Root's and Rost's solution of the SEP

Harald Oberhauser
(work with Paul Gassiat, Aleksandar Mijatovic, Goncalo dos
Reis)

TU Berlin
Vienna, August 2013
I. An example: generating Brownian increments by Skorokhod stopping times of minimal variance
II. Calculating Root barriers with integral equations
III. Root/Rost barriers, viscosity solutions of obstacle problems and FBSDEs
I. Generating Brownian increments by Skorokhod stopping times

Simulating Brownian motion $B=\left(B_{t}\right)_{t \geq 0}$

Simulating Brownian motion $B=\left(B_{t}\right)_{t \geq 0}$

Algorithm 1. (Euler)

- $\left(\tau_{0}, X_{0}\right)=(0,0)$
- Draw

$$
\left\{\begin{aligned}
X_{k+1} & =X_{k}+N_{k} \text { with } N_{k} \sim \mathcal{N}(0,1) \\
\tau_{k+1} & =\tau_{k}+1
\end{aligned}\right.
$$

- Gives $\left(\tau_{k}, X_{k}\right)_{k \geq 0}={ }^{\mathcal{L}}\left(\tau_{k}, B_{\tau_{k}}\right)_{k \geq 0}$

Algorithm 1 (Euler)

- $\left(\tau_{0}, X_{0}\right)=(0,0)$
- Draw

$$
\left\{\begin{aligned}
x_{k+1} & =x_{k}+N_{k} \text { with } N_{k} \sim \mathcal{N}(0,1) \\
\tau_{k+1} & =\tau_{k}+1
\end{aligned}\right.
$$

- Gives $\left(\tau_{k}, X_{k}\right)_{k \geq 0}={ }^{\mathcal{L}}\left(\tau_{k}, B_{\tau_{k}}\right)_{k \geq 0}$
$\tau_{1} \equiv 1$ solves $\operatorname{SEP} B_{\tau} \sim \mathcal{N}(0,1)$

...can be seen as a Skorokhod embedding
Algorithm 1 (Euler)
- $\left(\tau_{0}, X_{0}\right)=(0,0)$
- Draw

$$
\left\{\begin{aligned}
X_{k+1} & =X_{k}+N_{k} \text { with } N_{k} \sim \mathcal{N}(0,1) \\
\tau_{k+1} & =\tau_{k}+1
\end{aligned}\right.
$$

- Gives $\left(\tau_{k}, X_{k}\right)_{k \geq 0}=\mathcal{L}\left(\tau_{k}, B_{t_{k}}\right)_{k \geq 0}$
τ_{1} solves $\operatorname{SEP} B_{\tau} \sim \mathcal{N}(0,1)$
...can be seen as a Skorokhod embedding
Algorithm 1 (Euler)
- $\left(\tau_{0}, X_{0}\right)=(0,0)$
- Draw

$$
\left\{\begin{aligned}
X_{k+1} & =X_{k}+N_{k} \text { with } N_{k} \sim \mathcal{N}(0,1) \\
\tau_{k+1} & =\tau_{k}+1
\end{aligned}\right.
$$

- Gives $\left(\tau_{k}, X_{k}\right)_{k \geq 0}={ }^{\mathcal{L}}\left(\tau_{k}, B_{t_{k}}\right)_{k \geq 0}$

$$
\tau_{1} \text { solves } \operatorname{SEP} B_{\tau} \sim \mathcal{N}(0,1)
$$

Algorithm 2 (Bichteler-Karandhikar)

- $\left(\tau_{0}, X_{0}\right)=(0,0)$
- Draw

$$
\left\{\begin{aligned}
X_{k+1} & =X_{k}+N_{k} \text { with } \mathbb{P}\left(N_{k}=1\right)=\mathbb{P}\left(N_{k}=-1\right)=\frac{1}{2} \\
\tau_{k+1} & =\tau_{k}+D_{k} \text { with } D_{k} \text { s.t. } \mathbb{E}\left[\exp \lambda D_{k}\right]=\frac{1}{\cosh (\sqrt{2 \lambda})}
\end{aligned}\right.
$$

- Gives $\left(\tau_{k}, X_{k}\right)_{k \geq 0}={ }^{\mathcal{L}}\left(\tau_{k}, B_{\tau_{k}}\right)_{k \geq 0}$
τ_{1} solves SEP $B_{\tau} \sim \frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$

