
Chapter 1

Unbounded operators on Hilbert spaces

Definition 1.1. Let H1, H2 be Hilbert spaces and T : dom(T ) −→ H2 be a
densely defined linear operator, i.e. dom(T ) is a dense linear subspace of H1.
Let dom(T ∗) be the space of all y ∈ H2 such that x 7→ (Tx, y)2 defines a con-
tinuous linear functional on dom(T ). Since dom(T ) is dense in H1 there exists
a uniquely determined element T ∗y ∈ H1 such that (Tx, y)2 = (x, T ∗y)1 (Riesz
representation theorem). The map y 7→ T ∗y is linear and T ∗ : dom(T ∗) −→ H1

is the adjoint operator to T.
T is called a closed operator, if the graph

G(T ) = {(f, Tf) ∈ H1 ×H2 : f ∈ dom(T )}

is a closed subspace of H1 ×H2.
The inner product in H1 ×H2 is

((x, y), (u, v)) = (x, u)1 + (y, v)2.

If Ṽ is a linear subspace of H1 which contains dom(T ) and T̃ x = Tx for all
x ∈ dom(T ) then we say that T̃ is an extension of T.

An operator T with domain dom(T ) is said to be closable if it has a closed
extension T̃ .

Lemma 1.2. Let T be a densely defined closable operator. Then there is a
closed extension T , called its closure, whose domain is smallest among all closed
extensions.

Proof. Let V be the set of x ∈ H1 for which there exist xk ∈ dom(T ) and
y ∈ H2 such that limk→∞ xk = x and limk→∞ Txk = y. Since T̃ is a closed
extension of T it follows that x ∈ dom(T̃ ) and T̃ x = y. Therefore y is uniquely
determined by x. We define Tx = y with dom(T ) = V. Then T is an extension
of T and every closed extension of T is also an extension of T . The graph of T
is the closure of the graph of T in H1 ×H2. Hence T is a closed operator.

Lemma 1.3. Let T1 : dom(T1) −→ H2 be a densely defined operator and
T2 : H2 −→ H3 be a bounded operator. Then (T2 T1)

∗ = T ∗1 T
∗
2 , which includes

that dom((T2 T1)
∗) = dom(T ∗1 T

∗
2 ).
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Proof. Note that

dom(T ∗1 T
∗
2 ) = {f ∈ dom(T ∗2 ) : T ∗2 (f) ∈ dom(T ∗1 )}.

Let f ∈ dom(T ∗1 T
∗
2 ) and g ∈ dom(T2 T1). Then

(T ∗1 T
∗
2 f, g) = (T ∗2 f, T1g) = (f, T2 T1g),

hence dom(T ∗1 T
∗
2 ) ⊆ dom((T2 T1)

∗).
Now let f ∈ dom((T2 T1)

∗). As T ∗2 is bounded and everywhere defined on H3,
and for all g ∈ dom(T2 T1) = dom(T1) we have

((T2 T1)
∗f, g) = (f, T2 T1g) = (T ∗2 f, T1g).

Hence T ∗2 f ∈ dom(T ∗1 ) and f ∈ dom(T ∗1 T
∗
2 ).

Lemma 1.4. Let T be a densely defined operator on H and let S be a bounded
operator on H. Then (T + S)∗ = T ∗ + S∗.

Proof. Let f ∈ dom(T ∗ + S∗) = dom(T ∗). Then for all g ∈ dom(T + S) =
dom(T ) we have

((T ∗ + S∗)f, g) = (T ∗f, g) + (S∗f, g) = (f, Tg) + (f, Sg) = (f, (T + S)g),

hence f ∈ dom((T + S)∗) and (T + S)∗f = T ∗f + S∗f.
If f ∈ dom((T + S)∗), then for all g ∈ dom(T + S) = dom(T ) we have

([(T + S)∗ − S∗]f, g) = (f, (T + S)g)− (f, Sg) = (f, Tg),

therefore f ∈ dom(T ∗) and dom((T + S)∗) = dom(T ∗ + S∗) = dom(T ∗).

Lemma 1.5. Let T : dom(T ) −→ H2 be a densely defined linear operator and
define V : H1 ×H2 −→ H2 ×H1 by V ((x, y)) = (y,−x). Then

G(T ∗) = [V (G(T ))]⊥ = V (G(T )⊥);

in particular T ∗ is always closed.

Proof. (y, z) ∈ G(T ∗)⇔ (Tx, y)2 = (x, z)1 for each x ∈ dom(T )
⇔ ((x, Tx), (−z, y)) = 0 for each x ∈ dom(T ) ⇔ V −1((y, z)) = (−z, y) ∈
G(T )⊥. Hence G(T ∗) = V (G(T )⊥) and since V is unitary we have V ∗ = V −1

and [V (G(T ))]⊥ = V (G(T )⊥).

Lemma 1.6. Let T : dom(T ) −→ H2 be a densely defined, closed linear oper-
ator. Then

H2 ×H1 = V (G(T ))⊕ G(T ∗).
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Proof. G(T ) is closed, therefore, by Lemma 1.5: G(T ∗)⊥ = V (G(T )).

Lemma 1.7. Let T : dom(T ) −→ H2 be a densely defined, closed linear oper-
ator. Then dom(T ∗) is dense in H2 and T ∗∗ = T.

Proof. Let z⊥dom(T ∗). Hence (z, y)2 = 0 for each y ∈ dom(T ∗). We have

V −1 : H2 ×H1 −→ H1 ×H2

where V −1((y, x)) = (−x, y), and V −1V = Id. Now, by Lemma 1.6, we have

H1 ×H2
∼= V −1(H2 ×H1) = V −1(V (G(T ))⊕ G(T ∗)) ∼= G(T )⊕ V −1(G(T ∗)).

Hence (z, y)2 = 0 ⇔ ((0, z), (−T ∗y, y)) = 0 for each y ∈ dom(T ∗) implies
(0, z) ∈ G(T ) and therefore z = T (0) = 0, which means that dom(T ∗) is dense
in H2.

Since T and T ∗ are densely defined and closed we have by Lemma 1.5

G(T ) = G(T )⊥⊥ = [V −1G(T ∗)]⊥ = G(T ∗∗),

where −V −1 corresponds to V in considering operators from H2 to H1.

Lemma 1.8. Let T : dom(T ) −→ H2 be a densely defined linear operator.
Then kerT ∗ = (imT )⊥, which means that kerT ∗ is closed.

Proof. Let v ∈ kerT ∗ and y ∈ imT, which means that there exists u ∈ dom(T )
such that Tu = y. Hence

(v, y)2 = (v, Tu)2 = (T ∗v, u)1 = 0,

and kerT ∗ ⊆ (imT )⊥.
And if y ∈ (imT )⊥, then (y, Tu)2 = 0 for each u ∈ dom(T ), which implies

that y ∈ dom(T ∗) and (y, Tu)2 = (T ∗y, u)1 for each u ∈ dom(T ). Since each
dom(T ) is dense in H1 we obtain T ∗y = 0 and (imT )⊥ ⊆ kerT ∗.

Lemma 1.9. Let T : dom(T ) −→ H2 be a densely defined, closed linear oper-
ator. Then kerT is a closed linear subspace of H1.

Proof. We use Lemma 1.8 for T ∗ and get kerT ∗∗ = (imT ∗)⊥. Since, by Lemma
1.7, T ∗∗ = T we obtain kerT = (imT ∗)⊥ and that kerT is a closed linear
subspace of H1.

Lemma 1.10. Let T : H1 −→ H2 be a bounded linear operator. T (H1) is
closed if and only if T |(kerT )⊥ is bounded from below, i.e.

‖Tf‖ ≥ C‖f‖ , ∀f ∈ (kerT )⊥.
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Proof. If T (H1) is closed, then the mapping

T : (kerT )⊥ −→ T (H1)

is bijective and continuous and, by the open-mapping theorem, also open. This
implies the desired inequality.

To prove the other direction, let (fn)n be a sequence in H1 with Tfn → y
in H2. We have to show, that there exists h ∈ H1 with Th = y. Decompose
fn = gn + hn, where gn ∈ kerT and hn ∈ (kerT )⊥. By assumption we have

‖hn − hm‖ ≤ C‖Thn − Thm‖ = C‖Tfn − Tfm‖ < ε,

for all sufficiently large n and m. Hence (hn)n is a Cauchy sequence. Let
h = limn→∞ hn. Then we have

‖Tfn − Th‖ = ‖Thn − Th‖ ≤ ‖T‖ ‖hn − h‖,

and therefore
y = lim

n→∞
Tfn = Th.

Lemma 1.11. Let T be as before. T (H1) is closed if and only if T ∗(H2) is
closed.

Proof. Since T ∗∗ = T, it suffices to show one direction. We will show that the
closedness of T (H1) implies, that (kerT )⊥ = imT ∗; since (kerT )⊥ is closed, we
will be finish.

Let x ∈ imT ∗. Then there exists y ∈ H2 with x = T ∗y. Now we get for
x′ ∈ kerT that

(x, x′) = (T ∗y, x′) = (y, Tx′) = 0,

hence imT ∗ ⊆ (kerT )⊥.
For x′ ∈ (kerT )⊥ we define a linear functional

λ(Tx) = (x, x′)

on the closed subspace T (H1) of H2. We remark that λ is well-defined, since
Tx = T x̃ implies that x− x̃ ∈ kerT, hence (x− x̃, x′) = 0 and (x, x′) = (x̃, x′).
The operator T : H1 −→ T (H1) is continuous and surjective. Since T (H1) is
closed, the open-mapping theorem implies ‖v‖ ≤ C‖Tv‖, for all v ∈ (kerT )⊥

where C > 0 is a constant. Set y = Tx and write x = u + v, where u ∈ kerT
and v ∈ (kerT )⊥. Then we obtain

|λ(y)| = |(x, x′)| = |(v, x′)|
≤ ‖v‖‖x′‖
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≤ C‖Tv‖‖x′‖
= C‖Tx‖‖x′‖
= C‖y‖‖x′‖.

Hence λ is continuous on imT. By the Riesz representation theorem, there exists
a uniquely determined element z ∈ imT with

λ(y) = (y, z)2 = (x, x′)1.

This implies (y, z)2 = (Tx, z)2 = (x, T ∗z)1 = (x, x′)1, for all x ∈ H1, and hence
x′ = T ∗z ∈ imT ∗.

Lemma 1.12. Let T : H1 −→ H2 be a densely defined closed operator. imT is
closed in H2 if and only if T |dom(T )∩(kerT )⊥ is bounded from below, i.e.

‖Tf‖ ≥ C‖f‖ , ∀f ∈ dom(T ) ∩ (kerT )⊥.

Proof. On the graph G(T ) we define the operator T̃ ({f, Tf}) = Tf and get a
bounded linear operator

T̃ : G(T ) −→ H2,

since
‖T̃ ({f, Tf})‖ = ‖Tf‖ ≤ (‖f‖2 + ‖Tf‖2)1/2 = ‖{f, Tf}‖;

and imT̃ = imT.
By Lemma 1.10, imT is closed if and only if T̃

∣∣
(kerT̃ )⊥ is bounded from below.

We have kerT̃ = kerT⊕{0}, and it remains to show that T̃
∣∣
(kerT̃ )⊥ is bounded

from below, if and only if T |dom(T )∩(kerT )⊥ is bounded from below. But this
follows from

‖T̃ ({f, Tf})‖ = ‖Tf‖ ≥ C(‖f‖2 + ‖Tf‖2)1/2,

and hence, for 0 < C < 1,

‖Tf‖2 ≥ C2

1− C2
‖f‖2.

Lemma 1.13. Let P,Q : H −→ H be orthogonal projections on the Hilbert
space H. then the following assertions are equivalent
(i) im(PQ) is closed;
(ii) im(QP ) is closed;
(iii) im(I − P )(I −Q) is closed;
(iv) P (H) + (I −Q)(H) is closed.



6 Chapter 1 Unbounded operators on Hilbert spaces

Proof. (i) and (ii) are equivalent, since QP = Q∗P ∗ = (PQ)∗ and Lemma 1.11.
Suppose (ii) holds and let (fn)n and (gn)n be sequences in H with Pfn +

(I −Q)gn → h. Then

Q(Pfn + (I −Q)gn) = QPfn → Qh.

By assumption, im(QP ) is closed, hence there exists f ∈ H with QPf = Qh;
it follows that Qh = Pf − (I −Q)(Pf) and

h = Qh+ (I −Q)h = Pf − (I −Q)(Pf) + (I −Q)h

= Pf + (I −Q)(h− Pf) ∈ P (H) + (I −Q)(H),

which yields (iv).
If (iv) holds and (fn)n is a sequence in H with QPfn → h, we get

QPfn = Pfn − (I −Q)Pfn ∈ P (H) + (I −Q)(H).

Hence there exist f, g ∈ H with h = Pf + (I −Q)g; and it follows that

Qh = Q( lim
n→∞

QPfn) = lim
n→∞

Q2Pfn = h,

and
h = Pf + (I −Q)g = Qh = QPf ∈ im(QP ),

therefore (ii) holds.
Finally, replace P by I−P and Q by I−Q. Then, using the assertions proved

so far, we obtain the equivalence

im(I − P )(I −Q) closed⇔ (I − P )(H) +Q(H) closed,

which proves the remaining assertions.

At this point, we are able to prove Lemma 1.11 for densely defined closed
operators.

Proposition 1.14. Let T : H1 −→ H2 be a densely defined closed operator.
imT is closed if and only if imT ∗ is closed.

Proof. Let P : H1 × H2 −→ G(T ) be the orthogonal projection of H1 × H2

on the closed subspace G(T ) of H1 × H2, and let Q : H1 × H2 −→ {0} × H2

be the canonical orthogonal projection. Then imT ∼= imQP and since I −Q :
H1 ×H2 −→ H1 × {0} and

I − P : H1 ×H2 −→ G(T )⊥ = V (G(T ∗)) ∼= G(T ∗)

we obtain the desired result from Lemma 1.13.
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Proposition 1.15. Let T : H1 −→ H2 be a densely defined closed operator
and G a closed subspace of H2 with G ⊇ imT. Suppose that T ∗|dom(T ∗)∩G is
bounded from below, i.e. ‖f‖ ≤ C‖T ∗f‖ for all f ∈ dom(T ∗)∩G, where C > 0
is a constant. Then G = imT.

Proof. We have kerT ∗ = (imT )⊥. Since imT ⊆ G, it follows that kerT ∗ ⊇
G⊥. If G⊥ is a proper subspace of kerT ∗, then G ∩ kerT ∗ 6= {0}, which is
a contradiction to the assumption that T ∗|dom(T ∗)∩G is bounded from below.
Hence kerT ∗ = G⊥ and

G = G⊥⊥ = (kerT ∗)⊥ = imT⊥⊥ = (imT ).

In addition we have

T ∗|dom(T ∗)∩G = T ∗|dom(T ∗)∩(kerT ∗)⊥

and, by Lemma 1.12 we obtain, that imT ∗ is closed. By Proposition 1.14 , imT
is also closed and we get that G = imT.

Remark 1.16. The last proposition also holds in the other direction: if T :
H1 −→ H2 is a densely defined closed operator and G is a closed subspace of
H2 with G = imT, then T ∗|dom(T ∗)∩G is bounded from below. Since in this
case G = imT, we have that imT is closed and hence, by Lemma 1.14, imT ∗

is also closed. Therefore, Lemma 1.12 and the fact that G = (kerT ∗)⊥ implies
that T ∗|dom(T ∗)∩G is bounded from below.

Proposition 1.17. Let T : H1 −→ H2 be a densely defined closed operator
and let G be a closed subspace of H2 with G ⊇ imT. Suppose that T ∗|dom(T ∗)∩G
is bounded from below. Then for each v ∈ H1 with v ⊥ kerT there exists
f ∈ dom(T ∗) ∩G with T ∗f = v and ‖f‖ ≤ C‖v‖.

Proof. We have kerT = (imT ∗)⊥, hence v ∈ (kerT )⊥ = imT ∗. In addition
G⊥ ⊆ (imT )⊥ = kerT ∗ and therefore

imT ∗|dom(T ∗)∩G = imT ∗,

this means that imT ∗ is closed and that for v ∈ (ker)⊥ = imT ∗ there exists
f ∈ dom(T ∗) ∩G with T ∗f = v. The desired norm-inequality follows from the
assumption that T ∗|dom(T ∗)∩G is bounded from below.

In the following we introduce the fundamental concept of an unbounded
self-adjoint operator, which will be crucial for both spectral theory and its
applications to complex analysis.
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Definition 1.18. Let T : dom(T ) −→ H be a densely defined linear operator.
T is symmetric if (Tx, y) = (x, Ty) for all x, y ∈ dom(T ). We say that T
is self-adjoint if T is symmetric and dom(T ) = dom(T ∗). This is equivalent to
requiring that T = T ∗ and implies that T is closed. We say that T is essentially
self-adjoint if it is symmetric and its closure T is self-adjoint.

