A Monotonicity Result for Volumes of Holomorphic Images of Balls and Eggs

John P. D'Angelo, University of Illinois

Abstract

We prove that the parametrized volume of a holomorphic image of a ball or egg strictly increases under an appropriate tensor product operation. As a Corollary we obtain a sharp upper bound for the volume of the image under a proper polynomial mapping p of degree d between balls; the bound is achieved if and only if p is homogeneous.

We express the main result in terms of operators on a Hilbert space. Let Ω be the egg domain defined by $\sum |z_j|^{2p_j} < 1$ in \mathbb{C}^n . Let $f: \Omega \to \mathbb{C}^N$ be a holomorphic mapping such that $|f|^2$ and the determinant of the complex Hessian of $\sum |f_j|^2$ are integrable. Then Df is the holomorphic mapping whose components are all the Jacobian determinants of *n*-tuples of the components of f. The operator M is a tensor product operation; it replaces a single component f_N of f by the *n*-tuple $(z_1^{p_1}f_N, ..., z_n^{p_n}f_N)$ and leaves the others unchanged. The theorem states that the operator $M^*D^*DM - D^*D$ is nonnegative definite.