Proseminar Theorie der partiellen Differentialgleichungen

14.10.2013: L^{p}-space, completeness, $\mathcal{C}_{0}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
21.10.2013: Hölder and Minkowski inequalities, duality in L^{p}-spaces.
28.10.2013: generalized Hölder and Minkowski inequalities:

$$
\left[\int\left(\int\left|F\left(x^{\prime}, x\right)\right| d \lambda\left(x^{\prime}\right)\right)^{p} d \lambda(x)\right]^{1 / p} \leq \int\left(\int\left|F\left(x^{\prime}, x\right)\right|^{p} d \lambda(x)\right)^{1 / p} d \lambda\left(x^{\prime}\right)
$$

04.11.2013:

Exercises 1: Let $T_{1}: \operatorname{dom}\left(T_{1}\right) \longrightarrow H_{2}$ be a densely defined operator and T_{2} : $H_{2} \longrightarrow H_{3}$ be a bounded operator. Then $\left(T_{2} T_{1}\right)^{*}=T_{1}^{*} T_{2}^{*}$, which includes that $\operatorname{dom}\left(\left(T_{2} T_{1}\right)^{*}\right)=\operatorname{dom}\left(T_{1}^{*} T_{2}^{*}\right)$.
2: Let T be a densely defined operator on H and let S be a bounded operator on H. Then $(T+S)^{*}=T^{*}+S^{*}$.
3: Let $\Omega=\mathbb{B}$ be the open unit ball in \mathbb{R}^{n}, and

$$
u(x)=|x|^{-\alpha} \quad, x \in \mathbb{B}, x \neq 0
$$

Show that $u \in W^{1}(\mathbb{B})$ if and only if $\alpha<\frac{n-2}{2}$.
19.11.2013: Exercises 4: Let $u, v \in W^{k}(\Omega),|\alpha| \leq k$. Show that (i) $D^{\alpha} u \in W^{k-|\alpha|}(\Omega)$ and for multiindices α, β with $|\alpha|+|\beta| \leq k$ we have

$$
D^{\beta}\left(D^{\alpha} u\right)=D^{\alpha}\left(D^{\beta} u\right)=D^{\alpha+\beta} u
$$

(ii) If $\phi \in \mathcal{C}_{0}^{\infty}(\Omega)$, then $\phi u \in W^{k}(\Omega)$ and

$$
D^{\alpha}(\phi u)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D^{\beta} \phi D^{\alpha-\beta} u
$$

where $\binom{\alpha}{\beta}=\frac{\alpha!}{\beta!(\alpha-\beta)!}$.
5: Let E, F, G denote finite dimensional vector spaces over \mathbb{C} with inner product. We consider an exact sequence of linear maps

$$
E \xrightarrow{S} F \xrightarrow{T} G,
$$

which means that $\operatorname{Im} S=\operatorname{Ker} T$, hence $T S=0$. Given $f \in \operatorname{Im} S=\operatorname{Ker} T$, we want to solve $S u=f$ with $u \perp \operatorname{Ker} S$, then u will be called the canonical solution. Show that $S S^{*}+T^{*} T: F \longrightarrow F$ is bijective.
Let $N=\left(S S^{*}+T^{*} T\right)^{-1}$. Show that $u=S^{*} N f$ is the canonical solution to $S u=f$.
25.11.2013:

Facts from Fourier analysis (see for instance W. Rudin: Real and complex analysis)

Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and consider the Fouriertransform

$$
\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-i x \xi} d \lambda(x), \xi \in \mathbb{R}^{n}
$$

It follows that $\hat{f} \in C_{0}\left(\mathbb{R}^{n}\right)$, where $C_{0}\left(\mathbb{R}^{n}\right)$ is the space of all continuous functions g such that for each $\epsilon>0$ there is a compact subset $K \subset \mathbb{R}^{n}$ such that

$$
\sup \left\{|g(x)|: x \in \mathbb{R}^{n} \backslash K\right\} \leq \epsilon
$$

If $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\hat{f} \in L^{1}\left(\mathbb{R}^{n}\right)$, then $f \in C_{0}\left(\mathbb{R}^{n}\right)$ and $f(x)=\hat{\hat{f}}(-x)$.
Theorem (Plancherel): There exists a unitary operator

$$
\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{n}\right)
$$

such that $\mathcal{F}(f)=\hat{f}$ for all $f \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$.
Definition: For $s \in[0, \infty)$ let

$$
H^{s}=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right):\left(1+|\xi|^{2}\right)^{s / 2} \mathcal{F} f(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

