ON THE SUBSTITUTION RULE FOR LEBESGUE-STIELTJES
INTEGRALS
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ABSTRACT. We show how two change-of-variables formulee for Lebesgue—Stieltjes
integrals generalize when all continuity hypotheses on the integrators are dropped.
We find that a sort of “mass splitting phenomenon” arises.

Let M : [a,b] — R be increasingﬂ Then the measure corresponding to M may be
defined to be the unique Borel measure p on [a, b] such that for each continuous func-
tion f: [a,b] — R, the integral f[a o fdu is equal to the usual Riemann—Stieltjeﬂ

integral f; f(z)dM (z). Now let f: [a,b] = R be a bounde Borel function. Then
by definition, the Lebesgue-Stieltjes integral ff f(x)dM(z) is equal to f[a b fdu.
If @ < ¢ < b, then of course the equation

[ rwane = [ rwaue + [ @ e

holds but to understand this properly, one should realize that the point ¢ contributes
fle)p{c}) = f(e)(M(c+)—M(c—)) to f; f(z)dM (z) and this contribution is split
into a contribution of f(c)(M(c) — M(c—)) to [ f(z) dM(z) and a contribution of
fe)(M(c+) — M(c)) to fcb f(z)dM (z). This simple kind of splitting was pointed
out by Stieltjes himself ([13], pp. J70-J71, item 38; see also [3], pp. 27-28, item 38)
and is closely related to the “mass splitting phenomenon” in change-of-variables
formulae alluded to in our abstract.

Now let N: [M(a), M(b)] — R be increasing and let v be the measure on
[M(a), M (b)] corresponding to N. Let A = N o M. Then A: [a,b] — R is also
increasing. Let A be the measure on [a, b] corresponding to A. It is natural to ask
what relations exist between the measures A, u, and v.
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1By “Increasing,” we mean “non-decreasing.” Of course, a and b are real numbers with a < b.

2For an excellent exposition of Riemann-Stieltjes integration, see [1] and [12].

3Here and elsewhere in this paper, we have chosen to focus on bounded integrands but our
statements may be extended in the usual way to suitable unbounded integrands.
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If N is continuous and W is any generalized inversﬂ for the increasing function
M, then it is not hard to show that A is the image of v under W or equivalentlyﬂ
that for each bounded Borel function f: [a,b] — R, we have

M(b)
1) [ rwanoe = [ o) W) N ),
where ff f(x)dN(M(z)) means fa f(x)dA(z). In the special case where N (y) = v,
this goes back to Lebesgue [9].
If instead M is continuous, then it is not hard to show that v is the image of A
under M or equivalently, that for each bounded Borel function g: [M(a), M (b)] —
R, we have

b M(b)
) [ s anona) = [ g ave)
This is standardﬁ In the special case where N(y) = vy, this is attributed in [4]
(Vol. I, Example 3.6.2) to Kolmogorov.
Our aim in this paper is to explain how and generalize when no continuity
assumptions are imposed on M and N. As we shall see, a key role is played by the
left and right jumps of N at the points of the set

H = {y € [M(a), M(b)] : M~ *[{y}] contains more than one point}.

We have chosen the letter H for this set because it is the set of all levels at which
the graph of M has a horizontal portion. Note that (M ~[{y}])yen is a pairwise
disjoint family of non-degenerate intervals in [a, b]. Hence H is countable.

Let X and = be the left-continuous and right-continuous generalized inverses for
M. These are the functions from [M(a), M (b)] to [a, b] defined respectively by

X(y) =inf{z € [a,b] : y < M(x)} and ZE(y)=sup{z € [a,b] : M(z) < y}

for all y in [a,b]. On [M(a), M(b)] \ H, we have X = =, while for each y in the
range of M, X (y) is the left endpoint of the interval M ~*[{y}] and Z(y) is its right
endpoint. It is easy to check that a function W: [M(a), M (b)] — R is a generalized

4To say that W is a generalized inverse for the increasing function M means that W is an
increasing function from [M(a), M (b)] to [a,b] and for each y in the range of M, W(y) is in the
closure of the interval M ~1[{y}]. This concept, with or without this name, is well-established in
the literature. For further information, see [6].

5This equivalence is a standard result about images of measures under measurable mappings.
See for instance [5], Theorem 1.6.9. It is stated there for probability measures but that restriction
is inessential.

