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1 Complex numbers and functions

1.1 Complex numbers

The quadratic equation x2 + 1 = 0 has the two formal solutions x1,2 = ±
√
−1, and

Euler1 writes in 1777 : ” formulam
√
−1 littera i in posterum designabo.”

Definition 1.1. We consider C := R2 as a vector space over R, with multiplication
in C : (a, b) ∈ C, a, b ∈ R, (c, d) ∈ C, c, d ∈ R

(a, b)(c, d) = (ac− bd, bc+ ad)

In this way C becomes a commutative field with zero element (0, 0) and unit element
(1, 0); for (a, b) 6= (0, 0), we have

(a, b)−1 =
(

a

a2 + b2
,
−b

a2 + b2

)
.

For (a, b) ∈ C, we also write a + ib, this means that (a, 0) corresponds to the real
number a and (0, 1) to the imaginary unit i.

The multiplication law from above stems from the formal multiplication

(a+ ib)(c+ id) = ac− bd+ i(bc+ ad).

For z = (x, y), we will write

z = (x, y) = (x, 0) + (0, 1)(y, 0) = x+ iy,

where x = <z is called real part of z and y = =z imaginary part of z.
For z = (x, y) = x+ iy ∈ C, the complex number

z = (x,−y) = x− iy

is called complex conjugate of z, and we have the following rules : z, w ∈ C :

(z + w)− = z + w, zw = z w, z = z.

We define |z|2 = zz , |z| is the absolute value of z. We have |z| =
√
x2 + y2, for

z = x+ iy, and |z| = |z|. In addiltion

<z = 1
2(z + z), =z = 1

2i (z − z),

1 Euler, Leonhard (1707–1783)
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|zw| = |z||w|, |z + w| ≤ |z|+ |w|, ||z| − |w|| ≤ |z − w|.

Polar representation.

Let z = x+ iy 6= 0. we set x = r cos θ and y = r sin θ, where r = |z| is the absolute
value of z and θ = arg z the argument of z. We have z = r(cos θ + i sin θ) = reiθ,

which will become clear after introducing the complex exponential function, see
section 1.10. Since cos θ = cos(θ + 2kπ) and sin θ = sin(θ + 2kπ), for k ∈ Z, there
are infinitely many values of θ corresponding to a single z. The principal argument
Arg z of z is to be taken −π < Arg z ≤ π, in this way the polar representation of z
becomes uniquely determined.

Examples. (a) z = 2 + 2i, r = |z| = 2
√

2, Arg z = π
4 ;

(b) z = 2− 2i, r = |z| = 2
√

2, Arg z = −π4 .

Product of complex numbers.
Let z = r(cos θ + i sin θ) und w = s(cosφ+ i sinφ). Then

zw = rs[(cos θ cosφ− sin θ sinφ) + i(cos θ sinφ+ sin θ cosφ)]
= rs(cos(θ + φ) + i sin(θ + φ)),

where we used the addition rules for the cosine and sine function. Hence one has
to multiply the absolute values and to add the angles. Concerning the principal
argument one has to be careful in this connection as the following example shows:
let z = −1 and w = i. Then Arg (−1) = π and Arg (i) = π/2, but Arg ((−1)i) =
Arg (−i) = −π/2 6= Arg (−1) + Arg (i).

de Moivre’s formula.
Let n ∈ N. Then

zn = rn(cosnθ + i sinnθ) = rneinθ,

which follows by induction.

Roots of complex numbers.
Let n ∈ N, z 6= 0, z = r(cos θ + i sin θ). Using de Moivre’s formula we get an n-th
root of z by

z1/n = r1/n(cos θ/n+ i sin θ/n).

As z = r(cos(θ + 2kπ) + i sin(θ + 2kπ)), for k ∈ Z, the expressions

r1/n(cos((θ + 2kπ)/n) + i sin((θ + 2kπ)/n))

are also n-th roots of z.
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There are n different n-th roots of z, with arguments

θ

n
,
θ + 2π
n

, . . . ,
θ + 2(n− 1)π

n
.

Riemann sphere and stereographic projection.
Let S2 = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1} be the unit sphere in R3 with
N = (0, 0, 1) as north pole on S2. In this context, S2 is also called Riemann sphere.
2 We consider C as the equator plane of S2. A point z ∈ C is associated with the
intersection point P of S2 with the ray joining the north pole with z ∈ C. In this
way we obtain a homeomorphism φ between S2 \ {N} and C, given by

φ(x1, x2, x3) = 1
1− x3

(x1 + ix2),

with the inverse

φ−1(x1 + ix2) = 1
x2

1 + x2
2 + 1

(2x1, 2x2, x
2
1 + x2

2 − 1).

One-point compactification.
By continuous continuation of φ to the whole of S2 we obtain a topological homeo-
morphism between the compact space S2 and the so-called extended plane (one-point
compactification of C) C :

φ(N) :=∞ , φ−1(∞) := N ,φ(S2) = C.

1.2 Some topological concepts

We explain some topological concepts and basic results, which will be important
later on.

Definition 1.2. Let (zn)∞n=1 be a sequence in C. z0 is called accumulation point of
the sequence , if for each ε > 0 the ball Kε(z0) = {z : |z−z0| < ε} contains infinitely
many members of the sequence. z0 is called limit of the sequence , if for each ε > 0
there exists nε > 0 such that

|zn − z0| < ε , ∀n > nε.

2 Riemann, Georg Friedrich Bernhard (1826–1866)
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The sequence (zn)∞n=1 is called Cauchy sequence 3, if for each ε > 0 there exists
nε > 0, such that

|zn − zm| < ε , ∀n,m > nε.

Each Cauchy sequence has a limit, C is complete.

Definition 1.3. Leti G ⊆ C. G is open, if for each z ∈ G there exists ε > 0, such
that Kε(z) ⊆ G. A set U is a neighborhood of the set M , if there exists an open set
V such that M ⊂ V ⊂ U. A ⊆ C is called closed , if C \A is open.

The union of arbitrarily many open sets is open; the intersection of finitely many
open sets is open; the union of finitely many closed sets is closed; the intersection of
arbitrarily many closed sets is closed.
Let M ⊆ C be an arbitrary set in C.

M◦ :=
⋃
{U : U ⊆M, U open}

is called interior ofM ;M◦ is an open set, it is the largest open set which is contained
in M.

M :=
⋂
{A : A ⊇M, A closed}

is called closure of M ; M is a closed set, it is the smallest closed set which contains
M.

The set ∂M := M \M◦ is called boundary of M. .
Let M ⊆ C be an arbitrary set in C. A subset U ⊆ M is called relatively open in
M, if there is an open set O in C such that U = O ∩M.

A set X ⊆ C is called connected , if X = X1 ∪ X2 with X1 ∩ X2 = X1 ∩ X2 = ∅
implies that one of the two sets X1, X2 is empty. An open connected subset G ⊆ C
is called a domain in C domains are also pathwise connected , any two points can
be joined by a continuous curve in G.
If X ⊆ C and x ∈ X, we denote by Ex the largest connected set in X containing
the point x. The set Ex is called connected component of x.
A domain G in the complex plane is called simply connected if its complement with
respect to the extended plane, C \G, is connected.

Leti N ⊆M ⊆ C. We say that N is dense in M , if N ⊇M.

Let N ⊆ M ⊆ C. We say that N is discrete in M, if for each z ∈ M there exists
a neighborhood U (an open disc with center z), such that U ∩N contains at most
finitely many elements of N.

3 Cauchy, Augustin Louis (1789–1857)
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A subset K ⊆ C is called compact , if each open covering of K has a finite subcover-
ing. K is compact in C if aad only if K is closed and bounded in C (i.e. there exists
C > 0 such that |z| ≤ C, ∀z ∈ K).
Let M ⊆ C be a subset of C. U is relatively compact in M (we write U ⊂⊂ M), if
U ⊆M and U is compact.

Definition 1.4. Let G ⊆ C and f : G −→ C a function. we separate f(z) in its real
and imaginary part: f(z) = u(z) + iv(z) = <f(z) + i=f(z), where u, v : C −→ R are
real-valued functions. The set {(z, w) : f(z) = w, z ∈ G} ⊆ C2 is called graph of f.
The sets {z : <f(z) = const.} , {z : =f(z) = const.} , {z : |f(z)| = const.} are the
level lines of f.

Examples: a) f(z) = z2, <f(z) = x2− y2, =f(z) = 2xy. The level lines are circles
and hyperbolas.
b) f(z) = az, a ∈ C, a 6= 0. This is a rotation-dilation. We write a = α + iβ, then
we have

az = αx− βy + i(βx+ αy).

If one considers f as a mapping from R2 to R2, one obtains(
x

y

)
7→
(
αx− βy
βx+ αy

)
=
(
α −β
β α

)(
x

y

)
= (α2 + β2)1/2

(
cos γ − sin γ
sin γ cos γ

)(
x

y

)
,

where
cos γ = α

(α2 + β2)1/2 , sin γ = β

(α2 + β2)1/2 .