Root's barrier

- τ_{1} solution of SEP $B_{\tau_{1}} \sim \mu$
- in algorithm $1 \mu=\mathcal{N}(0,1)$
- in algorithm $2 \mu=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$

Root's barrier

- τ_{1} solution of SEP $B_{\tau_{1}} \sim \mu$
- in algorithm $1 \mu=\mathcal{N}(0,1)$
- in algorithm $2 \mu=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$
- τ_{1} hitting time of time-space process $t \mapsto\left(t, B_{t}\right)$

$$
\tau_{1}=\inf \left\{t>0:\left(t, B_{t}\right) \in R\right\}
$$

- in algorithm $1 R=\{(s, x): s \geq 1, x \in \mathbb{R}\}$
- in algorithm $2 R=\{(s, x): s \geq 0,|x| \geq 1\}$

Root's barrier

- τ_{1} solution of SEP $B_{\tau_{1}} \sim \mu$
- in algorithm $1 \mu=\mathcal{N}(0,1)$
- in algorithm $2 \mu=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$
- τ_{1} hitting time of time-space process $t \mapsto\left(t, B_{t}\right)$

$$
\tau_{1}=\inf \left\{t>0:\left(t, B_{t}\right) \in R\right\}
$$

- in algorithm $1 R=\{(s, x): s \geq 1, x \in \mathbb{R}\}$
- in algorithm $2 R=\{(s, x): s \geq 0,|x| \geq 1\}$

Theorem (Root's barrier, 1968)
Let μ be centered and have finite second moment. Then there exists a closed set

$$
R \subset[0, \infty] \times[-\infty, \infty]
$$

such that $\tau_{R}:=\inf \left\{t \geq 0:\left(t, B_{t}\right) \in R\right\}$ solves the Skorokhod embedding $B_{\tau} \sim \mu, B^{\tau}=\left(B_{t \wedge \tau}\right)_{t \geq 0}$ u.i.

Better: solve SEP with $\mu=\mathcal{U}[-1,1]$
Corollary
$\exists r \in C(\mathbb{R},[0, \infty))$ s.t. $R=\{(t, x): t \geq r(x)\}$ is the Root barrier for the $\operatorname{SEP} B_{\tau} \sim \mathcal{U}[-1,1]$.

Algorithm 3

- $\left(\tau_{0}, X_{0}\right)=(0,0)$
- Draw

$$
\left\{\begin{aligned}
X_{k+1} & =X_{k}+U_{k} \text { with } U_{k} \sim \mathcal{U}[-1,1] \\
\tau_{k+1} & =\tau_{k}+r\left(U_{k}\right)
\end{aligned}\right.
$$

- Then $\left(\tau_{k}, X_{k}\right)_{k \geq 0}=\mathcal{L}\left(\tau_{k}, B_{\tau_{k}}\right)_{k \geq 0}$.
- Trivial to simulate (once you know r)
- Increments bounded in space AND time (scaled Monte-Carlo; example knock-out options)
- Similar schemes without SEP (Milstein-Tretyakov, Lejay, Deaconu-Hermann, etc.)
- For more applications see Gassiat\&Mijatovic\&O13

Problem: Find Root barrier R for any given distribution μ Unfortunately:

- Root's existence proof of barrier R not constructive

Problem: Find Root barrier R for any given distribution μ Unfortunately:

- Root's existence proof of barrier R not constructive Rest of talk:
- 1-1 correspondence of Root barrier and solutions of nonlinear integral equation
- 1-1 correspondence between Root barrier and viscosity solution of parabolic obstacle problem (Dupire, Cox-Wang)
- 1-1 correspondence of R with solution of reflected FBSDE
- Barles-Souganidis for numerical schemes parabolic obstacle problem
II. Root barrier and integral equations

Set

$$
\begin{aligned}
g(t, x) & =\mathbb{E} L_{t}^{x}=\sqrt{\frac{2}{\pi}} \sqrt{t} e^{-\frac{x^{2}}{2 t}}-\operatorname{xerfc}\left(\frac{x}{\sqrt{2} \sqrt{t}}\right) \\
K(r, \bar{r}, x, y) & =\frac{1}{2}(g(r-\bar{r}, x-y)+g(r-\bar{r}, x+y))
\end{aligned}
$$

