Übungen zu Einführung in die Analysis

WS 2007/2008

F. Haslinger

1. Man bestimme das Supremum und Infimum der folgenden Mengen:

$$A = \{x \in \mathbb{R} : 2 \le x \le 4\} , B = \{x \in \mathbb{R} : -1 < x \le 5\}$$

$$C = \{x \in \mathbb{R} : |x - 1| < 2\} , D = \{x \in \mathbb{R} : x > 0, x^3 < 5\}.$$

- **2.** Man bestimme das Supremum und Infimum der folgenden Mengen : $A=\{\frac{3n+1}{7n-5}~:~n\in\mathbb{N}\}$, $B=\{(-1)^n\frac{n+1}{n}~:~n\in\mathbb{N}\}.$
- 3. Seien A und B nichtleere Mengen reeller Zahlen und

$$A + B := \{a + b : a \in A, b \in B\}.$$

Man zeige : sind A und B nach oben beschränkt, so gilt

$$\sup(A+B) = \sup A + \sup B.$$

(Wie lautet die entsprechende Aussage für nach unten beschränkte Mengen?)

4. Sei A eine nach oben beschränkte, nichtleere Teilmenge in \mathbb{R} , und sei $rA = \{ra : a \in A\}$ für $r \geq 0$. Man zeige :

$$\sup(rA) = r \sup A.$$

(Wie lautet die entsprechende Aussage für nach unten beschränkte Mengen?)

 ${f 5.}$ Seien A und B nach oben beschränkte nichtleere Mengen reeller Zahlen und

$$AB := \{ab : a \in A, b \in B\}.$$

Man zeige:

$$\sup AB = \sup A \sup B.$$

(Wie lautet die entsprechende Aussage für nach unten beschränkte Mengen?)

6. Man beweise : besitzt eine nichtleere Teilmenge in \mathbb{R} zwar ein Supremum, jedoch kein Maximum, so gibt es zu jedem $\epsilon > 0$ unendlich viele Elemente

von A, die zwischen sup $A - \epsilon$ und sup A liegen, d.h. : sup $A - \epsilon < a < \sup A$ für unendlich viele $a \in A$.

7. Beweise die folgenden Aussagen unter geeigneten Beschränktheitsvoraussetzungen (welchen?) für A und B: $\sup(rA) = r \inf A$, falls $r \leq 0$; $\sup(AB) = \inf A \inf B$, falls alle Elemente von A und B nichtpositiv sind.

8. Gilt $a \neq 0$, für alle $a \in A$, so sei

$$\frac{1}{A} := \{ \frac{1}{a} : a \in A \}.$$

Man zeige : ist inf A > 0, so ist

$$\sup \frac{1}{A} = \frac{1}{\inf A}.$$

9. Sei $A := \{a_1, a_2, a_3, \ldots\}$, $B := \{b_1, b_2, b_3, \ldots\}$ und $C := \{a_n b_n : n \in \mathbb{N}\}$. Die Elemente von A und B seien alle nichtnegativ, ferner seien A und B nach oben beschränkt. Man zeige:

$$\sup C \le \sup A \sup B$$

und konstruiere Mengen A, B, so dass tatsächlich < gilt. Worin besteht der Unterschied zu Aufgabe 5.

- **10.** Sei $z \in \mathbb{C}$. Man beweise : es existieren $r \geq 0$ und $w \in \mathbb{C}$ mit |w| = 1 derart, dass z = rw gilt. Sind w und r immer eindeutig durch z bestimmt?
- 11. Seien $z_1, z_2, \ldots, z_n \in \mathbb{C}$. Man zeige :

$$|z_1 + z_2 + \ldots + z_n| \le |z_1| + |z_2| + \ldots + |z_n|.$$

12. Seien $z, w \in \mathbb{C}$. Man beweise :

$$||z| - |w|| \le |z - w|.$$

13. Man beweise:

$$|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2,$$

für $\mathbf{x},\mathbf{y}\in\mathbb{R}^k$ und deute dies geometrisch als eine Aussage über Parallelogramme.

- 14. Ist die Menge der irrationalen Zahlen abzählbar?
- 15. Man beweise: eine Menge paarweise disjunkter Intervalle ist höchstens abzählbar.
- **16.** Man zeige : zwei Intervalle [a, b], $[\alpha, \beta]$ sind stets äquivalent.
- 17. Man konstruiere eine beschränkte Menge reeller Zahlen mit genau drei Häufungspunkten.
- 18. Sei X eine unendliche Menge. Für $p,q\in X$ definiere

$$d(p,q) = \begin{cases} 1 & : & p \neq q \\ 0 & : & p = q \end{cases}$$

Man beweise, dass dies eine Metrik ist. Welche Teilmengen des resultierenden metrischen Raumes sind offen? Welche abgeschlossen?