Definition 1.5. Let O ⊆ C be an open subset of C, and let f : O −→ C be a
function. f is called continuous at z0 ∈ O, if for each ε > 0 there exists δ > 0, such
that

|f(z)− f(z0)| < ε for |z − z0| < δ.

f is called continuous on a set M, if f is continuous in each point of M.

f is continuous in z0 if and only if for each sequence (zn)∞n=1 with limn→∞ zn = z0
we have limn→∞ f(zn) = f(limn→∞ zn) = f(z0).
If f and g are continuous, then f + g, f.g, f

g (g 6= 0) are continuous.
f is continuous, if and only if <f und =f are continuous.
If f is continuous, then |f | is continuous.
If f is continuous on a compact set K, then

sup
z∈K
|f(z)| = max

z∈K
|f(z)| = |f(z1)| , for some z1 ∈ K,

inf
z∈K
|f(z)| = min

z∈K
|f(z)| = |f(z2)| , for some z2 ∈ K.
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If, in addition, f 6= 0 on K, then there exists δ > 0 such that

|f(z)| ≥ δ , ∀z ∈ K.

1.3 Holomorphic functions

Definition 1.6. Let U ⊆ C be an open set and f : U −→ C a function. f is called
complex differentiable at z0 ∈ U, if there exists a function ∆ : U −→ C, which is
continuous at z0, such that

f(z) = f(z0) + (z − z0)∆(z), z ∈ U.

f is called holomorphic on U, if f is complex differentiable at each point of U, we
write f ∈ H(U).
f is holomorphic at z0 ∈ U, if there exists an open neighborhood U0 of z0, such that
f is holomorphic on U0.

Remark. If f is complex differentiable at z0, we have

f(z)− f(z0)
z − z0

= ∆(z) ; lim
z→z0

f(z)− f(z0)
z − z0

= ∆(z0) = f ′(z0).

The following theorem has the same proof as in the real case.

Theorem 1.7. Let f and g be complex differentiable at z0. Then f + g and f · g are
complex differentiable at z0. In addition, λf is complex differentiable at z0, where
λ ∈ C, and the following rules are valid:

(f + g)′ = f ′ + g′ , (λf)′ = λf ′ , (f · g)′ = f ′ · g + f · g′.

If g(z0) 6= 0, then (
f

g

)′
= f ′ · g − f · g′

g2 .

Let w0 = f(z0) and let h be complex differentiable at w0. Then

(h ◦ f)′(z0) = h′(f(z0))f ′(z0) (chain rule).

We will need some results about holomorphic functions derived from the Cauchy
Theorem to show an inverse function theorem for holomorphic functions.

Theorem 1.8. Suppose f is holomorphic on a domain G, z0 ∈ G, and f ′(z0) 6= 0.
Then there exists an open neighborhood U of z0 with U ⊂ G such that f is injective
on U, the image V = f(U) of U is open, and the inverse function

f−1 : V −→ U
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is holomorphic on V and satisfies

(f−1)′(f(z)) = 1/f ′(z), z ∈ U.

For the proof see 2.36.
Examples: a) f(z) = zn , n ∈ N.

f ′(z0) = lim
z→z0

zn − zn0
z − z0

= lim
z→z0

(z − z0)(zn−1 + zn−2z0 + · · ·+ zzn−2
0 + zn−1

0 )
z − z0

= nzn−1
0 .

b) f(z) = z.

First we take the limit z → z0 parallel to the real axis: z − z0 = h ∈ R, h→ 0
z − z0
z − z0

= h

h
= 1;

and now parallel to the imaginary axis: z − z0 = ih, h ∈ R, h→ 0
z − z0
z − z0

= −ih
ih

= −1.

Hence f(z) = z is nowhere complex differentiable.

1.4 The Cauchy–Riemann equations

Here we explain the relationship between real and complex differentiable functions,
which is expressed by the Cauchy–Riemann equations.

Definition 1.9. Let U ⊆ C be open and g : U −→ R. g is real differentiable at
z0 ∈ U , if there exist functions ∆1,∆2 : U −→ R, continuous at z0, such that

g(z) = g(z0) + (x− x0)∆1(z) + (y − y0)∆2(z), (1.1)

where z = x+ iy and z0 = x0 + iy0.

We have that ∆1(z0) = ∂g
∂x (z0) = gx(z0), which is the partial derivative with respect

to x, and ∆2(z0) = ∂g
∂y (z0) = gy(z0) is the partial derivative with respect to y. In

order to see this we first choose z = x+ iy0, then (1.1) implies

∆1(z) = g(z)− g(z0)
x− x0

and putting x→ x0, we obtain the assertion about the partial derivative with respect
tox. Choosing z = x0 + iy we get the assertion about the partial derivative with
respect to y.

In addition we have that each real differentiable function at z0 is also continuous
at z0.
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Example 1.10. Let z = x+ iy and

u(z) =

{
xy
|z|2 falls z 6= 0
0 falls z = 0.

Then u fails to be continuous at z = 0, since

lim
n→∞

u(1/n, 1/n) = lim
n→∞

1/n2

2/n2 = 1
2 6= u(0, 0) = 0.

But the partial derivatives exist and ux(0, 0) = uy(0, 0) = 0, since

ux(0, 0) = lim
h→0

u(h, 0)− u(0, 0)
h

= 0.

Using the mean value theorem from real analysis one can show the following
result: if ux and uy are continuous at z0, then u is real differentiable at z0.

Now we take a function f being complex differentiable at at z0. For h ∈ R both of
the limits

lim
h→0

f(z0 + h)− f(z0)
h

and lim
h→0

f(z0 + ih)− f(z0)
ih

exist and are equal. Splitting f into real and imaginary part f(z) = u(x, y)+ iv(x, y)
we obtain

f ′(z0) = lim
h→0

u(x0 + h, y0)− u(x0, y0)
h

+ i lim
h→0

v(x0 + h, y0)− v(x0, y0)
h

= lim
h→0

u(x0, y0 + h)− u(x0, y0)
ih

+ i lim
h→0

v(x0, y0 + h)− v(x0, y0)
ih

.

This implies that ux(z0) + ivx(z0) = 1/i(uy(z0) + ivy(z0)) and, again after taking
real and imaginary parts,

ux(z0) = vy(z0)
vx(z0) = −uy(z0).

This system of two partial differential equations for the functions u and v is called
the Cauchy–Riemann diifferential equations.

Hence we have now shown the following

Theorem 1.11. Let f be complex differentiable at z0 and split the function into real
and imaginary parts f = u+ iv. Then

ux(z0) = vy(z0)
vx(z0) = −uy(z0).

In addition
f ′(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0).
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Now we consider complex-valued functions.

Definition 1.12. Now let f : U −→ C be a complex-valued function We say that f
is real differentiable at z0, if there are functions ∆1,∆2 : U −→ C, being continuous
at z0 such that

f(z) = f(z0) + (x− x0)∆1(z) + (y − y0)∆2(z), z ∈ U.

We have again

∆1(z0) = ∂f

∂x
(z0) = fx(z0) und ∆2(z0) = ∂f

∂y
(z0) = fy(z0) .

Lemma 1.13. The following assertions are equivalent:
(1) f : U −→ C is real differentiable at z0;
(2) real and imaginary part of f = u+ iv are real differentiable at z0;
(3) there exist functions A1, A2 : U −→ C being continuous at z0 such that

f(z) = f(z0) + (z − z0)A1(z) + (z − z0)−A2(z),

where

A1(z0) = 1
2(fx(z0)− ify(z0)) and A2(z0) = 1

2(fx(z0) + ify(z0)).

Proof. For f = u+ iv we have:

f(z) = f(z0) + (x− x0)∆1(z) + (y − y0)∆2(z)
= u(z0) + (x− x0)<∆1(z) + (y − y0)<∆2(z)

+ i[v(z0) + (x− x0)=∆1(z) + (y − y0)=∆2(z)].

This shows that (1) and (2)are equivalent and that

fx(z0) = ux(z0) + ivx(z0) and fy(z0) = uy(z0) + ivy(z0).

an easy computation shows that

f(z) = f(z0) + (x− x0)∆1(z) + (y − y0)∆2(z)

= f(z0) + [(x− x0) + i(y − y0)] 12(∆1(z)− i∆2(z))

+ [(x− x0)− i(y − y0)] 12(∆1(z) + i∆2(z))

= f(z0) + (z − z0)A1(z) + (z − z0)−A2(z),

where
A1(z) = 1

2(∆1(z)− i∆2(z)) and A2(z) = 1
2(∆1(z) + i∆2(z)).
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The expressions for the functions A1 and A2 lead to the following

Definition 1.14. The Wirtinger–derivatives 4 are defined by

∂f

∂z
= 1

2

(
∂f

∂x
− i∂f

∂y

)
,
∂f

∂z
= 1

2

(
∂f

∂x
+ i

∂f

∂y

)
Theorem 1.15. The function f : U −→ C satisfies the Cauchy– Riemann differen-
tial equations at z0 ∈ U if and only if ∂f∂z (z0) = 0.

Proof. Splitting f into real and imaginary part one obtains

∂f

∂z
= 1

2

(
∂f

∂x
+ i

∂f

∂y

)
= 1

2 [ux + ivx + i(uy + ivy)]

= 1
2 [ux − vy + i(vx + uy)] .