Theorem (Gassiat\&Mijatovic\&O13)
$\exists!r \in C_{b}\left([-1,1], \mathbb{R}_{\geq 0}\right)$ which solves the integral equation

$$
\frac{x^{2}+1}{2}-x=g(r(x), x)-\int_{x}^{1} K(r(x), r(y), x, y) d y
$$

Moreover, if we extend r to \mathbb{R} by $r(x)=0$ for $x \in \mathbb{R} \backslash[-1,1]$ then

$$
R=\{(t, x): t \geq r(x)\}
$$

is the Root barrier for the SEP $B_{\tau} \sim \mathcal{U}[-1,1]$.

Potential functions

B one-dimensional Brownian motion; denote semigroup (of transformations on measures) $\left(P_{t}^{B}\right)$. Define operator U^{B}

$$
\mu \mapsto U^{B} \mu:=\int_{0}^{\infty} P_{t}^{B} \mu d t
$$

If μ is a signed measure with $\mu(\mathbb{R})=0$ then

$$
\frac{d U^{B} \mu}{d x}=-\int_{\mathbb{R}}|x-y| \mu(d y)=: u_{\mu}(x)
$$

(rhs well-defined also for positive measures with finite moment).

Potential functions

B one-dimensional Brownian motion; denote semigroup (of transformations on measures) $\left(P_{t}^{B}\right)$. Define operator U^{B}

$$
\mu \mapsto U^{B} \mu:=\int_{0}^{\infty} P_{t}^{B} \mu d t
$$

If μ is a signed measure with $\mu(\mathbb{R})=0$ then

$$
\frac{d U^{B} \mu}{d x}=-\int_{\mathbb{R}}|x-y| \mu(d y)=: u_{\mu}(x)
$$

(rhs well-defined also for positive measures with finite moment).

Definition

For probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with finite first moment, associate with it a function $u_{\mu} \in C\left(\mathbb{R}, \mathbb{R}_{\leq 0}\right)$

$$
u_{\mu}(x)=-\int_{\mathbb{R}}|x-y| \mu(d y)
$$

We call u_{μ} the potential function of μ.
$u(t, x)=-\mathbb{E}\left[\left|B_{t \wedge \tau}-x\right|\right]$

- $u(0, x)=u_{\delta_{0}}(x)=-x, u(\infty, x)=u_{\mathcal{U}}(x)=\frac{x^{2}+1}{2}$
- $R=\left\{(t, x): u(t, x)=u_{\mathcal{U}}(x)\right\}$
- Let R be the Root barrier for $B_{\tau} \sim \mathcal{U}[-1,1], r(x)$ s.t. $R=\{(t, x): t \geq r(x)\}$ and $\rho(t)=r^{-1}(t)$ (positive)
- Tanaka: $\forall(t, x)$

$$
\begin{aligned}
u(t, x) & =u_{\delta}(x)-\mathbb{E}\left[L_{t \wedge \tau}^{x}\right]=-|x|-\mathbb{E}\left[L_{t}^{x}+1_{t>\tau}\left(L_{\tau}^{x}-L_{t}^{x}\right)\right] \\
& =-|x|-g(t, x)-\mathbb{E}\left[1_{t>\tau}\left(L_{\tau}^{x}-L_{t}^{x}\right)\right]
\end{aligned}
$$

- At $x=\rho_{t}, u\left(t, \rho_{t}\right)=u_{\mathcal{U}}(x)$ above becomes

$$
u_{\mathcal{U}}\left(\rho_{t}\right)=-\left|\rho_{t}\right|-g\left(t, \rho_{t}\right)-\mathbb{E}\left[1_{t>\tau}\left(L_{\tau}^{\rho_{t}}-L_{t}^{\rho_{t}}\right)\right]
$$