Remark 1.19. (a) If T is a symmetric operator, there are two natural closed
extensions. We have dom(T ) ⊆ dom(T ∗) and T ∗ = T on dom(T ). Since T ∗ is
closed (Lemma 1.6), T ∗ is a closed extension of T, it is the maximal self-adjoint
extension. T is also closable, by Lemma 1.2, therefore T exists, it is the minimal
closed extension.

(b) If T is essentially self-adjoint, then its self-adjoint extension is unique. To
prove this, let S be a self-adjoint extension of T. Then S is closed and, being
an extension of T, it is also an extension of its smallest extension T . Hence

T ⊂ S = S∗ ⊂ (T )∗ = T ,

and S = T .

Lemma 1.20. Let T be a densely defined, symmetric operator.
(i) If dom(T ) = H, then T is self-adjoint and T is bounded.
(ii) If T is self-adjoint and injective, then im(T ) is dense in H, and T−1 is

self-adjoint.
(iii) If im(T ) is dense in H, then T is injective.
(iv) If im(T ) = H, then T is self-adjoint, and T−1 is bounded.

Proof. (i) By assumption dom(T ) ⊆ dom(T ∗). If dom(T ) = H, it follows that T
is self-adjoint, therefore also closed (Lemma 1.5) and continuous by the closed
graph theorem.

(ii) Suppose y⊥Im(T ). Then x 7→ (Tx, y) = 0 is continuous on dom(T ),
hence y ∈ dom(T ∗) = dom(T ), and (x, Ty) = (Tx, y) = 0 for all x ∈ dom(T ).
Thus Ty = 0 and since T is assumed to be injective, it follows that y = 0. This
proves that Im(T ) in dense in H.
T−1 is therefore densely defined, with dom(T−1) = im(T ), and (T−1)∗ exists.

Now let U : H × H −→ H × H be defined by U((x, y)) = (−y, x). It easily
follows that U2 = −I and U2(M) = M for any subspace M of H × H, and
we get G(T−1) = U(G(−T )) and U(G(T−1)) = G(−T )). Being self-adjoint, T
is closed; hence −T is closed and T−1 is closed. By Lemma 1.6 applied to T−1

and to −T we get the orthogonal decompositions

H ×H = U(G(T−1))⊕ G((T−1)∗)

and
H ×H = U(G(−T ))⊕ G(−T )) = G(T−1)⊕ U(G(T−1)).



Chapter 1 Unbounded operators on Hilbert spaces 9

Consequently
G((T−1)∗) = [U(G(T−1))]⊥ = G(T−1),

which shows that (T−1)∗ = T−1.
(iii) Suppose Tx = 0. Then (x, Ty) = (Tx, y) = 0 for each y ∈ dom(T ). Thus

x⊥im(T ), and therefore x = 0.
(iv) Since im(T ) = H, (iii) implies that T is injective, dom(T−1) = H. If

x, y ∈ H, then x = Tz and y = Tw, for some z ∈ dom(T ) and w ∈ dom(T ), so
that

(T−1x, y) = (z, Tw) = (Tz,w) = (x, T−1y).

Hence T−1 is symmetric. (i) implies that T−1 is self-adjoint (and bounded),
and now it follows from (ii) that T = (T−1)−1 is also self-adjoint.

Lemma 1.21. Let T be a densely defined closed operator, dom(T ) ⊆ H1 and
T : dom(T ) −→ H2. Then B = (I + T ∗T )−1 and C = T (I + T ∗T )−1 are
everywhere defined and bounded, ‖B‖ ≤ 1, ‖C‖ ≤ 1; in addition B is self-
adjoint and positive.

Proof. Let h ∈ H1 be an arbitrary element and consider (h, 0) ∈ H1×H2. Form
the proof of Lemma 1.7 we get

H1 ×H2 = G(T )⊕ V −1(G(T ∗)), (1.1)

which implies that (h, 0) can be written in a unique way as

(h, 0) = (f, Tf) + (−T ∗(−g),−g),

for f ∈ dom(T ) and g ∈ dom(T ∗), which gives h = f + T ∗g and 0 = Tf − g.
We set Bh := f and Ch := g. In this way we get two linear operators B and C
everywhere defined on H1. The two equations from above can now be written
as

I = B + T ∗C, 0 = TB − C,

which gives
C = TB and I = B + T ∗TB = (I + T ∗T )B. (1.2)

The decomposition in (1.1) is orthogonal, therefore we obtain

‖h‖2 = ‖(h, 0)‖2 = ‖(f, Tf)‖2+‖(T ∗g,−g)‖2 = ‖f‖2+‖Tf‖2+‖T ∗g‖2+‖g‖2,

and hence
‖Bh‖2 + ‖Ch‖2 = ‖f‖2 + ‖g‖2 ≤ ‖h‖2,

which implies ‖B‖ ≤ 1 and ‖C‖ ≤ 1.
For each u ∈ dom(T ∗T ) we get

((I + T ∗T )u, u) = (u, u) + (Tu, Tu) ≥ (u, u)
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hence, if (I + T ∗T )u = 0 we get u = 0. Therefore (I + T ∗T )−1 exists and (1.2)
implies that (I + T ∗T )−1 is defined everywhere and B = (I + T ∗T )−1. Finally
let u, v ∈ H1. Then

(Bu, v) = (Bu, (I + T ∗T )Bv) = (Bu,Bv) + (Bu, T ∗TBv)

= (Bu,Bv) + (T ∗TBu,Bv) = ((I + T ∗T )Bu,Bv) = (u,Bv)

and

(Bu, u) = (Bu, (I + T ∗T )Bu) = (Bu,Bu) + (TBu, TBu) ≥ 0,

which proves the lemma.

Finally we describe a general method to construct self-adjoint operators asso-
ciated with Hermitian sesquilinear forms. This leads to a self-adjoint extension
of an unbounded operator, which is known as the Friedrichs extension.

Definition 1.22. Let (V, ‖.‖V) and (H, ‖.‖H) be Hilbert spaces such that

V ⊂ H, (1.3)

and suppose that there exists a constant C > 0 such that for all u ∈ V we have

‖u‖H ≤ C ‖u‖V . (1.4)

We also assume that V is dense in H.

In this situation the space H can be imbedded into the dual space V ′ : for
h ∈ H the mapping

L(u) = (u, h)H , for u ∈ V

is continuous on V, this follows from (1.4):

|L(u)| ≤ ‖u‖H‖h‖H ≤ C‖h‖H‖u‖V .

Hence there exists a uniquely determined vh ∈ V ′ such that

vh(u) = (u, h)H , for u ∈ V,

and the mapping h 7→ vh is injective, as V is dense in H.

Definition 1.23. A form a : V × V −→ C is sesquilinear, if it is linear in
the first component and anti linear in the second component. The form a is
continuous if there exists a constant C > 0 such that

|a(u, v)| ≤ C‖u‖V ‖v‖V (1.5)
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for all u, v ∈ V and it is Hermitian if

a(u, v) = a(v, u)

for all u, v ∈ V.
The form a is called V-elliptic if there exists a constant α > 0 such that

|a(u, u)| ≥ α‖u‖2V (1.6)

for all u ∈ V.

Proposition 1.24. Let a be a continuous, V-elliptic form on V × V. Using
(1.5) and the Riesz representation theorem we can define a linear operator

A : V −→ V

such that
a(u, v) = (Au, v)V . (1.7)

This operator A is a topological isomorphism from V onto V.

Proof. First we show that A is injective: (1.7) and (1.6) imply that for u ∈ V
we have

‖Au‖V‖u‖V ≥ |(Au, u)V | ≥ α‖u‖2V ,

hence
‖Au‖V ≥ α‖u‖V , (1.8)

which implies that A is injective.
Now we claim that A(V) is dense in V. Let u ∈ V be such that (Av, u)V = 0

for each v ∈ V. Taking v = u we get a(u, u) = 0 and, by (1.6), u = 0, which
proves the claim.

Next we observe that (1.7) implies a(u,Au) = ‖Au‖2V , therefore, using (1.5),
we obtain ‖A(u)‖V ≤ C‖u‖V , hence A ∈ L(V). If (vn)n is a Cauchy sequence
in A(V) and Aun = vn, we derive from (1.8) that (un)n is also a Cauchy
sequence. Let u = limn→∞ un.We know already that A is continuous, therefore
limn→∞Aun = Au, which shows that limn→∞ vn = v = Au and A(V) is closed.
As we have already shown that A(V) is dense in V, we conclude that A is
surjective.

Finally (1.8) yields that A−1 is continuous.

Proposition 1.25. Let a be a Hermitian, continuous, V-elliptic form on V×V
and suppose that (1.3) and (1.4) hold. Let dom(S) be the set of all u ∈ V such
that the mapping v 7→ a(u, v) is continuous on V for the topology induced by H.
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For each u ∈ dom(S) there exists a uniquely determined element Su ∈ H such
that

a(u, v) = (Su, v)H (1.9)

for each v ∈ V (by the Riesz representation theorem).
Then S : dom(S) −→ H is a bijective densely defined self-adjoint operator

and S−1 ∈ L(H). Moreover, dom(S) is also dense in V.

Proof. First we show that S is injective. For each u ∈ dom(S) we get from
(1.6) and (1.4) that

α‖u‖2H ≤ Cα‖u‖2V ≤ C|a(u, u)|
= C|(Su, u)H | ≤ C‖Su‖H‖u‖H ,

which implies that
α‖u‖H ≤ C‖Su‖H , (1.10)

for all u ∈ dom(S), therefore S is injective.
Now let h ∈ H and consider the mapping v 7→ (h, v)H for v ∈ V. Then, by

(1.4), we obtain

|(h, v)H | ≤ ‖h‖H‖v‖H ≤ C‖h‖H‖v‖V ,

which implies that there exists a uniquely determined w ∈ V such that (h, v)H =
(w, v)V for all v ∈ V. Now we apply Proposition 1.24 and get from (1.7) that
a(u, v) = (w, v)V , where u = A−1w. Since a(u, v) = (h, v)H for each v ∈ V, we
conclude that u ∈ dom(S) and that Su = h, which shows that S is surjective.

Suppose that (u, h)H = 0 for each u ∈ dom(S). As S is surjective, there
is v ∈ dom(S) such that Sv = h and we get that (u, Sv)H = 0 for each
u ∈ dom(S). Using the V-ellipticity (1.6) we get for u = v that

0 = (Sv, v)H = a(v, v) ≥ α‖v‖2V ,

which implies that v = 0 and consequently h = 0. Therefore we have shown
that dom(S) is dense in H.

As a(u, v) is Hermitian, we get for u, v ∈ dom(S) that

(Su, v)H = a(u, v) = a(v, u) = (Sv, u)H = (u, Sv)H .

Hence S is symmetric and dom(S) ⊂ dom(S∗). Let v ∈ dom(S∗). Since S is
surjective, there exists v0 ∈ dom(S) such that Sv0 = S∗v. This implies

(Su, v0)H = (u, Sv0)H = (u, S∗v)H = (Su, v)H ,

for all u ∈ dom(S). Using again the surjectivity of S, we derive that v = v0 ∈
dom(S). This implies that dom(S) = dom(S∗) and that S is self-adjoint.
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Finally we show that dom(S) is dense in V. Let h ∈ V be such that (u, h)V =
0, for all u ∈ dom(S). By Proposition 1.24 there exists f ∈ V such that Af = h.
Then

0 = (u, h)V = (u,Af)V = (Af, u)V

= a(f, u) = a(u, f) = (Su, f)H .

S is surjective, therefore we obtain f = 0 and h = Af = 0.



Chapter 2

Distributions and Sobolev spaces

Definition 2.1. Let Ω ⊆ Rn an open subset and D(Ω) = C∞0 (Ω) the space of
C∞-functions with compact support (test functions).

A sequence (φj)j tends to 0 in D(Ω) if there exists a compact set K ⊂ Ω

such that suppφj ⊂ K for every j and

∂|α|φ

∂xα1
1 . . . ∂xαnn

→ 0

uniformly on K for each α = (α1, . . . , αn).
A distribution is a linear functional u on D(Ω) such that for every compact

subset K ⊂ Ω there exists k ∈ N0 = N ∪ {0}and a constant C > 0 with

|u(φ)| ≤ C
∑
|α|≤k

sup
x∈K

∣∣∣∣∣ ∂|α|φ(x)

∂xα1
1 . . . ∂xαnn

∣∣∣∣∣ ,
for each φ ∈ D(Ω) with support in K. We denote the space of distributions on
Ω by D′(Ω).

It is easily seen that u ∈ D′(Ω) if and only if u(φj) → 0 for every sequence
(φj)j in D(Ω) converging to 0 in D(Ω).

Example 2.2. 1. Let f ∈ L1
loc(Ω), where

L1
loc(Ω) = {f : Ω −→ Cmeasurable : f |K∈ L1(K)∀K ⊂ Ω, K compact}.

The mapping Tf (φ) =
∫

Ω
f(x)φ(x) dλ(x) , φ ∈ D(Ω), is a distribution.

2. Let a ∈ Ω and δa(φ) := φ(a), which is the point evaluation in a. The
distribution δa is called Dirac Delta distribution.

In the sequel, certain operations for ordinary functions, such as multiplication
of functions and differentiation, is generalized to distributions.

Definition 2.3. Let f ∈ C∞(Ω) and u ∈ D′(Ω). The multiplication of u with
f is defined by (fu)(φ) := u(fφ) for φ ∈ D(Ω). Notice that fφ ∈ D(Ω).

For u ∈ D′(Rn) and f ∈ D(Rn) the convolution of u and f is defined by

(u ∗ f)(x) := u(y 7→ f(x− y)),
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which is a C∞-function. If u = Tg for some locally integrable function g it is
the usual convolution of functions

(Tg ∗ f)(x) =
∫

Ω

g(y)f(x− y) dλ(y) = (g ∗ f)(x).

Let

Dk =
∂

∂xk
and Dα =

∂|α|

∂xα1
1 . . . ∂xαnn

,

where α = (α1, . . . , αn) is a multi-index. The partial derivative of a distribution
u ∈ D′(Ω) is defined by

(Dku)(φ) := −u(Dkφ), φ ∈ D(Ω);

higher order mixed derivatives are defined as

(Dαu)(φ) := (−1)|α| u(Dαφ), φ ∈ D(Ω).

This definition stems from integrating by parts:∫
Ω

(Dkf)φdλ = −
∫

Ω

f(Dkφ) dλ,

where f ∈ C1(Ω) and φ ∈ D(Ω).
For an appropriate description of the appearing phenomena we will use fur-

ther Hilbert spaces of differentiable functions - the Sobolev spaces.

Definition 2.4. If Ω is a bounded open set in Rn, and k is a nonnegative
integer we define the Sobolev space

W k(Ω) = {f ∈ L2(Ω) : ∂αf ∈ L2(Ω), |α| ≤ k},

where the derivatives are taken in the sense of distributions and endow the
space with the norm

‖f‖k,Ω =

∑
|α|≤k

∫
Ω

|∂αf |2 dλ

1/2

, (2.1)

where α = (α1, . . . , αn) is a multiindex , |α| =
∑n

j=1 αj and

∂αf =
∂|α|f

∂xα1
1 . . . ∂xαnn

.

W k
0 (Ω) denotes the completion of C∞0 (Ω) under W k(Ω)-norm. Since C∞0 (Ω)

is dense in L2(Ω), it follows that W 0
0 (Ω) =W 0(Ω) = L2(Ω). Using the Fourier

transform it is also possible to introduce Sobolev spaces of non-integer exponent.
(See [1, 5].)
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In general a function can belong to a Sobolev space, and yet be discontinuous
and unbounded.

Example 2.5. Take Ω = B the open unit ball in Rn, and

u(x) = |x|−α , x ∈ B, x 6= 0.

We claim that u ∈W 1(B) if and only if α < n−2
2 .

First note that u is smooth away from 0, and that

uxj (x) =
−αxj
|x|α+2

, x 6= 0.

Hence
|∇u(x)| = |α|

|x|α+1
, x 6= 0.

Now, recall the Gauß-Green -theorem: for a smoothly bounded ω ⊆ Rn we
have ∫

ω
∇ . F (x) dλ(x) =

∫
bω
(F (x), ν(x)) dσ(x),

where ν(x) = ∇r(x) is the normal to bω at x, and F is a C1 vector field on ω,
and

∇ . F (x) =
n∑
j=1

∂Fj
∂xj

.

(see [4])
Let φ ∈ C∞0 (B) and let Bε be the open ball around 0 with radius ε > 0. Take

ω = B \ Bε and
F (x) = (0, . . . , 0, uφ, 0, . . . , 0),

where uφ appears at the j-th component. Then∫
B\Bε

u(x)φxj (x) dλ(x) = −
∫
B\Bε

uxj (x)φxj (x) dλ(x)+

∫
bBε

u(x)φ(x)νj(x) dσ(x),

where ν(x) = (ν1(x), . . . , νn(x)) denotes the inward pointing normal on bBε. If
α < n− 1, then |∇u(x)| ∈ L1(B), and we obtain∣∣∣∣∫

bBε
u(x)φ(x)νj(x) dσ(x)

∣∣∣∣ ≤ ‖φ‖∞
∫
bBε

ε−α dσ(x)

≤ C εn−1−α → 0,

as ε→ 0. Thus ∫
B
u(x)φxj (x) dλ(x) = −

∫
B
uxj (x)φ(x) dλ(x)
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for all φ ∈ C∞0 (B). As
|∇u(x)| = α

|x|α+1
∈ L2(B)

if and only if 2(α+ 1) < n we get that u ∈W 1(B) if and only if α < n−2
2 .