Hence
∂f

∂z
= 0⇔ ux = vy , uy = −vx.

Remark. The advantage of this concept is that the system of partial differential
equations

ux(z0) = vy(z0)
vx(z0) = −uy(z0).

can be written in one equation, namely

∂f

∂z
(z0) = 0.

Theorem 1.16. Let f : U −→ C and z0 ∈ U.
f is complex differentiable at z0 if and only if f is real differentiable at z0 and
∂f
∂z (z0) = 0. In this case we have f ′(z0) = ∂f

∂z (z0).

Proof. First suppose that f(z) = f(z0) + (z− z0)∆(z), where ∆ is continuous at z0.

We set A1 = ∆, A2 = 0. Then f(z) = f(z0) + (z − z0)A1(z) and, by Lemma 1.13,
we have that f is real differentiable. Since A2 = 0, the Cauchy–Riemann differential
equations are satisfied.

For the other direction, let f be real differentiable at z0. Then, by 1.13, there
exist functions A1 and A2, being continuous at z0, such that

f(z) = f(z0) + (z − z0)A1(z) + (z − z0)−A2(z),

4 Wirtinger, Wilhelm (1865–1945)
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and, by assumption,we have A2(z0) = ∂f
∂z (z0) = 0. Let

∆̃(z) =

{
A2(z)(z−z0)−

z−z0
für z 6= z0

0 für z = z0.

Since A2 is continuous at z0 and A2(z0) = 0 and
∣∣∣ (z−z0)−

z−z0

∣∣∣ = 1, we have
limz→z0 ∆̃(z) = 0. Hence ∆̃ is continuous at z0.

Now let ∆ = A1 + ∆̃. Then ∆ is continuous at z0 and

f(z) = f(z0) + (z − z0)A1(z) + (z − z0)−A2(z)

= f(z0) + (z − z0)
[
A1(z) + A2(z)(z − z0)−

z − z0

]
= f(z0) + (z − z0)(A1(z) + ∆̃(z))
= f(z0) + (z − z0)∆(z).

Hence f is complex differentiable at z0.

The assumptions about differentiability can considerably be weakened:

Theorem 1.17 (Looman–Menchoff). Let f = u + iv : U −→ C. Suppose that all
partial derivatives ux, uy, vx, vy exist and satisfy the Cauchy–Riemann differential
equations on U. Then f is complex differentiable on U.

For a proof see for instance (? ).

Examples
(1) f = u + iv, u(x, y) = x2 − y2, v(x, y) = 2xy. f is real differentiable on C and
since ux = 2x, uy = −2y, vx = 2y, vy = 2x, the Cauchy–Riemann differential
equations are satisfied. Hence f is complex differentiable on C and holomorphic on
C. We have

f(z) = z2 = x2 − y2 + 2ixy.

(2) f = u + iv, u(x, y) = x3 − 3xy2, v(x, y) = 3x2y − y3. Also in this case, the
Cauchy–Riemann differential equations are satiafied and f is holomorphic on C; we
have f(z) = z3.

(3)f = u+ iv, u(x, y) = ex cos y, v(x, y) = ex sin y. The Cauchy–Riemann differen-
tial equations are satisfied and f is holomorphic on C. Later on (see section 1.8.) we
will see that f is the complex exponential function. We have

f(z) = ez = ex+iy = ex(cos y + i sin y).

(4) f = u + iv, u(x, y) = x3y2, v(x, y) = x2y3. f is real differentiable on C and
ux = 3x2y2, vy = 3x2y2, uy = 2x3y, vx = 2xy3. It follows that the Cauchy–
Riemann differential equations are satisfied if and only if (x2 +y2)xy = 0. These are
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exactly the points on the coordinate axes. Hence f is complex differentiable there
but not holomorphic.

In the following we explain some formulas of the so-called Wirtinger calculus.

Remark. (1)We consider complex-valued functions which can be expressed by the
complex conjugate variables z and z. Computing the Wirtinger derivatives ∂

∂z and
∂
∂z of such functions one can take z and z as independent variables.

Examplel. f(z) = |z|2 = zz , ∂f
∂z = z , ∂f

∂z = z. f is complex differentiable at
z = 0, but fails to be holomorphic in z = 0.

(2) ∂
∂z ,

∂
∂z are C–linear operators, i.e. for real differentiable functions f, g : U −→ C

and for c, d ∈ C we have

∂

∂z
(cf + dg) = c

∂f

∂z
+ d

∂g

∂z
,
∂

∂z
(cf + dg) = c

∂f

∂z
+ d

∂g

∂z
.

(3)

∂

∂z

(
∂f

∂z

)
= ∂

∂z

(
1
2

(
∂f

∂x
− i∂f

∂y

))
= 1

4

(
∂

∂x
+ i

∂

∂y

)(
∂f

∂x
− i∂f

∂y

)
= 1

4

(
∂2f

∂x2 − i
∂2f

∂x∂y
+ i

∂2f

∂y∂x
+ ∂2f

∂y2

)
= 1

4

(
∂2f

∂x2 + ∂2f

∂y2

)
= 1

4∆f

The differential operator ∆ is called Laplace operator5.

(4) Let f, ϕ : U −→ C real differentiable functions. The equation

∂f

∂z
= ϕ

is called the inhomogeneous Cauchy–Riemann differential equation . It corresponds
to the system of the two partial differential equations

1/2(ux − vy) = <ϕ , 1/2(uy + vx) = =ϕ.

5 Laplace, Pierre Simon (1749–1827)
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1.5 A geometric interpretation of the complex derivative

Definition 1.18. Let U ⊆ C and let f : U −→ C be real differentiable on U. We can
consider f as a mapping from a subset of R2 to R2, if we separate f into real and
imaginary part: f(z) = u(x, y) + iv(x, y).

Jf =
∣∣∣∣ux uy
vx vy

∣∣∣∣ = uxvy − uyvx.

Jf is the Jacobi determinant. 6 of f.

Remark. If f is complex differentiable, then the Cauchy–Riemann differential equa-
tions are valid: ux = vy , uy = −vx. Hence

Jf = u2
x + v2

x.

By 1.11 we have f ′ = ux + ivx, which implies that |f ′|2 = u2
x + v2

x and

Jf = |f ′|2.

Definition 1.19. Let f : U −→ C be complex differentiable at z0 ∈ U. Then

lim
h→0

f(z0 + h)− f(z0)− hf ′(z0)
h

= 0.

Let
(Tf(z0))(h) := f ′(z0)h , h ∈ C.

(Tf(z0)) : C −→ C is called the tangential map of f at the point z0. It is a C–linear
map.

Remark. If f is only real differentiable at z0, then we have by 1.13

f(z) = f(z0) + (z − z0)A1(z) + (z − z0)−A2(z).

Take for h = z − z0 and set

(Tf(z0))(h) = ∂f

∂z
(z0)h+ ∂f

∂z
(z0)h.

This mapping (Tf(z0)) : C −→ C is in general only R–linear.
It is easy to show that f is complex differentiable at z0 if and only if (Tf(z0)) :

C −→ C is C–linear.

Definition 1.20. Let T : C −→ C be a bijective R–linear map. For z = x + iy and
w = u+ iv let 〈z, w〉 = <(zw) = xu+ yv the euklidean scalar product of the vector
space C = R2 over R.
T is an angle preserving map, if

|z||w|〈T z, T w〉 = |T z||T w|〈z, w〉 ∀z, w ∈ C.

6 Jacobi, Carl Gustav (1804–1851)
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Remark. If ϕ is angle between z and w, then

cosϕ = 〈z, w〉
|z||w|

,

hence the upper assumption means that the angle between T z and T w coincides
with the original angle.

Definition 1.21. Let f : U −→ C be real differentiable on U.
f is angle preserving at z0 ∈ U, if the tangential map (Tf(z0)) : C −→ C is

angle preserving.
f is called angle preserving on U, if f angle preserving at each point of U.

Theorem 1.22. Let f : U −→ C be a holomorphic function on U and suppose that
f ′(z) 6= 0 , ∀z ∈ U. Then f is angle preserving on U.

Proof. By 1.19 we have (Tf(z))(h) = f ′(z)h. We have to show that

|h||k|〈(Tf(z))(h), (Tf(z))(k)〉 = |(Tf(z))(h)||(Tf(z))(k)|〈h, k〉 , ∀h, k ∈ C.

The left hand side is equal to

|h||k|〈f ′(z)h, f ′(z)k〉 = |h||k|<(f ′(z)hf ′(z)k) = |h||k||f ′(z)|2<(hk),

and the right hand side

|f ′(z)h||f ′(z)k|<(hk) = |f ′(z)|2|h||k|<(hk).

Let γ : [a, b] −→ U ⊆ C be a curve in C (see Chapter 2, section 1). We split into
real– and imaginary part

t 7→ γ(t) = x(t) + iy(t) , t ∈ [a, b].

γ is differentiablezierbar in s ∈ (a, b), if the derivatives x′(s) and y′(s) exist. We set
γ′(s) = x′(s) + iy′(s).