- Finished if we can write as explicit $\mathbb{E}\left[1_{t>\tau}\left(L_{\tau}^{\rho_{t}}-L_{t}^{\rho_{t}}\right)\right]$ functional of ρ.
- Note $\mathbb{P}(\tau<t)=\mathbb{P}\left(\mathcal{U} \notin\left[-\rho_{t}, \rho_{t}\right]\right)=1-\rho_{t}$ hence

$$
\mathbb{P}(\tau \in d t)=-d \rho_{t}
$$

- Using Markovianity and symmetry

$$
\begin{aligned}
\mathbb{E}\left[\left(L_{t}^{x}-L_{\tau}^{x}\right) 1_{t>\tau}\right] & =\int_{0}^{t} \mathbb{E}\left[\left(L_{t}^{x}-L_{s}^{x}\right) \mid \tau=s\right] \mathbb{P}(\tau \in d s) \\
& =-\int_{0}^{t} \mathbb{E}\left[\left(L_{t}^{x}-L_{s}^{x}\right) \mid \tau=s\right] d \rho_{s} \\
& =-\int_{0}^{t} \frac{1}{2}\left(\mathbb{E}\left[L_{t-s}^{x-\rho_{s}}\right]+\mathbb{E}\left[L_{t-s}^{x+\rho_{s}}\right]\right) d \rho_{s}
\end{aligned}
$$

- Putting this into above

$$
t \overbrace{\mathbb{E}\left[L_{t-s}^{\rho_{t}-\rho_{s}}\right]+\mathbb{E}\left[L_{t-s}^{\rho_{t}+\rho_{s}}\right]}^{=g\left(t-s, \rho_{t}-\rho_{s}\right)+g\left(t-s, \rho_{t}+\rho_{s}\right)} d \rho_{s}
$$

- Finish by change of variable $d y=d \rho(s)$:

$$
u_{\mathcal{U}}(x)=u_{\delta_{1}}(x)-g(r(x), x)+\frac{1}{2} \int_{1}^{x} K(r(x), r(y), x, y) d y
$$

- Derivation purely probabilistic...no PDE techniques
- Extends to other target distributions (but there are limits)
- Uniqueness of solutions is hard (without using PDE uniqueness)! see Gassiat\&Mijatovich\&O13
- Useful? Solving this integral equation is numerically MUCH MUCH better than solving for free boundary via PDE
- The integral term in

$$
\frac{x^{2}+1}{2}-x=g(r(x), x)-\int_{x}^{1} K(r(x), r(y), x, y) d y
$$

is very small. Hence applying $\frac{d}{d x}$ to both both sides of $\frac{x^{2}+1}{2}-x=g(r(x), x)$ gives ODE for r which is a very good approximation.

Root／Rost barriers，viscosity solutions of obstacle problems and FBSDEs
$4 \square>4$ 向 >4 ，

$\mathrm{u}(t, x)=-\mathbb{E}\left[\left|B_{t \wedge \tau}-x\right|\right]$

Recall viscosity theory

Definition

\mathcal{O} a locally compact subset of $\mathbb{R}, \mathcal{O}_{T}=(0, T) \times \mathcal{O}$ for $T \in(0, \infty]$. Let $u: \mathcal{O}_{T} \rightarrow \mathbb{R}$ and define for $(s, z) \in \mathcal{O}_{T}$ the parabolic superjet $\mathcal{P}_{\mathcal{O}}^{2,+} u(s, z)$ as the set of triples $(a, p, m) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ which fulfill

$$
\begin{aligned}
u(t, x) \leq & u(s, z)+a(t-s)+p(x-z) \\
& +m \frac{(x-z)^{2}}{2}+o\left(|t-s|+|x-z|^{2}\right)
\end{aligned}
$$

as $\mathcal{O}_{T} \ni(t, x) \rightarrow(s, z)$.
Similarly we define the parabolic subjet $\mathcal{P}_{\mathcal{O}}^{2,-} u(s, z)$ such that $\mathcal{P}_{\mathcal{O}}^{2,-} u=-\mathcal{P}^{2,+}(-u)$.

Definition

A function $F: \mathcal{O}_{T} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is proper if $\forall(t, x, a, p) \in \mathcal{O}_{T} \times \mathbb{R} \times \mathbb{R}$

$$
F(t, x, r, a, p, m) \leq F\left(t, x, s, a, p, m^{\prime}\right) \forall m \geq m^{\prime}, s \geq r .
$$

