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Abstract. We show how two change-of-variables formulæ for Lebesgue–Stieltjes

integrals generalize when all continuity hypotheses on the integrators are dropped.
We find that a sort of “mass splitting phenomenon” arises.

Let M : [a, b]→ R be increasing.1 Then the measure corresponding to M may be
defined to be the unique Borel measure µ on [a, b] such that for each continuous func-
tion f : [a, b] → R, the integral

∫
[a,b]

f dµ is equal to the usual Riemann-Stieltjes2

integral
∫ b

a
f(x) dM(x). Now let f : [a, b]→ R be a bounded3 Borel function. Then

by definition, the Lebesgue-Stieltjes integral
∫ b

a
f(x) dM(x) is equal to

∫
[a,b]

f dµ.

If a < c < b, then of course the equation

∫ b

a

f(x) dM(x) =

∫ c

a

f(x) dM(x) +

∫ b

c

f(x) dM(x)

holds but to understand this properly, one should realize that the point c contributes

f(c)µ({c}) = f(c)
(
M(c+)−M(c−)

)
to
∫ b

a
f(x) dM(x) and this contribution is split

into a contribution of f(c)
(
M(c)−M(c−)

)
to
∫ c

a
f(x) dM(x) and a contribution of

f(c)
(
M(c+)−M(c)

)
to
∫ b

c
f(x) dM(x). This simple kind of splitting was pointed

out by Stieltjes himself ([13], pp. J70–J71, item 38; see also [3], pp. 27–28, item 38)
and is closely related to the “mass splitting phenomenon” in change-of-variables
formulæ alluded to in our abstract.

Now let N : [M(a),M(b)] → R be increasing and let ν be the measure on
[M(a),M(b)] corresponding to N . Let Λ = N ◦M . Then Λ: [a, b] → R is also
increasing. Let λ be the measure on [a, b] corresponding to Λ. It is natural to ask
what relations exist between the measures λ, µ, and ν.
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1By “increasing,” we mean “non-decreasing.” Of course, a and b are real numbers with a < b.
2For an excellent exposition of Riemann–Stieltjes integration, see [1] and [12].
3Here and elsewhere in this paper, we have chosen to focus on bounded integrands but our

statements may be extended in the usual way to suitable unbounded integrands.
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If N is continuous and W is any generalized inverse4 for the increasing function
M , then it is not hard to show that λ is the image of ν under W or equivalently,5

that for each bounded Borel function f : [a, b]→ R, we have

(1)

∫ b

a

f(x) dN(M(x)) =

∫ M(b)

M(a)

f(W (y)) dN(y),

where
∫ b

a
f(x) dN(M(x)) means

∫ b

a
f(x) dΛ(x). In the special case where N(y) ≡ y,

this goes back to Lebesgue [9].
If instead M is continuous, then it is not hard to show that ν is the image of λ

under M or equivalently, that for each bounded Borel function g : [M(a),M(b)]→
R, we have

(2)

∫ b

a

g(M(x)) dN(M(x)) =

∫ M(b)

M(a)

g(y) dN(y).

This is standard.6 In the special case where N(y) ≡ y, this is attributed in [4]
(Vol. I, Example 3.6.2) to Kolmogorov.

Our aim in this paper is to explain how (1) and (2) generalize when no continuity
assumptions are imposed on M and N . As we shall see, a key role is played by the
left and right jumps of N at the points of the set

H = {y ∈ [M(a),M(b)] : M−1[{y}] contains more than one point}.
We have chosen the letter H for this set because it is the set of all levels at which
the graph of M has a horizontal portion. Note that (M−1[{y}])y∈H is a pairwise
disjoint family of non-degenerate intervals in [a, b]. Hence H is countable.

Let X and Ξ be the left-continuous and right-continuous generalized inverses for
M . These are the functions from [M(a),M(b)] to [a, b] defined respectively by

X(y) = inf{x ∈ [a, b] : y ≤M(x)} and Ξ(y) = sup{x ∈ [a, b] : M(x) ≤ y}
for all y in [a, b]. On [M(a),M(b)] \ H, we have X = Ξ, while for each y in the
range of M , X(y) is the left endpoint of the interval M−1[{y}] and Ξ(y) is its right
endpoint. It is easy to check that a function W : [M(a),M(b)]→ R is a generalized

4To say that W is a generalized inverse for the increasing function M means that W is an
increasing function from [M(a),M(b)] to [a, b] and for each y in the range of M , W (y) is in the

closure of the interval M−1[{y}]. This concept, with or without this name, is well-established in
the literature. For further information, see [6].

5This equivalence is a standard result about images of measures under measurable mappings.

See for instance [5], Theorem 1.6.9. It is stated there for probability measures but that restriction
is inessential.