Let z = γ(s) and suppose that γ′(s) 6= 0. The map

t 7→ z + γ′(s) t , t ∈ R

the tangent to the curve γ in z = γ(s).
If f : U −→ C is a holomorphic function, we can consider the image curve:

f ◦ γ : [a, b] −→ C.

We have

t 7→ f(γ(t)) = u(x(t), y(t)) + iv(x(t), y(t)) , γ(t) = z = x(t) + iy(t).
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Using the chain rule we obtain

(f ◦ γ)′(s) = ux(z)x′(s) + uy(z)y′(s) + i[vx(z)x′(s) + vy(z)y′(s)]
= 1/2[ux(z) + ivx(z)− i(uy(z) + ivy(z))](x′(s) + iy′(s))

+ 1/2[ux(z) + ivx(z) + i(uy(z) + ivy(z))](x′(s)− iy′(s))

= ∂f

∂z
(z)(x′(s) + iy′(s)) + ∂f

∂z
(z)(x′(s)− iy′(s)) (nach 1.14)

= (Tf(z))(γ′(s)) (nach 1.19).

If (f ◦ γ)′(s) 6= 0, Then the image curve has the tangent

t 7→ f(z) + (f ◦ γ)′(s) t = f(z) + (Tf(z))(γ′(s)) t , t ∈ R

in the point f(z).
Now let γ1 and γ2 be two curves through the point z. The angle between the two

curves in the point z is given by the angle between the corresponding tangents in
this point. The direction vectors of the tangents are γ′1(s) and γ′2(s). Hence the angle
between the two curves in the point z is given by ^(γ′1(s), γ′2(s)). The angle between
the image curves in the point Punkt f(z) is ^((Tf(z))(γ′1(s)), (Tf(z))(γ′2(s))). We
suppose that f is holomorphic in z and f ′(z) 6= 0. Then, by 1.22, we get

^(γ′1(s), γ′2(s)) = ^((Tf(z))(γ′1(s)), (Tf(z))(γ′2(s))).

Example: f(z) = z2 , f ′(z) = 2z , f ′(z) 6= 0 , ∀z ∈ C∗ = C \ {0}. Then we have
f = u + iv with u(x, y) = x2 − y2 and v(x, y) = 2xy. The parallels to the y–Achse
with equation x = a are mapped by f to the parabolas v2 = 4a2(a2 − u) with the
common focus (0, 0). The parallels to the x–Achse with equation y = b are mapped
by f to the parabolas v2 = 4b2(b2 + u) with common focus (0, 0). This follows by
using the above formulas for u and v, plugging in the equations for the parallels and
finally eliminating x and y. The angles between the curves (90◦) are preserved by
the map f.

1.6 Uniform convergence

The concept of uniform convergence will play an important role in the investigation
of power series and limits of sequences of holomorphic functions.

Definition 1.23. Let fn : U −→ C be a sequence of functions and A ⊆ U. (fn)∞n=1
converges uniformly on A to a function f, if for ε > 0 there exists nε ∈ N, such that

|fn(z)− f(z)| < ε , ∀n > nε and ∀z ∈ A.
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A series
∑∞
n=1 fn converges uniformly on A, if the sequence of its partial sums(∑N

n=1 fn

)
N

converges uniformly on A.
We write |f |A := supz∈A |f(z)|.

Theorem 1.24. Let fn : U −→ C be a sequence of functions. The following asser-
tions are equivalent:

(1) (fn)n converges uniformly on A ⊆ U ;
(2) (fn)n is a Cauchy sequence on A, i.e. ∀ε > 0 ∃nε ∈ N, such that

|fn − fm|A < ε , ∀m,n > nε.

Proof. (1) ⇒ (2): If (fn)→ f converges uniformly on A, then

|fn − fm|A ≤ |fn − f |A + |f − fm|A <
ε

2 + ε

2 = ε,

for n and m large enough.
(2) ⇒ (1): ∀z ∈ A we have

|fn(z)− fm(z)| ≤ |fn − fm|A < ε , ∀n,m > nε.

For a fixed z ∈ A, the sequence (fn(z))n is a Cauchy sequence in C. Since C is
complete, there exists the limit of this sequence:

lim
n→∞

fn(z) = f(z)

(pointwise convergence). For an arbitrary z ∈ A, we choose m0 = m(z), such that
|fm(z)− f(z)| < ε , ∀m > m0. Then

|fn(z)− f(z)| ≤ |fn(z)− fm(z)|+ |fm(z)− f(z)| < ε+ ε

∀n > nε , ∀m > m0 and for arbitrary z ∈ A.

Theorem 1.25.
∑∞
n=1 fn converges uniformly on A, if and only if for each ε > 0

there exists nε ∈ N, such that

|fm+1(z) + · · ·+ fn(z)| < ε

for all n > m ≥ nε and for all z ∈ A.

Proof. Since

fm+1(z) + · · ·+ fn(z) =
n∑
k=1

fk(z)−
m∑
k=1

fk(z),

everything follows from Theorem 1.24.
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Theorem 1.26 ( Weierstraß majorant criterion). 7 Let fn : U −→ C be a sequence of
functions with

sup
z∈A
|fn(z)| = |fn|A ≤Mn , Mn ≥ 0.

Suppose that
∑∞
n=1Mn <∞. Then the series

∑∞
n=1 fn converges uniformly on A.

Proof. Let ε > 0. There exists nε with

|
n∑

k=m+1

fk(z)| ≤
n∑

k=m+1

|fk(z)| ≤
n∑

k=m+1

Mk < ε,

∀n > m ≥ nε and ∀z ∈ A; now we can apply Theorem 1.25

Examples. 1) fn(z) = zn , n ∈ N. fn → 0 converges uniformly on each compact
subset of D = {z : |z| < 1}. If K ⊂ D is a compact subset of D, then there exists
0 < r < 1 with K ⊂ Dr(0) = {z : |z| < r}, and we have

|fn(z)| = |zn| ≤ rn → 0 , ∀z ∈ K.

2)
∑∞
n=0 z

n = 1
1−z with uniform convergence on all compact subsets of D. Let

K be as above in example 1, then∣∣∣∣∣
∞∑
n=0

zn

∣∣∣∣∣ ≤
∞∑
n=0
|zn| ≤

∞∑
n=0

rn <∞,

∀z ∈ K, and we can apply Theorem 1.26.
3)
∑∞
n=0

zn

n! converges uniformly on all compact subsets of C. If K is a compact
subset in C, then there exits N ∈ N with K ⊂ DN (0). We assume to know the
Taylor series expansion of the real exponential function and obtain∣∣∣∣∣

∞∑
n=0

zn

n!

∣∣∣∣∣ ≤
∞∑
n=0

∣∣∣∣znn!

∣∣∣∣ ≤ ∞∑
n=0

Nn

n! = eN ,

∀z ∈ K. Now we apply again Theorem 1.26.

1.7 Power series

Definition 1.27. Let z0 ∈ C be a fixed point and an ∈ C for n ∈ N0 = N∪ {0}. The
expression

∞∑
n=0

an(z − z0)n

7 Weierstraß, Karl Theodor Wilhelm (1815–1897)



1.7 Power series 19

is called formal power series at z0 with coefficients an.
For two formal power series

P =
∞∑
n=0

an(z − z0)n and Q =
∞∑
n=0

bn(z − z0)n

we define the sum

P +Q =
∞∑
n=0

(an + bn)(z − z0)n,

and the product

P ·Q =
∞∑
n=0

cn(z − z0)n, where cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0

the last expression is also called the Cauchy product.

Theorem 1.28. If s,M > 0 are two constants with the property that

|an|sn ≤M , ∀n ∈ N0,

then the power series
∑∞
n=0 an(z− z0)n converges uniformly and absolutely on each

compact subset of Ds(z0) = {z : |z − z0| < s}.

Proof. If K is a compact subset of Ds(z0), then there exists a positive r < s with
K ⊂ Dr(z0). Set q = r/s < 1. Then we have

sup
z∈K
|an(z − z0)n| ≤ sup

z∈Dr(z0)
|an(z − z0)n| ≤ |an|rn = |an|sn

rn

sn
≤Mqn,

since
∑∞
n=0Mqn <∞, the assertion follows from Theorem 1.26

Remark. If |an|sn ≤ M , ∀n ∈ N0, then the sequence (|an|rn)n converges to 0 for
each positive r < s.

Definition 1.29. Let
∑∞
n=0 an(z − z0)n be a power series and

R := sup{t ≥ 0 : (|an|tn)n is a bounded sequence}.

R is called radius of convergence of the power series
∑∞
n=0 an(z − z0)n.

Theorem 1.30. Let
∑∞
n=0 an(z − z0)n be a power series with radius of convergence

R. Then:
(1)

∑∞
n=0 an(z − z0)n is uniformly convergent on each compact subset of DR(z0).

