DISPERSION ESTIMATES FOR ONE-DIMENSIONAL DISCRETE DIRAC EQUATIONS

ELENA KOPYLOVA AND GERALD TESCHL

Abstract. We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end, we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators.

1. Introduction

In the present paper, we are concerned with the one-dimensional discrete Dirac equation
\[i\dot{w}(t) := Dw(t) = (D_0 + Q)w(t), \quad w_n = (u_n, v_n) \in \mathbb{C}^2, \quad n \in \mathbb{Z}, \quad (1.1) \]
where the unperturbed discrete Dirac operator \(D_0 \) is given by
\[D_0 = \begin{pmatrix} m & d \\ d^* & -m \end{pmatrix}, \quad m > 0, \]
with \((du)_n = u_n - u_{n+1}\). We suppose that the matrix potential \(Q = (q^{ij})_{i,j=1,2} \) is real-valued and satisfies the conditions:
\[q_{n1}^{12} \equiv q_{n1}^{21} \quad \text{and} \quad q_{n1}^{21} \neq -1, \quad \forall n \in \mathbb{Z}. \quad (1.2) \]
To formulate our results, we introduce the weighted spaces \(\ell^p_\sigma = \ell^p_\sigma(\mathbb{Z}), \sigma \in \mathbb{R}, \) associated with the norm
\[\|u\|_{\ell^p_\sigma} = \left\{ \left(\sum_{n \in \mathbb{Z}} (1 + |n|)^p \sigma |u(n)|^p \right)^{1/p}, \quad p \in [1, \infty), \right. \]
\[\left. \sup_{n \in \mathbb{Z}} (1 + |n|)^\sigma |u(n)|, \quad p = \infty, \right. \]
and the case \(\sigma = 0 \) corresponds to the usual \(\ell^p_0 = \ell^p \) spaces without weight. We also set \(\ell^p_\sigma = \ell^p_\sigma \oplus \ell^p_\sigma \).

Under the assumption \(q^{ij} \in \ell^1_2 \) the spectrum of \(D \) consists of a purely absolutely continuous part covering \(\Gamma \), where \(\Gamma = (-\sqrt{m^2 + 4}, -m) \cup (m, \sqrt{m^2 + 4}) \), plus a finite number of eigenvalues located in \(\mathbb{R} \setminus \Gamma \). In addition, there could be resonances at the boundaries of the continuous spectrum, that is, there could be a corresponding bounded solution of the underlying difference equation at these energies.

As our first main result, we will prove the following \(1^1 \to 1^\infty \) decay
\[\|e^{-itD}P_c\|_{1^1 \to 1^\infty} = \mathcal{O}(t^{-1/3}), \quad t \to \infty, \quad (1.3) \]

2010 Mathematics Subject Classification. Primary 35Q41, 81Q15; Secondary 39A12, 39A70.

Key words and phrases. Discrete Dirac equation, Cauchy problem, dispersive decay, limiting absorption principle.

Research supported by the Austrian Science Fund (FWF) under Grant No. P27492-N25.
under the assumptions \(q^{ij} \in \ell^1_2 \) in the non-resonant case and \(q^{ij} \in \ell^1_1 \) in the resonant case. Here \(P_c \) is the orthogonal projection in \(\mathbb{I}^2 \) onto the continuous spectrum of \(\mathcal{D} \).

In combination with conservation of the \(\mathbb{I}^2 \) norm (1.3) also gives rise to the usual interpolation and Strichartz estimates. Moreover, (1.3) implies
\[
\| e^{-it\mathcal{D}P_c} \|_{L^2_\sigma \to L^2_{-\sigma}} = O\left(t^{-1/3} \right), \quad t \to \infty, \quad \sigma > 1/2.
\]
However, we will in fact establish the stronger result
\[
\| e^{-it\mathcal{D}P_c} \|_{L^2_\sigma \to L^2_{-\sigma}} = O\left(t^{-1/2} \right), \quad t \to \infty, \quad \sigma > 1/2. \tag{1.4}
\]
For the remaining results we restrict ourselves to the case when the edges of the spectrum \(\omega = \pm m, \pm \sqrt{1 + m^2} \) are no resonances for \(\mathcal{D} \). Then for \(q^{ij} \in \ell^1_3, i, j = 0, 1 \), we show that
\[
\| e^{-it\mathcal{D}P_c} \|_{L^1_{3/2} \to L^\infty_{3/2}} = O\left(t^{-4/3} \right), \quad t \to \infty. \tag{1.5}
\]
Moreover, for \(q^{ij} \in \ell^1_1 \) in the non-resonant case, we prove
\[
\| e^{-it\mathcal{D}P_c} \|_{L^2_\sigma \to L^2_{-\sigma}} = O\left(t^{-3/2} \right), \quad t \to \infty, \quad \sigma > 2. \tag{1.6}
\]
To establish the estimates (1.3)–(1.6), we represent the resolvent in terms of Jost functions. In particular, we use this representation to prove the limiting absorption principle and to establish absence of embedded eigenvalues in the continuous spectrum under the condition \(q^{ij} \in \ell^1_1 \).

The dispersive decay for \(L^1 \to L^\infty \) with decay rate \(t^{-1/2} \) for continuous perturbed Schrödinger equations has been established by Weder [16] with later improvements by Goldberg and Schlag [6], and by Egorova, Marchenko, and us in [4].

The dispersive decay of type (1.3) for discrete Schrödinger equation has been established by Pelinovsky and Stefanov [13] under the assumption that there are no resonances and under more restrictive conditions on the potential. Further developments were given by Cuccagna and Tarulli [5]. In our recent paper [3] we weakened the conditions of [5] in the resonant case. Moreover, in [3] and [4] we obtain the analogous decay for discrete and continuous Klein–Gordon equations. For the discrete Dirac equation (1.1), the decay (1.3) has not been obtained previously.

The decay of type (1.6) in weighted norms for the one-dimensional continuous Schrödinger equation in the non-resonant case has been established by Jensen and Nenciu [7] and, for more general PDEs of Schrödinger type, by Murata [12]. For the one-dimensional Klein–Gordon equation the analogous decay in weighted energy norms has been obtained by Komech and one of us [8] (see also the survey [11]). For discrete Schrödinger and Klein–Gordon equations with compactly supported potentials it has been obtained in [9] and generalized in [13] to discrete Schrödinger equation with non-compactly supported potentials \(q \) under the decay condition \(|q_n| \leq (1 + |n|)^{-\beta} \) with \(\beta > 5 \) for \(\sigma > 5/2 \). In [3], we improved this result to \(q \in \ell^1_2 \) and \(\sigma > 3/2 \).

For the continuous one-dimensional Dirac equation the dispersive decay of type (1.6) with \(\sigma > 5/2 \) has been obtained in [10]. For the discrete Dirac equation the decay (1.6) is again new.

