Proseminar Theorie der partiellen Differentialgleichungen

14.10.2013: L^p -space, completeness, $\mathcal{C}_0^{\infty}(\Omega)$ is dense in $L^p(\Omega)$.

21.10.2013: Hölder and Minkowski inequalities, duality in L^p -spaces.

28.10.2013: generalized Hölder and Minkowski inequalities:

$$\left[\int \left(\int |F(x',x)| \, d\lambda(x')\right)^p \, d\lambda(x)\right]^{1/p} \le \int \left(\int |F(x',x)|^p \, d\lambda(x)\right)^{1/p} \, d\lambda(x')$$

04.11.2013:

Exercises 1: Let T_1 : dom $(T_1) \longrightarrow H_2$ be a densely defined operator and T_2 : $H_2 \longrightarrow H_3$ be a bounded operator. Then $(T_2 T_1)^* = T_1^* T_2^*$, which includes that dom $((T_2 T_1)^*) = \text{dom}(T_1^* T_2^*)$.

2: Let T be a densely defined operator on H and let S be a bounded operator on H. Then $(T + S)^* = T^* + S^*$.

3: Let $\Omega = \mathbb{B}$ be the open unit ball in \mathbb{R}^n , and

$$u(x) = |x|^{-\alpha} , x \in \mathbb{B}, x \neq 0.$$

Show that $u \in W^1(\mathbb{B})$ if and only if $\alpha < \frac{n-2}{2}$.

19.11.2013: Exercises 4: Let $u, v \in W^k(\Omega), |\alpha| \leq k$. Show that (i) $D^{\alpha}u \in W^{k-|\alpha|}(\Omega)$ and for multiindices α, β with $|\alpha| + |\beta| \leq k$ we have

$$D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$$

(ii) If $\phi \in \mathcal{C}_0^{\infty}(\Omega)$, then $\phi u \in W^k(\Omega)$ and

$$D^{\alpha}(\phi \, u) = \sum_{\beta \le \alpha} \binom{\alpha}{\beta} D^{\beta} \phi \, D^{\alpha - \beta} u,$$

where $\binom{\alpha}{\beta} = \frac{\alpha!}{\beta!(\alpha-\beta)!}$.

5: Let E, F, G denote finite dimensional vector spaces over \mathbb{C} with inner product. We consider an exact sequence of linear maps

$$E \xrightarrow{S} F \xrightarrow{T} G,$$

which means that ImS = KerT, hence TS = 0. Given $f \in \text{Im}S = \text{Ker}T$, we want to solve Su = f with $u \perp \text{Ker}S$, then u will be called the canonical solution. Show that $SS^* + T^*T : F \longrightarrow F$ is bijective.

Let $N = (SS^* + T^*T)^{-1}$. Show that $u = S^*Nf$ is the canonical solution to Su = f.

25.11.2013:

Facts from Fourier analysis (see for instance W. Rudin: Real and complex analysis)

Let $f \in L^1(\mathbb{R}^n)$ and consider the Fouriertransform

$$\hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix\xi} d\lambda(x) , \ \xi \in \mathbb{R}^n.$$

It follows that $\hat{f} \in C_0(\mathbb{R}^n)$, where $C_0(\mathbb{R}^n)$ is the space of all continuous functions g such that for each $\epsilon > 0$ there is a compact subset $K \subset \mathbb{R}^n$ such that

$$\sup\{|g(x)|: x \in \mathbb{R}^n \setminus K\} \le \epsilon.$$

If $f \in L^1(\mathbb{R}^n)$ and $\hat{f} \in L^1(\mathbb{R}^n)$, then $f \in C_0(\mathbb{R}^n)$ and $f(x) = \hat{f}(-x)$.