63ee for example [11I], Chapter 1, §4, Proposition (4.10). Attention is restricted there to the
case where N is right-continuous but this is not essential. In fact, if M and g are continu-
ous, then is obvious by considering Riemann-Stieltjes sums, for then each upper Riemann-

Stieltjes sum for fM M(b) g(y) dN(y) is equal in value to one of the upper Riemann-Stieltjes sums

for fa g(M ))oiN(M(:z:))7 and similarly for lower Riemann-Stieltjes sums, so the upper and
lower Riemann-Stieltjes integrals corresponding to fbg M(x))dN(M(z)) lie between those cor-
responding to fjf\f((;; g(y) dN(y), so the Riemann-Stieltjes integrals f g(M(z))dN(M(z)) and
fM((;; g9(y) dN(y) are equal. It follows that if M is continuous and g is a bounded Borel function,

then the Lebesgue-Stieltjes integrals f g(M(z))dN(M(x)) and f]\f((:; g(y) dN (y) are equal.

We would like to mention that change-of-variables formulae for certain other types of integrals
are given in [§] and [10].
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inverse for M if and only if X < W < Z. In particular, X and Z are indeed
generalized inverses for M.

Proposition 1. Suppose N is m’ght—continuouﬂ at y for each y in H. Then X is
the image of v under X and for each bounded Borel function f: [a,b] = R, we have

b M(b)
®) [ r@anai@) = [ i) avw.

M(a)
Proof. 1t is easy to check that for each z in [a,b) and each y in [M(a), M ()], we
have X (y) < z if and only if y < M(z+). Let G be the set of all  in [a,b) such
that M and A are both right-continuous at . Then [a,b] \ G is countable. Hence
G is dense in [a,b]. Let  be in G. Then v(X![[a,z]]) = v([M(a), M (z+)]) =
v([M(a), M(z)]) = N(M(xz)+) — N(M(a)). Now either for each z' in (z,b], we
have M (z) < M(x'), or there exists ' in (z, b] such that M (z) = M (z’). Consider
the case where for each z’ in (z,b], we have M(z) < M(z'). Then since z is
in G, M(z) < M(z') - M(x) as 2’ | z, so N(M(2')) - N(M(x)+) as 2’ |
x. But again, since x € G, N(M(2')) = A(z’) — Alx) = N(M(z)) as o’ | z.
Hence N(M(z)+) = N(M(x)). Now consider the case where there exists ' in
(z,b] such that M(z) = M(z’). Then M = M(z) on [z,2'], so M(x) is in H, so
N(M(x)+) = N(M(z)) by assumption. Thus in any case, N(M(x)+) = N(M(z)).
Therefore v(X ! [[a,z]]) = N(M(z)) — N(M(a)) = A(z) — A(a). But since z is in
G, AM(z) — A(a) = A([a, z]). Thus A([a,z]) = v(X[[a,z]]). This holds for each
x in G. Let P be the set of all intervals of the form [a,x] with z € G. Then P is
a m-system on [a,b] and since G is dense in [a, ], P generates the Borel o-field on
[a,b]. As we’ve just seen, P is contained in the set £ of all Borel sets E C [a, b] such
that A(E) = v(X~1[E]). Note that [a,b] € L because A([a,b]) = A(b) — Aa) =
N(M(b))—N(M(a)) = v([M(a), M(b)]) = v(X~{[a,b]]). Hence L is a A\-system on
[a,b]. (The X in A-system does not refer to our measure A.) It follows that for each
Borel set E C [a,b], A\(E) = v(X ~![E]), by the m-) theorem. (See, for instance, [5],
Theorem A.1.4.) In other words, A is the image of v under X, as claimed. Equation
follows from this. g

Similarly, we have:

Proposition 2. Suppose N is left-contmuouaﬁ aty for each y in H. Then X is the
image of v under = and for each bounded Borel function f: [a,b] — R, we have

b M(b)
(4) / f(2) AN (M (x)) = / F(E(y)) AN (y).

M(a)

When no continuity condition is imposed on N, then A need not be the image
of v under any point mapping. Instead, for each y in H, the mass that v assigns
to {y} is split in A between the singletons {X(y)} and {Z(y)}. This was alluded to
above in our abstract and is explained in detail in our main result:

Theorem 3. Let Ny be the increasing function that is obtained from N by removing
the jumps that N has at the points of H. For each y in H, let

AN(y,—)=N(y) — N(y—) and AN(y,+)=N(y+) — N(y)

"By convention, we consider N to be right-continuous at M (b) and we consider N(M (b)+) to
be N(M(b)).