Denote the real-valued, upper semicontinuous functions on \mathcal{O}_{T} with USC $\left(\mathcal{O}_{T}\right)$. A subsolution of

$$
\left\{\begin{align*}
F\left(t, x, u, \partial_{t} u, D u, D^{2} u\right) & =0 \tag{1}\\
u(0, .) & =u_{0}(.)
\end{align*}\right.
$$

is a function $u \in \operatorname{USC}\left(\mathcal{O}_{T}\right)$ such that

$$
\begin{aligned}
F(t, x, a, p, m) & \leq 0 \text { for }(t, x) \in \mathcal{O}_{T} \text { and }(a, p, m) \in \mathcal{P}_{\mathcal{O}}^{2,+} u(t, x) \\
u(0, .) & \leq u_{0}(.) \text { on } \mathcal{O}
\end{aligned}
$$

The definition of a supersolution follows by replacing upper by lower semicontinuous, $\mathcal{P}_{\mathcal{O}}^{2,+}$ by $\mathcal{P}_{\mathcal{O}}^{2,-}$ and \leq by \geq.

- If u is a classic $C^{1,2}((0, T) \times \mathbb{R}, \mathbb{R})$ solution of

$$
\left\{\begin{aligned}
F\left(t, x, u, \partial_{t} u, D u, D^{2} u\right) & =0 \\
u(0, .) & =u_{0}(.)
\end{aligned}\right.
$$

then v is also a viscosity solution

- Comparison Theorem (Maximum Principle): $u(0,.) \leq v(0,$.$) ,$ u sub- and v supersolution implies $u \leq v$

Barles-Perthame's semi-relaxed limits

Proposition

Let $\left(u^{n}\right)_{n} \subset$ USC $\left(\mathcal{O}_{T}\right), \mathcal{O}$ a locally compact subset of $\mathbb{R},\left(F_{n}\right)$ a sequence of maps

$$
F_{n}: \mathcal{O}_{T} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}
$$

each u^{n} a subsolution of $F_{n}\left(t, x, v, \partial_{t} v, D^{2} v\right)=0$. Assume $\left(u^{n}\right)_{n}$ and $\left(F^{n}\right)_{n}$ are locally uniformly bounded. Then $\underline{u}(t, x)=\liminf _{(s, y) \rightarrow(t, x), n \rightarrow \infty} u^{n}(s, y)$ is a subsolution of

$$
\underline{F}\left(t, x, \underline{u}, \partial_{t} \underline{u}, D^{2} \underline{u}\right)=0 \text { on } \mathcal{O}
$$

The analogous statement holds for a sequence of LSC $\left(\mathcal{O}_{T}\right)$ functions which are supersolutions. Further, if $\bar{u}=\underline{u}$ then the convergence of $\left(u_{n}\right)$ to $\bar{u}=\underline{u}$ is locally uniform.

Theorem (O\&Reis13)
Let $\mu, \nu \in \mathcal{M}^{2}, \mu \leq_{c x} \nu$ and denote with R the Root barrier for the SEP

$$
d X_{t}=\sigma\left(t, X_{t}\right) d B_{t}, X_{0} \sim \mu, X_{\tau_{R}} \sim \nu
$$

Define

$$
u(t, x):=-\mathbb{E}\left[\left|X_{t \wedge \tau_{R}}-x\right|\right] .
$$

Then u is the unique viscosity solution of the obstacle problem

$$
\left\{\begin{align*}
\min \left(u-u_{\nu}, \partial_{t} u-\frac{\sigma^{2}}{2} \Delta u\right) & =0 \tag{2}\\
u(0, .) & =u_{\mu}(.) .
\end{align*}\right.
$$

Moreover,

1. $t \mapsto u(t, x)$ is non-increasing and $x \mapsto u(t, x)$ is Lipschitz (uniformly in time)
2. $u_{\nu}(x) \leq u(t, x) \leq u_{\mu}(x)$,
3. $\lim _{t \rightarrow \infty} u(t, x)=u_{\nu}(x)$.

Proof (Sketch).