Theorem (Plancherel): There exists a unitary operator

$$\mathcal{F}: L^2(\mathbb{R}^n) \longrightarrow L^2(\mathbb{R}^n)$$

such that $\mathcal{F}(f) = \hat{f}$ for all $f \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$. Definition: For $s \in [0, \infty)$ let

$$H^{s} = \{ f \in L^{2}(\mathbb{R}^{n}) : (1 + |\xi|^{2})^{s/2} \mathcal{F}f(\xi) \in L^{2}(\mathbb{R}^{n}) \}.$$

We endow H^s with the norm

$$||f||_{s} = \left(\int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{s} |\mathcal{F}f(\xi)|^{2} d\lambda(\xi)\right)^{1/2}.$$

For $1 \leq j \leq n$ and $f \in H^s$ we define the operator

$$\mathcal{D}_j f = \mathcal{F}^{-1} \xi_j \mathcal{F} f,$$

where ξ_j denotes the multiplication with the variable ξ_j ; more general for a multiindex α and $\xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_n^{\alpha_n}$ we define

$$\mathcal{D}^{\alpha}f = \mathcal{F}^{-1}\xi^{\alpha}\mathcal{F}f.$$

Exercise 6: Show that

$$\mathcal{D}^{\alpha}: H^s \longrightarrow H^{s-|\alpha|}$$

is a continuous linear operator, where $|\alpha| = \sum_{j=1}^{n} \alpha_j$.

Exercise 7: Let $f \in H^s$, s > 1 and $1 \le j \le n$. Show that

$$\mathcal{D}_j f(x) = \frac{1}{i} \lim_{h \to 0} \frac{1}{h} \left(f(x + he_j) - f(x) \right),$$

in the topology of H^{s-1} , where $e_j = (\delta_{j,k})_{k=1}^n$. Let $f \in H^s \cap \mathcal{C}^1(\mathbb{R}^n)$. Show that

$$\mathcal{D}_j f = \frac{1}{i} \frac{\partial f}{\partial x_j}$$

almost everywhere.

02.12.2013 Exercise 8: Let

$$C_0^k(\mathbb{R}^n) := \{ f \in \mathcal{C}^k(\mathbb{R}^n) : D^\alpha f \in C_0(\mathbb{R}^n), \, \forall |\alpha| \le k \},\$$

endowed with the norm

$$||f||_k := \sup\{|D^{\alpha}f(x)| : x \in \mathbb{R}^n, |\alpha| \le k\}.$$

Show that H^s is continuously imbedded into $C_0^k(\mathbb{R}^n)$, if $s-k > \frac{n}{2}$.

09.12.2013

Exercise 9: Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $u \in L^2_{loc}(\Omega)$ and suppose that $V \subset \subset \Omega$.

The j^{th} -difference quotient of size h is

$$D_j^h u(x) = \frac{u(x+he_j) - u(x)}{h},$$

for j = 1, ..., n where $x \in V$ and $h \in \mathbb{R}$, $0 < |h| < \operatorname{dist}(V, b\Omega)$. Further we define

 $D^{h}u := (D_{1}^{h}u, \dots, D_{n}^{h}u).$ Let $v, w \in L^{2}_{loc}(\Omega)$ and $\ell \in \{1, \dots, n\}$. Show that $\int_{\Omega} v D_{\ell}^{-h} w \, d\lambda = -\int_{\Omega} w D_{\ell}^{h} v \, d\lambda$

$$D^h_\ell(vw) = v^h D^h_\ell w + w D^h_\ell v$$

for $v^h(x) := v(x + he_\ell)$. Show that , if $u \in H^1(\Omega)$, we have

$$(D_i^h u)_{x_k} = D_i^h(u_{x_k}).$$

Exercise 10: Let L be an elliptic second order partial differential operator and $f \in L^2(\Omega)$. Suppose that $u \in H^1(\Omega)$ is a weak solution of Lu = f. Show that Lu = f almost everywhere in Ω . (Use the fact that, by inner regularity, one even has that $u \in H^2_{loc}(\Omega)$.)

16.12.2013 and 13.01.2014

Exercise 11: Let L be an elliptic second order partial differential operator and $f \in L^2(\Omega)$. Suppose that $u \in H^1(\Omega)$ is a weak solution of Lu = f. Show that for each open $V \subset \subset \Omega$ we have

$$||u||_{H^2(V)} \le C(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}),$$

where $\tilde{C} > 0$ is a constant only depending on V, Ω , and the coefficients of L.