Before we proceed we verify properties of weak derivatives, which are obvi-
ously true for smooth functions. As functions in Sobolev spaces are not neces-
sarily smooth, we must always rely upon the definition of weak derivatives.

Proposition 2.6. Assume u, v ∈W k(Ω), |α| ≤ k. Then
(i) Dαu ∈W k−|α|(Ω) and for multiindices α, β with |α|+ |β| ≤ k we have

Dβ(Dαu) = Dα(Dβu) = Dα+βu.

(ii) If ω is an open subset of Ω, then u ∈W k(ω).
(iii) If φ ∈ C∞0 (Ω), then φu ∈W k(Ω) and

Dα(φu) =
∑
β≤α

(
α

β

)
DβφDα−βu,

where
(
α
β

)
= α!

β!(α−β)! .

Proof. To prove (i), fix φ ∈ C∞0 (Ω). Then Dβφ ∈ C∞0 (Ω), and∫
Ω

Dαu(x)Dβφ(x) dλ(x) = (−1)|α|
∫

Ω

u(x)Dα+βφ(x) dλ(x)

= (−1)|α|(−1)|α+β|
∫

Ω

Dα+βu(x)φ(x) dλ(x)

= (−1)|β|
∫

Ω

Dα+βu(x)φ(x) dλ(x).

Hence Dβ(Dαu) = Dα+βu in the weak sense.
We omit the easy proof of (ii).
For (iii) we use induction on |α|. Suppose first that |α| = 1. Take any ψ ∈
C∞0 (Ω). Then∫

Ω

φ(x)u(x)Dαψ(x) dλ(x) =

∫
Ω

(u(x)Dα(φ(x)ψ(x))−u(x)(Dαφ(x))ψ(x)) dλ(x)

= −
∫

Ω

(φ(x)Dαu(x) + u(x)Dαφ(x))ψ(x) dλ(x).

Therefore Dα(φu) = φDαu+ uDαφ, as required. The induction step is carried
out in a similar way.
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Proposition 2.7. Let k ∈ N. Then W k(Ω) is a Hilbert space.

Proof. It is clear that the norm of W k(Ω) stems from an inner product. To
prove the completeness, let (um)m be a Cauchy sequence in W k(Ω). Then for
each multiindex α with |α| ≤ k, the sequence (Dαum)m is a Cauchy sequence
in L2(Ω). Since L2(Ω) is complete, there exist functions uα ∈ L2(Ω) such that

Dαum → uα in L2(Ω).

In particular, um → u(0,...,0) := u in L2(Ω).

Now we claim that u ∈ W k(Ω) and Dαu = uα for |α| ≤ k. Fix φ ∈ C∞0 (Ω).
Then, by Cauchy-Schwarz,

|
∫

Ω

(u(x)− um(x))Dαφ(x) dλ(x)| ≤ ‖u− um‖2 ‖Dαφ‖2,

where ‖ . ‖2 denotes the norm in L2(Ω). Hence∫
Ω

u(x)Dαφ(x) dλ(x) = lim
m→∞

∫
Ω

um(x)D
αφ(x) dλ(x)

= lim
m→∞

(−1)|α|
∫

Ω

Dαum(x)φ(x) dλ(x)

= (−1)|α|
∫

Ω

uα(x)φ(x) dλ(x),

which proves the claim. Since Dαum → Dαu in L2(Ω) for all |α| ≤ k, we see
that um → u in W k(Ω).

In the following we discuss two important examples: the Cauchy-Riemann
equations and the Laplace equation:

Definition 2.8. Let Ω ⊆ Cn be a domain.

L2
(0,1)(Ω) := {u =

n∑
j=1

uj dzj : uj ∈ L2(Ω) j = 1, . . . , n}

is the space of (0, 1)- forms with coefficients in L2, for u, v ∈ L2
(0,1)(Ω) we define

the inner product by

(u, v) =
n∑
j=1

(uj , vj).

In this way L2
(0,1)(Ω) becomes a Hilbert space. (0, 1) forms with compactly

supported C∞ coefficients are dense in L2
(0,1)(Ω).
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Definition 2.9. Let f ∈ C∞0 (Ω) and set

∂f :=
n∑
j=1

∂f

∂zj
dzj ,

then
∂ : C∞0 (Ω) −→ L2

(0,1)(Ω).

∂ is a densely defined unbounded operator on L2(Ω). It does not have closed
graph.

Definition 2.10. The domain dom(∂) of ∂ consists of all functions f ∈ L2(Ω)
such that ∂f, in the sense of distributions, belongs to L2

(0,1)(Ω), i.e. ∂f = g =∑n
j=1 gj dzj , and for each φ ∈ C∞0 (Ω) we have∫

Ω

f

(
∂φ

∂zj

)−
dλ = −

∫
Ω

gj φdλ , j = 1, . . . , n. (2.2)

It is clear that C∞0 (Ω) ⊆ dom(∂), hence dom(∂) is dense in L2(Ω). Since
differentiation is a continuous operation in distribution theory we have

Lemma 2.11. ∂ : dom(∂) −→ L2
(0,1)(Ω) has closed graph and Ker∂ is a closed

subspace of L2(Ω).

Proof. We use the arguments of the proof of Proposition 2.7: let (fk)k be a
sequence in dom(∂) such that fk → f in L2(Ω) and ∂fk → g in L2

(0,1)(Ω). We
have to show that ∂f = g. From the proof of Proposition 2.7 we know that
∂fk → ∂f as distributions. As ∂fk → g in L2

(0,1)(Ω), it follows that f ∈ dom(∂)

and ∂f = g.
Now we can apply Lemma 1.9 and get that Ker∂ is a closed subspace of

L2(Ω).

Example 2.12. For the Laplace operator

−4 = −
n∑
j=1

∂2

∂x2j

we extend its domain as

dom(−4) = {f ∈ L2(Rn) : Dαf ∈ L2(Rn) , |α| ≤ 2} =W 2(R2),

and obtain, by a similar reasoning as before, a closed operator from dom(−4)
to L2(Rn), which is in addition symmetric and positive, since we have

(−4u, u) =
n∑
j=1

(Dju,Dju),
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for u ∈ dom(−4).

Next we approximate solutions of a first order differential operator by regu-
larization using convolutions. For this purpose the following generalization of
Minkowski’s inequality is useful.

Lemma 2.13. Let F : Rn × Rn → R be a nonnegative measurable function.
Then

[

∫
Rn

(

∫
Rn
F (x, y) dλ(y))2 dλ(x)]1/2 ≤

∫
Rn

(

∫
Rn
F (x, y)2 dλ(x))1/2 dλ(y), (2.3)

where we suppose that the right side is finite.

Proof. We use the duality for L2-spaces:

‖f‖2 = sup{|
∫
Rn
f(x) g(x) dλ(x)| : ‖g‖2 = 1}, (2.4)

where f ∈ L2(Rn).
Let

f(x) =

∫
Rn
F (x, y) dλ(y).

Then

‖f‖2 = [

∫
Rn

(

∫
Rn
F (x, y) dλ(y))2 dλ(x)]1/2

= sup{|
∫
Rn

∫
Rn
F (x, y)g(x) dλ(y) dλ(x)| : ‖g‖2}

= sup{|
∫
Rn

∫
Rn
F (x, y)g(x) dλ(x) dλ(y)| : ‖g‖2}

≤
∫
Rn

(

∫
Rn
F (x, y)2 dλ(x))1/2 dλ(y),

where we used the Cauchy-Schwarz inequality in the last step.

To begin with we define for a function f on Rn and x ∈ Rn the function fx
to be fx(y) = f(x+ y).

Lemma 2.14. If f ∈ L2(Rn), then limx→0 ‖fx − f‖2 = 0.

Proof. If g is continuous with compact support, then g is uniformly continuous,
so gx → g uniformly as x → 0. Since gx and g are supported in a common
compact set for |x| ≤ 1, it follows that ‖gx − g‖2 → 0. Given f ∈ L2(Rn)
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and ε > 0, choose a continuous function g with compact support such that
‖f − g‖2 < ε/3. Then also ‖fx − gx‖2 < ε/3, so

‖fx − f‖2 ≤ ‖fx − gx‖2 + ‖gx − g‖2 + ‖g − f‖2 < ‖gx − g‖2 + 2ε/3.

For |x| sufficiently small, ‖gx − g‖2 < ε/3, hence ‖fx − f‖2 < ε.

Let χ ∈ C∞0 (Rn) be a function with support in the unit ball such that χ ≥ 0
and ∫

Rn
χ(x) dλ(x) = 1.

We define χε(x) = ε−nχ(x/ε) for ε > 0. Let f ∈ L2(Rn) and define for x ∈ Rn

fε(x) = (f ∗ χε)(x) =

∫
Rn
f(x′)χε(x− x′) dλ(x′)

=

∫
Rn
f(x− x′)χε(x′) dλ(x′)

=

∫
Rn
f(x− εx′)χ(x′) dλ(x′).

In the first integral we can differentiate under the integral sign to show that
fε ∈ C∞(Rn).

The family of functions (χε)ε is called an approximation to the identity.

Lemma 2.15. ‖fε − f‖2 → 0 as ε→ 0.

Proof.

fε(x)− f(x) =
∫
Rn

[
f(x− εx′)− f(x)

]
χ(x′) dλ(x′).

We use Minkowski’s inequality (2.3) to get

‖fε − f‖2 ≤
∫
Rn
‖f−εx′ − f‖2 |χ(x′)| dλ(x′).

But ‖f−εx′ − f‖2 is bounded by 2‖f‖2 and tends to 0 as ε→ 0 by Lemma 2.15.
Now set

Fε(x
′) = |f−εx′ − f‖2 χ(x′).

Then Fε(x′)→ 0 as ε→ 0 and

|Fε(x′)| ≤ 2‖f‖2 χ(x′),

and we can apply the dominated convergence theorem to get the desired result.
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If u ∈ C∞0 (Rn) we have

Dj(u ∗ χε) = (Dju) ∗ χε,

where Dj = ∂/∂xj . This also true, if u ∈ L2(Rn) and Dju is defined in the sense
of distributions. We will show even more using these methods for approximating
a function in a Sobolev space by smooth functions.

Let Ω ⊆ Rn be an open subset and let

Ωε = {x ∈ Ω : dist(x, bΩ) > ε}.

Lemma 2.16. Let u ∈W k(Ω) and set uε = u ∗ χε in Ωε. Then
(i) uε ∈ C∞(Ωε), for each ε > 0,
(ii)Dαuε = Dαu ∗ χε in Ωε, for |α| ≤ k.

Proof. (i) has already been shown.
(ii) means that the ordinary αth-partial derivative of the smooth functions

uε is the ε-mollification of the αth-weak partial derivative of u. To see this, we
take x ∈ Ωε and compute

Dαuε(x) = Dα

∫
Ω

u(y)χε(x− y) dλ(y)

=

∫
Ω

Dα
xχε(x− y)u(y) dλ(y)

= (−1)|α|
∫

Ω

Dα
y χε(x− y)u(y) dλ(y).

For a fixed x ∈ Ωε the function φ(y) := χε(x − y) belongs to C∞(Ω). The
definition of the αth-weak partial derivative implies∫

Ω

Dα
y χε(x− y)u(y) dλ(y) = (−1)|α|

∫
Ω

χε(x− y)Dαu(y) dλ(y).

Thus

Dαuε(x) = (−1)|α|+|α|
∫

Ω

χε(x− y)Dαu(y) dλ(y)

= (Dαu ∗ χε)(x),

which proves (ii).

We are now ready to prove
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Lemma 2.17 (Friedrichs’ Lemma). If v ∈ L2(Rn) with compact support and a
is a C1-function in a neighborhood of the support of v, it follows that

‖aDj(v ∗ χε)− (aDjv) ∗ χε‖2 → 0 as ε→ 0,

where Dj = ∂/∂xj and aDjv is defined in the sense of distributions.

Proof. If v ∈ C∞0 (Rn), we have

Dj(v ∗ χε) = (Djv) ∗ χε → Djv , (aDjv) ∗ χε → aDjv,

with uniform convergence. We claim that

‖aDj(v ∗ χε)− (aDjv) ∗ χε‖2 ≤ C‖v‖2, (2.5)

where v ∈ L2(Rn) and C is some positive constant independent of ε and v.
Since C∞0 (Rn) is dense in L2(Rn), the lemma will follow like in the proof of
Lemma 2.15 from (2.5) and the dominated convergence theorem.

To show (2.5) we may assume that a ∈ C10(Rn), since v has compact support.
We have for v ∈ C∞0 (Rn),

a(x)Dj(v ∗ χε)(x)− ((aDjv) ∗ χε)(x)

= a(x)Dj

∫
v(x− y)χε(y) dλ(y)−

∫
a(x− y) ∂v

∂xj
(x− y)χε(y) dλ(y)

=

∫
(a(x)− a(x− y)) ∂v

∂xj
(x− y)χε(y) dλ(y)

= −
∫

(a(x)− a(x− y)) ∂v
∂yj

(x− y)χε(y) dλ(y)

=

∫
(a(x)− a(x− y))v(x− y) ∂

∂yj
χε(y) dλ(y)

−
∫ (

∂

∂yj
a(x− y)

)
v(x− y)χε(y) dλ(y).

Let M be the Lipschitz constant for a such that |a(x)− a(x− y)| ≤ M |y|, for
all x, y ∈ Rn. Then

|a(x)Dj(v ∗ χε)(x)− ((aDjv) ∗ χε)(x)|

≤M
∫
|v(x− y)|(χε(y) + |y

∂

∂yj
χε(y)|) dλ(y).

By Minkowski’s inequality (2.3) we obtain

‖aDj(v ∗ χε)− (aDjv) ∗ χε‖2 ≤ M ‖v‖2
∫

(χε(y) + |y
∂

∂yj
χε(y)|) dy
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= M(1 +mj)‖v‖2,

where
mj =

∫
|y ∂

∂yj
χε(y)| dy =

∫
|y ∂

∂yj
χ(y)| dλ(y).

This shows (2.5) when v ∈ C∞0 (Rn). Snce C∞0 (Rn) is dense in L2(Rn), we have
proved (2.5) and the lemma.

Lemma 2.18. Let

L =

n∑
j=1

ajDj + a0

be a first order differential operator with variable coefficients where aj ∈ C1(Rn)
and a0 ∈ C(Rn). If v ∈ L2(Rn) with compact support and Lv = f ∈ L2(Rn)
where Lv is defined in the distribution sense, the convolution vε = v ∗ χε is in
C∞0 (Rn) and vε → v, Lvε → f in L2(Rn) as ε→ 0.

Proof. Since a0v ∈ L2(Rn), we have

lim
ε→0

a0(v ∗ χε) = lim
ε→0

(a0v ∗ χε) = a0v

in L2(Rn). Using Friedrichs’ Lemma 2.17, we have

Lvε − Lv ∗ χε = Lvε − f ∗ χε → 0

in L2(Rn) as ε→ 0. The lemma follows easily since f ∗ χε → f in L2(Rn).

Before we proceed with results about Sobolev spaces we prove an important
inequality for the sgn-function.

Let z ∈ C. Define

sgnz =

{
z/|z| z 6= 0

0 z = 0.

Proposition 2.19. Suppose that f ∈ L1
loc(Rn) with ∇f ∈ L1

loc(Rn). Then

∇|f | ∈ L1
loc(Rn)

and
∇|f |(x) = <[sgn(f(x))∇f(x)] (2.6)

almost everywhere. In particular, we have

|∇|f || ≤ |∇f |, (2.7)

almost everywhere.
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Proof. Let z ∈ C and ε > 0. We define

|z|ε :=
√
|z|2 + ε2 − ε

and observe that
0 ≤ |z|ε ≤ |z| and lim

ε→0
|z|ε = |z|.

If u ∈ C∞(Rn), then |u|ε ∈ C∞(Rn) and as |u|2 = uu we get

∇|u|ε =
<(u∇u)√
|u|2 + ε2

. (2.8)

Now let f be as assumed, take an approximation to the identity (χδ)δ and
define

fδ = f ∗ χδ.

By Lemma 2.14, Lemma 2.15 and Lemma 2.16, we obtain that fδ → f, |fδ| →
|f |, and ∇fδ → ∇f in L1

loc(Rn) as δ → 0.
Let φ ∈ C∞0 (Rn) be a test function. There exists a subsequence δk → 0 such

that fδk(x) → f(x) for almost every x ∈ suppφ. For simplicity we omit the
index k now. Using the dominated convergence theorem and (2.8) we get∫

(∇φ) |f | dλ = lim
ε→0

∫
(∇φ) |f |ε dλ

= lim
ε→0

lim
δ→0

∫
(∇φ) |fδ|ε dλ

= − lim
ε→0

lim
δ→0

∫
φ
<(f δ∇fδ)√
|fδ|2 + ε2

dλ.