Asymptotics of the type (1.3)–(1.6) can be applied in proving asymptotic stability of solitons for the associated discrete one-dimensional nonlinear Dirac equations.
2. The free discrete Dirac equation

First we consider the free equation (1.1) with \(Q = 0 \). We have
\[
(D_0 - \lambda)(D_0 + \lambda) = -\Delta_L + m^2 - \lambda^2,
\]
where \(\Delta_L \) is the discrete Laplacian given by
\[
(\Delta_L u)_n = u_{n+1} - 2u_n + u_{n-1}, \quad n \in \mathbb{Z}.
\]
Denote by \(R_0(\lambda) = (D_0 - \lambda)^{-1} \) the resolvent of the free Dirac operator \(D_0 \). Then (2.1) implies
\[
R_0(\lambda) = (D_0 + \lambda) R_0(\lambda^2 - m^2),
\]
where \(R_0(\omega) = (-\Delta_L - \omega)^{-1} \) is the resolvent of operator \(-\Delta_L\). Adopting the notation \([K]_{n,k}\) for the kernel of an operator \(K \), that is,
\[
(Ku)_n = \sum_{k \in \mathbb{Z}} [K]_{n,k} u_k, \quad n \in \mathbb{Z},
\]
the kernel of the resolvent \(R_0(\omega) \) is given by (see [3, 13])
\[
[R_0(\omega)]_{n,k} = \frac{1}{2\pi} \int_{\Gamma} e^{-i\theta(n-k)} d\theta = \frac{e^{-i\theta|n-k|}}{2i \sin \theta(\omega)}, \quad \omega \in \mathbb{C} \setminus [0, 4],
\]
where \(\omega \) is the unique solution of the equation
\[
2 - 2 \cos \theta = \omega, \quad \theta \in \Sigma := \{-\pi \leq \text{Re} \theta \leq \pi, \, \text{Im} \theta < 0 \}/2\pi \mathbb{Z}.
\]
Observe that \(\theta \mapsto \omega = 2 - 2 \cos \omega \) is a biholomorphic map from \(\Sigma \to \mathbb{C} \setminus [0, 4] \).

The kernel of the free Dirac propagator can be easily computed using the spectral theorem and formulas (2.2)–(2.3)
\[
[e^{-itD_0}]_{n,k} = \frac{1}{2\pi i} \int_{\Gamma} e^{-it\lambda} [R_0(\lambda + i0) - R_0(\lambda - i0)]_{n,k} d\lambda
\]
\[
= -\frac{1}{4\pi} \int_{\Gamma} e^{-it\lambda} \left(m + \lambda \atop d^* \right) \left(d \atop -m + \lambda \right) \left(\frac{e^{-i\theta_+|n-k|}}{\sin \theta_+} - \frac{e^{-i\theta_-|n-k|}}{\sin \theta_-} \right) d\lambda,
\]
where
\[
\theta_+ = \theta((\lambda + i0)^2 - m^2) \in [-\pi, 0], \quad \theta_- = \theta((\lambda - i0)^2 - m^2) \in [0, \pi], \quad \lambda \in \Gamma.
\]
Finally,
\[
[e^{-itD_0}]_{n,k} = \frac{1}{2\pi} \sum_{j=-1}^{1} \int_{-\pi}^{\pi} \Omega_j(\theta) e^{-itg(\theta)} e^{-it|n-k+j|} d\theta,
\]
where \(g(\theta) := \sqrt{2 - 2 \cos \theta + m^2} \) and
\[
\Omega_{-1}(\theta) = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}, \quad \Omega_0(\theta) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad \Omega_{1}(\theta) = \begin{pmatrix} m + g(\theta) & 1 \\ -m + g(\theta) & 1 \end{pmatrix}.
\]

For the free discrete Dirac equation the \(L^1 \to L^\infty \) decay of type (1.3) holds. However, the \(L^2_{\sigma} \to L^2_{-\sigma} \) decay holds with rate \(t^{-1/2} \) only (as in the continuous case). This is caused by the presence of resonances at the edge points \(\mu = \pm m, \pm \sqrt{m^2 + 4} \).

Proposition 2.1. The following asymptotics hold:
\[
\|e^{-itD_0}\|_{L^1 \to L^\infty} = \mathcal{O}(t^{-1/3}), \quad t \to \infty,
\]
\[
\|e^{-itD_0}\|_{L^2_{-\sigma} \to L^2_{\sigma}} = \mathcal{O}(t^{-1/2}), \quad t \to \infty, \quad \sigma > 1/2.
\]
Proof. It suffices to consider the operator $K(t)$ with the kernel

$$[K(t)]_{n,k} = \int_{-\pi}^{\pi} \psi(\theta)e^{-it\sigma(\theta)}e^{-i|\theta|n-k}d\theta, \quad (2.9)$$

where $\psi(\theta)$ is some smooth function, and obtain the asymptotics

$$\|K(t)\|_{t^1 \to \ell^\infty} = \mathcal{O}(t^{-1/3}), \quad t \to \infty,$$

$$\|K(t)\|_{\ell^2 \to \ell^2, \sigma} = \mathcal{O}(t^{-1/2}), \quad t \to \infty, \quad \sigma > 1/2. \quad (2.10)$$

Step i) Since

$$\|K(t)\|_{t^1 \to \ell^\infty} = \sup_{\|f\|_{t^1} = 1} \sup_{\|g\|_{t^1} = 1} \|f, K(t)g\| \leq \sup_{n,k \in \mathbb{Z}} \|[K(t)]_{n,k}\|, \quad (2.12)$$

then for (2.10) it suffices to prove that

$$\sup_{n,k \in \mathbb{Z}} \|[K(t)]_{n,k}\| \leq Ct^{-1/3}. \quad (2.13)$$

Abbreviate $\nu := |n-k| \geq 0$ and set $\kappa = (2 + m^2 - \sqrt{4m^2 + m^4})/2$, $0 < \kappa < 1$. It is easy to check that for $\nu \neq \nu_0 := \nu_0 := \sqrt{\kappa}$ the phase function

$$\Phi_\nu(\theta) = g(\theta) + v\theta \quad (2.14)$$

has at most two non-degenerate stationary points. In the case $\nu = \nu_0$ there exists a unique degenerate stationary point $\theta_0 = -\arccos \kappa$, $-\pi/2 < \theta_0 < 0$, such that $\Phi''(\theta_0) = \sqrt{\kappa} \neq 0$. Hence (2.13) follows from the following lemma:

Lemma 2.2. (cf. [14]) Consider the oscillatory integral

$$I(t) = \int_a^b \psi(\theta)e^{it\sigma(\theta)}d\theta, \quad -\pi \leq a < b \leq \pi,$$

where $\psi(\theta)$ is real-valued smooth function, and $|\psi(\theta)| + |\psi'(\theta)| \leq M$. If $|\psi^{(k)}(\theta)| > 0$, $\theta \in [a,b]$, for some $k \geq 2$ then

$$|I(t)| \leq C_k(M)(t \min_{[a,b]} |\phi^{(k)}(\theta)|)^{-1/k}, \quad t \geq 1. \quad (2.15)$$

Step ii) The norm of the operator $K(t) : \ell^2_\sigma \to \ell^2_\sigma$ is equivalent to the norm of the operator $K_\sigma(t) = (1 + |n|)^{-\sigma}K(t)(1 + |k|)^{-\sigma} : \ell^2 \to \ell^2$. Hence for (2.11) it suffices to prove that the Hilbert-Schmidt norm of $K_\sigma(t)$ does not exceed $Ct^{-1/2}$, i.e.

$$\left[\sum_{n,k \in \mathbb{Z}} \frac{(|K(t)|_{n,k})^2}{(1 + |n|)^{2\sigma}(1 + |k|)^{2\sigma}} \right]^{1/2} \leq Ct^{-1/2}, \quad \sigma > 1/2. \quad (2.15)$$

We divide the domain of integration in (2.9) into the domains

$$J_{\pm} = \{ \theta : |\theta - \theta_0| \leq \nu|\theta_0| \}, \quad J = [-\pi, \pi] \setminus (J_+ \cup J_-), \quad (2.16)$$

where $\nu = \nu(m) \in (0,1/2]$, will be specified below. Since $|\Phi''(\theta)| \geq C(\nu)$ for $\theta \in J$, we infer

$$\sup_{n,k \in \mathbb{Z}} \left| \int_J \psi(\theta)e^{-it\phi_\nu(\theta)}d\theta \right| \leq Ct^{-1/2}, \quad t \geq 1,$$
from the van der Corput Lemma 2.2. Consequently, (2.15) for the part over J follows. For the part over J_- we apply integration by parts to obtain
\[
\sup_{n,k \in \mathbb{Z}} \left| \int_{J_-} \psi(\theta) e^{-i \Phi_v(\theta)} d\theta \right| \leq Ct^{-1}, \quad t \geq 1,
\]
from which (2.15) for the part over J_- follows.