19. Für $x, y \in \mathbb{R}$ definiere:

$$d_1(x,y) = (x-y)^2$$
, $d_2(x,y) = |x-y|^{1/2}$, $d_3(x,y) = \frac{|x-y|}{1+|x-y|}$.

Man entscheide in jedem Fall, ob eine Metrik vorliegt oder nicht.

- **20.** Man zeige : jeder Punkt $x \in [0,1]$ ist Häufungspunkt des offenen Intervalls (0,1).
- 21. Man bestimme die Häufungspunkte der Menge

$$A = \{ (-1)^n \frac{4n+1}{n} : n \in \mathbb{N} \}.$$

22. Welche der folgenden Mengen sind offen bzw. abgeschlossen:

$$\{x \in \mathbb{R} : 0 < x < 1\} \cup \{x \in \mathbb{R} : 2 < x < 3\},$$

$$\{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : 0 < x_1^2 + x_2^2 < 1\},$$

$$\{x \in \mathbb{R} : x \ge 0\}, \{x \in \mathbb{R} : x < 0\},$$

$$\{\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 \ge 2\}.$$

- 23. Find all accumulation points and the closure of the sets in exercise 22.
- **24.** Man beweise, dass aus der Konvergenz der Folge $\{s_n\}$ die Konvergenz von $\{|s_n|\}$ folgt. Gilt auch die Umkehrung?
- 25. Man berechne:

$$\lim_{n \to \infty} \frac{n^2 + n + 2}{5n^3} , \lim_{n \to \infty} \frac{(n+1)^2 - n^2}{n} , \lim_{n \to \infty} \frac{1 + 2 + \ldots + n}{n^2}.$$

26. Man berechne:

$$\lim_{n \to \infty} \frac{1+3^n}{7+3^n} \ , \ \lim_{n \to \infty} \frac{1+3^n}{7+4^n}.$$

27. Man berechne:

$$\lim_{n\to\infty} \left(\sqrt{n^2+n}-n\right).$$

28. Man bestimme:

$$\lim_{n \to \infty} \left(\frac{3n+2}{4n+3}, \frac{(-1)^n}{5n} \right)$$

$$\lim_{n \to \infty} \left(1 + \frac{5}{\sqrt{n}}, \frac{n}{1+n^2}, -2 + \frac{3n^3}{1+4n^3} \right).$$

29. Welche der folgenden Mengen sind kompakt?

$$[1,2] \cup [3,4] , \{(x,y) \in \mathbb{R}^2 : 3x^2 + 4y^2 = 1\},$$

 $\{x \in \mathbb{R} : x \ge 1\} , \{(x,y) \in \mathbb{R}^2 : 3x + 4y = 1\}.$

- **30.** Man betrachte den metrischen Raum von Aufgabe 18. Welche Teilmengen von X sind kompakt?
- **31.** Determine an open covering of the interval (0,1) which has no finite subcovering.
- **32.** Seien K_1 und K_2 kompakte, disjunkte Teilmengen das \mathbb{R}^n . Man zeige : es gibt offene Mengen U_1 und U_2 mit $K_1 \subset U_1, K_2 \subset U_2$ und $U_1 \cap U_2 = \emptyset$. Hinweis: man behandle zunächst den Fall einer einpunktigen Menge $K_2 = \{\mathbf{x}\}$.

33. Sei $s_1 = \sqrt{2}$ und

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}}, n \in \mathbb{N}.$$

Man beweise, dass $\{s_n\}$ konvergiert und dass $s_n < 2$ für $n \in \mathbb{N}$ gilt.