Since ∇fδ → ∇f in L1
loc(Rn), we get taking the limit δ → 0 that∫

(∇φ) |f | dλ = − lim
ε→0

∫
φ
<(f∇f)√
|f |2 + ε2

dλ,

and since φ∇f ∈ L1(Rn and f/
√
|f |2 + ε2 → sgnf as ε→ 0 we get the desired

result by applying once more dominated convergence.

In the sequel we still use the methods from above for approximating a function
in a Sobolev space by smooth functions. In a similar way as in the last lemma
one gets

Lemma 2.20. If u ∈ W k(Ω), then uε → u in W k
loc(Ω), as ε → 0, this means

that this happens in each space W k(ω), where ω is an open subset with ω ⊂⊂ Ω.

Using a smooth partition of unity we still show that one can find smooth
functions which approximate in the W k(Ω), and not just in W k

loc(Ω).
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Lemma 2.21. Let Ω ⊂ Rn be a bounded open set and let u ∈ W k(Ω). Then
there exist functions um ∈ C∞(Ω) ∩W k(Ω) such that um → u in W k(Ω).

Note that we do not assert that um ∈ C∞(Ω).

Proof. We write Ω =
⋃∞
j=1 ωj , where

ωj := {x ∈ Ω : dist(x, bΩ) > 1/j} , j = 1, 2, . . . .

Set Uj := ωj+3 \ωj+1, and choose any open set U0 ⊂⊂ Ω so that Ω =
⋃∞
j=0 Uj .

Let (φj)j be a smooth partition of unity subordinate to the open sets (Uj)j :
that is 0 ≤ φj ≤ 1 , φj ∈ C∞0 (Uj) and

∑∞
j=0 φj = 1 on Ω.

According to Proposition 2.6 φju ∈ W k(Ω) and the support of φju is con-
tained in Uj .

Now we use Lemma 2.20: fix ε > 0 and choose εj > 0 so small that uj :=
(φju) ∗ χεj satisfies

‖uj − φju‖Wk(Ω) ≤
ε

2j+1
, j = 0, 1, . . . ,

and uj has support in Vj := ωj+4 \ ωj ⊃ Uj for j = 1, 2, . . . .
Now define v :=

∑∞
j=0 uj . This function belongs to C∞(Ω), since for each

open set ω ⊂⊂ Ω there are at most finitely many nonzero terms in the sum.
Since u =

∑∞
j=0 φju, we have for each ω ⊂⊂ Ω

‖v − u‖Wk(ω) ≤
∞∑
j=0

‖uj − φju‖Wk(Ω)

≤ ε

∞∑
j=0

1

2j+1

= ε.

Finally, take the supremum over all sets ω ⊂⊂ Ω, to conclude that

‖v − u‖Wk(Ω) ≤ ε.

Before we proceed to prove the density result for the ∂-setting we show that
a function u ∈ W k(Ω) can be approximated by functions in C∞(Ω), where all
derivatives extend continuously to Ω. This of course requires some conditions
on the boundary bΩ.

Proposition 2.22. Let Ω be a bounded open set in Rn and assume that bΩ is
C1. Let u ∈W k(Ω). Then there exist functions um ∈ C∞(Ω) such that um → u
in W k(Ω).
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Proof. Let x0 ∈ bΩ. As bΩ is C1, there exists a radius r > 0 and a C1-function
γ : Rn−1 −→ R such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, . . . , xn−1)}.

We set V := Ω ∩ B(x0, r/2) and define the shifted point xε := x + µεen for
x ∈ V and ε > 0. We see that for some fixed, sufficiently large number µ > 0
the ball B(xε, ε) lies in Ω ∩B(x0, r) for all x ∈ V and all small ε > 0.

Now we define uε(x) := u(xε) for x ∈ V ; this is the function u translated a
distance µε in the en-direction. Next we write vε = uε ∗ χε. The idea is that
we have moved up enough so that there is room to mollify within Ω. We have
vε ∈ C∞(V ).

We now claim that vε → u in W k(V ) as ε → 0. Let α be a multiindex with
|α| ≤ k. Then

‖Dαvε −Dαu‖L2(V ) ≤ ‖Dαvε −Dαuε‖L2(V ) + ‖Dαuε −Dαu‖L2(V ).

The second term on the right hand side goes to zero with ε, since, by Lemma
2.14, translation is continuous in the L2-norm. The first term also vanishes as
ε→ 0, by a similar reasoning as in Lemma 2.18.

Let δ > 0. Since bΩ is compact, one can find finitely many points xj ∈ bΩ,
radii rj > 0, corresponding sets Vj = Ω ∩ B(xj , rj/2), and functions vj ∈
C∞(V j) , j = 1, . . . , N such that

bΩ ⊂
N⋃
j=1

B(xj , rj/2) and ‖vj − u‖Wk(Vj) ≤ δ. (2.9)

Now we take an open set V0 ⊂⊂ Ω such that

Ω ⊂
N⋃
j=0

Vj

and select, using Lemma 2.20, a function v0 ∈ C∞(V 0) satisfying

‖v0 − u‖Wk(V0) ≤ δ. (2.10)

Finally we take a smooth partition (φj)j of unity subordinate to the open
sets (Vj)j in Ω for j = 0, . . . , N. Define v :=

∑N
j=0 φjvj . Then v ∈ C∞(Ω). Since

u =
∑N

j=0 φju we see that for each |α| ≤ k :

‖Dαv −Dαu‖L2(Ω) ≤
N∑
j=0

‖Dα(φjvj)−Dα(φju)‖L2(Vj)
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≤
N∑
j=0

‖vj − u‖Wk(Vj)

= C(N + 1)δ,

where we used (2.9) and (2.10).

A set A is precompact (i.e. A is compact) in a Banach space X if and only if
for every positive number ε there is a finite subset Nε of points of X such that
A ⊂

⋃
y∈Nε Bε(y). A set Nε with this property is called a finite ε-net for A.

We recall the Arzela-Ascoli theorem: Let Ω be a bounded domain in Rn. A
subset K of C(Ω) is precompact in C(Ω) if the following two conditions hold:

(i) There exists a constant M such that |φ(x)| ≤ M holds for every φ ∈ K
and x ∈ Ω. (Boundedness)

(ii) For every ε > 0 there exists δ > 0 such that if φ ∈ K, x, y ∈ Ω, and
|x− y| < δ, then |φ(x)− φ(y)| < ε. (Equicontinuity)

Let (χε)ε be an approximation to the identity (see Chapter 5.1) Recall that
u ∗ χε ∈ C∞(Rn), if u ∈ L1

loc(Rn) (Lemma 2.15).
In a similar way one proves the following result: If Ω is a domain in Rn and

u ∈ L2(Ω), then u ∗ χε ∈ L2(Ω) and

‖u ∗ χε‖2 ≤ ‖u‖2 , lim
ε→0+

‖u ∗ χε − u‖2 = 0.

Let Ω ⊆ Rn be a domain and u a complex-valued function on Ω. Let

ũ(x) =

{
u(x) x ∈ Ω

0 x ∈ Rn \Ω

Theorem 2.23. A bounded subset A of L2(Ω) is precompact in L2(Ω) if and
only if for every ε > 0 there exists a number δ > 0 and a subset ω ⊂⊂ Ω such
that for every u ∈ A and h ∈ Rn with |h| < δ both of the following inequalities
hold: ∫

Ω

|ũ(x+ h)− ũ(x)|2 dλ(x) < ε2 ,

∫
Ω\ω
|u(x)|2 dλ(x) < ε2. (2.11)

Proof. Let τhu(x) = u(x+h) denote the translate of u by h. First assume that
A is precompact. Since A has a finite ε/6- net, and since C0(Ω) is dense in
L2(Ω), there exists a finite set S ⊂ C0(Ω), such that for each u ∈ A there exists
φ ∈ S satisfying ‖u − φ‖2 < ε/3. Let ω be the union of the supports of the
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finitely many functions in S. Then ω ⊂⊂ Ω and the second inequality follows
immediately. To prove the first inequality choose a closed ball Br of radius r
centered at the origin and containing ω. Note that (τhφ−φ)(x) = φ(x+h)−φ(x)
is uniformly continuous and vanishes outside Br+1 provided |h| < 1. Hence

lim
|h|→0

∫
Rn
|τhφ(x)− φ(x)|2 dλ(x) = 0,

the convergence being uniform for φ ∈ S. For |h| sufficiently small, we have
‖τhφ−φ‖2 < ε/3. If φ ∈ S satisfies ‖u−φ‖2 < ε/3, then also ‖τhũ−τhφ‖2 < ε/3.
Hence we have for |h| sufficiently small (independent of u ∈ A ),

‖τhũ− ũ‖2 ≤ ‖τhũ− τhφ‖2 + ‖τhφ− φ‖2 + ‖φ− u‖2 < ε

and the first inequality follows.
It is sufficient to prove the converse for the special case Ω = Rn, as it follows

for general Ω from its application in this special case to the set Ã = {ũ : u ∈
A}.

Let ε > 0 be given and choose ω ⊂⊂ Rn such that for all u ∈ A∫
Rn\ω

|u(x)|2 dλ(x) < ε

3
.

For any η > 0 the function u ∗ χη ∈ C∞(Rn) and in particular it belongs to
C(ω). If φ ∈ C0(Rn), then by Hölder’s inequality

|χη ∗ φ(x)− φ(x)|2 =
∣∣∣∣∫

Rn
χη(y)(φ(x− y)− φ(x)) dλ(y)

∣∣∣∣2
≤
∫
Bη

χη(y)|τ−yφ(x)− φ(x)|2 dλ(y)

Hence
‖χη ∗ φ− φ‖2 ≤ sup

h∈Bη
‖τhφ− φ‖2.

If u ∈ L2(Rn), let (φj)j be a sequence in C0(Rn) converging to u in L2

norm. Then (χη ∗ φj)j is a sequence converging to χη ∗ u in L2(Rn). Since also
τhφj → τhu in L2(Rn), we have

‖χη ∗ u− u‖2 ≤ sup
h∈Bη

‖τhu− u‖2.

From the first inequality in our assumption we derive that lim|h|→0 ‖τhu−u‖2 =
0 uniformly for u ∈ A. Hence limη→0 ‖χη ∗ u − u‖2 = 0 uniformly for u ∈ A.
Fix η > 0 so that ∫

ω
|χη ∗ u(x)− u(x)|2 dλ(x) <

ε

6
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for all u ∈ A.
We show that {χη ∗ u : u ∈ A} satisfies the conditions of the Arzela-Ascoli

theorem on ω and hence is precompact in C(ω). We have

|χη ∗ u(x)| ≤

(
sup
y∈Rn

χ2
η(y)

)1/2

‖u‖2,

which is bounded uniformly for x ∈ Rn and u ∈ A since A is bounded in L2(Rn)
and η is fixed. Similarly

|χη ∗ u(x+ h)− χη ∗ u(x)| ≤

(
sup
y∈Rn

χ2
η(y)

)1/2

‖τhu− u‖2

and so lim|h|→0 χη ∗u(x+h) = χη ∗u(x) uniformly for x ∈ Rn and u ∈ A. Thus
{χη∗u : u ∈ A} is precompact in C(ω) and there exists a finite set {ψ1, . . . , ψm}
of functions in C(ω) such that if u ∈ A, then for some j, 1 ≤ j ≤ m, and all
x ∈ ω we have

|ψj(x)− χη ∗ u(x)| <
√

ε

6|ω|
.

This together with the inequality (|a|+ |b|)2 ≤ 2(|a|2 + |b|2) implies that∫
Rn
|u(x)− ψ̃j(x)|2 dλ(x) =

∫
Rn\ω

|u(x)|2 dλ(x) +
∫
ω
|u(x)− ψj(x)|2 dx

<
ε

3
+ 2

∫
ω
(|u(x)− χη ∗ u(x)|2 + |χη ∗ u(x)− ψj(x)|2) dλ(x)

<
ε

3
+ 2

(
ε

6
+

ε

6.|ω|
|ω|
)

= ε.

Hence A has a finite ε-net in L2(Rn) and is therefore precompact in L2(Rn).

Remark 2.24. (a) With the same proof one gets:
A bounded subset A of L2(Ω) is precompact in L2(Ω) if and only if the

following two conditions are satisfied:
(i) for every ε > 0 and for each ω ⊂⊂ Ω there exists a number δ > 0 such

that for every u ∈ A and h ∈ Rn with |h| < δ the following inequality holds:∫
ω
|ũ(x+ h)− ũ(x)|2 dλ(x) < ε2; (2.12)

(ii) for every ε > 0 there exists ω ⊂⊂ Ω such that for every u ∈ A∫
Ω\ω
|u(x)|2 dλ(x) < ε2. (2.13)
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Our next aim is to prove the classical Rellich Lemma, which states that the
embedding of W 1(Ω) into L2(Ω) is compact, provided that Ω is a bounded
domain with a C1-boundary. In the first step we show that functions in the
Sobolev space W 1(Ω) can be continuously extended to functions in W 1(R),
provided that Ω is a bounded domain with a C1-boundary.

Proposition 2.25. Assume that Ω is a bounded domain with a C1-boundary.
Select a bounded open set V such that Ω ⊂⊂ V. Then there exists a bounded
linear operator

E : W 1(Ω) −→W 1(Rn)

such that for each u ∈W 1(Ω) :
(i) Eu = u almost everywhere in Ω,
(ii) Eu has support within V,
(iii) there exists a constant C depending only on Ω and V such that

‖Eu‖W 1(Rn) ≤ C‖u‖W 1(Ω).

Proof. We use the method of a higher-order reflection for the extension. Let
x0 ∈ bΩ and suppose first that bΩ is flat near x0, lying in the plane {xn = 0}.
Then we may assume there exists an open ball B centered in x0 with radius r
such that

B+ := B ∩ {xn ≥ 0} ⊂ Ω , B− := B ∩ {xn ≤ 0} ⊂ Rn \Ω.

Temporarily we suppose that u ∈ C∞(Ω). We define then

ũ(x) =

{
u(x) if x ∈ B+

−3u(x1, . . . , xn−1,−xn) + 4u(x1, . . . , xn−1,−xn
2 ) if x ∈ B−.

This is called a higher-order reflection of u from B+ to B−.
First we show: ũ ∈ C1(B). To check this we write

u− := ũ |B− and u+ := ũ |B+ .

By definition, we have

∂u−

∂xn
(x) = 3

∂u

∂xn
(x1, . . . , xn−1,−xn)− 2

∂u

∂xn
(x1, . . . , xn−1,−

xn
2
)

and so
u−xn |{xn=0}= u+xn |{xn=0} .

Now since u+ = u− on {xn = 0}, we see that also

u−xj |{xn=0}= u+xj |{xn=0}



32 Chapter 2 Distributions and Sobolev spaces

for j = 1, . . . , n− 1. Hence we have

Dαu− |{xn=0}= Dαu+ |{xn=0},

for each |α| ≤ 1, which implies ũ ∈ C1(B).
Using these computations one readily sees that

‖ũ‖W 1(B) ≤ C‖u‖W 1(B+), (2.14)

for some constant C > 0 which does not depend on u.
If bΩ is not flat near x0, we can find a C1-mapping Φ, with inverse Ψ, which

straightens out bΩ near x0. We write y = Φ(x) and x = Ψ(y) and define
u∗(y) := u(Ψ(y)). We choose a small ball B and use the same reasoning as
before to extend u∗ from B+ to a function ũ∗ defined on all of B, such that
ũ∗ ∈ C1(B) and as in 2.14 we get

‖ũ∗‖W 1(B) ≤ C‖u∗‖W 1(B+). (2.15)

Let W := Ψ(B). Then converting back to the x-variables, we obtain an exten-
sion ũ of u to W, with

‖ũ‖W 1(W ) ≤ C‖u‖W 1(Ω). (2.16)

Since bΩ is compact, there exist finitely many points xj0 ∈ bΩ, open sets Wj ,

and extensions ũj of u to Wj for j = 1, . . . , N, such that bΩ ⊂
⋃N
j=1Wj . Take

W0 ⊂⊂ Ω with Ω ⊂
⋃N
j=0Wj , and let (φj)j be an associated partition of unity.

Write

ũ =
N∑
j=0

φj ũj ,

where ũ0 = u. Then, by (2.16), we obtain the estimate

‖ũ‖W 1(Rn) ≤ C‖u‖W 1(Ω) (2.17)

for some constant C > 0 independent of u. In addition we arrange for the
support of ũ to lie within V ⊃⊃ Ω.

We define Eu := ũ and observe that the mapping u 7→ Eu is linear. So far we
have assumed that u ∈ C∞(Ω). Now take u ∈ W 1(Ω), and choose a sequence
um ∈ C∞(Ω) converging to u in W 1(Ω)(see Proposition 2.22). Estimate (2.17)
implies

‖Eum − Eu`‖W 1(Rn) ≤ C‖um − u`‖W 1(Ω).