It remains to consider the part over J_+. For any fixed $\sigma > 1/2$, there exist an integer $N > 0$ such that
\[
\sigma > 1/2 + (1/2)^N. \tag{2.17}
\]
Denote $t_j = t^{-(1/2)}j$, $1 \leq j \leq N$, $t_0 = 0$, $t_{N+1} = \nu|\theta_0|$. We further divide the domain J_+ into subdomains $J_+^j = t_j \leq |\theta - \theta_0| \leq t_{j+1}$, $0 \leq j \leq N$. For the integral over J_+^j the estimate (2.15) evidently holds. It remains to get (2.15) for the operators $K_j(t)$ with kernels
\[
[K_j(t)]_{n,k} = \int_{J_+^j} \psi(\theta) e^{-i \Phi_v(\theta)} d\theta, \quad 1 \leq j \leq N. \tag{2.18}
\]
By the van der Corput lemma
\[
\sup_{n,k \in \mathbb{Z}} |[K_j(t)]_{n,k}| \leq Ct^{-1/2} \left(\min_{\theta \in J_+^j} |\Phi_v''(\theta)| \right)^{-1/2} \leq C(tt_j)^{-1/2}. \tag{2.19}
\]
Now we choose $\varepsilon = 2^{-N}$, so that $t^\varepsilon = t_N^{-1}$, and consider $|v_0 - v| \leq \frac{1}{2}v_0 t_j t^\varepsilon$ and $|v_0 - v| \geq \frac{1}{2}v_0 t_j t^\varepsilon$ separately.

In the first case, we take $T_j = \{(n,k) \in \mathbb{Z}^2 : |v_0 t - |n-k|| \leq \frac{1}{2}v_0 t_j t^1 + \varepsilon\}$ as the domain of summation. Since this domain is symmetric with respect to the map $(n,k) \mapsto (-n,-k)$, we can make the change of variables $p = n - k$, $q = n + k$ and estimate
\[
b_j(t) := \sum_{(n,k) \in T_j} \frac{1}{(1 + |n|)^{2\sigma}(1 + |k|)^{2\sigma}}
\]
by
\[
b_j(t) \leq \sum_{q \in \mathbb{Z}, p = [v_0(t+\frac{1}{2}t_j t^1 + \varepsilon)]} \sum_{q \in \mathbb{Z}, p = [v_0(t-\frac{1}{2}t_j t^1 + \varepsilon)]} \frac{2}{(1 + \frac{1}{2}|p + q|)^{2\sigma}(1 + \frac{1}{2}|p - q|)^{2\sigma}},
\]
where $[\cdot]$ and $[\cdot]$ denote the usual floor and ceiling functions, respectively. The sum with respect to p is finite with the number of summands less then $|v_0 t_j t^{1+\varepsilon}| + 2$. Since $t_j t^{1+\varepsilon} \leq t$ for $j = 1, \ldots, N$, we have $p \geq \frac{1}{2}v_0 t$ in the domain of summation. Consequently $p + q \geq \frac{1}{2}v_0 t$ for $q \geq 0$ and $p - q \geq \frac{1}{2}v_0 t$ for $q < 0$. Using these estimates and interchanging the order of summation, we get
\[
b_j(t) \leq C \frac{|t_j t^{1+\varepsilon}|}{t^{2\sigma}} \leq Ct_j t^{1+\varepsilon-2\sigma}. \tag{2.20}
\]
Thus, by (2.19), (2.20), and (2.17)
\[
\sum_{n,k \in T_j} \frac{([K_j(t)]_{n,k})^2}{(1 + |n|)^{2\sigma}(1 + |k|)^{2\sigma}} \leq \sup_{n,k \in \mathbb{Z}} ([K_j(t)]_{n,k})^2 b_j(t) \leq Ct^{-2\sigma+\varepsilon} \leq Ct^{-1} \tag{2.21}
\]
implying
\[
\|K_j(t)\|_{L^2_{\sigma}\rightarrow L^2_{\sigma}} \leq Ct^{-1/2}, \quad j = 1, \ldots, N, \quad \sigma > 1/2, \tag{2.22}
\]
in the first case.
In the second case, we apply integration by parts. To this end we have to estimate: (a) $|\Phi'_v(\theta)|^{-1}$ at the points θ_j and $\theta_0 \pm t_{j+1}$, and (b) the integral of the function $|\Phi''_v(\theta)|(|\Phi'_v(\theta)|^{-1}$ between these points. But since the function $\Phi''_v(\theta)$ does not change its sign on the intervals $[\theta_0 + t_j, \theta_0 + t_{j+1}]$ and $[\theta_0 - t_{j+1}, \theta_0 - t_j]$, the antiderivative of $|\Phi''_v(\theta)|(|\Phi'_v(\theta)|^{-1}$ is equal up to a sign to $(\Phi'_v(\theta))^{-1}$. Thus it is sufficient to consider the case (a) only.

We have $\Phi_v(\theta) = g(\theta) + v\theta$, therefore

$$\Phi'_v(\theta) = g'(\theta) + v = g'(\theta_0) + \frac{1}{2}g''(\hat{\theta})(\theta - \theta_0)^2 + v = \frac{1}{2}g''(\hat{\theta})(\theta - \theta_0)^2 + v - v_0.$$

Here we used $g'(\theta_0) = -v_0$ and $g''(\theta_0) = 0$. Hence for large t

$$|\Phi'_v(\theta_0 \pm t_j)| \geq |v-v_0| - Ct_j^2 \geq t_j\left(\frac{v_0 t_j}{2} - C\right) \geq C_1 t_j, \quad j = 1, \ldots, N-1, \quad s = 0, 1$$

and then

$$|K_j(t)| \leq Ct^{-1} t_j^{-1} \leq Ct^{-1/2}, \quad j = 1, \ldots, N-1. \quad (2.23)$$

In the case $j = N$, we have $|v - v_0| \geq \frac{1}{2}v_0$. Furthermore,

$$\Phi'_v(\theta_0 \pm t_N) = \frac{1}{2}g''(\hat{\theta})(v|\theta_0|)^2 + v - v_0.$$

Since $|g''(\theta)| \leq G = G(\mu)$, $\theta \in [-\pi, \pi]$, then we can choose $\nu = \min\{\frac{1}{2}, \sqrt{\frac{2v_0}{3C\theta_0^3}}\}$ to obtain $|\Phi'_v(\theta_0 \pm t_N)| \geq \frac{1}{2}v_0$. Respectively, $|\Phi'_v(\theta_0 \pm t_N)|^{-1} \leq 6/v_0$, and hence

$$|K_N(t)| \leq Ct^{-1}. \quad (2.24)$$

Taking into account (2.23) and (2.24), we obtain (2.22) also in this case. \qed

3. JOST SOLUTIONS

In this section, we establish basic properties of the Jost functions. For related results in the special case of a diagonal potential, we refer to [2], [14]. In the special case of supersymmetric operators these results can also be inferred from the corresponding results for Jacobi operators (cf. [15, Sect. 14.3]).