- Show

$$
\begin{aligned}
\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u & \geq 0 \text { on }[0, \infty) \times \mathbb{R}, \\
u-u_{\nu} & \geq 0 \text { on }[0, \infty) \times \mathbb{R}, \\
\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u & =0 \text { on } R^{c}, \\
u-u_{\nu} & =0 \text { on } R,
\end{aligned}
$$

- Step 1. $u-U_{\nu} \geq 0$. By Jensen

$$
\begin{align*}
u(t, x) & =-\mathbb{E}\left[\left|X_{t}^{\tau_{R}}-x\right|\right] \geq \mathbb{E}\left[\mathbb{E}\left[-\left|X_{\tau_{R}}-x\right| \mid \mathcal{F}_{t \wedge \tau_{R}}\right]\right] \\
& =-\mathbb{E}\left[\left|X_{\tau_{R}}-x\right|\right]=u_{\nu}(x) \tag{ha}
\end{align*}
$$

- Take $\left(\psi_{n}\right), \psi_{n} \subset C^{2}(\mathbb{R}, \mathbb{R}), \psi_{n} \rightarrow|$.$| uniformly, \Delta \psi_{n}($.$) is$ continuous, $\Delta \psi_{n} \geq 0$ and $\operatorname{supp}\left(\Delta \psi_{n}\right) \subset\left[-\frac{1}{n}, \frac{1}{n}\right]$;
- Define

$$
\begin{aligned}
u^{n}(t, x) & =-\mathbb{E}\left[\psi^{n}\left(X_{t}^{\tau}-x\right)\right] \rightarrow_{n \rightarrow \infty} u(t, x) \\
u_{\mu}^{n} & =-\mathbb{E}\left[\psi^{n}\left(X_{0}-x\right)\right] \rightarrow_{n \rightarrow \infty} u_{\mu}(x) \\
u_{\nu}^{n} & =-\mathbb{E}\left[\psi^{n}\left(X_{\tau}-x\right)\right] \rightarrow_{n \rightarrow \infty} u_{\nu}(x)
\end{aligned}
$$

- Apply Ito to $\psi^{n}\left(X^{\tau_{R}}-x\right)$

$$
u^{n}(t, x)=u_{\mu}^{n}(x)-\int_{0}^{t} \mathbb{E}\left[\frac{\sigma^{2}\left(r, X_{r}\right)}{2} \Delta \psi^{n}\left(X_{r}-x\right) 1_{r<\tau_{R}}\right] d r
$$

- Step 2. $u-U_{\mu}=0$ on R
- By Ito, applied to $\psi^{n}\left(X^{\tau R}-x\right)$

$$
u^{n}(t, x)=u_{\mu}^{n}(x)-\int_{0}^{t} \mathbb{E}\left[\frac{\sigma^{2}\left(r, X_{r}\right)}{2} \Delta \psi^{n}\left(X_{r}-x\right) 1_{r<\tau_{\mathcal{R}}}\right] d r
$$

Take $\lim _{t \rightarrow \infty}$

$$
u_{\nu}^{n}(x)=u_{\mu}^{n}(x)-\int_{0}^{\infty} \mathbb{E}\left[\frac{\sigma^{2}\left(r, X_{r}\right)}{2} \Delta \psi^{n}\left(X_{r}-x\right) 1_{r<\tau_{\mathcal{R}}}\right] d r
$$

- Hence

$$
u^{n}(t, x)-u_{\nu}(x)=\int_{t}^{\infty} \mathbb{E}\left[\frac{\sigma^{2}\left(r, X_{r}\right)}{2} \Delta \psi^{n}\left(X_{r}-x\right) 1_{r<\tau_{R}}\right] d r
$$

- Fix $(t, x) \in R^{0}$, then $(t+r, x) \in R^{0}$ for $r \geq 0$ hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(u^{n}-u_{\nu}^{n}\right)(t, x) & =\int_{t}^{\infty} \mathbb{E}\left[\frac{\sigma^{2}\left(r, X_{r}\right)}{2} \lim _{n \rightarrow \infty} \Delta \psi^{n}\left(X_{r}-x\right) 1_{r<\tau}\right. \\
& =0
\end{aligned}
$$

Step 3. $\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u \geq 0$ on $[0, \infty) \times \mathbb{R}$.

- First show that u^{n} solves

$$
\left\{\begin{aligned}
\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u^{n}-\frac{1}{2} I_{n} & =0 \text { on }(0, \infty) \times \mathbb{R} \\
u^{n}(0, .) & =u_{\mu}^{n}(.)
\end{aligned}\right.
$$

- $u^{n}(t, x)$ has a right- and left derivative $\forall(t, x) \in[0, \infty) \times \mathbb{R}$ and continuous derivative $\Delta u^{n}(t, x)$
- $\lim _{n \rightarrow 0} I^{n}=0$ loc. uniformly

Step 3. $\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u \geq 0$ on $[0, \infty) \times \mathbb{R}$.