Hence (Eum)m is a Cauchy sequence and so converges to ũ =: Eu. This exten-
sion does not depend on the particular choice of the approximating sequence
(um)m.
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In a similar way we treat the problem how to assign boundary values along
bΩ to a function u ∈W 1(Ω), assuming that bΩ is C1.

Proposition 2.26. Let Ω be a bounded domain with C1- boundary. Then there
exists a bounded linear operator

T : W 1(Ω) −→ L2(bΩ)

such that

(i) Tu = u |bΩ, if u ∈W 1(Ω) ∩ C(Ω);

(ii) and
‖Tu‖L2(bΩ) ≤ C‖u‖W 1(Ω),

for each u ∈W 1(Ω), with the constant C depending only on Ω.
We call Tu the trace of u on bΩ.

Proof. First we assume that u ∈ C1(Ω) and proceed as in the proof of Propo-
sition 2.25. We suppose that x0 ∈ bΩ and that bΩ is flat near x0, lying in
the plane {xn = 0}. We choose an open ball B as in the previous proof and
let B̃ denote the concentric ball of radius r/2. Select a function χ ∈ C∞0 (B)
with χ ≥ 0 in B and χ = 1 on B̃. Denote Γ the portion of bΩ within B̃. Set
x′ = (x1, . . . , xn−1) ∈ Rn−1 = {xn = 0}. Then we have∫

Γ

|u|2 dλ(x′) ≤
∫
{xn=0}

χ|u|2 dλ(x′) = −
∫
B+

(χ|u|2)xn dλ(x)

= −
∫
B+

(|u|2χxn + |u|(sgnu)uxnχ) dλ(x)

≤ C

∫
B+

(|u|2 + |∇u|2) dλ(x),

where we used Proposition 2.19 and the inequality ab ≤ a2/2+b2/2, for a, b ≥ 0.
After this we straighten out the boundary near x0 to get the estimate∫

Γ

|u|2 dλ(x′) ≤ C
∫

Ω

(|u|2 + |∇u|2) dλ(x),

where Γ is some open subset of bΩ containing x0.
Since bΩ is compact, there exist finitely many points x0,k ∈ bΩ and open

subsets Γk ⊂ bΩ (k = 1, . . . , N) such that

bΩ =
N⋃
k=1

Γk
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and
‖u‖L2(Γk) ≤ C‖u‖W 1(Ω),

for k = 1, . . . , N. Hence, if we write

Tu := u |bΩ,

we get
‖Tu‖L2(bΩ) ≤ C‖u‖W 1(Ω), (2.18)

for some constant C, which does not depend on u.
Inequality (2.18) holds for u ∈ C1(Ω). Assume now that u ∈W 1(Ω). Then, by

Proposition 2.22 there exist functions um ∈ C∞(Ω) converging to u in W 1(Ω).
By (2.18) we have

‖Tum − Tu`‖L2(bΩ) ≤ C‖um − u`‖W 1(Ω), (2.19)

hence (Tum)m is a Cauchy sequence in L2(bΩ). Set

Tu := lim
m→∞

Tum,

where the limit is taken in L2(bΩ). By (2.19), this definition does not depend
on the particular choice of the smooth functions approximating u.

If u ∈ W 1(Ω) ∩ C(Ω), one can use the fact that the functions um ∈ C∞(Ω)
constructed in the proof of Proposition 2.22 converge uniformly to u on Ω. This
implies Tu = u |bΩ .

Remark 2.27. One can actually show, that under the same conditions as
before, u ∈ H1

0 (Ω), if and only if Tu = 0 on bΩ.

Finally we now investigate the embedding of W 1(Ω) into L2(Ω) in more
detail.

Lemma 2.28. (Rellich-Kondrachov) Let Ω be a bounded domain with a C1
boundary. Then the embedding j : W 1(Ω) −→ L2(Ω) is compact.

Proof. We have to show that the unit ball in W 1(Ω) is precompact in L2(Ω).
For this purpose we apply Proposition 2.25 and consider the extension of

elements of the unit ball in W 1(Ω) to Rn. Let F denote the set of all these
extensions. Then, by Proposition 2.25 (iii), F is a bounded set in L2(Rn). By
Lemma 2.15 we know that for each ε > 0 there exists a number N > 0 such
that

‖χ1/k ∗ f − f‖L2(Rn) ≤ ε, (2.20)

for each f ∈ F and for each k > N.



Chapter 2 Distributions and Sobolev spaces 35

By Hölder’s inequality we have

‖χ1/k ∗ f‖L∞(Rn) ≤ Ck‖f‖L2(Rn), (2.21)

for all f ∈ F , where Ck = ‖χ1/k‖L2(Rn).
Hence we can now verify the second condition in Theorem 2.23: given ε > 0

there exists ω ⊂⊂ Ω such that

‖f‖L2(Ω\ω) < ε,

for each f in the unit ball of W 1(Ω) : indeed, we consider the extensions to Rn
and write

‖f‖L2(Ω\ω) ≤ ‖f − χ1/k ∗ f‖L2(Rn + ‖χ1/k ∗ f‖L2(Ω\ω),

we use Proposition 2.25 (iii) and (2.20), and, in view of (2.21) we have to choose
ω such that |Ω \ ω| is small enough.

We are left to verify the first condition of Theorem 2.23: let ω ⊂⊂ Ω and ε > 0
and consider first a function u ∈ C∞(Ω). Let h ∈ Rn such that |h| < dist(ω, bΩ)
and set

v(t) := u(x+ th) , t ∈ [0, 1].

Then v′(t) = h · ∇u(x+ th) and

u(x+ h)− u(x) = v(1)− v(0) =
∫ 1

0
v′(t) dt =

∫ 1

0
h · ∇u(x+ th) dt. (2.22)

Hence we obtain

|u(x+ h)− u(x)|2 ≤ |h|2
∫ 1

0
|∇u(x+ th)|2 dt

and ∫
ω
|u(x+ h)− u(x)|2 dλ(x) ≤ |h|2

∫
ω

∫ 1

0
|∇u(x+ th)|2 dt dλ(x)

= |h|2
∫ 1

0

∫
ω
|∇u(x+ th)|2 dλ(x) dt

= |h|2
∫ 1

0

∫
ω+th

|∇u(x)|2 dλ(x) dt.

If |h| < dist(ω, bΩ), there exists ω′ ⊂⊂ Ω such that ω + th ⊂ ω′ for each
t ∈ [0, 1]. Therefore we get the estimate

‖τhu− u‖2L2(ω) ≤ |h|
2

∫
ω′
|∇u(x)|2 dλ(x). (2.23)



36 Chapter 2 Distributions and Sobolev spaces

If u belongs to the unit ball inW 1(Ω), we approximate u by functions in C∞(Ω)
(Proposition 2.22), apply (2.23) and pass to the limit getting

‖τhu− u‖2L2(ω) ≤ |h|
2

∫
ω′
|∇u(x)|2 dλ(x) ≤ |h|2,

which shows that the first condition of Theorem 2.23 holds.

Remark 2.29. If Ω ⊂ Rn , n ≥ 2, is a bounded domain with a C1 boundary,
it even follows that

W 1(Ω) ⊂ Lq(Ω) , q ∈ [1, 2n/(n− 2))

and that the imbedding is also compact (see for instance [2]).

In order to apply Sobolev space theory, we are forced to study difference
quotient approximations to weak derivatives.

Definition 2.30. Let Ω ⊂ Rn be a bounded domain and u ∈ L2
loc(Ω) and

suppose that V ⊂⊂ Ω.
The jth-difference quotient of size h is

Dh
j u(x) =

u(x+ hej)− u(x)
h

,

for j = 1, . . . , n where x ∈ V and h ∈ R , 0 < |h| < dist(V, bΩ).
Further we define

Dhu := (Dh
1u, . . . ,D

h
nu).

Proposition 2.31. (i) Let u ∈W 1(Ω). Then for each V ⊂⊂ Ω we have

‖Dhu‖L2(V ) ≤ C‖∇u‖L2(Ω) (2.24)

for some constant C > 0 and all h with 0 < |h| < 1
2 dist(V, bΩ).

(ii) Assume that u ∈ L2(V ), and that there exists a constant C > 0 such that

‖Dhu‖L2(V ) ≤ C (2.25)

for all h with 0 < |h| < 1
2 dist(V, bΩ). Then u ∈W 1(V ) and

‖∇u‖L2(V ) ≤ C. (2.26)
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Proof. Suppose first that u ∈ C1(Ω). Then for each x ∈ V, j = 1, . . . , n and
0 < |h| < 1

2 dist(V, bΩ), we have

u(x+ hej)− u(x) = h

∫ 1

0
uxj (x+ thej) dt,

and hence

|u(x+ hej)− u(x)| ≤ |h|
∫ 1

0
|∇u(x+ thej)| dt.

So we obtain∫
V
|Dhu|2 dλ ≤ C

n∑
j=1

∫
V

∫ 1

0
|∇u(x+ thej)|2 dt dλ(x)

= C

n∑
j=1

∫ 1

0

∫
V
|∇u(x+ thej)|2 dλ(x) dt.

Thus ∫
V
|Dhu|2 dλ ≤ C

∫
Ω

|∇u|2 dλ(x).

This estimate this true for a smooth u, and by Lemma 2.21 it is valid for
arbitrary u ∈W 1(Ω), hence we have shown (i).

Now suppose that (2.25) holds. We choose j = 1, . . . , n and φ ∈ C∞0 (V ) and
note that for small enough h we have∫
V
u(x)

(
φ(x+ hej)− φ(x)

h

)
dλ(x) = −

∫
V

(
u(x)− u(x− hej)

h

)
φ(x) dλ(x),

this means ∫
V
uDh

j φdλ = −
∫
V
(D−hj u)φdλ. (2.27)

Hence (2.25) implies that

sup
h
‖D−hj u‖L2(V ) <∞.

Using the fact that for each bounded sequence in a Hilbert space there exists
a weakly convergent subsequence, we conclude that there exists a function
vj ∈ L2(V ) and a subsequence hk → 0 such that D−hkj u→ vj weakly in L2(V ).
Then we have ∫

V
uφxj dλ =

∫
Ω

uφxj dλ = lim
hk→0

∫
Ω

uDhk
j φdλ

= − lim
hk→0

∫
V
D−hkj uφ dλ
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= −
∫
V
vjφdλ = −

∫
Ω

vjφdλ.

Hence vj = uxj in the sense of distributions, and so ∇u ∈ L2(V ). As u ∈ L2(V ),
we get u ∈W 1(V ).

We prove a basic result concerning elliptic partial differential equations of
order 2 with variable coefficients and the smoothness of their weak solutions.

Definition 2.32. Let Ω ⊂ Rn be a bounded open set, and ajk ∈ C1(Ω), bj , c ∈
L∞(Ω) for j, k = 1, . . . , n. Define the partial differential operator L by

Lu = −
n∑

j,k=1

(ajk(x)uxj )xk +

n∑
j=1

bj(x)uxj + c(x)u, (2.28)

with ajk = akj for j, k = 1, . . . , n. We
We say that the partial differential operator L is elliptic if there exists a

constant C > 0 such that
n∑

j,k=1

ajk(x)tjtk ≥ C|t|2 (2.29)

for almost every x ∈ Ω and all t ∈ Rn.

Ellipticity means that the symmetric (n× n) matrix A(x) = (ajk(x))
n
j,k=1 is

positive definite, with smallest eigenvalue greater than or equal to C.
If ajk = δjk, bj = 0, c = 0, then L = −4.

Definition 2.33. Let f ∈ L2(Ω). We say that a function u ∈ H1(Ω) is a weak
solution to the elliptic partial differential equation

Lu = f in Ω,

if for the bilinear form

a(u, v) =

∫
Ω

(
n∑

j,k=1

ajkuxjvxk +
n∑
j=1

bjuxjv + cuv) dλ

we have
a(u, v) = (f, v)

for all v ∈ H1
0 (Ω), where (., .) denotes the inner product in L2(Ω).

In the next proposition we show what is called the interior H2-regularity of
the operator L.
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Proposition 2.34. Let L be as in the above definition and f ∈ L2(Ω). Suppose
that u ∈ H1(Ω) is a weak solution of Lu = f. Then u ∈ H2

loc(Ω); and for each
open V ⊂⊂ Ω we have

‖u‖H2(V ) ≤ C̃(‖f‖L2(Ω) + ‖u‖H1(Ω)), (2.30)

where C̃ > 0 is a constant only depending on V,Ω, and the coefficients of L.

Proof. Choose an open set W such that V ⊂⊂W ⊂⊂ Ω. Next select a smooth
cutoff function ψ with 0 ≤ ψ ≤ 1, ψ = 1 on V, and ψ = 0 on Rn \W.

Since u is a weak solution of Lu = f, we have a(u, v) = (f, v) for all v ∈
H1

0 (Ω) and hence
n∑

j,k=1

∫
Ω

ajkuxjvxk dλ =

∫
Ω

f̃v dλ, (2.31)

where

f̃ := f −
n∑
j=1

bjuxj − cu. (2.32)

Let ` ∈ {1, . . . , n} and h ∈ R such that |h| > 0 is small. We substitute

v = −D−h` (ψ2Dh
` u) (2.33)

into (2.31), where Dh
` u denotes the difference quotient (Definition 2.30). For

the left hand side of (2.31) we get

−
n∑

j,k=1

∫
Ω

ajkuxj [D
−h
` (ψ2Dh

` u)]xk dλ =
n∑

j,k=1

∫
Ω

Dh
` (ajkuxj )(ψ

2Dh
` u)xk dλ

=
n∑

j,k=1

∫
Ω

[ahjk(D
h
` uxj )(ψ

2Dh
` u)xk + (Dh

` ajk)uxj (ψ
2Dh

` u)xk ] dλ,

where we used the formulas∫
Ω

vD−h` w dλ = −
∫

Ω

wDh
` v dλ

and
Dh
` (vw) = vhDh

`w + wDh
` v,

for vh(x) := v(x + he`). We continue the computation of the left hand side of
(2.31) and obtain

n∑
j,k=1

∫
Ω

ahjk(D
h
` uxj )(D

h
` uxk)ψ

2 dλ+
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n∑
j,k=1

∫
Ω

[ahjk(D
h
` uxj )(D

h
` u)2ψψxk+

(Dh
` ajk)uxj (D

h
` uxk)ψ

2 + (Dh
` ajk)uxj (D

h
` u)2ψψxk ] dλ =

T1 + T2.

The first term can estimated from below using ellipticity (2.29):

T1 ≥ C
∫

Ω

ψ2|Dh
`∇u|2 dλ. (2.34)

For the second term T2 we have by the assumptions on ajk, bj and c that there
exists a constant C ′ > 0 such that

|T2| ≤ C ′
∫

Ω

[ψ|Dh
`∇u| |Dh

` u|+ ψ|Dh
`∇u| |∇u|+ ψ|Dh

` u| |∇u|] dλ.

Take into account that ψ = 0 on Rn \ W and use the small constant–large
constant trick to get

|T2| ≤ ε
∫

Ω

ψ2|Dh
`∇u|2 dλ+

C ′

ε

∫
W
[|Dh

` u|2 + |∇u|2] dλ,

now choose ε = C/2 and the estimate (2.24) to obtain

|T2| ≤
C

2

∫
Ω

ψ2|Dh
`∇u|2 dλ+ C ′′

∫
Ω

|∇u|2 dλ.

Hence, by (2.34), we see that the left hand side of (2.31) can be estimated from
below by

C

2

∫
Ω

ψ2|Dh
`∇u|2 dλ− C ′′

∫
Ω

|∇u|2 dλ. (2.35)

The absolute value of the right hand side of (2.31) is certainly less than

C ′′
∫

Ω

(|f |+ |∇u|+ |u|)|v| dλ. (2.36)

Using Proposition 2.31 (i) we derive that∫
Ω

|v|2 dλ ≤ C ′′
∫

Ω

|∇(ψ2Dh
` u)|2 dλ

≤ C ′′
∫
W
(|Dh

` u|2 + ψ2|Dh
`∇u|2) dλ

≤ C ′′
∫

Ω

(|∇u|2 + ψ2|Dh
`∇u|2) dλ.
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Again by the small constant–large constant trick and by (2.36) we obtain now
that the absolute value of the right hand side of (2.31) can be estimated form
above by

ε

∫
Ω

ψ2|Dh
`∇u|2) dλ+

C ′

ε

∫
Ω

(|f |2 + |u|2 + |∇u|2) dλ.

Let ε = C/4. Then the absolute value of the right hand side of (2.31) can be
estimated form above by

C

4

∫
Ω

ψ2|Dh
`∇u|2) dλ+ C ′′′

∫
Ω

(|f |2 + |u|2 + |∇u|2) dλ. (2.37)

Finally, combine (2.31), (2.35) and (2.37) to see that∫
V
|Dh

`∇u|2 dλ ≤
∫

Ω

ψ2|Dh
`∇u|2 dλ ≤ C̃

∫
Ω

(|f |2 + |u|2 + |∇u|2) dλ,

for some constant C̃ > 0, for ` = 1, . . . , n and all sufficiently small |h| 6= 0.
Using Proposition 2.31 (ii) we derive that ∇u ∈ H1

loc(Ω), and hence that
u ∈ H2

loc(Ω), with the estimate

‖u‖H2(V ) ≤ C̃(‖f‖L2(Ω) + ‖u‖H1(Ω)).