Denote by $\Gamma = (-\sqrt{m^2 + 4}, -m) \cup \{m, \sqrt{m^2 + 4}\}, \Xi := \mathbb{C}\setminus\Gamma$, and let $\Xi_+ = \{\lambda \in \Xi, \operatorname{Re} \lambda \geq 0\}$. For any $\lambda \in \Xi_+$ consider the Jost solutions $w = (u, v)$ to

$$Dw = \lambda w \quad (3.1)$$

satisfying the boundary conditions

$$w_n^\pm(\theta) = \begin{pmatrix} u_n^\pm(\theta) \\ v_n^\pm(\theta) \end{pmatrix} \to \begin{pmatrix} 1 \\ \alpha_\pm(\theta) \end{pmatrix} e^{\mp i\theta n}, \quad n \to \pm \infty, \quad (3.2)$$

where

$$\alpha_\pm(\theta) = \frac{1 - e^{\pm i\theta}}{m + \lambda},$$

and $\theta = \theta(\lambda) \in \Sigma$ solves

$$2 - 2\cos \theta = \lambda^2 - m^2.$$

The boundary condition (3.2) arise naturally in (3.1) with $Q = 0$. For nonzero Q with $q^j \in \ell^1$ the Jost solution exists everywhere in Ξ_+, but for $q^j \in \ell^1$ it exists only away from the edges of continuous spectrum. Introduce

$$h_n^\pm(\theta) = e^{\pm i\theta} w_n^\pm(\theta) \quad (3.3)$$

and then

$$\begin{pmatrix} u_n^\pm(\theta) \\ v_n^\pm(\theta) \end{pmatrix} = \begin{pmatrix} 1 \\ \alpha_\pm(\theta) \end{pmatrix} e^{\mp i\theta n}.$$
and set
\[
\Sigma_M := \{ \theta \in \Sigma : |\text{Im}\theta| \leq M \}, \quad M \geq 1,
\]
\[
\Sigma_{M,\delta} := \{ \theta \in \Sigma_M : |e^{-i\theta} \pm 1| > \delta \}, \quad 0 < \delta < \sqrt{2}.
\]

Proposition 3.1. (i) Let \(q^j \in \ell^s_+\) with \(s = 0, 1, 2\). Then the functions \(h^+_n(\theta)\) can be differentiated \(s\) times on \(\Sigma_{M,\delta}\), and the following estimates hold:
\[
|\frac{\partial^s}{\partial \theta^s} h^+_n(\theta)| \leq C(M,\delta) \max((\mp n)|n|^{p-1}, 1), \quad n \in \mathbb{Z}, \quad 0 \leq p \leq s, \quad \theta \in \Sigma_{M,\delta}. \tag{3.4}
\]

(ii) If additionally \(q^j \in \ell^s_{s+1}\), then \(h^+_n(\theta)\) can be differentiated \(s\) times on \(\Sigma_M\), and the following estimates hold:
\[
|\frac{\partial^s}{\partial \theta^s} h^+_n(\theta)| \leq C(M) \max((\mp n)|n|^p, 1), \quad n \in \mathbb{Z}, \quad 0 \leq p \leq s, \quad \theta \in \Sigma_M. \tag{3.5}
\]

Proof. The Green’s function representation for the solutions of (3.1) reads:
\[
\mathbf{h}^+_n(\theta) = \left(\frac{1}{\alpha_\pm(\theta)} \right) + \sum_{k=n}^{\pm\infty} G^\pm(k-n,\theta) Q_k h^+_k(\theta), \tag{3.6}
\]
where
\[
G^\pm(l, \theta) = \frac{(m + \lambda)}{2 \sin \theta} \left(\begin{array}{cc}
1 - e^{\mp 2i\theta l} & \alpha_\mp - \alpha_\pm e^{\mp 2i\theta l} \\
\alpha_\pm - \alpha_\mp e^{\mp 2i\theta l} & (1 - e^{\mp 2i\theta l}) \frac{\lambda - m}{m + \lambda}
\end{array} \right), \quad \pm l \geq 1,
\]
\[
G^+(0, \theta) = \left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array} \right), \quad G^-(0, \theta) = \left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array} \right).
\]

We consider the case “+” only since in the “-” case the proof is similar. Abbreviate \(h_n(z) = h^+_n(\theta)\) with \(z = e^{-i\theta}\). Equation (3.6) implies
\[
A_n h_n(z) = \left(\frac{1}{\alpha_+} \right) + \sum_{k=n+1}^{\infty} G(k-n, z) Q_k h_k(z), \tag{3.7}
\]
where
\[
G(l, z) = \frac{(m + \lambda)}{z^{-1} - z} \left(\begin{array}{cc}
1 - z^{2l} & \alpha_+ - \alpha_- z^{2l} \\
\alpha_- - \alpha_+ z^{2l} & (1 - z^{2l}) \frac{\lambda - m}{m + \lambda}
\end{array} \right), \quad A_n = \left(\begin{array}{cc}
1 & 0 \\
q_n^1 & 1 + q_n^2
\end{array} \right),
\]
and \(\alpha_\pm = \alpha_\pm(z) = (1 - z^{\mp 1})/(m + \lambda)\).

For \(\theta \in \Sigma_{M,\delta}\), we have \(|z^2 - 1| \geq C(\delta) > 0\). Then
\[
|G(l, z)| \leq \frac{C(M)}{|z^2 - 1|} \leq C(M,\delta), \quad l > 0,
\]
and the method of successive approximations (cf. [15]) implies \(|h_n(z)| \leq C(M,\delta)\). Then (3.4) with \(p = 0\) follows. Furthermore,
\[
|\frac{d^p}{dz^p} G(l, z)| \leq C(M,\delta)(k-n)^p, \quad p \geq 1, \quad l > 0, \quad \theta \in \Sigma_{M,\delta}. \tag{3.8}
\]

Now let \(q^j \in \ell^1_+\). Consider the first derivative of \(h_n(z)\). We have
\[
A_n \frac{d}{dz} h_n(z) = \left(\frac{d}{dz} \alpha_+ \right) + \phi_n(z) + \sum_{m=n+1}^{\infty} G(k-n, z) Q_k \frac{d}{dz} h_k(z), \tag{3.9}
\]
where
\[\phi_n(z) := \sum_{k=n+1}^{\infty} \frac{d}{dz} G(k-n, z) Q_k h_k(z). \]

Moreover, we have the estimate \(|\phi_n(z)| \leq C(M, \delta)\) for \(n \geq 0\) and \(\theta \in \Sigma_{M, \delta}\) by \((3.4)\) with \(p = 0\) and \((3.8)\). Applying the method of successive approximations to \((3.9)\), we get \((3.4)\) with \(p = 1\). For the case \(p = 2\), we proceed in the same way.

The estimate \((3.5)\) can be obtained from \((3.7)\) by the same approach by virtue of the estimate \(|\frac{d}{dz} G(l, z)| \leq C(M)k^{p+1}\), which is valid for \(l > 0\).

\[\square \]

Corollary 3.2. In the case \(q^j \in L^1\) Proposition 3.1 (i) implies in particular that for any \(\theta \in \Sigma \setminus \{0; \pm \pi\}\) we have the estimate \(|h_n^\pm(\theta)| \leq C(\theta)\) for all \(n \in \mathbb{Z}\). Here \(C(\theta)\) can be chosen uniformly on compact subsets of \(\Sigma\) avoiding the band edges. Together with \((3.3)\) this implies
\[|w_{n}^\pm(\theta)| \leq C(\theta)e^{\pm i m(\theta)n}, \quad \theta \in \Sigma \setminus \{0; \pm \pi\}, \quad n \in \mathbb{Z}. \] (3.10)

Now we define the Jost function for \(\Re \lambda \leq 0\). Similarly to the analysis for \(\Re \lambda \geq 0\), we consider solutions of system \((3.1)\) according to the boundary conditions
\[\mathbf{\tilde{w}}_{n}^\pm(\theta) = \begin{pmatrix} \tilde{u}_{n}^\pm(\theta) \\ \tilde{v}_{n}^\pm(\theta) \end{pmatrix} \to \begin{pmatrix} \tilde{\alpha}_{\pm}(\theta) \\ 1 \end{pmatrix} e^{\mp in\theta}, \quad n \to \pm \infty, \] (3.11)

where
\[\tilde{\alpha}_{\pm}(\theta) = \frac{1 - e^{\mp i \theta}}{\lambda - m}. \]

Using a similar Green’s function, Propositions 3.1 can be extended to functions \(\mathbf{w}_{n}^\pm(\theta)\). In particular, for \(\mathbf{w}_{n}^\pm(\theta)\) and \(\mathbf{h}_{n}^\pm(\theta) = \mathbf{w}_{n}^\pm(\theta)e^{\pm in\theta}\) the bounds \((3.4)\), \((3.5)\) and \((3.10)\) hold.