6See for example [11], Chapter 1, §4, Proposition (4.10). Attention is restricted there to the
case where N is right-continuous but this is not essential. In fact, if M and g are continu-

ous, then (2) is obvious by considering Riemann-Stieltjes sums, for then each upper Riemann-

Stieltjes sum for
∫M(b)
M(a)

g(y) dN(y) is equal in value to one of the upper Riemann-Stieltjes sums

for
∫ b
a g(M(x)) dN(M(x)), and similarly for lower Riemann-Stieltjes sums, so the upper and

lower Riemann-Stieltjes integrals corresponding to
∫ b
a g(M(x)) dN(M(x)) lie between those cor-

responding to
∫M(b)
M(a)

g(y) dN(y), so the Riemann-Stieltjes integrals
∫ b
a g(M(x)) dN(M(x)) and∫M(b)

M(a)
g(y) dN(y) are equal. It follows that if M is continuous and g is a bounded Borel function,

then the Lebesgue-Stieltjes integrals
∫ b
a g(M(x)) dN(M(x)) and

∫M(b)
M(a)

g(y) dN(y) are equal.

We would like to mention that change-of-variables formulæ for certain other types of integrals
are given in [8] and [10].
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inverse for M if and only if X ≤ W ≤ Ξ. In particular, X and Ξ are indeed
generalized inverses for M .

Proposition 1. Suppose N is right-continuous7 at y for each y in H. Then λ is
the image of ν under X and for each bounded Borel function f : [a, b]→ R, we have

(3)

∫ b

a

f(x) dN(M(x)) =

∫ M(b)

M(a)

f(X(y)) dN(y).

Proof. It is easy to check that for each x in [a, b) and each y in [M(a),M(b)], we
have X(y) ≤ x if and only if y ≤ M(x+). Let G be the set of all x in [a, b) such
that M and Λ are both right-continuous at x. Then [a, b] \G is countable. Hence
G is dense in [a, b]. Let x be in G. Then ν

(
X−1

[
[a, x]

])
= ν([M(a),M(x+)]) =

ν([M(a),M(x)]) = N(M(x)+) − N(M(a)). Now either for each x′ in (x, b], we
have M(x) < M(x′), or there exists x′ in (x, b] such that M(x) = M(x′). Consider
the case where for each x′ in (x, b], we have M(x) < M(x′). Then since x is
in G, M(x) < M(x′) → M(x) as x′ ↓ x, so N(M(x′)) → N(M(x)+) as x′ ↓
x. But again, since x ∈ G, N(M(x′)) = Λ(x′) → Λ(x) = N(M(x)) as x′ ↓ x.
Hence N(M(x)+) = N(M(x)). Now consider the case where there exists x′ in
(x, b] such that M(x) = M(x′). Then M = M(x) on [x, x′], so M(x) is in H, so
N(M(x)+) = N(M(x)) by assumption. Thus in any case, N(M(x)+) = N(M(x)).
Therefore ν

(
X−1

[
[a, x]

])
= N(M(x))−N(M(a)) = Λ(x)−Λ(a). But since x is in

G, Λ(x) − Λ(a) = λ([a, x]). Thus λ([a, x]) = ν
(
X−1

[
[a, x]

])
. This holds for each

x in G. Let P be the set of all intervals of the form [a, x] with x ∈ G. Then P is
a π-system on [a, b] and since G is dense in [a, b], P generates the Borel σ-field on
[a, b]. As we’ve just seen, P is contained in the set L of all Borel sets E ⊆ [a, b] such
that λ(E) = ν(X−1[E]). Note that [a, b] ∈ L because λ([a, b]) = Λ(b) − Λ(a) =
N(M(b))−N(M(a)) = ν([M(a),M(b)]) = ν(X−1[[a, b]]). Hence L is a λ-system on
[a, b]. (The λ in λ-system does not refer to our measure λ.) It follows that for each
Borel set E ⊆ [a, b], λ(E) = ν(X−1[E]), by the π-λ theorem. (See, for instance, [5],
Theorem A.1.4.) In other words, λ is the image of ν under X, as claimed. Equation
(3) follows from this. �

Similarly, we have:

Proposition 2. Suppose N is left-continuous8 at y for each y in H. Then λ is the
image of ν under Ξ and for each bounded Borel function f : [a, b]→ R, we have

(4)

∫ b

a

f(x) dN(M(x)) =

∫ M(b)

M(a)

f(Ξ(y)) dN(y).

When no continuity condition is imposed on N , then λ need not be the image
of ν under any point mapping. Instead, for each y in H, the mass that ν assigns
to {y} is split in λ between the singletons {X(y)} and {Ξ(y)}. This was alluded to
above in our abstract and is explained in detail in our main result:

Theorem 3. Let N1 be the increasing function that is obtained from N by removing
the jumps that N has at the points of H. For each y in H, let

∆N(y,−) = N(y)−N(y−) and ∆N(y,+) = N(y+)−N(y)

7By convention, we consider N to be right-continuous at M(b) and we consider N(M(b)+) to
be N(M(b)).

8By convention, we consider N to be left-continuous at M(a) and we consider N(M(a)−) to
be N(M(a)).
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be the left and right jumps of N at y respectively. Then for each bounded Borel
function f : [a, b]→ R, we have

(5)

∫ b

a

f(x) dN(M(x)) =

∫ M(b)

M(a)

f(X(y)) dN1(y)

+
∑
y∈H

f(X(y))∆N(y,−)

+
∑
y∈H

f(Ξ(y))∆N(y,+).