Remark 2.35. (a) It is not difficult to show that even

‖u‖H2(V ) ≤ C̃(‖f‖L2(Ω) + ‖u‖L2(Ω))

holds in Proposition 2.34.
(b) The result that u ∈ H2

loc(Ω) implies that Lu = f almost everywhere in
Ω. To see this, note that for each v ∈ C∞0 (Ω), we have

a(u, v) = (f, v),

and since u ∈ H2
loc(Ω), we can integrate by parts and obtain

a(u, v) = (Lu, v).

Thus (Lu − f, v) = 0 for all v ∈ C∞0 (Ω), and so Lu = f almost everywhere in
Ω.

In the sequel we will use the dual space of H1
0 (Ω), which is denoted by

H−1(Ω).
We will describe H−10 (Ω) as a certain space of distributions, which will be

helpful later on. Recall that the dual-norm is given by

‖f‖H−1
0 (Ω) = sup{|f(u)| : u ∈ H1

0 (Ω) , ‖u‖H1
0 (Ω) ≤ 1}.
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Proposition 2.36. Let f ∈ H−10 (Ω). Then there exist functions f0, f1, . . . , fn
in L2(Ω) such that

f(v) =

∫
Ω

(f0v +
n∑
j=1

fj vxj ) dλ , (2.38)

‖f‖H−1
0 (Ω) = inf


∫

Ω

n∑
j=0

|f2j | dλ

1/2

: f satisfies (2.38)

 . (2.39)

We write

f = f0 −
n∑
j=1

∂fj
∂xj

,

whenever (2.38) holds.

Proof. For u, v ∈ H1
0 (Ω), the inner product is given by

(u, v) =

∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ.

If f ∈ H−10 (Ω), the Riesz representation theorem implies that there exists a
unique function u ∈ H1

0 (Ω), such that

f(v) = (u, v) , ∀v ∈ H1
0 (Ω),

hence
f(v) =

∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ, (2.40)

which gives (2.38), where f0 = u and fj = uxj , j = 1, . . . , n. By Cauchy-
Schwarz we obtain

‖f‖H−1
0 (Ω) ≤

∫
Ω

n∑
j=0

|fj |2 dλ

1/2

,

and setting v = u/‖u‖H1
0 (Ω) in (2.40) we deduce

‖f‖H−1
0 (Ω) =

∫
Ω

n∑
j=0

|fj |2 dλ

1/2

,

which gives (2.39).
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Now we consider the boundary-value problem{
Lu = f0 −

∑n
j=1

∂fj
∂xj

in Ω

u = 0 on bΩ,
(2.41)

where L is defined by (2.28) and fj ∈ L2(Ω), for j = 0, 1, . . . , n.
By Proposition 2.36 we see that the righthand term

f = f0 −
n∑
j=1

∂fj
∂xj

belongs to H−10 (Ω).

Definition 2.37. A function u ∈ H1
0 (Ω) is a weak solution of problem (2.41)

if
a(u, v) = 〈f, v〉

for all v ∈ H1
0 (Ω), where the bilinear form a(u, v) is given in Definition 2.33

and where

〈f, v〉 =
∫

Ω

[f0v +
n∑
j=1

fjvxj ] dλ

and where 〈., .〉 is the pairing of H−10 (Ω) and H1
0 (Ω).

In the following we will prove estimates for elliptic partial differential opera-
tors which will enable us to apply the general functional analysis results from
Chapter 1 to show existence and uniqueness of weak solutions.

Proposition 2.38. [Energy estimates] Let Ω ⊂ Rn be a bounded domain with
C1-boundary. Let L be an elliptic partial differential operator of second order
and a(u, v) the corresponding bilinear form (see Definition 2.33). There exists
constants α, β > 0 and γ ≥ 0 such that

|a(u, v)| ≤ α‖u‖H1
0 (Ω)‖v‖H1

0 (Ω), (2.42)

and
β‖u‖2H1

0 (Ω) ≤ a(u, u) + γ‖u‖2L2(Ω) (2.43)

for all u, v ∈ H1
0 (Ω).

Proof. It is easily seen that

|a(u, v)| ≤
n∑

j,k=1

‖ajk‖L∞
∫

Ω

|∇u| |∇v| dλ
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+

n∑
j=1

‖bj‖L∞
∫

Ω

|∇u| |v| dλ+ ‖c‖L∞
∫

Ω

|u| |v| dλ

≤ α‖u‖H1
0 (Ω)‖v‖H1

0 (Ω),

for some appropriate constant α.
Ellipticity of L implies that

C

∫
Ω

|∇u|2 dλ ≤
∫

Ω

n∑
j,k=1

ajkuxjuxk dλ

= a(u, u)−
∫

Ω

(

n∑
j=1

bjuxju+ cu2) dλ

≤ a(u, u) +
n∑
j=1

‖bj‖L∞
∫

Ω

|∇u| |u| dλ+ ‖c‖L∞
∫

Ω

|u|2) dλ.

The small constant - large constant trick gives∫
Ω

|∇u| |u| dλ ≤ ε
∫

Ω

|∇u|2 dλ+
1

4ε

∫
Ω

|u|2) dλ,

taking ε > 0 so small that

ε

n∑
j=1

‖bj‖L∞ <
C

2
,

we obtain
C

2

∫
Ω

|∇u|2 dλ ≤ a(u, u) + C ′
∫

Ω

|u|2) dλ.

Now add C
2

∫
Ω
|u|2 dλ on both sides. This gives the desired result

β‖u‖2H1
0 (Ω) ≤ a(u, u) + γ‖u‖2L2(Ω).

Remark 2.39. (i) If γ > 0, we cannot directly use Proposition 1.24. The
following existence result must confront this possibility.

(ii) For complex valued functions the corresponding sesquilinear forms are

a(u, v) =

∫
Ω

(
n∑

j,k=1

ajkuxjvxk +
n∑
j=1

bjuxjv + cuv) dλ,

ellipticity means
n∑

j,k=1

ajk(x)tjtk ≥ C|t|2,



Chapter 2 Distributions and Sobolev spaces 45

for each t ∈ Cn.
The corresponding energy estimates now reads as

β‖u‖2H1
0 (Ω) ≤ <a(u, u) + γ‖u‖2L2(Ω)

for all u, v ∈ H1
0 (Ω). This inequality is also sometimes called Gåriding’s in-

equality and the corresponding bilinear form is called coercive.

Proposition 2.40. Let Ω and L as before. There is a number γ ≥ 0 such that
for each µ ≥ γ and for each function f ∈ L2(Ω), there is a unique weak solution
u ∈ H1

0 (Ω) of the boundary-value problem{
Lu+ µu = f in Ω

u = 0 on bΩ.
(2.44)

Proof. Let µ ≥ γ, and define the bilinear form

aµ(u, v) = a(u, v) + µ(u, v), u, v ∈ H1
0 (Ω),

which corresponds to the operator Lµu := Lu+ µu.
Now fix f ∈ L2(Ω) and set 〈f, v〉 := (f, v)L2(Ω). This is a bounded linear

functional on L2(Ω), and thus on H1
0 (Ω).

Then we can apply Proposition 1.24: we take V = H1
0 (Ω). By Proposition

2.38, the bilinear form aµ satisfies all assumptions of Proposition 1.24. Hence
there exists a uniquely determined function u ∈ H1

0 (Ω) satisfying

aµ(u, v) = 〈f, v〉.

Actually the operator A in Proposition 1.24 coincides with L + µI, therefore
this operator is an isomorphism between H1

0 (Ω) and H−10 (Ω).

Example 2.41. If Lu = −4u, so that

a(u, v) =

∫
Ω

∇u · ∇v dλ

one can take γ = 0. A similar assertion holds for the general operator

Lu = −
n∑

j,k=1

(ajkuxj )xk + cu,

provided c ≥ 0 in Ω.

To get more detailed information regarding the solvability of second order
elliptic differential operators we will now use the Rellich-Kondrachov Lemma
and the Fredholm alternative for compact operators.
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Definition 2.42. The formal adjoint L∗ of L is given by

L∗v = −
n∑

j,k=1

(ajkvxk)xj −
n∑
j=1

bjvxj + (c−
n∑
j=1

∂bj
∂xj

)v,

for bj ∈ C1(Ω), j = 1, . . . , n.
The adjoint bilinear form a∗ is defined by

a∗(v, u) = a(u, v),

for all u, v ∈ H1
0 (Ω).

We say that v ∈ H1
0 (Ω) is a weak solution of the adjoint problem{

L∗v = f in Ω

v = 0 on bΩ,
(2.45)

provided
a∗(v, u) = (f, u)

for all u ∈ H1
0 (Ω).

Proposition 2.43. (i) Precisely one of the following statements holds:
(a) for each f ∈ L2(Ω) there exists a unique weak solution u of the boundary-

value problem {
Lu = f in Ω

u = 0 on bΩ
(2.46)

or else
(b) there exists a weak solution u≡/ 0 of the homogeneous problem{

Lu = 0 in Ω

u = 0 on bΩ.
(2.47)

(ii) Furthermore, if (b) holds, the dimension of the subspace N ⊂ H1
0 (Ω) of

weak solutions of (2.47) is finite and equals to the dimension of the subspace
N∗ ⊂ H1

0 (Ω) of weak solutions of{
L∗v = 0 in Ω

v = 0 on bΩ.
(2.48)

(iii) Finally, the boundary-value problem (2.46) has a weak solution if and
only if (f, v) = 0 for all v ∈ N∗.
The dichotomy (a), (b) is the Fredholm alternative.
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Proof. Choose µ = γ (here we suppose that γ > 0) and consider the bilinear
form aγ(u, v) and the corresponding operator Lγ = L+γI. By Proposition 2.40,
we have that for each g ∈ L2(Ω) there exists a uniquely determined u ∈ H1

0 (Ω)
with

aγ(u, v) = (g, v), ∀v ∈ H1
0 (Ω). (2.49)

We already know that Lγ is an isomorphism and we write

u = L−1γ g (2.50)

whenever (2.49) holds.
Now we see that u ∈ H1

0 (Ω) is a weak solution of (2.46) if and only if

aγ(u, v) = (γu+ f, v), ∀v ∈ H1
0 (Ω); (2.51)

this means if and only if
u = L−1γ (γu+ f). (2.52)

We rewrite this as u−Ku = h,

Ku := γL−1γ u and h := L−1γ f. (2.53)

Next we claim that K : L2(Ω) −→ L2(Ω) is a compact operator. By the energy
estimates (2.43) we have

β‖u‖2H1
0 (Ω) ≤ aγ(u, u) = (g, u) ≤ ‖g‖L2(Ω) ‖u‖H1

0 (Ω),

which implies that for g ∈ L2(Ω) we have

‖Kg‖H1
0 (Ω) ≤ C ′‖g‖L2(Ω),

where C ′ > 0 is an appropriate constant.
Therefore K : L2(Ω) −→ H1

0 (Ω) is a continuous operator. As, by the Rellich-
Kondrachov Lemma 2.28, the imbeddingH1

0 (Ω) ↪→ L2(Ω) is compact, we derive
that K as operator from L2(Ω) to L2(Ω) is compact.

Recall Fredholm’s alternative: Let A : H −→ H be a compact linear operator
on the Hilbert space H. Then

(1) ker(I −A) is finite dimensional,
(2) im(I −A) is closed,
(3) im(I −A) = ker(I −A∗)⊥,
(4) ker(I −A) = {0} if and only if im(I −A) = H,
(5) dimker(I −A) = dimker(I −A∗).
In particular we have: either (*) for each f ∈ H, the equation u − Au = f

has a unique solution or else (**) the homogeneous equation u − Au = 0 has
solutions u 6= 0. In the second case, the space of solutions of the homogeneous
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problem is finite- dimensional, and the nonhomogeneous equation u− Au = f
has a solution if and only if f ∈ ker(I −A∗)⊥.

Now we see that if (*) holds, then there exists a unique weak solution to
(2.46). On the other hand, if (**) is valid, then necessarily γ 6= 0 and the
dimension of the space N is finite and equals to the dimension of the space N∗

of solutions of
v −K∗v = 0. (2.54)

So, u−Ku = 0 has nonzero solutions in L2(Ω) if and only if u is a weak solution
to (2.47) and (2.54) holds if and only if v is a weak solution of (2.48).

Finally, observe that u−Ku = h has a unique solution if and only if (h, v) = 0
for all v solving (2.54), and we get from (2.53) and (2.54)

(h, v) =
1

γ
(Kf, v) =

1

γ
(f,K∗v) =

1

γ
(f, v).

Consequently, the boundary-value problem (2.46) has a solution if and only if
(f, v) = 0 for all weak solutions v of (2.48).

Remark 2.44. (Higher boundary regularity) Let m ∈ N, and assume that
ajk, bj , c ∈ Cm+1(Ω), j, k = 1, . . . , n and f ∈ Hm(Ω). Suppose that u ∈ H1

0 (Ω)
is a weak solution of the boundary-value problem (2.46). Assume finally that
bΩ is Cm+2. Then u ∈ Hm+2(Ω) and

‖u‖Hm+2(Ω) ≤ C ′(‖f‖Hm(Ω) + ‖u‖L2(Ω)).

(see [2, 3])

Finally we arrive at a situation which leads to the next chapter.

Proposition 2.45. Let Ω be a bounded domain in Rn with C1-boundary. Let
L be an elliptic second order partial differential operator.
(i) There exists an at most countable set Σ ⊂ R such that the boundary-value

problem {
Lu = µu+ f in Ω

u = 0 on bΩ
(2.55)

has a unique weak solution for each f ∈ L2(Ω) if and only if µ /∈ Σ, and the
solution operators are compact as operators from L2(Ω) to L2(Ω).
(ii) If Σ is infinite, then Σ = (µk)

∞
k=1, is a nondecreasing sequence with

µk → +∞.

Definition 2.46. We call Σ the (real) spectrum of the operator L.
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Note that in particular the boundary-value problem{
Lu = µu in Ω

u = 0 on bΩ

has a nontrivial solution w≡/ 0 if and only if µ ∈ Σ, in which case µ is called an
eigenvalue of L, and w a corresponding eigenfunction. The partial differential
equation Lu = µu for L = −4 is called Helmholtz’s equation.

Proof. Let γ be the constant from Proposition 2.38 and assume µ > −γ. As-
sume also with no loss of generality that γ > 0.

According to Fredholm alternative, the boundary-value problem (2.55) has
a unique weak solution for each f ∈ L2(Ω) if and only if u ≡ 0 is the only
solution of the homogeneous problem{

Lu = µu in Ω

u = 0 on bΩ.

This in turn is true if and only if u ≡ 0 is the only weak solution of{
Lu+ γu = (γ + µ)u in Ω

u = 0 on bΩ.
(2.56)

Now (2.56) holds exactly when

u = L−1γ (γ + µ)u =
γ + µ

γ
Ku, (2.57)

where, as in the proof of Proposition 2.43, we have set Ku = γL−1γ u. Recall
also that K : L2(Ω) −→ L2(Ω) is a compact operator.

If u ≡ 0 is the only solution of (2.57), we see that γ
γ+µ is not an eigenvalue

of K, and this is true if and only if (2.55) has a unique weak solution for each
f ∈ L2(Ω).

The collection of all eigenvalues of the compact operator K comprises either
a finite set or else the values of a sequence converging to 0. In the second case
we see, according to µ > −γ and (2.57), that (2.55) has a unique weak solution
for all f ∈ L2(Ω), except for a sequence µk → +∞.

Before we concentrate on spectral analysis, we describe the variational for-
mulation of elliptic boundary value problems. For this purpose we first give a
different interpretation of Proposition 1.24. Let H be a Hilbert space over R.
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Lemma 2.47. Let E be a non-empty, convex, closed subset of the Hilbert space
H, i.e. for x, y ∈ E one has tx + (1 − t)y ∈ E, for each t ∈ [0, 1]. Then E
contains a uniquely determined element of minimal norm. For each f ∈ H
there exists a uniquely determined element u ∈ E (we write u = Pf) such that

‖f − u‖ = min
v∈E
‖f − v‖ = dist(f,E). (2.58)

Moreover, u is characterized by the property

u ∈ E and (f − u, v − u) ≤ 0 , ∀v ∈ E. (2.59)

Proof. The first statement is standard Hilbert space theory. The second state-
ment follows from the first by taking f +E instead of E.

Suppose that (2.59) holds foru ∈ E. Then for each w ∈ E and for each
t ∈ [0, 1] we have

v = (1− t)u+ tw ∈ E,

hence
‖f − u‖ ≤ ‖f − [(1− t)u+ tw]‖ = ‖(f − u)− t(w − u)‖.

Therefore

‖f − u‖2 ≤ ‖f − u‖2 − 2t(f − u,w − u) + t2‖w − u‖2,

which implies that 2(f − u,w − u) ≤ t‖w − u‖2, for each t ∈ (0, 1]. Now let
t→ 0. Then we get (2.59).