4. **Wronskians**

As before we consider the case \(\Re \lambda \geq 0\) only. Denote by \(W(\mathbf{w}^1, \mathbf{w}^2)\) the Wronski determinant of any two solutions \(\mathbf{w}^1\) and \(\mathbf{w}^2\) to \((3.3)\):
\[W(\mathbf{w}^1, \mathbf{w}^2) := \begin{vmatrix} u_{1}^1 & u_{2}^1 \\ v_{1}^1 & v_{2}^1 \end{vmatrix}. \]

It is easy to check that if \(q^{12} = q^{21}\) then \(W(\mathbf{w}^1, \mathbf{w}^2)\) is constant in \(n \in \mathbb{Z}\) for arbitrary solutions \(\mathbf{w}^1\) and \(\mathbf{w}^2\) of \((3.1)\). The Jost solutions \(\mathbf{w}^{\pm}(\theta)\) and \(\mathbf{w}^{\pm}(\theta)\) are independent for \(\theta \in (-\pi, 0) \cup (0, \pi)\) since
\[W(\mathbf{w}^{\pm}(\theta), \mathbf{w}^{\pm}(\theta)) = \begin{vmatrix} 1 & 1 \\ \alpha_{\pm}(\theta)e^{\pm i \theta} & \alpha_{\pm}(\theta)e^{\pm i \theta} \end{vmatrix} = \frac{\pm 2i \sin \theta}{\lambda - m} \neq 0, \] (4.1)

if \(\theta \neq 0, \pm \pi\). Then there exist (unique) functions \(a_{\pm}(\theta)\) and \(b_{\pm}(\theta)\) such that
\[\mathbf{w}^{\pm}(\theta) = a_{\pm}(\theta)\mathbf{w}^{\mp}(\theta) + b_{\mp}(\theta)\mathbf{w}^{\mp}(\theta). \] (4.2)

Calculating the Wronskians, for \(\theta \in (-\pi, 0) \cup (0, \pi)\) we obtain
\[a_{-}(\theta) = a_{+}(\theta) = \frac{W(\theta)}{W(\mathbf{w}^{-}(\theta), \mathbf{w}^{-}(\theta))} = \frac{W(\theta)(m + \lambda)}{2i \sin \theta}, \] (4.3)

and
\[b_{\pm}(\theta) = \pm \frac{W^{\pm}(\theta)}{W(\mathbf{w}^{-}(\theta), \mathbf{w}^{-}(\theta))} = \pm \frac{W(\theta)(m + \lambda)}{2i \sin \theta}, \] (4.4)
where
\[W(\theta) = W(w^+(\theta), w^-(\theta)), \quad W^\pm(\theta) = W(w^{\mp}(\theta), w^\pm(\theta)). \]

Lemma 4.1. Let \(q^j \in \ell^1 \). Then \(W(\theta) \neq 0 \) for \(\theta \in (-\pi, 0) \cup (0, \pi) \).

Proof. Since \(w^+(\theta) = \tilde{w}^+(\theta) \) then \(w^+(\theta) = \tilde{w}^-(\theta) w^-(\theta) + \pi(\theta) w^-(\theta) \).

Therefore,
\[W(w^+(\theta), w^-(\theta)) = (|a_-(\theta)|^2 - |b_-|^2) W(w^-(\theta), w^-(\theta)). \]

Hence, from (4.1) it follows that
\[|a_-(\theta)|^2 - |b_-|^2 = 1. \] (4.5)

Now the assertion of the lemma follows from (4.3) and (4.4). □

Remark 4.2. Proposition 3.1 and Lemma 4.1 eliminates the possibility of embedded eigenvalues in the continuous spectrum of \(D \) for \(q^j \in \ell^1 \) because the space of solutions of the Dirac system (3.1) for \(\lambda \in (-\sqrt{4 + m^2}, -m) \) and \(\lambda \in (m, \sqrt{4 + m^2}) \) is spanned by the two fundamental solutions \(w_n^\pm(\theta) \) and \(w_n^\pm(\theta) \) which are not square summable near \(n \to \pm \infty \).

Now we discuss an alternative definition of resonances.

Definition 4.3. For \(\lambda \in \{m, \sqrt{4 + m^2}\} \) any nonzero solution \(w \in \ell^\infty \) of the equation \(D w = \lambda w \) is called a resonance function, and in this case \(\lambda \) is called a resonance.

Lemma 4.4. Let \(q^j \in \ell^1 \). Then \(\lambda = m \) (or \(\lambda = \sqrt{4 + m^2} \)) is a resonance if and only if \(W(0) = 0 \) (or \(W(\pi) = 0 \)).

Proof. Step i) In the case \(\lambda = m \), we have
\[w_n^\pm = \begin{pmatrix} u_n^\pm \\ v_n^\pm \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + o(1), \quad n \to \pm \infty. \] (4.6)

Introduce another solution \(w^* = (u^*, v^*) \) to (3.1) satisfying
\[W(w^*, w^*) = u_n^+ v_{n+1}^* - u_n^* v_{n+1}^+ = 1. \] (4.7)

If the sequence \(u_n^* \) is bounded for positive \(n \), then from (4.6)–(4.7) it follows that \(v_n^* \to 1 \) for \(n \to +\infty \). Then the second line of equation (3.1) with \(\lambda = m \) implies
\[u_{n+1}^* - u_n^* = m v_{n+1}^* - q_{n+1}^1 u_{n+1}^* - q_{n+1}^2 v_{n+1}^* \to m, \quad n \to +\infty. \]

Hence, for sufficiently large positive \(n_0 \), we obtain
\[u_{n_0+k}^* = u_{n_0}^* + km + o(k), \quad k \to +\infty, \]

which contradicts our assumption on the boundedness of \(u_n^* \). Since \(w^* = \alpha w^+ + \beta w^* \), then it is a bounded solution if and only if \(\beta = W(w^+, w^-) = 0 \).

Step ii) Consider now the case \(\lambda = \sqrt{m^2 + 4} \). In this case
\[w_n^\pm = \begin{pmatrix} u_n^\pm \\ v_n^\pm \end{pmatrix} = (-1)^n \begin{pmatrix} 1 \\ 2/m \end{pmatrix} + o(1), \quad n \to \pm \infty. \] (4.8)
the sequence \(n \) satisfying (4.7) and suppose that the sequence \(u_n^* \) is bounded for positive \(n \), then the sequence \(v_n^* \) is also bounded due to (4.8). Then (4.7) implies that
\[
\tilde{m}u_{n+1}^* = -2u_n^* + (-1)^n \tilde{m} + o(1), \quad n \to +\infty.
\]

Now the second line of equation (3.1) with \(\lambda = \sqrt{m^2 + 4} \) yields
\[
u_{n+1}^* = -u_n^* + (-1)^n \tilde{m} + o(1), \quad n \to +\infty.
\]

Hence, for sufficiently large positive \(n_0 \), we obtain
\[
u_{n+k}^* = (-1)^k u_{n+k}^* + k(-1)^{n+k} \tilde{m} + o(k), \quad k \to +\infty,
\]
which contradicts our assumption on the boundedness of \(u_n^* \). Since \(w^- = \alpha w^* + \beta w^* \), then it is a bounded solution if and only if \(\beta = W(w^+, w^-) = 0 \). \(\square \)

Remark 4.5. From [4.5] it follows that the zeros of the Wronskians \(W(\theta) \) and \(W^\pm(\theta) \) at the points \(0, \pi \) can be at most of first order.