34. Man bestimme $\limsup_{n\to\infty}$, $\liminf_{n\to\infty}$, sup und inf von

$$\{(-1)^n \frac{n^2}{2n^2-1}\}, \{(-1)^n + \frac{n^2}{2n^2-1}\}.$$

35. Man bestimme $\limsup_{n\to\infty}$, $\liminf_{n\to\infty}$ der Folgen:

$$a_n = \begin{cases} 1/n &: n \equiv 0 \mod 2 \\ 1 &: n \equiv 1 \mod 2 \end{cases}$$

$$b_n = \begin{cases} (1+1/n)^n &: n \equiv 0 \mod 2 \\ (1+1/n)^{n+1} &: n \equiv 1 \mod 2 \end{cases}$$

$$c_n = \begin{cases} 1+1/2^n &: n \equiv 0 \mod 3 \\ 2+(n+1)/n &: n \equiv 1 \mod 3 \\ 2 &: n \equiv 2 \mod 3 \end{cases}$$

- **36.** Man bestimme alle Häufungspunkte der Menge $\{i^n \ \frac{n}{n+1}\}$ in \mathbb{C} und gebe Teilfolgen an, die gegen die einzelnen Häufungspunkte konvergieren.
- **37.** Berechne:

$$\lim_{n \to \infty} \frac{n^{1/n}}{1 + 1/n} \; , \; \lim_{n \to \infty} \left(\frac{1}{2^n} - \frac{2^n n^5}{3^n} \right).$$

38. Man zeige : die Teleskopreihen $\sum_{k=1}^{\infty} (x_k - x_{k-1})$ und $\sum_{k=1}^{\infty} (x_k - x_{k+1})$ sind genau dann konvergent, wenn $\lim_{n\to\infty} x_n$ existiert. In diesem Falle ist

$$\sum_{k=1}^{\infty} (x_k - x_{k-1}) = \lim_{n \to \infty} x_n - x_0 \quad \text{und } \sum_{k=1}^{\infty} (x_k - x_{k+1}) = x_1 - \lim_{n \to \infty} x_n.$$

39. Man zeige, dass die folgenden Reihen die angegebenen Werte haben.

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = \frac{2}{3}, \qquad \sum_{k=2}^{\infty} \frac{1}{3^{k-1}} = \frac{1}{2}, \qquad \sum_{k=1}^{\infty} \frac{3}{4^k} = 1,$$

$$\sum_{k=0}^{\infty} \frac{(-3)^k}{4^k} = \frac{4}{7}, \qquad \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1 \qquad \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1},$$
$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2}.$$

- **40.** Ist $\sum_{k=0}^{\infty} a_k$ konvergent und $\{\alpha_k\}$ eine beschränkte Folge, so braucht $\sum_{k=0}^{\infty} \alpha_k a_k$ nicht mehr konvergent zu sein (Beispiel?). Man zeige : ist $\sum_{k=0}^{\infty} a_k$ sogar absolut konvergent, so ist $\sum_{k=0}^{\infty} \alpha_k a_k$ auch absolut konvergent.
- 41. Welche der folgenden Reihen sind konvergent, welche divergent?

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}}, \qquad \sum_{k=1}^{\infty} \frac{(-1)^k}{k^{1/k}}, \qquad \sum_{k=2}^{\infty} \frac{1}{(\log k)^p}, \ p \in \mathbb{N}.$$

42. Wie 41 für :

$$\sum_{k=2}^{\infty} \frac{k}{(\log k)^k}, \qquad \sum_{k=1}^{\infty} \frac{k!}{k^k}, \qquad \sum_{k=1}^{\infty} (-1)^k \frac{k^{1/k}}{k}.$$

43. Wie 41 für :

$$\sum_{k=1}^{\infty} \left(\frac{k}{k+1} \right)^{k^2}, \qquad \sum_{k=1}^{\infty} \frac{k^2}{2^k}, \qquad \sum_{k=1}^{\infty} k^4 e^{-k^2}.$$

- **44.** Show: the series $\sum_{k=0}^{\infty} a_k$ is absolutely convergent, if and only if the a_k 's can be written in the form $a_k = b_k c_k$, where $b_k, c_k \ge 0$ and the series $\sum_{k=0}^{\infty} b_k$ and $\sum_{k=0}^{\infty} c_k$ are convergent.
- **45.** Man zeige : ist $\sum_{k=0}^{\infty} a_k$ absolut konvergent und $\{\alpha_k\}$ eine Nullfolge, so strebt $a_k\alpha_0 + a_{k-1}\alpha_1 + \ldots + a_0\alpha_k \to 0$. Hinweis : Cauchy-Produkt!
- **46.** Man untersuche das Konvergenzverhalten von $\sum_{n=0}^{\infty} a_n$:

$$a_n = \sqrt{n+1} - \sqrt{n}, \qquad a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}, \qquad a_n = (n^{1/n} - 1)^n.$$