We endow H^{s} with the norm

$$
\|f\|_{s}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\mathcal{F} f(\xi)|^{2} d \lambda(\xi)\right)^{1 / 2}
$$

For $1 \leq j \leq n$ and $f \in H^{s}$ we define the operator

$$
\mathcal{D}_{j} f=\mathcal{F}^{-1} \xi_{j} \mathcal{F} f
$$

where ξ_{j} denotes the multiplication with the varaible ξ_{j}; more general for a multiindex α and $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \ldots \xi_{n}^{\alpha_{n}}$ we define

$$
\mathcal{D}^{\alpha} f=\mathcal{F}^{-1} \xi^{\alpha} \mathcal{F} f
$$

Exercise 6: Show that

$$
\mathcal{D}^{\alpha}: H^{s} \longrightarrow H^{s-|\alpha|}
$$

is a continuous linear operator, where $|\alpha|=\sum_{j=1}^{n} \alpha_{j}$.
Exercise 7: Let $f \in H^{s}, s>1$ and $1 \leq j \leq n$. Show that

$$
\mathcal{D}_{j} f(x)=\frac{1}{i} \lim _{h \rightarrow 0} \frac{1}{h}\left(f\left(x+h e_{j}\right)-f(x)\right),
$$

in the topology of H^{s-1}, where $e_{j}=\left(\delta_{j, k}\right)_{k=1}^{n}$.
Let $f \in H^{s} \cap \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$. Show that

$$
\mathcal{D}_{j} f=\frac{1}{i} \frac{\partial f}{\partial x_{j}}
$$

almost everywhere.
02.12.2013

Exercise 8: Let

$$
C_{0}^{k}\left(\mathbb{R}^{n}\right):=\left\{f \in \mathcal{C}^{k}\left(\mathbb{R}^{n}\right): D^{\alpha} f \in C_{0}\left(\mathbb{R}^{n}\right), \forall|\alpha| \leq k\right\}
$$

endowed with the norm

$$
\|f\|_{k}:=\sup \left\{\left|D^{\alpha} f(x)\right|: x \in \mathbb{R}^{n},|\alpha| \leq k\right\}
$$

Show that H^{s} is continuously imbedded into $C_{0}^{k}\left(\mathbb{R}^{n}\right)$, if $s-k>\frac{n}{2}$.
09.12.2013

Exercise 9: Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $u \in L_{\text {loc }}^{2}(\Omega)$ and suppose that $V \subset \subset \Omega$.
The $j^{\text {th }}$-difference quotient of size h is

$$
D_{j}^{h} u(x)=\frac{u\left(x+h e_{j}\right)-u(x)}{h}
$$

for $j=1, \ldots, n$ where $x \in V$ and $h \in \mathbb{R}, 0<|h|<\operatorname{dist}(V, b \Omega)$.
Further we define

$$
D^{h} u:=\left(D_{1}^{h} u, \ldots, D_{n}^{h} u\right)
$$

Let $v, w \in L_{l o c}^{2}(\Omega)$ and $\ell \in\{1, \ldots, n\}$. Show that

$$
\int_{\Omega} v D_{\ell}^{-h} w d \lambda=-\int_{\Omega} w D_{\ell}^{h} v d \lambda
$$

and

$$
D_{\ell}^{h}(v w)=v^{h} D_{\ell}^{h} w+w D_{\ell}^{h} v
$$

for $v^{h}(x):=v\left(x+h e_{\ell}\right)$.
Show that, if $u \in H^{1}(\Omega)$, we have

$$
\left(D_{j}^{h} u\right)_{x_{k}}=D_{j}^{h}\left(u_{x_{k}}\right) .
$$

Exercise 10: Let L be an elliptic second order partial differential operator and $f \in L^{2}(\Omega)$. Suppose that $u \in H^{1}(\Omega)$ is a weak solution of $L u=f$. Show that $L u=f$ almost everywhere in Ω. (Use the fact that, by inner regularity, one even has that $u \in H_{\mathrm{loc}}^{2}(\Omega)$.)
16.12.2013 and 13.01.2014

