
Proseminar Theorie der partiellen Differentialgleichungen

14.10.2013: Lp-space, completeness, C∞0 (Ω) is dense in Lp(Ω).

21.10.2013: Hölder and Minkowski inequalities, duality in Lp-spaces.

28.10.2013: generalized Hölder and Minkowski inequalities:

[∫ (∫
|F (x′, x)| dλ(x′)

)p
dλ(x)

]1/p

≤
∫ (∫

|F (x′, x)|p dλ(x)

)1/p

dλ(x′)

04.11.2013:
Exercises 1: Let T1 : dom(T1) −→ H2 be a densely defined operator and T2 :
H2 −→ H3 be a bounded operator. Then (T2 T1)∗ = T ∗1 T

∗
2 , which includes that

dom((T2 T1)∗) = dom(T ∗1 T
∗
2 ).

2: Let T be a densely defined operator on H and let S be a bounded operator on
H. Then (T + S)∗ = T ∗ + S∗.

3: Let Ω = B be the open unit ball in Rn, and

u(x) = |x|−α , x ∈ B, x 6= 0.

Show that u ∈ W 1(B) if and only if α < n−2
2
.

19.11.2013: Exercises 4: Let u, v ∈ W k(Ω), |α| ≤ k. Show that (i) Dαu ∈ W k−|α|(Ω)
and for multiindices α, β with |α|+ |β| ≤ k we have

Dβ(Dαu) = Dα(Dβu) = Dα+βu.

(ii) If φ ∈ C∞0 (Ω), then φu ∈ W k(Ω) and

Dα(φu) =
∑
β≤α

(
α

β

)
DβφDα−βu,

where
(
α
β

)
= α!

β!(α−β)!
.

5: Let E,F,G denote finite dimensional vector spaces over C with inner product.
We consider an exact sequence of linear maps

E
S−→ F

T−→ G,

which means that ImS = KerT, hence TS = 0. Given f ∈ ImS = KerT, we want
to solve Su = f with u ⊥ KerS, then u will be called the canonical solution. Show
that SS∗ + T ∗T : F −→ F is bijective.
Let N = (SS∗ + T ∗T )−1. Show that u = S∗Nf is the canonical solution to Su = f.

25.11.2013:
Facts from Fourier analysis (see for instance W. Rudin: Real and complex analysis)
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Let f ∈ L1(Rn) and consider the Fouriertransform

f̂(ξ) = (2π)−n/2
∫
Rn

f(x) e−ixξ dλ(x) , ξ ∈ Rn.

It follows that f̂ ∈ C0(Rn), where C0(Rn) is the space of all continuous functions g
such that for each ε > 0 there is a compact subset K ⊂ Rn such that

sup{|g(x)| : x ∈ Rn \K} ≤ ε.

If f ∈ L1(Rn) and f̂ ∈ L1(Rn), then f ∈ C0(Rn) and f(x) =
ˆ̂
f(−x).

Theorem (Plancherel): There exists a unitary operator

F : L2(Rn) −→ L2(Rn)

such that F(f) = f̂ for all f ∈ L1(Rn) ∩ L2(Rn).
Definition: For s ∈ [0,∞) let

Hs = {f ∈ L2(Rn) : (1 + |ξ|2)s/2Ff(ξ) ∈ L2(Rn)}.
We endow Hs with the norm

‖f‖s = (

∫
Rn

(1 + |ξ|2)s |Ff(ξ)|2 dλ(ξ))1/2.

For 1 ≤ j ≤ n and f ∈ Hs we define the operator

Djf = F−1ξjFf,
where ξj denotes the multiplication with the varaible ξj; more general for a multi-
index α and ξα = ξα1

1 . . . ξαn
n we define

Dαf = F−1ξαFf.

Exercise 6: Show that
Dα : Hs −→ Hs−|α|

is a continuous linear operator, where |α| =
∑n

j=1 αj.

Exercise 7: Let f ∈ Hs, s > 1 and 1 ≤ j ≤ n. Show that

Djf(x) =
1

i
lim
h→0

1

h
(f(x+ hej)− f(x)),

in the topology of Hs−1, where ej = (δj,k)
n
k=1.

Let f ∈ Hs ∩ C1(Rn). Show that

Djf =
1

i

∂f

∂xj

almost everywhere.