47. Welche der folgenden Reihen $\sum_{n=0}^{\infty} a_n$ sind absolut, welche bedingt konvergent?

$$a_n = \frac{(-1)^n}{n \log n}, \qquad a_n = \frac{(-1)^n}{2n+1}, \qquad a_n = \frac{(-1)^n}{n\sqrt{n}}, \qquad a_n = \frac{(-1)^n}{\sqrt{n}}.$$

48. Man bestimme den Konvergenzradius der folgenden Potenzreihen:

$$\sum_{n=1}^{\infty} \frac{z^n}{n}, \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^n, \qquad \sum_{n=1}^{\infty} \frac{z^n}{(n+1)(n+2)}.$$

49. Wie Aufgabe 48 für :

$$\sum_{n=1}^{\infty} n^3 z^n, \qquad \sum_{n=1}^{\infty} \frac{2^n}{n!} z^n, \qquad \sum_{n=1}^{\infty} \frac{2^n}{n^2} z^n, \qquad \sum_{n=1}^{\infty} \frac{n^3}{3^n} z^n.$$

- **50.** Man zeige direkt (aus der Definition), dass die Folge $\{(-1)^n \frac{n}{n+1}\}$ keine Cauchyfolge ist.
- **51.** Suppose that $\{p_n\}$ is a Cauchy sequence in a metric space X and that a suitable subsequence $\{p_{n_k}\}$ converges to a point $p \in X$. Show that the sequence $\{p_n\}$ converges to p.
- **52.** $\{p_n\}$ und $\{q_n\}$ seien Cauchyfolgen in einem metrischen Raum X. Man zeige, dass die Folge $\{d(p_n,q_n)\}$ konvergiert.
- **53.** Man schreibe die folgenden reellen Funktionen h als Komposita $f \circ g$ und gebe ihre maximalen Definitionsbereiche an:

$$h(x) = (2x+1)^3$$
, $h(x) = \sqrt{1-x^2}$.

54. Wie Aufgabe 53 für

$$h(x) = \sqrt{(x-1)(x-2)}$$
, $h(x) = ((x+1)(x-1)(x+3))^{-1/2}$.

55. Berechne folgende Grenzwerte (falls sie existieren):

$$\lim_{x\to 1}\frac{x^3-1}{x-1}\ ,\ \lim_{x\to 2}\frac{x^3-8}{x-2}.$$

56. Wie Aufgabe 55 für

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} \ , \ n \in \mathbb{N}.$$

57. Wie Aufgabe 55 für

$$\lim_{x \to 0} |x|^3 \ , \ \lim_{x \to 0} \operatorname{sgn} x.$$

58. Wie Aufgabe 55 für

$$\lim_{x \to 0} \frac{(1+x)^3 - 1}{x} \ , \ \lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}.$$

59. Wie Aufgabe 55 für

$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} \ , \ \lim_{x \to 0} \frac{x^2}{|x|}.$$

60. Man beweise die Stetigkeit der Funktion $f(x)=2x^2-3$ in den Punkten x=2 und x=a. $(\epsilon-\delta$ Methode!)

61. In welchen Punkten sind folgende Funkionen stetig:

$$f(x) = x^3 - 3x + 1$$
, $g(x) = \frac{x^2}{(x-2)^2}$, $h(x) = \frac{3x - 4}{x^2 + x + 1}$.

62. Wie Aufgabe 61 für

$$f(x) = \max\{x^2 - 1, 1\}, g(x) = \operatorname{sgn}(x^2 + 1).$$

63. Wie Aufgabe 61 für

$$f(x) = \sqrt{x+1}$$
, $g(x) = \sqrt{x^2+1}$, $h(x) = (x+1)^{2/3}$.

64. Sei

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & : & x \neq -1 \\ -2 & : & x = -1 \end{cases}$$

Man zeige f ist auf ganz \mathbb{R} stetig.

- **65.** Welche der folgenden Funktionen ist gleichmäßig stetig? f(x) = 1/x auf $(0, \infty)$; g(x) = 1/x auf $[1, \infty)$; $h(x) = x^2$ auf \mathbb{R} ; $k(x) = x^2$ auf [-2, 2].
- **66.** Sei

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & : & (x,y) \neq (0,0) \\ 0 & : & (x,y) = (0,0) \end{cases}$$

$$g(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^6} & : & (x,y) \neq (0,0) \\ 0 & : & (x,y) = (0,0) \end{cases}$$

Man zeige, dass f auf \mathbb{R}^2 beschränkt ist, dass g in jeder Umgebung von (0,0) unbeschränkt ist und dass f an der Stelle (0,0) unstetig ist. Die Einschränkungen von f und g auf jede beliebige Gerade in \mathbb{R}^2 sind jedoch stetig.