- First show that u^{n} solves

$$
\left\{\begin{aligned}
\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u^{n}-\frac{1}{2} I_{n} & =0 \text { on }(0, \infty) \times \mathbb{R} \\
u^{n}(0, .) & =u_{\mu}^{n}(.) .
\end{aligned}\right.
$$

- $u^{n}(t, x)$ has a right- and left derivative $\forall(t, x) \in[0, \infty) \times \mathbb{R}$ and continuous derivative $\Delta u^{n}(t, x)$
- $\lim _{n \rightarrow 0} I^{n}=0$ loc. uniformly
- Apply the method of semi-relaxed limits: $u^{n} \rightarrow u$ and $u_{\mu}^{n}(.) \rightarrow u_{\mu}($.$) uniformly hence u$ is viscosity supersolution of

$$
\left\{\begin{aligned}
\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u & =0 \text { on }[0, \infty) \times \mathbb{R} \\
u(0, .) & =u_{\mu}(.)
\end{aligned}\right.
$$

Step 4. $\left(\partial_{t}-\frac{\sigma^{2}}{2} \Delta\right) u=0$ on R^{c} :

- need to show that u is a subsolution (supersolution follows from above
- R is a Root barrier, hence

$$
\left(\tau_{R}+r, X_{\tau_{R}}\right) \in R \quad \forall r \geq 0
$$

hence if $(t, x) \in R^{c}$ and $t \geq \tau_{R}$ then $X_{\tau_{R}} \neq x$. Therefore $\lim _{n \rightarrow \infty} \sup _{(t, x) \in K} \Delta \psi^{n}\left(X_{\tau_{R}}-x\right) 1_{t \geq \tau_{R}}=0$ for every compact $K \subset R^{c}$
c) From PDE to barrier

Proposition

Under (TC) there exists a $v_{\infty} \in C([0, \infty) \times \mathbb{R}, \mathbb{R})$ which is a viscosity solution of

$$
\left\{\begin{aligned}
\min \left(v-h, \partial_{t} v-\frac{\sigma^{2}}{2} \Delta v\right) & =0,(t, x) \in(0, \infty) \times \mathbb{R} \\
v(0, x) & =u_{0}(x), x \in \mathbb{R}
\end{aligned}\right.
$$

Moreover, for $T<\infty$

1. $\forall(t, x) \in[0, T] \times \mathbb{R} \exists!\left(X_{s}^{t, x}, Y_{s}^{t, x}, Z_{s}^{t, x}, K_{s}^{t, x}\right)_{s \in[t, T]}$ of $\left\{\mathcal{F}_{s}^{t}\right\}$-progressively measurable processes, solution of the $r F B S D E$

$$
\left\{\begin{array}{l}
X_{s}^{t, x}=x+\int_{t}^{s} \sigma\left(T-r, X_{r}^{t, x}\right) d W_{r}, \\
Y_{s}^{t, x}=u_{0}\left(X_{T}^{t, x}\right)+K_{T}^{t, x}-K_{s}^{t, x}-\int_{s}^{T} Z_{r}^{t, x} d W_{r}, \\
Y_{s}^{t, x} \geq h\left(X_{s}^{t, x}\right), t<s \leq T, \int_{t}^{T}\left(Y_{s}^{t, x}-h\left(X_{s}^{t, x}\right)\right) d K_{s}^{t, x}=0,
\end{array}\right.
$$

2. $\left(K_{s}^{t, x}\right)_{s \in[t, T]}$ increasing, continuous, and $K_{t}^{t, x}=0$.
3. $\left.v_{\infty}\right|_{[0, T] \times \mathbb{R}}(t, x) \equiv Y_{T-t}^{T-t, x}$.

Theorem (O\&Reis13)

Let μ, ν have a second moment, $\mu \leq_{c x} \nu$ and σ Lip $+L G$. Then the the free boundary R

$$
R=\left\{(t, x): u(t, x)=u_{\nu}(x)\right\}
$$

of the obstacle problem

$$
\left\{\begin{align*}
\min \left(u-u_{\nu}, \partial_{t} u-\frac{\sigma^{2}}{2} \Delta u\right) & =0 \tag{3}\\
u(0, .) & =u_{\mu}(.)
\end{align*}\right.
$$

solves the SEP

$$
d X_{t}=\sigma\left(t, X_{t}\right) d B_{t}, X_{0} \sim \mu, X_{\tau_{R}} \sim \nu
$$

Proof.