Exercise 12: (Fredholm alternative) Let $A : H \longrightarrow H$ be a compact linear operator on the Hilbert space H. Show that

(i) $\ker(I - A)$ is finite dimensional,

(ii) $\operatorname{im}(I - A)$ is closed,

(iii) $im(I - A) = ker(I - A^*)^{\perp}$,

(iv) $\ker(I - A) = \{0\}$ if and only if $\operatorname{im}(I - A) = H$,

(v) dim ker(I - A) = dim ker $(I - A^*)$.

In particular we have: either for each $f \in H$, the equation u - Au = f has a unique solution or else the homogeneous equation u - Au = 0 has solutions $u \neq 0$. (Fredholm alternative)

In the second case, the space of solutions of the homogeneous problem is finitedimensional, and the nonhomogeneous equation u - Au = f has a solution if and only if $f \in \ker(I - A^*)^{\perp}$. Exercise 13: Let L be an elliptic second order partial differential operator and a(u, v) its corresponding bilinear form. Suppose that Ω is a bounded open domain in \mathbb{R}^n with \mathcal{C}^1 -boundary. Consider the nonzero boundary-value problem

$$\begin{cases} Lu = f & \text{in } \Omega\\ u = g & \text{on } b\Omega, \end{cases}$$

where g is the trace of some $w \in H^1(\Omega)$. Set $\tilde{u} = u - w$ and $\tilde{f} = f - Lw$. Show that $\tilde{u} \in H^1_0(\Omega)$ and $\tilde{f} \in H^{-1}_0(\Omega)$, and prove that \tilde{u} is a weak solution of

$$\begin{cases} L\tilde{u} = \tilde{f} & \text{in } \Omega\\ \tilde{u} = 0 & \text{on } b\Omega. \end{cases}$$

In this way the nonzero boundary-value problem can be transformed to the zero boundary-value problem.

Exercise 14:

Let $\Omega \subset \mathbb{R}^n$ be an open domain with \mathcal{C}^1 -boundary. We are looking for a function $u: \overline{\Omega} \longrightarrow \mathbb{R}$ satisfying

(1)
$$\begin{cases} -\Delta u + u = f & \text{in } \Omega\\ \frac{\partial u}{\partial n} = 0 & \text{on } b\Omega \end{cases}$$

and f is a given function on Ω , where $\frac{\partial u}{\partial n}$ denotes the outward normal derivative of u. (u is called a solution to the Neumann problem)

A weak solution of (1) is a function $u \in H^1(\Omega)$ satisfying

$$\int_{\Omega} \nabla u \cdot \nabla v \, d\lambda + \int_{\Omega} uv \, d\lambda = \int_{\Omega} fv \, d\lambda, \ \forall v \in H^1(\Omega).$$

Show that for every $f \in L^2(\Omega)$ there exists a unique weak solution $u \in H^1(\Omega)$ of (1) and show that u is given by

$$\min_{v \in H^1(\Omega)} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + v^2) \, d\lambda - \int_{\Omega} f v \, d\lambda \right\}.$$

Hint: use Green's formula:

$$\int_{\Omega} (\triangle g) h \, d\lambda = \int_{b\Omega} \frac{\partial g}{\partial n} \, h \, d\sigma - \int_{\Omega} \nabla g \cdot \nabla h \, d\lambda$$

for each $g \in \mathcal{C}^2(\overline{\Omega})$ and $h \in \mathcal{C}^1(\overline{\Omega})$.

27.01.2014

Exercise 15: Gauge invariance of Schrödinger operators with magnetic fields.

Let $A, A' \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}^n)$ be such that dA = dA'. Suppose that $V \in L^2_{\text{loc}}(\mathbb{R}^n)$ and $V \ge 0$. Show that $\sigma(H(A, V)) = \sigma(H(A', V))$.

Hint: Show that A = A' + dg, where $g \in \mathcal{C}^1(\mathbb{R}^n)$ (Poincaré Lemma) and that H(A, V) and H(A', V) are unitarily equivalent.