8By convention, we consider N to be left-continuous at M(a) and we consider N(M(a)—) to
be N(M(a)).
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be the left and right jumps of N at y respectively. Then for each bounded Borel
function f: [a,b] = R, we have

b M(b)
/ f(2) AN(M(x)) = / F(X () dNy ()

M(a)

Furthermore, X may be replaced by = in the first term on the right in .
Proof. For each y in H, observe that AN (y,+) > 0 and AN(y,—) > 0, let
NY = AN(y, )y mey — and  NY = AN(y, +) 1y, a5

and observe that NY is right-continuous and NY is left-continuous. Let N, =
NY and N3 = NY. Note that these series converge uniformly on
yeH yeH V4
M (a), M(b)], because AN(y,—)+AN(y,+)] = v(H) < co. By definition,
yeH Y Yy Yy

Ny =N — N3 — N,

so N = Nj + Ny + N3. Now Nj, Na, and N3 are increasing on [M(a), M (b)], N is
right-continuous, Nj is left-continuous, and for each y € H, N; is continuous at y.
Let 14, vo, and v3 be the measures corresponding to N1, Na, and N3 respectively.
Let H¢ = [M(a),M(b)]\ H. Then X = Z on H¢. Also, for each Borel set £ C
[M(a), M (b)], we have v(H° N E) = v1(E) and V(H NE) = 1(E)+ v3(E). Let
f: [a,b] = R be a bounded Borel function. By (3]) and ( .,

M (b) M(b)
/ F(2) N, (M () = /M() F(X () dNy () = /M()f@(y))cuvl(y).
By (3),

M (b)
/ flayava (@) = [ FO) vt = 3 X v, ).

(a) yEH
By (4),
M (b)
/f )N (1) = [ f(Ew) aNa(w) = Y FE@)AN ()
M (a) yeH
The result follows by addition. O

Corollary 4. Equation still holds if N is just continuous at each point of H. In
particular, if M is strictly increasing, then holds with no continuity assumption
on N.

Proof. If N is continuous at each point of H, then the two sums on the right in
vanish, Ny = N, v(H) = 0, and if W is any generalized inverse for M, then
X < W < &, with equality on [M(a), M(b)]\ H. If M is strictly increasing, then
H is empty, so it is vacuously true that N is continuous at each point of H. (I
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Corollary 5. For each bounded Borel function g on the range of M, we have

b M(b)
[ st avonay = [ gouxn) v
(6) + > g(M(X(y)AN(y,-)

yeH

+ > g(MEY)AN(y,+),

yeH

where the notation is as in the theorem. Furthermore, X may be replaced by = in
the first term on the right in @

Proof. Let f =go M in . O

Note that @ is a generalization of , because in the special case where M is
continuous, it is clear that M (X (y)) = y = M(Z(y)) for each y in [M(a), M (b)].
Since equations and @ are a bit complicated, it is worth noting that they
yield some simpler-looking inequalities when f and g are monotone. For each
increasing function f: [a,b] — R and for each y in H, we have f(X(y)) < f(E(y)),
so by ,
M (b) b M(b)
@ [ e@avw < [ f@dve) < [ fEw) ).
M(a) a M(a)
Let g: [M(a), M(b)] = R be increasing and let f be the increasing function g o M.
If M is left-continuous, then for each y in [M(a), M (b)], we have M (Z(y)) < y, so
from the right-hand inequality in , we get

b M (b)
0 [ saenavaiey < [ gwane)
If instead M is right-continuous, then for each y in [M(a), M(b)], we have y <
M(X(y)), so from the left-hand inequality in @, we get

M(b) b
) [ swave) < [ gu@)av o).

M (a)

If g is decreasing rather than increasing, then the inequalities (8) and (9) must be
reversed. To see this, just replace g by —g.

A related inequality, in the special case where g(z) = z”, is established by a
different method in [2], where it is applied to prove a Gronwall lemma for Lebesgue—
Stieltjes integrals. An application of (6) can be found in [7].

Our results can easily be extended, with appropriate modifications, to the case
where [a, b] is replaced by any interval I and [M (a), M (b)] is replaced by the smallest
interval J containing the range of M.

Acknowledgments. The authors thank Jonathan Eckhardt, Fritz Gesztesy, Alek-
sey Kostenko, Erik Talvila, and Harald Woracek for helpful discussions and hints
with respect to the literature.
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