For Re \(\lambda \leq 0 \) the corresponding Wronskian \(\tilde{W}(\theta) \) has the same properties.

5. The limiting absorption principle

Given the Jost solutions, we can express the kernel of the resolvent \(\mathcal{R}(\lambda) : l^2 \to l^2 \) for \(\lambda \in \mathbb{C} \setminus \Gamma \), Recall that \(\theta \mapsto \omega(\theta) \) is a biholomorphic map \(\Sigma \to \Xi \). The method of variation of parameters gives

Lemma 5.1. Let \(q^{ij} \in l^1 \). Then for any \(\lambda \in \mathbb{C} \setminus \Gamma \), Re \(\lambda \geq 0 \), the operators \(\mathcal{R}(\lambda) : l^2 \to l^2 \) can be represented by the integral kernel as follows

\[
[\mathcal{R}(\lambda)]_{k,n} = \frac{1}{W(\theta(\lambda))} \begin{cases}
w_k^-(\theta(\lambda)) \otimes w_n^+(\theta(\lambda)), & k \leq n, \\
w_k^+(\theta(\lambda)) \otimes w_n^-(\theta(\lambda)), & k \geq n, \end{cases}
\]

where
\[
w_k^1 \otimes w_n^2 = \begin{pmatrix} u_1^1 u_2^2 & v_1^1 u_2^2 \\ u_1^1 v_2^2 & v_1^1 v_2^2 \end{pmatrix}
\]

and
\[
[\mathcal{R}(\lambda) w] = \sum_{k=-\infty}^{\infty} [\mathcal{R}(\lambda)]_{k,n} \begin{pmatrix} u_k \\ v_{k+1} \end{pmatrix}.
\]

Similarly, for any \(\lambda \in \mathbb{C} \setminus \Gamma \), Re \(\lambda \leq 0 \), we obtain

\[
[\tilde{\mathcal{R}}(\lambda)]_{k,n} = \frac{1}{\tilde{W}(\theta(\lambda))} \begin{cases}\tilde{w}_k^-\theta(\lambda)) \otimes \tilde{w}_n^+(\theta(\lambda)), & k \leq n, \\
\tilde{w}_k^+(\theta(\lambda)) \otimes \tilde{w}_n^-(\theta(\lambda)), & k \geq n, \end{cases}
\]

where \(\tilde{W}(\theta) = W(\tilde{w}^+(\theta), \tilde{w}^-\theta) \).

The representations [5.1], [5.2], the fact that \(W(\theta) \) and \(\tilde{W}(\theta) \) do not vanish for \(\lambda \in \Gamma \), and the bound (3.10) imply the limiting absorption principle for the perturbed one-dimensional Dirac equation.

Lemma 5.2. Let \(q^{ij} \in l^1 \). Then the convergence
\[
\mathcal{R}(\lambda \pm i\varepsilon) \to \mathcal{R}(\lambda \pm i0), \quad \varepsilon \to 0+, \quad \lambda \in \Gamma
\]

holds in \(L(l^2_{\sigma}, l^2_{-\sigma}) \) with \(\sigma > 1/2 \).
Proof. For any $\lambda \in \Gamma$ and any $n, k \in \mathbb{Z}$, there exist the pointwise limit

$$[\mathcal{R}(\lambda \pm iz)]_{n,k} \to [\mathcal{R}(\lambda \pm i0)]_{n,k}, \quad \varepsilon \to 0.$$

Moreover, the bound (3.10) implies that $| [\mathcal{R}(\lambda \pm iz)]_{n,k} | \leq C(\lambda)$. Hence, the Hilbert–Schmidt norm of the difference $\mathcal{R}(\lambda \pm iz) - \mathcal{R}(\lambda \pm i0)$ converges to zero in $L(\mathcal{L}_2^\sigma, \mathcal{L}_2^\sigma)$ with $\sigma > 1/2$ by the dominated convergence theorem. \hfill \square

Of course the limiting absorption principle implies that the spectrum of D is purely absolutely continuous on Γ.

Corollary 5.3. For any fixed $\sigma > 1/2$, the operators $\mathcal{R}^{\pm}(\lambda) := \mathcal{R}(\lambda \pm i0) : \mathcal{L}_2^\sigma \to \mathcal{L}_2^\sigma$ have integral kernels given by

$$[\mathcal{R}^{\pm}(\lambda)]_{n,k} = \frac{1}{W(\theta_{\pm})} \begin{cases} w^+_n(\theta_{\pm}) \otimes w^-_k(\theta_{\pm}), & n \geq k, \\ w^+_k(\theta_{\pm}) \otimes w^-_n(\theta_{\pm}), & n \leq k, \end{cases} \quad (5.4)$$

for $\lambda \in \Gamma_+ = (m, \sqrt{m^2 + 4})$ and

$$[\mathcal{R}^{\pm}(\lambda)]_{n,k} = \frac{1}{W(\theta_{\pm})} \begin{cases} \tilde{w}^+_n(\theta_{\pm}) \otimes \tilde{w}^-_k(\theta_{\pm}), & n \geq k, \\ \tilde{w}^+_k(\theta_{\pm}) \otimes \tilde{w}^-_n(\theta_{\pm}), & n \leq k, \end{cases} \quad (5.5)$$