Furthermore, X may be replaced by Ξ in the first term on the right in (5).

Proof. For each y in H, observe that ∆N(y,+) ≥ 0 and ∆N(y,−) ≥ 0, let

Ny
− = ∆N(y,−)1l[y,M(b)] and Ny

+ = ∆N(y,+)1l(y,M(b)],

and observe that Ny
− is right-continuous and Ny

+ is left-continuous. Let N2 =∑
y∈H Ny

− and N3 =
∑

y∈H Ny
+. Note that these series converge uniformly on

[M(a),M(b)], because
∑

y∈H [∆N(y,−) + ∆N(y,+)] = ν(H) <∞. By definition,

N1 = N −N2 −N3,

so N = N1 +N2 +N3. Now N1, N2, and N3 are increasing on [M(a),M(b)], N2 is
right-continuous, N3 is left-continuous, and for each y ∈ H, N1 is continuous at y.
Let ν1, ν2, and ν3 be the measures corresponding to N1, N2, and N3 respectively.
Let Hc = [M(a),M(b)] \ H. Then X = Ξ on Hc. Also, for each Borel set E ⊆
[M(a),M(b)], we have ν(Hc ∩ E) = ν1(E) and ν(H ∩ E) = ν2(E) + ν3(E). Let
f : [a, b]→ R be a bounded Borel function. By (3) and (4),∫ b

a

f(x) dN1(M(x)) =

∫ M(b)

M(a)

f(X(y)) dN1(y) =

∫ M(b)

M(a)

f(Ξ(y)) dN1(y).

By (3),∫ b

a

f(x) dN2(M(x)) =

∫ M(b)

M(a)

f(X(y)) dN2(y) =
∑
y∈H

f(X(y))∆N(y,−).

By (4),∫ b

a

f(x) dN3(M(x)) =

∫ M(b)

M(a)

f(Ξ(y)) dN3(y) =
∑
y∈H

f(Ξ(y))∆N(y,+).

The result follows by addition. �

Corollary 4. Equation (1) still holds if N is just continuous at each point of H. In
particular, if M is strictly increasing, then (1) holds with no continuity assumption
on N .

Proof. If N is continuous at each point of H, then the two sums on the right in
(5) vanish, N1 = N , ν(H) = 0, and if W is any generalized inverse for M , then
X ≤ W ≤ Ξ, with equality on [M(a),M(b)] \H. If M is strictly increasing, then
H is empty, so it is vacuously true that N is continuous at each point of H. �
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Corollary 5. For each bounded Borel function g on the range of M , we have

(6)

∫ b

a

g(M(x)) dN(M(x)) =

∫ M(b)

M(a)

g(M(X(y))) dN1(y)

+
∑
y∈H

g(M(X(y)))∆N(y,−)

+
∑
y∈H

g(M(Ξ(y)))∆N(y,+),

where the notation is as in the theorem. Furthermore, X may be replaced by Ξ in
the first term on the right in (6).

Proof. Let f = g ◦M in (5). �

Note that (6) is a generalization of (2), because in the special case where M is
continuous, it is clear that M(X(y)) = y = M(Ξ(y)) for each y in [M(a),M(b)].

Since equations (5) and (6) are a bit complicated, it is worth noting that they
yield some simpler-looking inequalities when f and g are monotone. For each
increasing function f : [a, b]→ R and for each y in H, we have f(X(y)) ≤ f(Ξ(y)),
so by (5),

(7)

∫ M(b)

M(a)

f(X(y)) dN(y) ≤
∫ b

a

f(x) dN(M(x)) ≤
∫ M(b)

M(a)

f(Ξ(y)) dN(y).

Let g : [M(a),M(b)]→ R be increasing and let f be the increasing function g ◦M .
If M is left-continuous, then for each y in [M(a),M(b)], we have M(Ξ(y)) ≤ y, so
from the right-hand inequality in (7), we get

(8)

∫ b

a

g(M(x)) dN(M(x)) ≤
∫ M(b)

M(a)

g(y) dN(y).

If instead M is right-continuous, then for each y in [M(a),M(b)], we have y ≤
M(X(y)), so from the left-hand inequality in (7), we get

(9)

∫ M(b)

M(a)

g(y) dN(y) ≤
∫ b

a

g(M(x)) dN(M(x)).

If g is decreasing rather than increasing, then the inequalities (8) and (9) must be
reversed. To see this, just replace g by −g.

A related inequality, in the special case where g(x) ≡ xn, is established by a
different method in [2], where it is applied to prove a Gronwall lemma for Lebesgue–
Stieltjes integrals. An application of (6) can be found in [7].

Our results can easily be extended, with appropriate modifications, to the case
where [a, b] is replaced by any interval I and [M(a),M(b)] is replaced by the smallest
interval J containing the range of M .

Acknowledgments. The authors thank Jonathan Eckhardt, Fritz Gesztesy, Alek-
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