(sketch)

- Under above assumptions the PDE has exactly one solution $\mathcal{O}\left(u_{\mu}, u_{\nu}, \sigma\right)=\{u\}$
- $\mathcal{R}(\mu, \nu, \sigma)=\{R\}$
- From previous Theorem $u(t, x)=-\mathbb{E}\left[\left|X_{t \wedge \tau_{R}}-x\right|\right]$
- By proof of previous theorem, hence $R \subset\left\{(t, x): u(t, x)=u_{\nu}(x)\right\}$
- To see $R \supset\left\{(t, x): u(t, x)=u_{\nu}(x)\right\}$ use the representation $u(t+r, x)-u(t, x)=\mathbb{E}\left[L_{t}^{x}-L_{t+r}^{x}\right]$
(d) Numerics

Assume μ, ν support in interval $[a, b] \subset \mathbb{R}$

$$
S^{h}\left[u^{h}\right](t, x):=\left\{\begin{array}{l}
u_{\mu}(x) \text { in }[0, \Delta t) \times(a, b) \\
u^{h}(t, x)+\frac{\Delta t \sigma^{h}(t, x)}{2(\Delta x)^{2}}\left(u^{h}(t, x+\Delta x)-2 u^{h}(t, x)+u^{h}\right. \\
u_{\mu}(x)=u_{\nu}(x) \text { in }[0, T] \times\{a, b\}
\end{array}\right.
$$

Proposition (O\&Reis13)

Let $T<\infty$ and let μ, ν have second moments, compact support, $\mu \leq_{c x} \nu$. If $\Delta t|\sigma|_{\infty ;[a, b] \times[0, T]}<(\Delta x)^{2}$ Then
$u^{h} \in \mathcal{B}([0, T] \times \mathbb{R}, \mathbb{R})$ and

$$
\left|u^{h}-u\right|_{\infty ;[0, T] \times \mathbb{R}} \rightarrow 0 \text { as } h \rightarrow(0,0)
$$

on $[0, T],\{u\} \in \mathcal{O}\left(u_{\mu}, u_{\nu}, \sigma\right)$.

Figure: $\sigma=1, \mu=\delta_{0}$ and $\nu=\frac{2}{7} \delta_{-1}+\frac{1}{4} \delta_{-\frac{1}{4}}+\frac{13}{28} \delta_{\frac{3}{4}}$.

Figure: $\sigma(x)=x, \mu=\delta_{1}$ and $\nu=\mathcal{U}\left(\left[\frac{1}{2}, \frac{3}{2}\right]\right)$

Figure: $\sigma(x)=1, \mu=\frac{3}{4} \delta_{-\frac{1}{6}}+\frac{1}{4} \delta_{0.5}, \nu=\frac{1}{3} \delta_{-1}+\frac{2}{3} \mathcal{U}([0,1])$.
$[1,2,3,4,5,6,7]$
固 A．M．G．Cox and J．Wang．
Root＇s barrier：Construction，optimality and applications to variance options．
arXiv preprint arXiv：1104．3583， 2011.
目 B．Dupire．
Arbitrage bounds for volatility derivatives as free boundary problem．
Presentation at PDE and Mathematical Finance，KTH， Stockholm， 2005.
围 Paul Gassiat，Aleksandar Mijatovic，and Harald Oberhauser． Integral equations for root barriers and the generation of brownian increments by stopping times of minimal variance． Working paper， 2013.

R H．Oberhauser and G．dos Reis．
Root＇s barrier，viscosity solutions of obstacle problems and reflected FBSDEs．
ArXiv e－prints，January 2013.

D．H．Root．
The existence of certain stopping times on Brownian motion． Ann．Math．Statist．，40：715－718， 1969.
（ Hermann Rost．
The stopping distributions of a Markov Process． Invent．Math．，14：1－16， 1971.
目 A．V．Skorokhod．
Studies in the theory of random processes．
Translated from the Russian by Scripta Technica，Inc． Addison－Wesley Publishing Co．，Inc．，Reading，Mass．， 1965.

THANK YOU FOR YOUR TIME!