(2)
∑∞
n=0 an(z − z0)n fails to be convergent in C \DR(z0).
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Proof. (1) If R = 0, the assertion is trivial. If R > 0, then we have for an arbitrary
positive s < R that the sequence (|an|sn)n is bounded. By Theorem 1.28, the power
series

∑∞
n=0 an(z − z0)n converges uniformly on each compact subset of Ds(z0),

and as s was an arbitrary positive number < R, the first assertion of the Theorem
follows.

(2) If |z − z0| > R, then the sequence (|an| |z − z0|n)n is unbounded and the
power series

∑∞
n=0 an(z − z0)n fails to be convergent.

In the following theorem we show that the radius of convergence can be computed
in terms of the coefficients of the power series.

Theorem 1.31 (Cauchy–Hadamard). 8 Let
∑∞
n=0 an(z− z0)n be a power series with

radius of convergence R. Then:

R =
(

lim sup
n→∞

|an|1/n
)−1

(1/0 =∞ 1/∞ = 0).

Proof. Let L =
(
lim supn→∞ |an|1/n

)−1
. We show that L = R.

Let ε > 0 be an arbitrary positive number. For almost all n ∈ N we have:
|an|1/n ≤ 1/(L−ε). Hence |an|(L−ε)n ≤ 1,which implies that the sequence (|an|(L−
ε)n)nis bounded. So we have L− ε ≤ R and L ≤ R, as ε was arbitrary. Now suppose
that L <∞. In order to show that R ≤ L, it suffices to prove that

R ≤ s , ∀s > L.

Let L < s < ∞. then s−1 < L−1 = lim supn→∞ |an|1/n, hence there exists an
infinite subset M ⊆ N such that

s−1 < |am|1/m , ∀m ∈M.

This implies |am|sm > 1 , ∀m ∈ M and (|an|sn)n fails to be a null-sequence.
Therefore we must have s ≥ R, because s < R would imply that (|an|sn)n is a
null-sequence (see the remark from above).

If L =∞, then we get L = R from the first step of the proof.

Examples.
(a)
∑∞
n=0 n

nzn, |an|1/n = n and R = 0.
(b)

∑∞
n=0 z

n, |an|1/n = 1 and R = 1.
(c)
∑∞
n=0

zn

nn , |an|
1/n = 1/n and R =∞.

(d)
∑∞
n=0

zn

n! , for this example we use the following

8 Hadamard, Jacques Solomon (1865–1963)
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Theorem 1.32. Let
∑∞
n=0 an(z − z0)n be a power series with radius of convergence

R, and suppose that an 6= 0 for almost all n. Then

lim inf
n→∞

∣∣∣∣ anan+1

∣∣∣∣ ≤ R ≤ lim sup
n→∞

∣∣∣∣ anan+1

∣∣∣∣ .
If the limit limn→∞

∣∣∣ an
an+1

∣∣∣ exists, then
R = lim

n→∞

∣∣∣∣ anan+1

∣∣∣∣ .
Example.

∑∞
n=0

zn

n! ,
an
an+1

= (n+1)!
n! = n+ 1 and R =∞.

Proof. Let S = lim infn→∞
∣∣∣ an
an+1

∣∣∣ . If S = 0, we have S ≤ R. If S > 0, it suffices to
show that s ≤ R for each 0 < s < S. Since S is a lim inf, there exists l ∈ N such that∣∣∣∣ anan+1

∣∣∣∣ > s, ∀n ≥ l.

Hence |an|s−1 > |an+1| , ∀n ≥ l. Let A = |al|sl. Then the last inequality implies
that

|al+1|sl+1 < |al|s−1sl+1 = |al|sl = A,

iterating this argument one obtains

|al+m|sl+m ≤ A ,∀m ∈ N.

Hence the sequence (|an|sn)n is bounded. Now we get from the defintion of the
radius of convergence that s ≤ R.

Now let T = lim supn→∞
∣∣∣ an
an+1

∣∣∣ . If T = ∞, we have R ≤ T. If T < ∞, it
remains to show that t ≥ R for each t > T. We get again an l ∈ N with∣∣∣∣ anan+1

∣∣∣∣ < t, ∀n ≥ l.

This implies that |an+1| > |an|t−1 , ∀n ≥ l. One can choose l such that B = |al|tl >
0. Then

|al+1|tl+1 > |al|t−1tl+1 = |al|tl = B,

and by iteration |am+l|tl+m > B , ∀m ∈ N. Hence the sequence (|an|tn)n fails to
be a null-sequence. Therefore we have t ≥ R.
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1.8 Line integrals

Here we take up the complex integral calculus. We describe the basic properties of
line integrals and its relationship to complex primitives for holomorphic functions.

Definition 1.33. Let γ : [a, b] −→ U ⊆ C be a continuous map. We call γ a curve
in C. We use γ to denote the map and γ∗ for the set γ∗ = {γ(t) : t ∈ [a, b]}. γ(a) is
called initial point and γ(b) end point of the curve. [a, b] is the parameter interval.
If γ(a) = γ(b), then γ is called a closed curve.
Let a = s0 < s1 < s2 < · · · < sn = b and γ|[sj−1,sj ] for j = 1, . . . , n continuously
differentiable (we will also say a C1 function). A piecewise continuously differentiable
γ is called a path.
Let f : U −→ C be a continuous function and γ : [a, b] −→ U a path in U.

∫
γ

f(z) dz =
b∫
a

f(γ(t))γ′(t) dt :=
n−1∑
j=0

sj+1∫
sj

f(γ(t))γ′(t) dt

=
b∫
a

<
(
f(γ(t))γ′(t)

)
dt+ i

b∫
a

=
(
f(γ(t))γ′(t)

)
dt

is the line integral of f along γ.

Remark 1.34. (a) Let ϕ : [a1, b1] −→ [a, b] be a bijective C1 function such that
ϕ′ > 0 everywhere on [a1, b1], let γ : [a, b] −→ U and γ1 := γ ◦ ϕ : [a1, b1] −→ U be
paths in U. Since we supposed that ϕ′ > 0, we have ϕ(a1) = a und ϕ(b1) = b, which
means that the orientation in γ and γ1 coincides.
For each continuous function f : U −→ C we have

∫
γ1

f(z) dz =
b1∫
a1

f(γ1(t))γ′1(t) dt =
b1∫
a1

f(γ(ϕ(t)))γ′(ϕ(t))ϕ′(t) dt

=
b∫
a

f(γ(s))γ′(s) ds =
∫
γ

f(z) dz,

where we substituted s = ϕ(t) , ds = ϕ′(t)dt.
We say that the curves γ1 and γ are equivalent. The line integrals are independent
of the parametrization.

(b) Let γ1 : [a, b] −→ U and γ2 : [b, c] −→ U be paths in U with γ1(b) = γ2(b). We
define a new path γ : [a, c] −→ U by γ|[a,b] = γ1 and γ|[b,c] = γ2 (composition of
paths).
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Then we have ∫
γ

f(z) dz =
∫
γ1

f(z) dz +
∫
γ2

f(z) dz.

(c) Let γ : [0, 1] −→ U be a path. We define the inverse path γ1 to γ by γ1(t) :=
γ(1− t) , t ∈ [0, 1]. Then γ∗ = γ∗1 and∫

γ1

f(z) dz = −
∫
γ

f(z) dz.

This follows by the substitution 1− t = s , dt = −ds in the integral

∫
γ1

f(z) dz =
1∫

0

f(γ(1− t))(−γ′(1− t)) dt =
0∫

1

f(γ(s))(−γ′(s))(−1) ds

= −
1∫

0

f(γ(s))γ′(s) ds = −
∫
γ

f(z) dz.

We write γ1 = γ−1.

(d) Let γ : [a, b] −→ U be a path and f : U −→ C a continuous function. The length
L(γ) of the path γ is given by

L(γ) =
b∫
a

|γ′(t)| dt.

We have ∣∣∣∣∣∣
∫
γ

f(z) dz

∣∣∣∣∣∣ ≤ L(γ) max
z∈γ∗

|f(z)|,

which is shown by the following estimate:∣∣∣∣∣∣
∫
γ

f(z) dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫
a

f(γ(t))γ′(t) dt

∣∣∣∣∣∣ ≤
b∫
a

|f(γ(t))| |γ′(t)| dt ≤ L(γ) max
z∈γ∗

|f(z)|.

Example 1.35. (1) Let a ∈ C, r > 0 and γ(t) = a + r(cos t + i sin t), t ∈ [0, 2π]
the positively oriented circle with center a and radius r (once passed through). Let
f : U −→ C be a continuous function and suppose that Dr(a) ⊂ U.

∫
γ

f(z) dz = r

2π∫
0

f(a+ r(cos t+ i sin t))(− sin t+ i cos t)dt.
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Special cases : a = 0, r = 1, f(z) = z :

∫
γ

z dz = i

2π∫
0

(cos 2t+ i sin 2t) dt = 0;

f(z) = z : ∫
γ

z dz = i

2π∫
0

(cos2 t+ sin2 t) dt = i

2π∫
0

dt = 2πi;

f(z) = 1/z : ∫
γ

1
z
dz =

2π∫
0

− sin t+ i cos t
cos t+ i sin t dt = 2πi.

for arbitrary a ∈ C and r > 0 :

∫
γ

dz

z − a
= r

2π∫
0

− sin t+ i cos t
a+ r(cos t+ i sin t)− a dt = ir

2π∫
0

1
r
dt = 2πi.