for $\lambda \in \Gamma_- = (-\sqrt{m^2 + 4}, -m)$, where θ_+, and $\theta_- = -\theta_+$ are defined by (2.3).
independent of n, k. We suppose $n \leq k$ for notational simplicity. Then
\[[e^{-itD}P_c^+]_{n,k} = \frac{m + \lambda}{4\pi} \int_{-\pi}^{\pi} \frac{e^{-i\Phi_v(\theta)}}{g(\theta)} T(\theta)h_n^-(\theta) \otimes h_n^-(\theta) d\theta, \tag{6.5} \]
where $v = \frac{k-n}{t} \geq 0$, $\Phi_v(\theta)$ is defined in (2.14), and
\[T(\theta) = \frac{1}{a_-(\theta)} = \frac{2i\sin \theta}{(m + \lambda)W(\theta)}. \]
The quantities $T(\theta)$ and
\[R^\pm(\theta) = \frac{b_\pm(\theta)}{a_\pm(\theta)} = \pm \frac{W^\pm(\theta)}{W(\theta)} \]
are known as transmission and reflection coefficient, respectively. From (4.2) there follow the scattering relations
\[T(\theta)w^\pm(\theta) = R^\mp(\theta)w^\mp(\theta) + w^\mp(-\theta), \quad \theta \in [-\pi, \pi], \tag{6.6} \]
which imply the representations
\[T(\theta)h_n^+(\theta) \otimes h_n^-(\theta) = \begin{cases} R^-(\theta)h_n^-(\theta) \otimes h_n^-(\theta)e^{2ik\theta} + h_n^+(\theta) \otimes h_n^-(\theta), & n \leq k \leq 0, \\ R^+(\theta)h_n^+(\theta) \otimes h_n^+(\theta)e^{-2in\theta} + h_n^+(\theta) \otimes h_n^-(\theta), & 0 \leq n \leq k. \end{cases} \]
Using the identities
\[i(n-k) + 2ik = i(k+n) = -i|k+n|, \quad n \leq k \leq 0, \\ i(n-k) - 2in = -i(k+n) = -i|k+n|, \quad 0 \leq n \leq k, \tag{6.7} \]
we rewrite (6.5) as
\[[e^{-itD}P_c^+]_{n,k} = \frac{m + \lambda}{4\pi} \left[\int_{-\pi}^{\pi} \frac{e^{-i\Phi_v(\theta)}}{g(\theta)} Y_{n,k}^1(\theta) d\theta + \int_{-\pi}^{\pi} \frac{e^{-i\Phi_v(\theta)}}{g(\theta)} Y_{n,k}^2(\theta) d\theta \right], \tag{6.8} \]
where
\[Y_{n,k}^1(\theta) = \begin{cases} T(\theta)h_n^+(\theta) \otimes h_n^-(\theta), & n \leq 0 \leq k, \\ h_n^+(\theta) \otimes h_n^-(\theta), & n \leq k \leq 0, \\ h_n^+(\theta) \otimes h_n^+(\theta), & 0 \leq n \leq k, \end{cases} \]
and
\[Y_{n,k}^2(\theta) = \begin{cases} 0, & n \leq 0 \leq k, \\ R^-(\theta)h_n^-(\theta) \otimes h_n^-(\theta), & n \leq k \leq 0, \\ R^+(\theta)h_n^+(\theta) \otimes h_n^+(\theta), & 0 \leq n \leq k, \end{cases} \]
and
\[\tilde{\Phi}_v(\theta) = g(\theta) + \tilde{v} \theta, \quad \text{with } \tilde{v} = |n+k|/t \geq 0. \tag{6.9} \]
In the non-resonant case and $q^{ij} \in \ell^1$, we have
\[|Y_{n,k}^j(\theta)| + \left| \frac{\partial}{\partial \theta} Y_{n,k}^j(\theta) \right| \leq C, \quad j = 1, 2, \quad n \leq k, \tag{6.10} \]
by Proposition 3.1(ii). It the resonant case for (6.10), we need $q^{ij} \in \ell^1$. Then $W(\theta)$ and $W^\pm(\theta)$ can be differentiated two times on $[-\pi, \pi]$ according to Proposition 3.1(ii), and hence
\[\left| \frac{\partial^p}{\partial \theta^p} T(\theta) \right|, \quad \left| \frac{\partial^p}{\partial \theta^p} R^\pm(\theta) \right| \leq C, \quad p = 0, 1, \quad \theta \in [-\pi, \pi], \]
due to Remark 4.5. Therefore (6.10) follows by Proposition 3.1(ii).
We represent $e^{-itD}P^+_c$ as the sum
\[e^{-itD}P^+_c = K(t) + \mathcal{K}(t), \]
where
\[
[K^\pm(t)]_{n,k} = -\frac{1}{4\pi} \int_{J_{\pm}} \left[e^{-it\Phi_\pm(\theta)}Y_{1,n,k}(\theta) + e^{-it\Phi_\pm(\theta)}Y_{2,n,k}(\theta) \right] \frac{d\theta}{g(\theta)},
\]
\[
[\mathcal{K}(t)]_{n,k} = -\frac{1}{4\pi} \int_{\mathcal{J}} \left[e^{-it\Phi_\pm(\theta)}Y_{1,n,k}(\theta) + e^{-it\Phi_\pm(\theta)}Y_{2,n,k}(\theta) \right] \frac{d\theta}{g(\theta)},
\]
where J_\pm and \mathcal{J} are defined in (2.16). The van der Corput Lemma 2.2 with $k = 2$ and the estimate (6.10) imply
\[
\sup_{n \leq k} |[K(t)]_{n,k}| \leq Ct^{-1/2}, \quad t \geq 1.
\]
Hence
\[
||K(t)||_{L^2_\sigma \to L^2_\rho} \leq Ct^{-1/2}, \quad \sigma > 1/2, \quad t \geq 1.
\]
Furthermore, integration by parts gives
\[
\sup_{n \leq k} |[K'(t)]_{n,k}| \leq Ct^{-1}, \quad t \geq 1,
\]
and hence
\[
||K'(t)||_{L^2_\sigma \to L^2_\rho} \leq Ct^{-1}, \quad \sigma > 1/2, \quad t \geq 1.
\]
To estimate $K^+(t)$ we employ the following lemma.

Lemma 6.2. Let $Y_{n,k}(\theta)$ satisfies
\[
|Y_{n,k}(\theta)| + \frac{d}{d\theta} |Y_{n,k}(\theta)| \leq (1 + |n|^p)(1 + |k|^p), \quad n, k \in \mathbb{Z}, \quad (6.11)
\]
with some $p \geq 0$. Let $\Phi_\pm(\theta) = g(\theta) + v\theta$, where $v = |k-n|/t$ or $v = |k+n|/t$. Then for the operator $K(t)$ with the kernel
\[
[K(t)]_{n,k} = \int_{J_+} e^{-it\Phi_+(\theta)}Y_{n,k}(\theta) d\theta
\]
the following asymptotics hold
\[
||K(t)||_{L^2_\rho \to L^2_\rho} = O(t^{-1/2}), \quad t \to \infty, \quad \sigma > 1/2. \quad (6.12)
\]

Proof. In the case $v = |k-n|/t$, we repeat literally the main estimates of Proposition 2.1 (ii). Namely, consider the operators $K_j(t)$ which differ from the operators defined in (2.18) by the additional factor $Y_{n,k}(\theta)$. Then (2.19) will change according to
\[
|[K_j(t)]_{n,k}| \leq Ct^{-1/2} |\mathcal{J}_j|^{-1/2} (1 + |n|^p)(1 + |k|^p)
\]
by virtue of the van der Corput Lemma 2.2. Furthermore, instead of (2.21), we will use the following estimate
\[
\sum_{n, k \in T_j} \frac{(|K_j(t)|_{n,k})^2}{(1 + |n|)^{2p+2}\rho(1 + |k|)^{2p+2}} \leq \sup_{n, k \in \mathbb{Z}} \frac{(|K_j(t)|_{n,k})^2}{(1 + |n|)^{2p}(1 + |k|)^{2p}b_j(t)} \leq Ct^{-2\sigma+\epsilon} \leq Ct^{-1}, \quad j = 1, \ldots, N,
\]
which implies (6.12) in the first case corresponding to \(|v_0 - v| \leq \frac{1}{2} v_0 t \epsilon^v\). Moreover, (6.11) gives the additional factor \((1 + |n|^p)(1 + |k|^p)\) in the right-hand side of (2.23) and (2.24) and hence (6.12) in the second case when \(|v_0 - v| \geq \frac{1}{2} v_0 t \epsilon^v\). In the case \(v = |k + n|/t\) the proof is similar. □

Thus, applying (6.10) and the Lemma 6.2 with \(p = 0\), we obtain
\[
\|K^+(t)\|_{L^2_\sigma \to L^2_{-\sigma}} \leq C t^{-1/2}, \quad \sigma > 1/2, \quad t \to \infty.
\]

Now we consider the non-resonant case and prove the asymptotics (1.5) and (1.6).