- **67.** Man zeige : $f: X \longrightarrow Y$ ist genau dann gleichmäßig stetig, wenn für jedes $\epsilon > 0$ ein $\delta > 0$ existiert, so dass für alle $E \subseteq X$ mit diam $E < \delta$ gilt: diam $f(E) < \epsilon$.
- **68.** Sei f eine gleichmäßig stetige Abbildung eines metrischen Raumes X in einen metrischen Raum Y. Man zeige : für jede Cauchyfolge $\{x_n\}$ in X ist die Folge $\{f(x_n)\}$ eine Cauchyfolge in Y.
- **69.** Welche der folgenden Teilmengen des \mathbb{R}^2 ist zusammenhängend?

$$\{\mathbf{x} = (x_1, x_2) : (x_1 - 1)^2 + x_2^2 < 1\} \cup \{\mathbf{x} = (x_1, x_2) : x_1^2 + x_2^2 < 1/4\};$$

$$\{\mathbf{x} = (x_1, x_2) : (x_1 - 1)^2 + x_2^2 < 1\} \cup \{\mathbf{x} = (x_1, x_2) : (x_1 - 5)^2 + x_2^2 < 1/4\};$$

$$\{\mathbf{x} = (x_1, x_2) : |x_2| < 2, x_1 \in \mathbb{R}\}, \{\mathbf{x} = (x_1, x_2) : |x_2| > 2, x_1 \in \mathbb{R}\}.$$

- **70.** Show that the function $f(x) = x^3 x 1$ has a zero in the intervall [1,2].
- **71.** Man zeige : die Funktion $g(x) = x^3 10x^2 + 2$ nimmt jeden reellen Wert an.
- **72.** Sei $n \in \mathbb{N}$. Man zeige: die Funktion $x \mapsto x^n$ ist bei geradem n auf $(-\infty, 0]$ monoton fallend und auf $[0, +\infty)$ monoton wachsend, bei ungeradem n aber auf ganz \mathbb{R} monoton wachsend.

- 73. Mit [x] sei die größte ganze Zahl bezeichnet, die nicht größer ist als x, d.h. [x] ist diejenige Zahl, für die $x-1 < [x] \le x$ gilt. Setze (x) = x [x]. Was sind die Unstetigkeitsstellen der Funktionen [x] und (x).
- 74. Man berechne folgende Grenzwerte, falls sie existieren:

$$\lim_{x \to +\infty} \frac{x^2 + 1}{x^3 + 1} , \lim_{x \to +\infty} \frac{3x^2 + 4x}{5x^2 + 1} , \lim_{x \to +\infty} \left(\sqrt{x + 1} - \sqrt{x - 1} \right).$$

75. Wie Aufgabe 74 für :

$$\lim_{x \to -\infty} \frac{8x^3 + 2x^2 + 1}{2x^3 + 7x} \ , \ \lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x + 1} - \sqrt{x} \right).$$

76. Sei $\epsilon > 0$. Man bestimme $N(\epsilon) \in \mathbb{R}$, so dass für alle $x > N(\epsilon)$ gilt

$$\left| \frac{x^4 - x^2}{(x^2 + 1)^2} - 1 \right| < \epsilon.$$

77. In welchen Punkten sind folgende Funktionen differenzierbar? Man gebe jeweils die Ableitungen an :

$$f(x) = (ax + b)^3$$
, $g(x) = \operatorname{sgn} x$, $h(x) = |x|^2$.

78. Man bestimme die 1. und 2. Ableitung folgender Funktionen:

$$f(x) = \frac{(2x+4)^2}{3x+1}$$
, $g(x) = (x^2+x+1)^{1/2}$, $h(x) = \frac{1}{(x^2+1)(x^2-1)}$.

79. Man bestimme jeweils die lokalen und globalen Maxima und Minima von :

$$f(x) = x(-x^2 + 10x + 1)$$
, $x \in [3, 9]$; $g(x) = (x - 2)^2(x + 1)$, $x \in \mathbb{R}$.

- **80.** Seien r_1, r_2, \ldots, r_n vorgegebene reelle Zahlen. Man bestimme x so, dass $(r_1-x)^2+(r_2-x)^2+\ldots+(r_n-x)^2$ ein Minimum wird.
- **81.** Man verifiziere den Mittelwertsatz für $f(x) = 2x^2 4$ auf dem Intervall [-1,1].

