7). A subsolution of

F(t,x,u,@tu,Du,DQU) = 0
{ 0(0,) = w() (1)

is a function u € USC (O7) such that

0 for (t,x) € Ot and (a,p, m) € 73(29’+u(t,x)
up (.) on O

F(t,x,a,p, m)

<
u(0,.) <

The definition of a supersolution follows by replacing upper by
lower semicontinuous, 77(29’+ by 77(29’7 and < by >.



If uis a classic C}2?((0, T) x R, R) solution of

{F(t,x,u,@tu,Du,D2u) = 0
U(O,.) = UO(.)

then v is also a viscosity solution

Comparison Theorem (Maximum Principle): v (0,.) < v (0,.),
u sub- and v supersolution implies v < v



Barles-Perthame’s semi-relaxed limits

Proposition

Let (u"), C USC(O7),0 a locally compact subset of R, (Fp) a
sequence of maps

Fr Or xRxRxR—=R

each u" a subsolution of F, (t,x,v,0:v, D?v) = 0. Assume (u")
and (F"), are locally uniformly bounded. Then
u(t,x) =liminf(s ) (tx),ns00 U" (5, ¥) is a subsolution of

n

F (t,x,u,0pu,D’u) =0 on O

The analogous statement holds for a sequence of LSC (OT)
functions which are supersolutions. Further, if U = u then the
convergence of (up) to U = u is locally uniform.



Theorem (O&Reis13)

Let i, v € M? , i < v and denote with R the Root barrier for
the SEP

dXt = U(t,Xt) dBl-7 X() ~ [, XTR ~ UV
Define
u(t,x) = —E[|Xearr — x]].

Then u is the unique viscosity solution of the obstacle problem

min u—uy,ﬁtu—”—zAu = 0,
{ ( f1(0,->) = () )

Moreover,

1. t+ u(t,x) is non-increasing and x — u (t, x) is Lipschitz
(uniformly in time)

2. uy (x) <w(t,x) <uy(x),

3. limesoo u (t,x) = uy (x).



Proof (Sketch).

» Show

0 on [0,00) xR,

A~
iS5
|
I\)‘QN
>
~_
<
(V2

u—u, > 0on [0,00) xR,
o2
<3t - 2A> u = 0on RC,

u—u, = 0onR,
» Step 1. v— U, > 0. By Jensen

u(tx) = ~E[X® x> EE[- [Xep — x| [Fenre]
= E[Xep — ] =t (%)



» Take (¥n), 00 C C?(R,R), ¥, — |.| uniformly, Ay, (.) is
continuous, Ay, > 0 and supp (A,) C [—l l];

» Define
u"(t,x) = —E["(X{ —X)] =noeo u(t, x)
u; = —E[" (Xo = x)] =nooe up (%)
u, = —E["(Xr = X)] 2oty (X)

» Apply Ito to " (X"R — x)

t 2
(e =)~ [ 8| T au o -1 o



» Step2. u—U,=00nR
» By Ito, applied to 9" (X’ — x)

u (t,x) = uy; (x) — /Ot]E {02(;’X,)Aw" (Xr — x) 1,<TR} dr

Take lim;_ oo

) =00 - [ B [T aun x| o

2
» Hence
oo 2 X
u" (t,x) — uy (x) = / E {(T(;”)Ad)" (Xr — x) 1’<7'R:| dr
t
» Fix (t,x) € R®, then (t + r,x) € R° for r > 0 hence
H n n >~ 02 (r7 Xf) H n
nILmOO (u" =) (t,x) = /t E [2 nll_)moo AY" (X, — x) 1<,

= 0



Step 3. (8t — %A) u>0on [0,00) xR.
» First show that u” solves
(8t— %A) u"— LI, = 0on (0,00) xR
u"(0,.) = u;(.).
» u"(t,x) has a right- and left derivative V (¢, x) € [0,00) x R

and continuous derivative Au”" (¢, x)
> lim,_o /" = 0 loc. uniformly



Step 3. (8t — %A) u>0on [0,00) xR.
» First show that u” solves
(at— ";A) u"— LI, = 0on (0,00) xR
u"(0,.) = u;(.).
» u"(t,x) has a right- and left derivative V (¢, x) € [0,00) x R

and continuous derivative Au”" (¢, x)
> lim,_o /" = 0 loc. uniformly

» Apply the method of semi-relaxed limits: u” — v and
u () = up (-) uniformly hence u is viscosity supersolution of

{(&—‘T; )u = 0Oon [0,00) xR
u(0,) = wuu()



Step 4. (8t — %A) u=0on R¢:

» need to show that v is a subsolution (supersolution follows
from above

» R is a Root barrier, hence
(TR +r,Xsz) € R Vr >0,
hence if (t,x) € R® and t > 7 then X, # x. Therefore

lim sup A¢" (X — x) 1>, =0 for every compact K C R¢

N0 (¢ x)eK



c) From PDE to barrier



Proposition

Under (TC) there exists a voo € C ([0, 00) x R,R) which is a
viscosity solution of

{min (v—h,atv—%zAv> = 0, (t,x) € (0,00) xR

v(0,x) = u(x),xeR.

Moreover, for T < oo

LV (t,x) €0, TI xR 3 (X3, Y&, Z5™, Ke™) sepe. 1] of
{FL}-progressively measurable processes, solution of the

rFBSDE

Xs* =
Yst,x _
Y5t7X >

X+ fts o (T — r,X,t’X) dw,,
w (X7%) + K" = ke — [ Zi*aw,,
h (Xstvx) ,t<s<T, ftT (Yst,x _h (Xst,x)) szt,x — 0,

2. (Ks) se[t,T] Increasing, continuous, and K =o.

3. Voo‘[O,T]x]R(taX) = Y—,T__:X.



Theorem (O&Reis13)

Let 1, v have a second moment, ;1 <. v and o Lip+LG. Then the

the free boundary R

R={(t,x):u(t,x) =u, (x)}

of the obstacle problem

{ min (u — Uy, O — %Au) = 0,

u(0,.) = wuu(.).

solves the SEP

dXt = U(t,Xt) dBt, XO ~ U, XTR ~ .



Proof.
(sketch)

» Under above assumptions the PDE has exactly one solution
O (uy, uy,0) = {u}

> R(p,v,0) ={R}

» From previous Theorem u (t,x) = —E [| X¢earr — X]]

» By proof of previous theorem, hence
RC{(t,x):u(t,x)=u,(x)}

» Tosee R D {(t,x): u(t,x) = u, (x)} use the representation
u(t+r,x)—u(t,x)=E[Lf - L},]



(d) Numerics



Assume p, v support in interval [a, 5] C R

uy (x) in [O,Aht) x (a, b)
sh [uh] (t,x) =< ul(t,x)+ A;(UAS)’ZX) (ul (t,x + Ax) — 2uf (¢, x) + u”
uy (x) = u, (x) in [0, T] x {a, b}

Proposition (O&Reis13)

Let T < oo and let u, v have second moments, compact support,
fSex v AL]o] o pxqo, 1] < (AX) 2 Then

uh € B([0, T] x R,R) and

h

)u—u 0 as h— (0,0)

’oo;[O,T]X]R

on [0, T], {u} € O (uy, uy,0).
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u(t, x) X

Figure: o (x) =x,pn =0y and v =U ([3,3])



0.5 1.0 L5

Figure: o (x) = Lu= 36_1 + 3005 , v = 301+ 3U ([0, 1]).
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