Conversely, assume that u satisfies (2.59). Then we have

‖u− f‖2 − ‖v − f‖2 = 2(f − u, v − u)− ‖u− v‖2 ≤ 0 ,∀v ∈ E,

which implies (2.58).

Remark 2.48. If E is a closed linear subspace of H, the element u from (2.58)
can be expressed by the orthogonal projection P : H −→ E in the form Pf = u,
and Pf is characterized by

(f − Pf, v) = 0 ∀v ∈ E. (2.60)

By (2.59) we have (f − Pf, v − Pf) ≤ 0, ∀v ∈ E and thus (f − Pf, tv −
Pf) ≤ 0 ,∀v ∈ E , t ∈ R. This implies (2.60). Conversely (2.60) implies
(f − Pf, v − Pf) = 0, as (f − Pf, Pf) = 0, which means that (2.59) holds.

Lemma 2.49. Let a : H ×H −→ R be a continuous H-elliptic bilinear form.
Let E be a nonempty closed and convex subset of H. Then, given any ϕ ∈ H ′,
there exists a unique element u ∈ E such that

a(u, v − u) ≥ ϕ(v − u) ∀v ∈ E. (2.61)
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Moreover, if a is symmetric, then u is characterized by the property

u ∈ E and
1

2
a(u, u)− ϕ(u) = min

v∈E

[
1

2
a(v, v)− ϕ(v)

]
. (2.62)

Proof. By Proposition 1.24 there exists a unique element Au ∈ H such that

a(u, v) = (Au, v) ∀v ∈ H.

So we have to find an element u ∈ E such that

(Au, v − u) ≥ (f, v − u) ,∀v ∈ E,

where f ∈ H represents ϕ : ϕ(v) = (f, v).
Let ρ > 0 be a constant to be determined later. We see now that (2.61) is

equivalent to
(ρf − ρAu+ u− u, v − u) ≤ 0 ,∀v ∈ E. (2.63)

Next we claim that

‖Pf1 − Pf2‖ ≤ ‖f1 − f2‖, ∀f1, f2 ∈ H.

Let uj = Pfj , j = 1, 2. Then, by Lemma 2.47,

(f1 − u1, v − u1) ≤ 0 and (f2 − u2, v − u2) ≤ 0 , ∀v ∈ E.

Choose v = u2 in the first and v = u1 in the second inequality and add them.
The result is

‖u1 − u2‖2 ≤ (f1 − f2, u1 − u2),

which proves the claim.
Now we set Sv = P (ρf − ρAv + v), for v ∈ E. We claim that if ρ > 0 is

properly chosen then S is a strict contraction. We have

‖Sv1 − Sv2‖ ≤ ‖(v1 − v2)− ρ(Av1 −Av2)‖,

hence

‖Sv1 − Sv2‖2 ≤ ‖v1 − v2‖2 − 2ρ(Av1 −Av2, v1 − v2) + ρ2‖Av1 −Av2‖2

≤ ‖v1 − v2‖2 (1− 2ρα+ ρ2C2),

where α and C are as in Definition 1.23. Now choose 0 < ρ < 2α/C2, then

1− 2ρα+ ρ2C2 < 1,

and the mapping S has a unique fixed point (Banach fixed point Theorem). So
there exists u ∈ E such that u = Su = P (ρf − ρAu + u), Now use (2.63) and
Lemma 2.47 to get (2.61).
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If a is also symmetric, then a(u, v) defines a new inner product on H with
corresponding norm a(u, u)1/2 which is equivalent to the original norm ‖u‖. It
follows that H is also a Hilbert space for this new inner product. So, by the
Riesz representation theorem, there exists g ∈ H such that

a(g, v) = ϕ(v)

and (2.61) reads as
a(g − u, v − u) ≤ 0 ,∀v ∈ E.

We know that u is simply the projection onto E of g for the new inner product
and, by Lemma 2.47, u is the unique element in E that achieves

min
v∈E

a(g − v, g − v)1/2.

This amounts to minimizing on E the function

v 7→ a(g − v, g − v) = a(v, v)− 2a(g, v) + a(g, g) = a(v, v)− 2ϕ(v) + a(g, g),

or equivalently the function

v 7→ 1

2
a(v, v)− ϕ(v).

Corollary 2.50. Let a : H×H −→ R be a continuous H-elliptic bilinear form.
Then, given any ϕ ∈ H ′, there exists a unique element u ∈ H such that

a(u, v) = ϕ(v) , ∀v ∈ H. (2.64)

Moreover, if a is symmetric, then u is characterized by the property

u ∈ H and
1

2
a(u, u)− ϕ(u) = min

v∈H

[
1

2
a(v, v)− ϕ(v)

]
. (2.65)

Proof. Take E = H and proceed as in Remark 2.48.

In the language of the calculus of variations one says that (2.64) is the Euler
equation associated with the minimization problem (2.65).

Finally we discuss two important examples:

1. Dirichlet problem for the Laplacian
Let Ω ⊂ Rn be an open domain with C1-boundary. We are looking for a

function u : Ω −→ R satifsying{
−4u+ u = f in Ω

u = 0 on bΩ
(2.66)
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and f is a given function on Ω.
A classical solution of (2.66) is a function u ∈ C2(Ω) satisfying (2.66) in the

usual sense. A weak solution of (2.66) is a function u ∈ H1
0 (Ω) satisfying∫

Ω

∇u · ∇v dλ+

∫
Ω

uv dλ =

∫
Ω

fv dλ, ∀v ∈ H1
0 (Ω).

We claim that every classical solution is a weak solution: indeed, u ∈ H1(Ω)∩
C(Ω) and u = 0 on bΩ, so that u ∈ H1

0 (Ω). If v ∈ C10(Ω) we have∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ =

∫
Ω

fv dλ,

and by density this remains true for all v ∈ H1
0 (Ω).

Proposition 2.51. Given any f ∈ L2(Ω), there exists a unique weak solution
u ∈ H1

0 (Ω) of (2.66). Furthermore, u is obtained by

min
v∈H1

0 (Ω)

{
1

2

∫
Ω

(|∇v|2 + |v|2) dλ−
∫

Ω

fv dλ

}
.

This is Dirichlet’s principle.

Proof. Apply Proposition 1.24 for H = H1
0 (Ω) and the bilinear form

a(u, v) =

∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ,

and apply Corollary 2.50.

We indicate that, by Proposition 2.34, each solution u ∈ H1
0 (Ω) is at least in

H2
loc(Ω).
Finally we show how to recover a classical solution: assume that the weak

solution u ∈ H1
0 (Ω) of (2.66) belongs to C2(Ω). Then u = 0 on bΩ and, by

partial integration,∫
Ω

(−4u+ u)v dλ =

∫
Ω

fv dλ ∀v ∈ C10(Ω)

and thus −4u + u = f almost everywhere on Ω. In fact, −4u + u = f
everywhere on Ω, since u ∈ C2(Ω); thus u is a classical solution.

2. Neumann problem for the Laplacian

Let Ω ⊂ Rn be an open domain with C1-boundary. We are looking for a
function u : Ω −→ R satifsying{

−4u+ u = f in Ω

∂u
∂n = 0 on bΩ

(2.67)
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and f is a given function on Ω, where ∂u
∂n denotes the outward normal derivative

of u.
A classical solution of (2.67) is a function u ∈ C2(Ω) satisfying (2.67) in the

usual sense. A weak solution of (2.67) is a function u ∈ H1(Ω) satisfying∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ =

∫
Ω

fv dλ, ∀v ∈ H1(Ω).

The solution u is obtained by

min
v∈H1(Ω)

{
1

2

∫
Ω

(|∇v|2 + |v|2) dλ−
∫

Ω

fv dλ

}
.

Further details and various examples can be found in [3] and [2].

Remark 2.52. Let Ω ⊂ Rn be an open domain with C1-boundary. The oper-
ator T0 = −4, defined on C∞0 (Ω), has two different self-adjoint extensions. the
Dirchlet and the Neumann tealization, hence fails to be essentially self-adjoint.

Taks T = −4 + I and consider (2.66) and (2.67). Recall Proposition 1.25
with the corresponding bilinear forms

a(u, v) =

∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ , u, v ∈ H1
0 (Ω)

for (2.66), which yields the self-adjoint extension S0, and

a(u, v) =

∫
Ω

∇u · ∇v dλ+

∫
Ω

uv dλ , u, v ∈ H1(Ω)

for (2.67), which yields the self-adjoint extension S1. Finally consider the self-
adjoint operators S0 − I and S1 − I (see also [6]).
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Spectral analysis

Definition 3.1. The resolvent set of a linear operator T : dom(T ) −→ H is
the set of all λ ∈ C such that λI − T is an injective mapping of dom(T ) onto
H whose inverse belongs to L(H). The spectrum σ(T ) of T is the complement
of the resolvent set of T.

First we collect some informations about the spectrum of an unbounded
operator.

Lemma 3.2. If the spectrum σ(T ) of an operator T does not coincide with the
whole of the complex plane C then T must be a closed operator. The spectrum of
a linear operator is always closed. Moreover, if ζ /∈ σ(T ) and c := ‖RT (ζ)‖ =
‖(ζI − T )−1‖, then the spectrum σ(T ) does not intersect the ball {w ∈ C :
|ζ − w| < c−1}. The resolvent operator RT is a holomorphic operator valued
function.

Proof. For ζ /∈ σ(T ) let S = (ζI − T )−1 which is a bounded operator. Let
xn ∈ dom(T ) with x = limn→∞ xn = x and limn→∞ Txn = y and set un =
(ζI − T )xn. Then

lim
n→∞

un = lim
n→∞

(ζxn − Txn) = ζx− y,

therefore
S(ζx− y) = lim

n→∞
Sun = lim

n→∞
xn = x.

This implies x ∈ dom(T ) and (ζI−T )x = ζx−y, or Tx = y. Hence T is closed.
The remainder of the proof is similar to the case when T is bounded.

Proposition 3.3. The spectrum σ(T ) of any self-adjoint operator T is real and
non-empty. If ζ /∈ σ(T ) then

‖(ζI − T )−1‖ ≤ |=ζ|−1. (3.1)

Moreover,
(ζI − T )−1 = ((ζI − T )−1)∗. (3.2)

Proof. Let ζ = ξ + iη and η 6= 0 and set K = 1
η (T − ξI). Using Lemma 1.4,

it follows that K∗ = K. Let f ∈ dom(K) such that Kf = K∗f = if, then
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i(f, f) = (Kf, f) = (f,Kf) = −i(f, f), which implies f = 0 and that K − iI
is injective. In a similar way one shows that K + iI is injective.

The identity

‖Kx± ix‖2 = ‖Kx‖2 + ‖x‖2 , x ∈ dom(K)

implies that (K ± iI)x ↔ (x,Kx) is an isometric one-to-one correspondence
between im(K±iI) and the graph G(K) of K. Hence im(K±iI) is closed. Now
we obtain from Lemma 1.8 that im(K ± iI)⊥ = ker(K ± iI) = {0}. Therefore
(K ± iI)−1 is defined on the whole of H. Since we have

‖Kx± ix‖2 = ‖Kx‖2 + ‖x‖2 , x ∈ dom(K),

we get

‖(K ± iI)−1y‖ = ‖(K ± iI)−1(K ± iI)x‖ = ‖x‖ ≤ ‖(K ± iI)x‖ = ‖y‖,

for each y ∈ H, which implies that

‖(K ± iI)−1‖ ≤ 1. (3.3)

Thus ±i /∈ σ(K) and hence ζ /∈ σ(T ). In addition (3.3) implies (3.1).
Now let x1, x2 ∈ dom(T ). Then

((T − ζI)x1, x2) = (x1, (T − ζI)x2).

Putting y1 = (T − ζI)x1 and y2 = (T − ζI)x2 and rewriting the last equation
in terms of y1 and y2 yields (3.2).

Finally suppose that σ(T ) = ∅. Then for any x, y ∈ H the complex-valued
function

f(ζ) := ((ζI − T )−1x, y)

is holomorphic on C and, by (3.1), vanishes as |ζ| → ∞. Liouville’s theorem
now implies that f = 0 identically. Since x, y ∈ H are arbitrary, we obtain
(ζI − T )−1 is identically zero. This is false, hence σ(T ) 6= ∅.

Proposition 3.4. Let T be a closed symmetric operator. Then the following
statements are equivalent:
(i) T is self-adjoint;
(ii) ker(T ∗ + iI) = {0} and ker(T ∗ − iI) = {0};
(iii) im(T + iI) = H and im(T − iI) = H.

Proof. (i) implies (ii): this follows since ±i /∈ σ(T ).
(ii) implies (iii): Notice that ker(T ∗ ± iI) = {0} if and only if im(T ∓ iI) is

dense in H. This follows easily from

(Tu± iu, v) = (u, T ∗ ∓ iv),
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for u, v ∈ dom(T ). So it remains to show that im(T ∓ iI) is closed. The
symmetry of T implies that

‖(T ∓ iI)u‖2 = ‖Tu‖2 + ‖u‖2, (3.4)

for u ∈ dom(T ). Now, since T is closed, we easily obtain that im(T ∓ iI) is
closed.

(iii) implies (i): Let u ∈ dom(T ∗). By (iii) there exists v ∈ dom(T ) such that

(T − iI)v = (T ∗ − iI)u.

Since T is symmetric, we have also (T ∗ − iI)(v − u) = 0. But, if (T + iI) is
surjective, then (T ∗ − iI) is injective (Lemma 1.8) and we obtain u = v. This
proves that u ∈ dom(T ) and that T is self-adjoint.

We proved during the assertion (ii) implies (iii) that

Lemma 3.5. If T is closed and symmetric, then im(T ± iI) is closed.

In a similar way we obtain a characterization for essentially self-adjoint op-
erators.

Proposition 3.6. Let A be a symmetric operator. Then the following state-
ments are equivalent:
(i) A is essentially self-adjoint;
(ii) ker(A∗ + iI) = {0} and ker(A∗ − iI) = {0};
(iii) im(A+ iI) and im(A− iI) are dense in H.

Proof. We apply Proposition 3.4 to A and notice that A is symmetric and that
Lemma 1.5 implies that A∗ = (A)∗. In addition we use Lemma 3.5.

If A is also a positive operator, we get

Proposition 3.7. Let A be a positive, symmetric operator. Then the following
statements are equivalent:
(i) A is essentially self-adjoint;
(ii) ker(A∗ + bI) = {0} for some b > 0;
(iii) im(A+ bI) is dense in H.

Proof. We proceed in a similar way as before and notice that for a positive,
symmetric operator A we have

((A+ bI)u, u) ≥ b‖u‖2, (3.5)

for u ∈ dom(A), which is a good substitute for (3.4).
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By Lemma 1.8 (ii) and (iii) are equivalent. Since the closure of a positive,
symmetric operator is again positive and symmetric, it remains to show that a
closed, positive symmetric operator T is self-adjoint if and only if ker(T ∗+bI) =
{0} for some b > 0.

We can suppose that b = 1. If T is self-adjoint, then the spectrum σ(T ) ⊆ R+,
hence ker(T + I) = ker(T ∗ + I) = {0}.

For the converse, we first show that im(T +I) is closed: let (yk)k ⊂ im(T +I)
be a convergent sequence. There exists a sequence (xk)k ⊂ dom(T ) such that
yk = (T + I)xk. Then

(xk, yk) = (xk, Txk) + ‖xk‖2 ≥ ‖xk‖2,

and, by Cauchy-Schwarz,
‖xk‖ ≤ ‖yk‖ (3.6)

Since (yk)k is convergent, supk ‖yk‖ < ∞, and, by (3.6), supk ‖xk‖ < ∞. Now,
positivity implies

‖xk − x`‖2 ≤ ((xk − x`, (T + I)(xk − x`))
≤ (‖xk‖+ ‖x`‖)‖yk − y`‖
≤ C‖yk − y`‖.

Hence (xk)k is a Cauchy sequence. Since we supposed that T is closed, there
exists x ∈ dom(T ) such that x = limk→∞ xk and (T + I)x = y = limk→∞ yk.
Hence im(T + I) is closed.

The assumption ker(T ∗ + I) = {0} now gives im(T + I) = H. In order to
show that T is self-adjoint. it suffices to show that dom(T ∗) ⊆ dom(T ). Let
x ∈ dom(T ∗). There exists y ∈ dom(T ) such that

(T + I)y = (T ∗ + I)y = (T ∗ + I)x,

since dom(T ) ⊆ dom(T ∗). This implies (T ∗+ I)(x− y) = 0, and hence x = y ∈
dom(T ).

Now we consider differential operators H(A, V ) of the form

H(A, V ) = −∆A + V, (3.7)

where V : Rn −→ R is the electric potential and

A =
n∑
j=1

Ajdxj , Aj : Rn −→ R, j = 1, . . . , n



Chapter 3 Spectral analysis 59

is a 1-form, and

∆A =

n∑
j=1

(
∂

∂xj
− iAj

)2

.