(2) Let a, b ∈ C , a 6= b. The path γ(t) = a + (b − a)t , t ∈ [0, 1] describes the
straight line segment [a, b] joining the points a and b, f : U −→ C, where γ∗ ⊂ U.

∫
γ

f(z) dz = (b− a)
1∫

0

f(a+ (b− a)t) dt.

If a = −1 , b = 1 and f(z) = z :

∫
γ

z dz = 2
1∫

0

(−1 + 2t) dt = 2(−t+ t2)
∣∣1
0 = 0.

If γ1 is the positively oriented semicircle between −1 and 1, then

∫
γ1

z dz = i

2π∫
π

(cos 2t+ i sin 2t) dt = 0.

Taking the function f(z) = z we see that the line integral does not depend on the
way between −1 and 1. But for f(z) = z we have

∫
γ

z dz = 2
1∫

0

(−1 + 2t) dt = 0,
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and ∫
γ1

z dz = i

2π∫
π

(cos2 t+ sin2 t) dt = iπ.

(3) Let a, b, c ∈ C and ∆ = ∆(a, b, c) be the triangle with vertices a, b, c, with the
orientation: a→ b→ c→ a.∫

∂∆

f(z) dz =
∫

[a,b]

f(z) dz +
∫

[b,c]

f(z) dz +
∫

[c,a]

f(z) dz.

If ∆′ = ∆(a, c, b) is the triangle with the orientation a→ c→ b→ a, then∫
∂∆′

f(z) dz =
∫

[a,c]

f(z) dz +
∫

[c,b]

f(z) dz +
∫

[b,a]

f(z) dz

= −
∫

[c,a]

f(z) dz −
∫

[b,c]

f(z) dz −
∫

[a,b]

f(z) dz

= −
∫
∂∆

f(z) dz.

1.9 Primitive functions

In the following we state an analogue to the fundamental theorem of calculus and
show that the second statement of the fundamental theorem holds for holomorphic
functions on convex domains.

Definition 1.36. Let U ⊆ Cbe an open set and f : U −→ C a continuous function.
f has a primitive function on U, if there exists a holomorphic function F on U such
that F ′ = f on U. F is called a primitive function for f.

Remark. If U ⊆ C is a connected set and f : U −→ C has two primitive functions
F1 und F2 on U, then we have F1 = F2 + C, where C is a constant. This follows
from F ′1 − F ′2 = f − f = 0.

Theorem 1.37. Suppose that the continuous function f : U −→ C has a primitive
function F on U. Let z0, z1 ∈ U and γ an arbitrary path in U from z0 to z1. Then∫

γ

f(z) dz = F (z1)− F (z0).
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Proof. Let γ : [a, b] −→ U, a = t0 < t1 < · · · < tn = b and γ a C1 map on [tk−1, tk]
for k = 1, . . . n. Then∫

γ

f(z) dz =
n∑
k=1

tk∫
tk−1

f(γ(t))γ′(t) dt =
n∑
k=1

tk∫
tk−1

F ′(γ(t))γ′(t) dt

=
n∑
k=1

tk∫
tk−1

(F ◦ γ)′(t) dt =
n∑
k=1

[F (γ(tk))− F (γ(tk−1))]

= F (z1)− F (z0).

Corollary 1.38. Suppose that the continuous function f : U −→ C has a primitive
on U, then ∫

γ

f(z) dz = 0,

for each closed path γ in U.

Remark. If F ∈ H(U) and F ′ is continuous (later we will see that we do not need
the last assumption), then ∫

γ

F ′(z) dz = 0,

for each closed path γ in U.

Example 1.39. (a) The function f(z) = zn , n ∈ Z , n 6= −1 has F (z) = zn+1

n+1 as
primitive on C for n ≥ 0 and on C∗ for n < −1. We have∫

[z0,z1]

zn dz = 1
n+ 1(zn+1

1 − zn+1
0 ) ,

∫
γ

zn dz = 0,

for n 6= −1 and for each closed path γ with 0 /∈ γ∗.
The complex polynomial p(z) =

∑n
k=0 akz

k has
∑n
k=0

ak
k+1z

k+1 as primitive.

(b) For the function f(z) = z, the line integral
∫
γ
f(z) dz depends not only on the

initial and endpoint of the path (see Example (2) in 1.35), hence, by 1.37, f has no
primitive on any open subset of C.

(c) If γ(t) = cos t+ i sin t , t ∈ [0, 2π], then∫
γ

dz

z
= 2πi,
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by 1.38, the function f(z) = 1
z has no primitive on C∗.

Now we will prove the converse of Corollary 1.38.

Theorem 1.40. Let G ⊆ C be a domain (open and connected) and f : G −→ C a
continuous function. Suppose that for each closed path γ in G we have∫

γ

f(z) dz = 0.

Then f has a primitive on G.

Proof. Fix a ∈ G fix. For an arbitrary z ∈ G, we choose a path γz in G from a to z
and we set

F (z) =
∫
γz

f(ζ) dζ.

We will show that F ′(z0) = f(z0) for an arbitrary z0 ∈ G.
If z is sufficiently close to z0, then [z0, z] ⊂ G and the path γ, which is composed by
γz0 , [z0, z] and γ−1

z , is a closed path in G. Hence, by assumption, we have

0 =
∫
γ

f(ζ) dζ =
∫
γz0

f(ζ) dζ +
∫

[z0,z]

f(ζ) dζ −
∫
γz

f(ζ) dζ.

This implies

F (z)− F (z0) =
∫
γz

f(ζ) dζ −
∫
γz0

f(ζ) dζ =
∫

[z0,z]

f(ζ) dζ

=
1∫

0

f(z0 + t(z − z0))(z − z0) dt = (z − z0)A(z),

where A(z) =
∫ 1

0 f(z0 + t(z − z0)) dt , A(z0) = f(z0). Hence

A(z) = F (z)− F (z0)
z − z0

.

In order to show F ′(z0) = f(z0), it suffices to prove that A is continuous at z0. For
this aim we estimate

|A(z)−A(z0)| ≤ max
t∈[0,1]

|f(z0 + t(z − z0))− f(z0)|.

Since f is continuous at z0, we get now the same for A. Hence F is a primitive of f
on G.
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We remark that the definition of the function F does not depend on the choice of
the path γz. If γ̃z is a different path from a to z, then γz γ̃z−1 is a closed path in G
and hence ∫

γz

f(ζ) dζ −
∫
γ̃z

f(ζ) dζ =
∫

γz γ̃z−1

f(ζ) dζ = 0

which implies that ∫
γz

f(ζ) dζ =
∫
γ̃z

f(ζ) dζ.

If we assume something more about the domain G, we can considerably weaken the
assumptions in Theorem 1.40.

Definition 1.41. The domain G ⊆ C is convex, if whenever two points z0, z1 belong
to G, then the straight line segment [z0, z1] joining the two points is contianed in G.

Theorem 1.42. Let G be a convex domain in C and f : G −→ C a continuous
function. Suppose that for each triangle ∆ ⊆ G∫

∂∆

f(z) dz = 0.

Then f has a primitive on G.

Proof. Fix a ∈ G and let
F (z) =

∫
[a,z]

f(ζ) dζ,

for z ∈ G. By assumption, the straight line segment [a, z] ⊂ G. If z0 ∈ G, then the
triangle ∆ with vertices a, z, z0 is contained in G and hence

0 =
∫
∂∆

f(ζ) dζ =
∫

[a,z0]

f(ζ) dζ +
∫

[z0,z]

f(ζ) dζ −
∫

[a,z]

f(ζ) dζ.

Now we can continue as in the proof of Theorem 1.40.

Remark. If G is not convex, the assertions of Theorem 1.42 are true at least in each
convex neighborhood Uz ⊆ G of an arbitrary point z ∈ G.
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In the following we study the interchange of limit processes where uniform limits of
sequences of functions and line integrals are involved.

Theorem 1.43. Leti γ be a path in C and (fn)n be a sequence of continuous functions
on γ∗. Suppose that the sequence (fn)n converges uniformly on γ∗ to a function f.
Then

lim
n→∞

∫
γ

fn(z) dz =
∫
γ

lim
n→∞

fn(z) dz =
∫
γ

f(z) dz.

Proof. By 1.34 (d) we have∣∣∣∣∣∣
∫
γ

fn(z) dz −
∫
γ

f(z) dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
γ

(fn(z)− f(z)) dz

∣∣∣∣∣∣ ≤ L(γ) max
z∈γ∗

|fn(z)− f(z)|,

which implies the assertion.

Remark. If the series
∑∞
n=0 fn of continuous functions fn converges uniformly on

γ∗, then ∫
γ

( ∞∑
n=0

fn(z)

)
dz =

∞∑
n=0

∫
γ

fn(z) dz.

Theorem 1.44. Let P (z) =
∑∞
n=0 an(z − z0)n be a power series with radius of

convergence R > 0. Then P is holomorphic on DR(z0) and

P ′(z) =
∞∑
n=1

nan(z − z0)n−1.