82. Berechne:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 5x + 6} , \lim_{x \to +\infty} \left[(x+1)^{\alpha} - x^{\alpha} \right] , \alpha \in \mathbb{Q}.$$

83. Warum führt die folgende Anwendung der Regel von de l'Hospital zu einem falschen Ergebnis?

$$\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x^2 - 1} = \lim_{x \to 1} \frac{3x^2 + 2x - 1}{2x} = \lim_{x \to 1} \frac{6x + 2}{2} = 4.$$

(Der wahre Grenzwert ist 2.)

- **84.** Man entwickle $f(x) = \sqrt{1+x}$ in eine Taylorreihe um x=0, und gebe eine Formel für das Restglied an.
- **85.** Wie Aufgabe 84 für $f(x) = \frac{1}{\sqrt{1+x^2}}$.
- **86.** Es sei $f(x) = |x|^3$. Man berechne f'(x), f''(x) für alle $x \in \mathbb{R}$ und zeige, dass $f^{(3)}(0)$ nicht existiert.
- 87. Eine Funktion $f:(a,b) \longrightarrow \mathbb{R}$ heißt konvex auf (a,b), wenn für je zwei Punkte $x_1, x_2 \in (a,b)$ und für alle $\lambda \in (0,1)$ stets $f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)f(x_1) + \lambda f(x_2)$ ist. Sei nun f eine differenzierbare reelle Funktion, definiert auf (a,b). Man beweise: f ist genau dann konvex, wenn f' monoton wachsend ist. (Verwende den Mittelwertsatz!) Für jedes $x \in (a,b)$ existiere ferner f''(x). Man beweise, dass f genau dann konvex ist, wenn $f''(x) \ge 0$ für alle $x \in (a,b)$ gilt.
- 88. Sei $f:(a,\infty) \longrightarrow \mathbb{R}$ zweimal differenzierbar, und seien M_0, M_1 , bzw. M_2 die kleinsten oberen Schranken von |f(x)|, |f'(x)|, bzw. |f''(x)| auf (a,∞) . Man zeige:

$$M_1^2 \le 4M_0M_2$$
.

Hinweis: Ist h > 0, so folgt aus dem Taylorschen Satz, dass

$$f'(x) = \frac{1}{2h} \left[f(x+2h) - f(x) \right] - hf''(\xi)$$

für ein $\xi \in (x, x + 2h)$ gilt. Also folgt

$$|f'(x)| \le hM_2 + \frac{M_0}{h}.$$

89. Um in Aufgabe 88 zu zeigen, dass $M_1^2 = 4M_0M_2$ tatsächlich vorkommen kann, wähle man a = -1, definiere

$$f(x) = \begin{cases} 2x^2 - 1 & : & -1 < x < 0 \\ \frac{x^2 - 1}{x^2 + 1} & : & 0 \le x < \infty \end{cases}$$

und zeige, dass $M_0 = 1, M_1 = 4$ und $M_2 = 4$ ist.

90. (Newton'sches Näherungsverfahren) Sei f zweimal differenzierbar auf [a,b], seien ferner f(a)<0, f(b)>0, $f'(x)\geq\delta>0$ und $0\leq f''(x)\leq M$ für alle $x\in[a,b]$. Sei schließlich ξ der einzige Punkt in (a,b), für welchen $f(\xi)=0$ ist.

Man ergänze die Details in der folgenden Skizze der Newton'schen Methode zur Berechnung von ξ .

(a) Man wähle $x_1 \in (\xi, b)$ und definiere $\{x_n\}$ durch

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Man interpretiere dies geometrisch mit Hilfe der Tangente am Graphen von f. (Skizze!)

- (b) Man zeige: $x_{n+1} < x_n$ und $\lim_{n\to\infty} x_n = \xi$.
- (c) Unter Anwendung des Taylorschen Satzes zeige man, dass

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)} (x_n - \xi)^2$$

für geeignete $t_n \in (\xi, x_n)$ gilt.

(d) Für $A = M/2\delta$ folgere man

$$0 \le x_{n+1} - \xi \le \frac{1}{A} \left[A(x_1 - \xi) \right]^{2^n},$$

was bedeutet, dass das Newton'sche Näherungsverfahren sehr schnell konvergiert, falls $A(x_1 - \xi) < 1$ ist.