The 2-form
B = dA =

∑
j<k

(
∂Ak
∂xj

− ∂Aj
∂xk

)
dxj ∧ dxk

is the magnetic field, which is responsible for specific spectral properties of the
operator H(A, V ), as will be seen later.

Under appropriate assumptions on A and V the operator H(A, V ) acts as
an unbounded self-adjoint operator on L2(Rn). In many aspects of the spectral
theory of the Schrödinger operator with magnetic fieldH(A, V ), it is convenient
to compare this operator with the ordinary Schrödinger operator

H(0, V ) = −∆ + V,

and then to employ well-known properties of H(0, V ).
Let Xj = (−i ∂

∂xj
−Aj) for j = 1, . . . , n. Then

−4A =

n∑
j=1

X2
j , (3.8)

and for u, v ∈ C∞0 (Rn) we have (Xju, v) = (u,Xjv), j = 1, . . . , n and

(−4Au, u) =
n∑
j=1

‖Xju‖2. (3.9)

Proposition 3.8. Let A ∈ C2(Rn,Rn) and V be a continuous real-valued func-
tion on Rm, such that

V (x) ≥ −C, ∀x ∈ Rm,

where C > 0 is a positive constant. Let dom(H(A, V )) = C∞0 (Rm). Then
H(A, V ) is a symmetric, semibounded operator on L2(Rn).

Proof. For u ∈ C∞0 (Rn) we have

(H(A, V )u, u) =

∫
Rn

(−4Au+ V u)u dλ

=

∫
Rn

n∑
j=1

|Xju|2 dλ+

∫
Rn
V |u|2 dλ

≥ −C ‖u‖2.
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Using the Friedrichs extension 1.25 , we obtain

Proposition 3.9. Let H(A, V ) be as in Proposition 3.8. Then H(A, V ) admits
a self-adjoint extension.

Proof. Define
a(u, v) := (H(A, V )u, v) + (C + 1)(u, v)

and define V to be the completion of C∞0 (Rn) with respect to the inner product
a(u, v). Then one can apply Proposition 1.25 to get the desired result.

Recall that a function g ∈ L1
loc(Rn) is the distributional derivative of f ∈

L1
loc(Rn) with respect to xj (formally g = ∂f/∂xj), if

(g, φ) = −
(
f,
∂φ

∂xj

)
,

for each φ ∈ C∞0 (Rn).
Let fk, f ∈ L1

loc(Rn). We say that fk converges to f in the distributional
sense, if

(fk, φ)→ (f, φ)

for each φ ∈ C∞0 (Rn).
Let f, g ∈ L1

loc(Rn). We say that f ≥ g in the distributional sense, if

(f, φ) ≥ (g, φ),

for all positive φ ∈ C∞0 (Rn).

A useful tool for spectral analysis of Schrödinger operators is Kato’s inequal-
ity sometimes also called the diamagnetic inequality:

Proposition 3.10. Let A ∈ C2(Rn,Rn). Then, for all f ∈ L1
loc(Rn) with

(−i∇−A)2f ∈ L2
loc(Rn), we have

4|f | ≥ −<(sgn(f)(−i∇−A)2f) = <(sgn(f)4Af), (3.10)

in the distributional sense, where sgn is defined in Chapter 5.

Proof. Let A1, . . . , An be the components of A. Notice that

−4Af = (−i∇−A)2f =
n∑
j=1

(−i ∂

∂xj
−Aj)2f.

The assumption (−i∇−A)2f ∈ L2
loc(Rn), and the regularity property of second-

order elliptic operators (see Proposition 2.34) imply that f ∈ W 2
loc(Rn), in

particular 4f,∇f ∈ L1
loc(Rn).
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First suppose that u is smooth.Then, with |u|ε =
√
|u|2 + ε2 − ε, we get

∇|u|ε =
<(u∇u)√
|u|2 + ε2

=
<(u(∇− iA)u)√
|u|2 + ε2

. (3.11)

A straightforward calculation shows that for a smooth function g we have

g4g = div(g∇g)− |∇g|2.

Hence we obtain√
|u|2 + ε24|u|ε = div(

√
|u|2 + ε2 ∇|u|ε)− |∇|u|ε|2

= <
[
∇u · (∇− iA)u+ u div((∇− iA)u)

]
− |∇|u|ε|2

= <[(∇u− iAu) · (∇− iA)u
+(−iAu) · (∇− iA)u+ u div((∇− iA)u)]− |∇|u|ε|2

= |(∇− iA)u|2 − |∇|u|ε|2

+< [(−iAu) · (∇− iA)u+ u div((∇− iA)u)] .

An easy calculation shows that

(−iAu) · (∇− iA)u+ u div((∇− iA)u) = u (∇− iA)2u.

From (3.11) we get

|∇|u|ε|2 ≤
|u(∇− iA)u|2

|u|2 + ε2
=
|u|2 |(∇− iA)u)|2

|u|2 + ε2
≤ |(∇− iA)u)|2.

So we finally see that

4|u|ε ≥ <
u (∇− iA)2u√
|u|2 + ε2

. (3.12)

The rest of the proof uses approximative units and follows the same lines as
the proof of the Proposition 2.19.

Using Kato’s inequality and a criterion for essential self-adjointness we obtain

Proposition 3.11. Let A ∈ C2(Rn,Rn) and V ∈ L2
loc(Rn) and V ≥ 0. Then

the Schrödinger operator H(A, V ) = −4A + V is essentially self-adjoint on
C∞0 (Rn). In this case the Friedrichs extension is the uniquely determined self-
adjoint extension (see Remark 1.19 (b) and Proposition 3.9).

Proof. By Proposition 3.7, it is sufficient to show that

ker(H(A, V )∗ + I) = {0}.
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Since dom(H(A, V )∗) ⊆ L2(Rn), the triviality of the kernel follows from the
statement: if

−4Au+ V u+ u = 0, (3.13)

for u ∈ L2(Rn), then u = 0.
If u ∈ L2(Rn) and V ∈ L2

loc(Rn), one has uV ∈ L1
loc(Rn). In addition we have

the inclusion
L2(Rn) ⊂ L2

loc(Rn) ⊂ L1
loc(Rn),

which follows from the estimate∫
K
|u| dλ ≤ |K| (

∫
K
|u|2 dλ)1/2.

Hence we have u ∈ L1
loc(Rn), and, by (3.13), that 4u ∈ L1

loc(Rn), where the
derivative is taken in the sense of distributions.

From (3.10) and (3.13) we obtain

4|u| ≥ <(sgn(u)4Au)

= <(sgn(u) (V + 1)u)

= |u| (V + 1) ≥ 0.

If (χε)ε is an approximate unit, we get

4(χε ∗ |u|) = χε ∗ 4|u| ≥ 0. (3.14)

Since χε ∗ |u| ∈ dom(4), we have

(4(χε ∗ |u|), χε ∗ |u|) = −‖∇(χε ∗ |u|)‖2 ≤ 0. (3.15)

By (3.14), the left side of (3.15) is nonnegative, so ∇(χε ∗ |u|) = 0 and hence
χε ∗ |u| = c ≥ 0. But |u| ∈ L2(Rn) and χε ∗ |u| → |u| in L2(Rn), and so c = 0.
Hence χε ∗ |u| = 0, so |u| = 0 and u = 0.

For other interesting applications of spectral analysis see [7].
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∂

Finally we demonstrate some methods for the Cauchy-Riemann equations. We
consider the ∂-complex

L2(Ω)
∂−→ L2

(0,1)(Ω)
∂−→ . . .

∂−→ L2
(0,n)(Ω)

∂−→ 0 , (4.1)

where L2
(0,q)(Ω) denotes the space of (0, q)-forms on Ω with coefficients in L2(Ω).

The ∂-operator on (0, q)-forms is given by

∂

(∑
J

′
aJ dzJ

)
=

n∑
j=1

∑
J

′ ∂aJ
∂zj

dzj ∧ dzJ , (4.2)

where
∑′

means that the sum is only taken over strictly increasing multi-indices
J.

The derivatives are taken in the sense of distributions, and the domain
of ∂ consists of those (0, q)-forms for which the right hand side belongs to
L2
(0,q+1)(Ω). So ∂ is a densely defined closed operator, and therefore has an

adjoint operator from L2
(0,q+1)(Ω) into L2

(0,q)(Ω) denoted by ∂∗.
We consider the ∂-complex

L2
(0,q−1)(Ω)

∂−→
←−
∂
∗

L2
(0,q)(Ω)

∂−→
←−
∂
∗

L2
(0,q+1)(Ω), (4.3)

for 1 ≤ q ≤ n− 1.

Proposition 4.1. The complex Laplacian � = ∂ ∂
∗
+ ∂

∗
∂, defined on the

domain dom(�) = {u ∈ L2
(0,q)(Ω) : u ∈ dom(∂)∩dom(∂

∗
), ∂u ∈ dom(∂

∗
), ∂
∗
u ∈

dom(∂)} acts as an unbounded, densely defined, closed and self-adjoint operator
on L2

(0,q)(Ω), for 1 ≤ q ≤ n, which means that � = �∗ and dom(�) = dom(�∗).

Proof. dom(�) contains all smooth forms with compact support, hence � is
densely defined. To show that � is closed depends on the fact that both ∂ and
∂
∗ are closed : note that

(�u, u) = (∂ ∂
∗
u+ ∂

∗
∂u, u) = ‖∂u‖2 + ‖∂∗u‖2, (4.4)
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for u ∈ dom(�). We have to prove that for every sequence uk ∈ dom(�)
such that uk → u in L2

(0,q)(Ω) and �uk converges, we have u ∈ dom(�) and
�uk → �u. It follows from (4.4) that

(�(uk − u`), uk − u`) = ‖∂(uk − u`)‖2 + ‖∂
∗
(uk − u`)‖2,

which implies that ∂uk converges in L2
(0,q+1)(Ω) and that ∂∗uk converges in

L2
(0,q−1)(Ω). Since ∂ and ∂∗ are closed operators, we get u ∈ dom(∂)∩ dom(∂

∗
)

and ∂uk → ∂u in L2
(0,q+1)(Ω) and ∂∗uk → ∂

∗
u in L2

(0,q−1)(Ω).

To show that ∂u ∈ dom(∂
∗
) and ∂∗u ∈ dom(∂), we first notice that ∂ ∂∗uk

and ∂∗ ∂uk are orthogonal which follows from

(∂ ∂
∗
uk, ∂

∗
∂uk) = (∂

2
∂
∗
uk, ∂uk) = 0.

Therefore the convergence of �uk = ∂ ∂
∗
uk + ∂

∗
∂uk implies that both ∂ ∂∗uk

and ∂
∗
∂uk converge. Now use again that ∂ and ∂

∗ are closed operators to
obtain that ∂ ∂∗uk → ∂ ∂

∗
u and ∂∗ ∂uk → ∂

∗
∂u. This implies that �uk → �u.

Hence � is closed.
In order to show that � is self-adjoint we use Lemma 1.21. Define

R = ∂ ∂
∗
+ ∂

∗
∂ + I

on dom(�). By Lemma 1.21 both (I + ∂ ∂
∗
)−1 and (I + ∂

∗
∂)−1 are bounded,

self-adjoint operators. Consider

L = (I + ∂ ∂
∗
)−1 + (I + ∂

∗
∂)−1 − I.

Then L is bounded and self-adjoint. We claim that L = R−1. Since

(I + ∂ ∂
∗
)−1 − I = (I − (I + ∂ ∂

∗
))(I + ∂ ∂

∗
)−1 = −∂ ∂∗(I + ∂ ∂

∗
)−1,

we have that the range of (I + ∂ ∂
∗
)−1 is contained in dom(∂ ∂

∗
). Similarly, we

have that the range of (I + ∂
∗
∂)−1 is contained in dom(∂

∗
∂) and we get

L = (I + ∂
∗
∂)−1 − ∂ ∂∗(I + ∂ ∂

∗
)−1.

Since ∂2 = 0, we have that the range of L is contained in dom(∂
∗
∂) and

∂
∗
∂L = ∂

∗
∂(I + ∂

∗
∂)−1.

Similarly, we have that the range of L is contained in dom(∂ ∂
∗
) and

∂ ∂
∗
L = ∂ ∂

∗
(I + ∂ ∂

∗
)−1.
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This implies that the range of L is contained in dom(�). In addition we have

RL = ∂ ∂
∗
(I + ∂ ∂

∗
)−1 + ∂

∗
∂(I + ∂

∗
∂)−1 + L = I.

If Ru = 0, we get �u = −u and 0 ≤ (�u, u) = −(u, u), which implies that
u = 0. Hence R is injective and we have that L = R−1. By Lemma 1.21 we
know that L is self-adjoint. Apply Lemma 1.20 to get that R is self-adjoint.
Therefore � = R− I is self-adjoint.

We will now suppose that Ω is a smoothly bounded pseudoconvex domain in
Cn. It can be shown that

‖∂u‖2 + ‖∂∗u‖2 ≥ c ‖u‖2, (4.5)

for each u ∈ dom(∂) ∩ dom(∂
∗
), c > 0.

First we will show that (4.5) implies that ∂ and ∂∗ have closed image.

Proposition 4.2. Let Ω ⊂ Cn be a smoothly bounded pseudoconvex domain.
Then ∂ and ∂∗ have closed image.

Proof. We notice that ker∂ = (im∂∗)⊥, which implies that

(ker∂)⊥ = im∂∗ ⊆ ker∂∗.

If u ∈ ker∂ ∩ ker∂∗, we have by (4.5) that u = 0. Hence

(ker∂)⊥ = ker∂∗. (4.6)

If u ∈ dom(∂) ∩ (ker∂)⊥, then u ∈ ker∂∗, and (4.5) implies

‖u‖ ≤ 1

c
‖∂u‖.

Now we can apply Lemma 1.12 to conclude that im∂ is closed. Finally Propo-
sition 1.14 gives that im∂∗ is also closed.

The next result describes the implication of the basic estimates (4.5) for the
�-operator.

Proposition 4.3. Let Ω ⊂ Cn be a smoothly bounded pseudoconvex domain.
Then � : dom(�) −→ L2

(0,q)(Ω) is bijective and has a bounded inverse

N : L2
(0,q)(Ω) −→ dom(�).

N is called ∂-Neumann operator. In addition

‖Nu‖ ≤ 1

c
‖u‖. (4.7)
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Proof. Since (�u, u) = ‖∂u‖2+‖∂∗u‖2, it follows that for a convergent sequence
(�un)n we get

‖�un −�um‖ ‖un − um‖ ≥ (�(un − um), un − um) ≥ c‖un − um‖2,

which implies that (un)n is convergent and since � is a closed operator we
obtain that � has closed range. If �u = 0, we get ∂u = 0 and ∂∗u = 0 and by
(4.5) also that u = 0, hence � is injective. By Lemma 1.20 (ii) the image of �
is dense, therefore � is surjective.

We showed that
� : dom(�) −→ L2

(0,q)(Ω)

is bijective and therefore, by Lemma 1.20 (iv), has a bounded inverse

N : L2
(0,q)(Ω) −→ dom(�).

For u ∈ L2
(0,q)(Ω) we use (4.5) for Nu to obtain

c‖Nu‖2 ≤ ‖∂Nu‖2 + ‖∂∗Nu‖2

= (∂
∗
∂Nu,Nu) + (∂∂

∗
Nu,Nu)

= (u,Nu) ≤ ‖u‖ ‖Nu‖,

which implies (4.7).

Finally we get a nice formula for the canonical solution operator for the
inhomogeneous Cauchy-Riemann equation.

Proposition 4.4. Let α ∈ L2
(0,q)(Ω), with ∂α = 0. Then u0 = ∂

∗
Nqα is the

canonical solution of ∂u = α, this means ∂u0 = α and u0⊥ ker ∂, and

‖∂∗Nqα‖ ≤ c−1/2 ‖α‖. (4.8)

Proof. For α ∈ L2
(0,q)(Ω) with ∂α = 0 we get

α = ∂ ∂
∗
Nqα+ ∂

∗
∂Nqα. (4.9)

If we apply ∂ to the last equality we obtain:

0 = ∂α = ∂∂
∗
∂Nqα,

since ∂Nqα ∈ dom(∂
∗
) we have

0 = (∂ ∂
∗
∂Nqα, ∂Nqα) = (∂

∗
∂Nqα, ∂

∗
∂Nqα) = ‖∂

∗
∂Nqα‖2.
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Finally we set u0 = ∂
∗
Nqα and derive from (4.9) that for ∂α = 0

α = ∂u0,

and we see that u0⊥ ker ∂, since for h ∈ ker ∂ we get

(u0, h) = (∂
∗
Nqα, h) = (Nqα, ∂h) = 0.

It follows that

‖∂∗Nqα‖2 = (∂ ∂
∗
Nqα,Nqα)

= (∂ ∂
∗
Nqα,Nqα) + (∂

∗
∂Nqα,Nqα)

= (α,Nqα) ≤ ‖α‖ ‖Nqα‖

and using (4.7) we obtain

‖∂∗Nqα‖ ≤ c−1/2 ‖α‖, (4.10)

For further details see [8].
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