Exercise 11: Let L be an elliptic second order partial differential operator and $f \in L^{2}(\Omega)$. Suppose that $u \in H^{1}(\Omega)$ is a weak solution of $L u=f$. Show that for each open $V \subset \subset \Omega$ we have

$$
\|u\|_{H^{2}(V)} \leq \tilde{C}\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right)
$$

where $\tilde{C}>0$ is a constant only depending on V, Ω, and the coefficients of L.
Exercise 12: (Fredholm alternative) Let $A: H \longrightarrow H$ be a compact linear operator on the Hilbert space H. Show that
(i) $\operatorname{ker}(I-A)$ is finite dimensional,
(ii) $\operatorname{im}(I-A)$ is closed,
(iii) $\operatorname{im}(I-A)=\operatorname{ker}\left(I-A^{*}\right)^{\perp}$,
(iv) $\operatorname{ker}(I-A)=\{0\}$ if and only if $\operatorname{im}(I-A)=H$,
(v) $\operatorname{dim} \operatorname{ker}(I-A)=\operatorname{dim} \operatorname{ker}\left(I-A^{*}\right)$.

In particular we have: either for each $f \in H$, the equation $u-A u=f$ has a unique solution or else the homogeneous equation $u-A u=0$ has solutions $u \neq 0$. (Fredholm alternative)
In the second case, the space of solutions of the homogeneous problem is finitedimensional, and the nonhomogeneous equation $u-A u=f$ has a solution if and only if $f \in \operatorname{ker}\left(I-A^{*}\right)^{\perp}$.
20.01.2014

Exercise 13: Let L be an elliptic second order partial differential operator and $a(u, v)$ its corresponding bilinear form. Suppose that Ω is a bounded open domain in \mathbb{R}^{n} with \mathcal{C}^{1}-boundary. Consider the nonzero boundary-value problem

$$
\begin{cases}L u=f & \text { in } \Omega \\ u=g & \text { on } b \Omega\end{cases}
$$

where g is the trace of some $w \in H^{1}(\Omega)$. Set $\tilde{u}=u-w$ and $\tilde{f}=f-L w$. Show that $\tilde{u} \in H_{0}^{1}(\Omega)$ and $\tilde{f} \in H_{0}^{-1}(\Omega)$, and prove that \tilde{u} is a weak solution of

$$
\begin{cases}L \tilde{u}=\tilde{f} & \text { in } \Omega \\ \tilde{u}=0 & \text { on } b \Omega\end{cases}
$$

In this way the nonzero boundary-value problem can be transformed to the zero boundary-value problem.
Exercise 14:
Let $\Omega \subset \mathbb{R}^{n}$ be an open domain with \mathcal{C}^{1}-boundary. We are looking for a function $u: \bar{\Omega} \longrightarrow \mathbb{R}$ satifsying

$$
\begin{cases}-\triangle u+u=f & \text { in } \Omega \tag{1}\\ \frac{\partial u}{\partial n}=0 & \text { on } b \Omega\end{cases}
$$

and f is a given function on Ω, where $\frac{\partial u}{\partial n}$ denotes the outward normal derivative of u. (u is called a solution to the Neumann problem)
A weak solution of (1) is a function $u \in H^{1}(\Omega)$ satisfying

$$
\int_{\Omega} \nabla u \cdot \nabla v d \lambda+\int_{\Omega} u v d \lambda=\int_{\Omega} f v d \lambda, \forall v \in H^{1}(\Omega)
$$

Show that for every $f \in L^{2}(\Omega)$ there exists a unique weak solution $u \in H^{1}(\Omega)$ of (1) and show that u is given by

$$
\min _{v \in H^{1}(\Omega)}\left\{\frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d \lambda-\int_{\Omega} f v d \lambda\right\}
$$

Hint: use Green's formula:

$$
\int_{\Omega}(\triangle g) h d \lambda=\int_{b \Omega} \frac{\partial g}{\partial n} h d \sigma-\int_{\Omega} \nabla g \cdot \nabla h d \lambda
$$

for each $g \in \mathcal{C}^{2}(\bar{\Omega})$ and $h \in \mathcal{C}^{1}(\bar{\Omega})$.
27.01.2014

Exercise 15: Gauge invariance of Schrödinger operators with magnetic fields.
Let $A, A^{\prime} \in \mathcal{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be such that $d A=d A^{\prime}$. Suppose that $V \in L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$ and $V \geq 0$. Show that $\sigma(H(A, V))=\sigma\left(H\left(A^{\prime}, V\right)\right)$.
Hint: Show that $A=A^{\prime}+d g$, where $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ (Poincaré Lemma) and that $H(A, V)$ and $H\left(A^{\prime}, V\right)$ are unitarily equivalent.