(we can interchange summation and differentiation)

Proof. First we show the following assertion. Let R′ be the radius of convergence of
the power series Q(z) =

∑∞
n=1 nan(z − z0)n−1. Then R′ ≥ R.

Without loss of generality we can assume that z0 = 0. The power series
∑∞
n=0 nz

n

has radius of convergence 1, i.e. ∀ρ ∈ [0, 1) the sequence (nρn)n is bounded. Now we
have |anzn1 | ≤ M , ∀n ∈ N (M > 0), for an arbitrary z1 ∈ DR(0), in addition we
have

|nanzn−1
2 | = n

|z2|

∣∣∣∣z2
z1

∣∣∣∣n |anzn1 | ≤ n ∣∣∣∣z2
z1

∣∣∣∣n M

|z2|
,

for 0 < |z2| < |z1|. Since
∣∣∣ z2
z1

∣∣∣ < 1, the sequence (|nanzn−1
2 |)n is bounded. As

|z2| < |z1| < R were chosen arbitrarily, we get from the definition of the radius of
convergence 1.29 that R′ ≥ R.
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Now let γ be an arbitrary closed path in DR′(0). We will show that Q has P as a
primitive on DR′(0) :∫

γ

Q(z) dz =
∫
γ

( ∞∑
n=1

nanz
n−1

)
dz =

∞∑
n=1

nan

∫
γ

zn−1 dz = 0,

here we interchanged integration and summation (see 1.43) and used Example
1.39(a). By Theorem 1.40, this implies that there exists a primitive of Q on DR′(0).
A primitive of Q is∫

[0,z]

Q(ζ) dζ =
∫

[0,z]

( ∞∑
n=1

nanζ
n−1

)
dζ =

∞∑
n=1

nan

∫
[0,z]

ζn−1 dζ

=
∞∑
n=1

nan
zn

n
=
∞∑
n=1

anz
n,

where we used again 1.43 and Example 1.39 (a). Hence also

P (z) = a0 +
∞∑
n=1

anz
n

is a primitive of Q auf DR′(0).We have also seen that P converges on DR′(0), hence
R′ = R.

Remark. We can apply 1.44 for P ′ to see that P ′ is holomorphic onDR(z0). Iterating
this argument we obtain the existence of derivatives of P of arbitrary order and the
formula

P (k)(z) =
∞∑
n=k

n(n− 1) . . . (n− k + 1)an(z − z0)n−k , an = P (n)(z0)
n! .

1.10 Elementary functions

Here we define the complex elementary functions by its power series and derive the
most important properties including a definition of π and a proof of the Eulerian
identity e2πi = 1.

Definition 1.45. We define the complex exponential function by the power series
exp z = ez =

∑∞
n=0

zn

n! .
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The series converges uniformly on all compact subsets of C. By Theorem 1.44 we
have

(ez)′ =
∞∑
n=1

nzn−1

n! =
∞∑
n=1

zn−1

(n− 1)! =
∞∑
n=0

zn

n! = ez,

also (ez)′ = ez.

Theorem 1.46. For z, w ∈ C we have ez+w = ezew.

Proof. Let f(z) = e−zez+w. Then

f ′(z) = −e−zez+w + e−zez+w = 0 , ∀z ∈ C.

f is holomorphic in C, and since f ′ = ux+ ivx = vy− iuy = 0, we obtain ux = uy =
vx = vy = 0. Hence f = const., and

e−zez+w = f(0) = ew,

setting w = 0, we get e−zez = e0 = 1. This implies

(ez)−1 = e−z and ez+w = ezew.

Remark. We know from the lat proof that e−zez = e0 = 1 for all z ∈ C. Hence the
exponential function has no zeroes.

Next we define the complex sine and cosine function again by power series.

Definition 1.47.

sin z =
∞∑
n=0

(−1)n

(2n+ 1)!z
2n+1, cos z =

∞∑
n=0

(−1)n

(2n)! z
2n,

the series converge uniformly on all compact subsets of C.

Using the power series it is easy to show the following formulas

cos z + i sin z = eiz , cos(−z) = cos z , sin(−z) = − sin z,

cos z = 1
2
(
eiz + e−iz

)
, sin z = 1

2i
(
eiz − e−iz

)
,

(sin z)′ = cos z , (cos z)′ = − sin z.

For z = x+ iy we have by 1.46

ez = ex+iy = exeiy = ex(cos y + i sin y),
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since
|eiy|2 = eiyeiy = (cos y + i sin y)(cos y − i sin y) = eiye−iy = 1,

we get |eiy| = 1 and cos2 y + sin2 y = 1 for all y ∈ R. In addition

<ez = ex cos y , =ez = ex sin y , |ez| = |ex(cos y + i sin y)| = ex = e<z,

since | cos y + i sin y| = 1.
The expression

ez = ex(cos y + i sin y)

can be interpreted as polar representation of the exponential function, and we have

arg ez = =z.

Next we will determine the zeroes of the sine and cosine function.
First we claim that there are positive real numbers x such that cosx = 0. Suppose
that this is not true. Then, since cos 0 = 1, we have cosx > 0 for each x > 0. Hence
we have for the derivative sin′ x = cosx > 0 and the function sin would be strictly
increasing. As sin 0 = 0, we would have sin x > 0 for x > 0. This would imply that
for 0 < x1 < x2 :

(x2 − x1) sin x1 <

x2∫
x1

sin t dt = cosx1 − cosx2 ≤ 2.

Since we have sin x > 0, the last inequality gives a contradiction if x2 is sufficiently
large.
The zero set of the continuous function cos is closed and cos 0 6= 0, hence there exists
a smallest positive number x0 with cosx0 = 0.
We define the number π by

π := 2x0.

Then cos(π/2) = 0 and since cos2 x + sin2 x = 1 this implies sin(π/2) = ±1. As
cosx > 0 in (0, π/2), the function sin is increasing in (0, π/2). Hence sin(π/2) = 1.
This implies

exp(π2 i) = i.

By 1.46, we get
exp(πi) = −1 , exp(2πi) = 1.

In this way we get that all real zeroes of the function cos are of the form {(2k+1)π/2 :
k ∈ Z} and all real zeroes of the function sin are of the form {kπ : k ∈ Z}.
Suppose that cos z = 0. Set z = x+ iy and recall that 2 cos z = eiz + e−iz. It follows
that e2iz + 1 = 0, which implies e−2y cos 2x = −1 , e−2y sin 2x = 0. Hence cos z = 0
implies that z must be real and cos has no other zeroes. Also sin has no other zeroes.
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Remark. (a) The mapping ϕ : t 7→ eit is a homomorphism between the additive
group (R,+) and the multiplicative group S1 = {z ∈ C : |z| = 1}, since we have

ϕ(t1 + t2) = ϕ(t1)ϕ(t2) , t1, t2 ∈ R.

(b) The mapping ψ : z 7→ ez is a homomorphism between the additive group (C,+)
and the multiplicative group (C∗ = C \ {0}, .) :

ψ(z1 + z2) = ψ(z1)ψ(z2) , ∀z1, z2 ∈ C.

ψ is surjective : let w ∈ C∗, each z = x + iy with x = log |w| and y = argw is the
preimage of w, since we have ez = exeiy = elog |w|ei argw = |w|ei argw, where the
last expression corresponds to the polar representation of w.
ψ fails to be injective. Kerψ = {z : ψ(z) = 1} = {2πik : k ∈ Z} = 2πiZ, since
1 = ez = ex(cos y + i sin y) implies x = 0 and y = 2πk , k ∈ Z.
The exponential function is periodic with period 2πi, i.e. exp(z + 2πi) = exp(z).
(c) Each strip {z ∈ C : a ≤ =z < a + 2π} , a ∈ R, is mapped onto C∗ by the
exponential function. This follows from (b).

In the following we introduce some other elementary functions related to the expo-
nential function.

Definition 1.48.
tan z = sin z

cos z , z 6= (k + 1/2)π , k ∈ Z

cot z = cos z
sin z , z 6= kπ , k ∈ Z.

We have
tan z = 1

i

e2iz − 1
e2iz + 1 , cot z = i

e2iz + 1
e2iz − 1 ,

(tan z)′ = 1
cos2 z

, (cot z)′ = − 1
sin2 z

.

Definition 1.49.

cosh z = 1
2(ez + e−z) , sinh z = 1

2(ez − e−z).

We have

cosh z = cos iz , sinh z = 1
i

sin iz , cos z = cosh iz , sin z = 1
i

sinh iz.

Now we investigate the inverse functions of the elementary functions introduced
above.
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Definition 1.50. For each z ∈ C∗ there are infinitely many w ∈ C with ew = z.

Each of these values w is called a logarithm of z.
Each logarithm has the form

w = log |z|+ iarg z.

Two logarithms of z differ by an entire multiple of 2πi.
Let C− = C \ {z ∈ C : =z = 0 , <z ≤ 0} be the slit plane. For each z ∈ C− we have
a unique representation of z = |z|eiϕ with −π < ϕ < π. We define

Logz := log |z|+ iϕ , z ∈ C−

as the principal branch of the logarithm.