02.12.2013
Exercise 8: Let

Ck
0 (Rn) := {f ∈ Ck(Rn) : Dαf ∈ C0(Rn), ∀|α| ≤ k},

endowed with the norm

‖f‖k := sup{|Dαf(x)| : x ∈ Rn, |α| ≤ k}.
Show that Hs is continuously imbedded into Ck

0 (Rn), if s− k > n
2
.
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09.12.2013
Exercise 9: Let Ω ⊂ Rn be a bounded domain and u ∈ L2

loc(Ω) and suppose that
V ⊂⊂ Ω.
The jth-difference quotient of size h is

Dh
j u(x) =

u(x+ hej)− u(x)

h
,

for j = 1, . . . , n where x ∈ V and h ∈ R , 0 < |h| < dist(V, bΩ).
Further we define

Dhu := (Dh
1u, . . . , D

h
nu).

Let v, w ∈ L2
loc(Ω) and ` ∈ {1, . . . , n}. Show that∫

Ω

vD−h` w dλ = −
∫

Ω

wDh
` v dλ

and
Dh
` (vw) = vhDh

`w + wDh
` v

for vh(x) := v(x+ he`).
Show that , if u ∈ H1(Ω), we have

(Dh
j u)xk = Dh

j (uxk).

Exercise 10: Let L be an elliptic second order partial differential operator and
f ∈ L2(Ω). Suppose that u ∈ H1(Ω) is a weak solution of Lu = f. Show that
Lu = f almost everywhere in Ω. (Use the fact that, by inner regularity, one even
has that u ∈ H2

loc(Ω).)

16.12.2013 and 13.01.2014
Exercise 11: Let L be an elliptic second order partial differential operator and
f ∈ L2(Ω). Suppose that u ∈ H1(Ω) is a weak solution of Lu = f. Show that for
each open V ⊂⊂ Ω we have

‖u‖H2(V ) ≤ C̃(‖f‖L2(Ω) + ‖u‖L2(Ω)),

where C̃ > 0 is a constant only depending on V,Ω, and the coefficients of L.

Exercise 12: (Fredholm alternative) Let A : H −→ H be a compact linear operator
on the Hilbert space H. Show that
(i) ker(I − A) is finite dimensional,
(ii) im(I − A) is closed,
(iii) im(I − A) = ker(I − A∗)⊥,
(iv) ker(I − A) = {0} if and only if im(I − A) = H,
(v) dim ker(I − A) = dim ker(I − A∗).
In particular we have: either for each f ∈ H, the equation u − Au = f has a
unique solution or else the homogeneous equation u− Au = 0 has solutions u 6= 0.
(Fredholm alternative)
In the second case, the space of solutions of the homogeneous problem is finite-
dimensional, and the nonhomogeneous equation u − Au = f has a solution if and
only if f ∈ ker(I − A∗)⊥.
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20.01.2014

Exercise 13: Let L be an elliptic second order partial differential operator and a(u, v)
its corresponding bilinear form. Suppose that Ω is a bounded open domain in Rn

with C1-boundary. Consider the nonzero boundary-value problem{
Lu = f in Ω

u = g on bΩ,

where g is the trace of some w ∈ H1(Ω). Set ũ = u−w and f̃ = f −Lw. Show that

ũ ∈ H1
0 (Ω) and f̃ ∈ H−1

0 (Ω), and prove that ũ is a weak solution of{
Lũ = f̃ in Ω

ũ = 0 on bΩ.

In this way the nonzero boundary-value problem can be transformed to the zero
boundary-value problem.

Exercise 14:
Let Ω ⊂ Rn be an open domain with C1-boundary. We are looking for a function
u : Ω −→ R satifsying

(1)

{
−4u+ u = f in Ω
∂u
∂n

= 0 on bΩ

and f is a given function on Ω, where ∂u
∂n

denotes the outward normal derivative of
u. (u is called a solution to the Neumann problem)
A weak solution of (1) is a function u ∈ H1(Ω) satisfying∫

Ω

∇u · ∇v dλ+

∫
Ω

uv dλ =

∫
Ω

fv dλ, ∀v ∈ H1(Ω).

Show that for every f ∈ L2(Ω) there exists a unique weak solution u ∈ H1(Ω) of
(1) and show that u is given by

min
v∈H1(Ω)

{
1

2

∫
Ω

(|∇v|2 + v2) dλ−
∫

Ω

fv dλ

}
.

Hint: use Green’s formula:∫
Ω

(4g)h dλ =

∫
bΩ

∂g

∂n
h dσ −

∫
Ω

∇g · ∇h dλ,

for each g ∈ C2(Ω) and h ∈ C1(Ω).

27.01.2014

Exercise 15: Gauge invariance of Schrödinger operators with magnetic fields.

Let A,A′ ∈ C2(Rn,Rn) be such that dA = dA′. Suppose that V ∈ L2
loc(Rn) and

V ≥ 0. Show that σ(H(A, V )) = σ(H(A′, V )).

Hint: Show that A = A′+dg, where g ∈ C1(Rn) (Poincaré Lemma) and that H(A, V )
and H(A′, V ) are unitarily equivalent.