Theorem 6.3. Let \(q^j \in \ell^1_3\). Then in the non-resonant case
\[
\|e^{-itD} P_c\|_{L^{1/2}_t \to L^{1/-3}_v} = O(t^{-4/3}), \quad t \to \infty, \quad \sigma > 2.
\]

Proof. Step i) To prove (6.14) it suffices to show that
\[
|e^{-itD} P_c|_{n,k} \leq C(1 + |n|^{3/2})(1 + |k|^{3/2}) t^{-4/3}, \quad t \geq 1.
\]

For \(n \leq k\), we represent the jump of the resolvent across the spectrum as (cf. [3, p13])
\[
\mathcal{R}(\omega + i0) - \mathcal{R}(\omega - i0) = \frac{|T(\omega)|^2 (m + \lambda)}{-2i \sin \theta} [w_k^+(\theta) \otimes \overline{w_n^+(\theta)} + w_n^-(\theta) \otimes \overline{w_k^-(\theta)}].
\]

Inserting this into (6.3) and integrating by parts, we get
\[
[e^{-itD} P_c]_{n,k} = \frac{i(m + \lambda)}{2\pi t} \int_\pi^\pi e^{-ig(\theta)} \frac{d}{d\theta} \left[\frac{|T(\theta)|^2}{\sin \theta} (w_k^+(\theta) \otimes \overline{w_n^+(\theta)} + w_n^-(\theta) \otimes \overline{w_k^-(\theta)}) \right] d\theta
\]
\[
= [P^+(t)]_{n,k} + [P^-(t)]_{n,k}.
\]

We consider the first summand only. Evaluating the derivative, we further obtain
\[
[P^+(t)]_{n,k} = \frac{i(m + \lambda)}{2\pi t} \int_\pi^\pi e^{-ig(\theta)} \frac{d}{d\theta} \left[\frac{|T(\theta)|^2}{\sin \theta} e^{-i\theta(k-n)} h_k^+(\theta) \otimes \overline{h_n^+(\theta)} \right] d\theta
\]
\[
= \frac{m + \lambda}{2\pi t} \int_\pi^\pi e^{-i\Phi_v(\theta)} ((k - n) + i \frac{d}{d\theta}) \frac{|T(\theta)|^2}{\sin \theta} h_k^+(\theta) \otimes \overline{h_n^+(\theta)}, \quad (6.17)
\]
where \(\Phi_v(\theta)\) is defined in (2.14). Applying the scattering relation
\[
T(-\theta) h_n^+(\theta) = R^-(-\theta) h_n^-(\theta) e^{-2i\theta} + h_n^+(\theta),
\]
we get the representation
\[
[P^+(t)]_{n,k}^+ = \frac{1}{2\pi t} \int_\pi^\pi e^{-i\Phi_v(\theta)} Z_{n,k}^2(\theta) d\theta + \frac{1}{2\pi t} \int_\pi^\pi e^{-i\Phi_v(\theta)} Z_{n,k}^2(\theta) d\theta, \quad (6.18)
\]
where \(\Phi_v(\theta)\) is the same as before,
\[
\tilde{\Phi}_v(\theta) = g(\theta) + \tilde{\theta}, \quad \text{with} \quad \tilde{\theta} = (n + k)/t , \quad (6.19)
\]
and
\[
Z_{n,k}^1(\theta) = \begin{cases}
((k - n) + i \frac{d}{d\theta} T_{\sin \theta}^2) \mathbf{h}_n^+(\theta) \otimes \mathbf{h}_n^+(\theta), & 0 \leq n \leq k, \\
((k - n) + i \frac{d}{d\theta} T_{\sin \theta}^2) \mathbf{h}_n^-(\theta) \otimes \mathbf{h}_n^-(\theta), & n \leq k \leq 0 \cup n \leq 0 \leq k,
\end{cases}
\]
\[
Z_{n,k}^2(\theta) = \begin{cases}
0, & 0 \leq n \leq k, \\
((k + n) + i \frac{d}{d\theta} T_{\sin \theta}^2) R^-(-\theta) \mathbf{h}_n^+(\theta) \otimes \mathbf{h}_n^-(\theta), & n \leq k \leq 0 \cup n \leq 0 \leq k.
\end{cases}
\]

Since \(\frac{\sqrt{t}}{\sin \theta} = \frac{2i}{(m+\lambda)W(\theta)} \), then, in the non-resonant case, Proposition 3.1 (ii) implies
\[
|Z_{n,k}^j(\theta)| + \left| \frac{d}{d\theta} Z_{n,k}^j(\theta) \right| \leq C(1 + |k|), \quad 0 \leq n \leq k,
\]
\[
|Z_{n,k}^j(\theta)| + \left| \frac{d}{d\theta} Z_{n,k}^j(\theta) \right| \leq C(1 + \max\{|k|, |n|\}), \quad n \leq 0 \leq k,
\]
\[
|Z_{n,k}^j(\theta)| + \left| \frac{d}{d\theta} Z_{n,k}^j(\theta) \right| \leq C((1 + |n|)(1 + |k|^2) + (1 + |k|^3))
\]
\[
\leq C(1 + |n|^{3/2})(1 + |k|^{3/2}), \quad n \leq k \leq 0,
\]
and we obtain (6.20) by the method of Theorem 6.1 (i).

Step ii. To prove (6.15), we represent \(\mathcal{P}^+ \) as the sum
\[
\mathcal{P}^+(t) = K^+(t) + \tilde{K}^+(t) + K(t),
\]
where
\[
[K^\pm(t)]_{n,k} = \frac{m + \lambda}{2\pi t} \int_{J^\pm} e^{-it\Phi_\nu(\theta)} Z_{n,k}^\pm(\theta) d\theta,
\]
\[
[\tilde{K}^\pm(t)]_{n,k} = \frac{m + \lambda}{2\pi t} \int_{J^\pm} e^{-it\Phi_\nu(\theta)} Z_{n,k}^\mp(\theta) d\theta,
\]
\[
[K(t)]_{n,k} = \frac{m + \lambda}{2\pi t} \int_{J} (e^{-it\Phi_\nu(\theta)} Z_{n,k}^1(\theta) + e^{-it\Phi_\nu(\theta)} Z_{n,k}^2(\theta)) d\theta,
\]
where \(J^\pm \) and \(J \) are defined in (2.16). By virtue of (6.20), the van der Corput Lemma 2.2 and integration by parts, we obtain
\[
|\mathcal{P}^-(t)|_{0, \sigma} \leq C t^{-3/2} (1 + |n|^{3/2}/(1 + |k|^{3/2}),
\]
\[
|\mathcal{P}^+(t)|_{0, \sigma} \leq C t^{-2} (1 + |n|^{3/2}/(1 + |k|^{3/2}), \quad t \geq 1,
\]
respectively. Then
\[
|\mathcal{P}^-(t)|_{0, \sigma} \leq C t^{-3/2}, \quad |\mathcal{P}^+(t)|_{0, \sigma} \leq C t^{-2}, \quad \sigma > 2, \quad t \geq 1.
\]
To estimate \(K^+(t) \), we apply (6.20) together with Lemma 6.2 with \(p = 3/2 \) and obtain
\[
|\mathcal{P}^+(t)|_{0, \sigma} \leq C t^{-3/2}, \quad \sigma > 2, \quad t \geq 1.
\]
It remains to estimate \(\tilde{K}^\pm(t) \). We split \(\tilde{K}^\pm(t) \) according to
\[
\tilde{K}^+(t) = \tilde{K}^+_+(t) + \tilde{K}^+_-(t), \quad \tilde{K}^- (t) = \tilde{K}^-_+(t) + \tilde{K}^-_-(t),
\]
where the kernels of the corresponding operators are of the form
\[
[K^\pm(t)]_{n,k} = \begin{cases}
|K^\pm(t)|_{n,k}, & n + k \geq 0, \\
0, & n + k < 0,
\end{cases}
\]
\[
[\tilde{K}^\pm(t)]_{n,k} = \begin{cases}
0, & n + k \geq 0, \\
|\tilde{K}^\pm(t)|_{n,k}, & n + k < 0.
\end{cases}
\]
The operators $\tilde{K}^\pm(t)$ can be estimated similarly to the operators $K^\pm(t)$. To estimate $\tilde{K}^\pm(t)$ one needs to interchange the method for "$+"$ and "$-"$ cases.

Acknowledgments. We thank the anonymous referee for the careful reading of our manuscript leading to several improvements.

References