Example Log i = iπ/2

Theorem 1.51. Let G0 = {z ∈ C : −π < =z < π}. Then the exponential function
exp : G0 −→ C− is holomorphic and bijective, the inverse function is the principal
branch of the logarithm, it is a map from C− onto G0, which is also holomorphic
and bijective.

Proof. For z = x+ iy ∈ G0 we observe that w = ez = exei=z belongs to the domain
of the principal branch of the logarithm, since |w| = ex > 0 and argw = =z. Then
we have

Log(exp z) = x+ i=z = x+ iy = z.

If w ∈ C−, then

exp(Logw) = exp(log |w|+ i argw) = |w|ei argw = w.

Hence exp and Log are inverse functions to each other, hence both of them are
bijective.
Since (exp z)′ = exp z 6= 0 ,∀z ∈ C, it follows from the differentiation rule for inverse
functions (see 1.8) that the principal branch of the logarithm Log is holomorphic on
C−, and we have

(Log w)′ = 1
w
, w ∈ C−.

Remark. One has to be careful when using the functional equation which is valid
for the real logarithm. The following lines show that one must stay in the domain
of the branch of the logarithm when using the functional equation:

log(−1) = log(i · i) = log i+ log i = iπ/2 + iπ/2 = iπ,

but

0 = log 1 = log((−1)(−1)) = log(−1) + log(−1) = 2 log(−1)⇒ log(−1) = 0.
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Definition 1.52. Let z ∈ C− and a ∈ C. We define

za := exp(aLogz).

The chain rule 1.7 shows that
(za)′ = aza−1.

Examples. 1a = exp(aLog 1) = e0 = 1 , ∀a ∈ C.
The function z 7→ z1/2 = exp(1/2Log z) for z ∈ C− is the principal branch of the
complex root function.
In addition we have

ii = exp(iLog i) = exp(i2π/2) = exp(−π/2) = 0, 208...

and
√
i = i1/2 = exp(1/2Log i) = exp(iπ/4) =

√
2

2 (1 + i).

Also here one has to be careful when using arithmetic rules like

(zα)β = zαβ ,

which is to be understood as an equality of sets. Otherwise it can lead to absurd
conclusions: let z 6= 0 and set z = eα for a certain α ∈ C; let β = α/2πi. Then
z = eα = e2πiβ = (e2πi)β = 1β = 1.

1.11 Exercises

1) Determine the real and imaginary part and the absolute value of

2
1− 3i , (1 + i

√
3)6,

(
1 + i

1− i

)5
,

(
1 + i

√
3

1− i

)4

.

2) Determine all complex numbers z, for which z = z2.

3) Show that for |z| = r > 0 :

<z = 1
2

(
z + r2

z

)
, =z = 1

2i

(
z − r2

z

)
.

4) Prove the identity

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2),
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and explain its geometric meaning.

5) Determine the absolute value and the principal argument of

2.718− 3.010i, 3 + 2i
5i− 4 , 3

(
cos 4π

3 + i sin 4π
3

)
.

6) Let z0 =
√

3+i
−1−i . Compute z123

0 .

7) Compute all eighth roots of 256(cos 80◦ + i sin 80◦).

8) Determine all real numbers x and y, for which the following equations hold:
(i) 2(x+ iy) = (x+ iy)2,

(ii) |2− (x− iy)| = x+ iy,

(iii) x−iy
x+iy = i.

9) Give a geometric description of the sets of all points determined by the following
relations:
(i) |z − 2 + 3i| < 5,
(ii) =z ≥ <z,
(iii) |z − i|+ |z − 1| = 2,
(iv) <z = |z − 2|.

10) Let |w| < 1. Show: ∣∣∣ z − w
wz − 1

∣∣∣ < 1, for |z| < 1,

and ∣∣∣ z − w
wz − 1

∣∣∣ = 1, for |z| = 1.

11) Let f(z) = U(r, θ) + iV (r, θ), where z = r(cos θ + i sin θ). Let f be complex
differentiable in z0 6= 0. Show that in z0 we have

∂U

∂r
= 1
r

∂V

∂θ
and ∂V

∂r
= −1

r

∂U

∂θ
.

These are the Cauchy–Riemann differential equations in polar coordinates.

12) Let f(z) = u(x, y) + iv(x, y) and suppose that f satisfies the Cauchy–Riemann
differential equations in an open set G ⊆ C. Let G the set in C obtained by reflection
of G on the real axis, i.e. (x, y) ∈ G, if (x,−y) ∈ G. Define a function g on G by

g(z) = f(z), z ∈ G.

Show that g satisfies the Cauchy–Riemann differential equations in G.

13) Suppose that the function f satisfies the Cauchy–Riemann differential equations
for |z| < R. Define g by

g(z) = f(R2/z), |z| > R.
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Show that g satisfies the Cauchy–Riemann differential equations for |z| > R. (Use
polar coordinates!)

14) Let a, b, c ∈ R. For x, y ∈ R and z = x + iy set P (z) = ax2 + 2bxy + cy2.

Find a necessary and sufficient condition for the existence of a holomorphic function
f ∈ H(C) such that <(f) = P.

15) Suppose that f is holomorphic in C holomorph and real-valued. Show that f is
constant.

16) Let f(z) = |z|4 + (=z)2. Compute : fz and fz.

17) Let f be a real differentiable function. Prove :

∂f

∂z
= ∂f

∂z
,
∂f

∂z
= ∂f

∂z
.

18) Let f be a real-valued, real differentiable function. Show

∂f

∂z
= ∂f

∂z
.

19) Prove the following chain rules:

∂(g ◦ f)
∂z

= ∂g

∂w

∂f

∂z
+ ∂g

∂w

∂f

∂z
,

∂(g ◦ f)
∂z

= ∂g

∂w

∂f

∂z
+ ∂g

∂w

∂f

∂z
.

20) Let ϕ be a differentiable function of the real variable t. Show that :

d(f ◦ ϕ)
dt

= ∂f

∂z

dϕ

dt
+ ∂f

∂z

dϕ

dt
.

21) Let

f(z) = 1
2

(
z + 1

z

)
, z ∈ C \ {0}.

Show that f is angle preserving on C \ {−1, 0, 1}. Determine the images under f of
the circles |z| = r < 1 and of the rays z = ct, 0 < t < 1, |c| = 1 and use these image
curves in order to check the angle preservation of f.

22) Let
fn(z) = 1

1 + azn
, a 6= 0.

Show that the sequence (fn) converges to 1 uniformly on each compact subset of
the open unit disc D1(0) and that (fn) converges to 0 uniformly on each compact
subset of C \Dr(0), for r > 1.
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23) Show that the series
∞∑
n=1

zn

(1− zn)(1− zn+1)

converges to z(1 − z)−2 uniformly on each compact subset of D1(0) and that it
converges to (1− z)−2 uniformly on each compact subset of C \D1(0).

24) Where is the series
∞∑
n=1

zn

1− zn ,

uniformly convergent?

25) Let R1 and R2 be the radii of convergence of the power series

∞∑
n=0

anz
n and

∞∑
n=0

bnz
n.

Show that the radius of convergence R of
∞∑
n=0

anbnz
n

satisfies R ≥ R1R2; the radius of convergence R′ of
∞∑
n=0

an
bn
zn, bn 6= 0, n ∈ N0

satisfies R′ ≤ R1/R2; and the radius of convergence R0 of

∞∑
n=0

(anb0 + an−1b1 + · · ·+ a0bn)zn

satisfies R0 ≥ min(R1, R2).

26) Determine the radius of convergence of the following power series

∞∑
n=0

(−1)n(z + i)n,
∞∑
n=0

(−1)n2nz2n+2,

∞∑
n=1

n−1/2zn,

∞∑
n=1

2nzn

(2n)! ,
∞∑
n=0

(2n)!
(n!)2 z

n,

∞∑
n=1

n!
nn
zn,

∞∑
n=0

2−nz2n ,

∞∑
n=2

2lognzn,

∞∑
n=0

(n+ an)zn,

∞∑
n=0

√
(2n)!
n! z2n,

∞∑
n=1

n−1z3n ,

∞∑
n=1

[
n2

(n+ 1)(n+ 2)

]n
zn.
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27) Suppose that

f(z) =
∞∑
n=0

anz
n

has radius of convergence R > 0. Prove that

1
2π

2π∫
0

|f(reiθ)|2 dθ =
∞∑
n=0
|an|2r2n, 0 < r < R.

Suppose that f is also bounded on DR(0), i.e.

|f(z)| ≤M, z ∈ DR(0),

for some constant M > 0. Show that in this case
∞∑
n=0
|an|2R2n ≤M2.

Let r < R and M(r) = sup0≤θ≤2π |f(reiθ)|. Prove that

|an| ≤ r−nM(r), n ∈ N0.

28) Compute the following line integrals:∫
γ1

z dz,

∫
γ2

z dz,

∫
γ3

z dz,

∫
γ4

dz

z
,

∫
γ5

z dz,

where γ1 is the polygon from (1, 0) to (0, 0) and then to (0, 1), and γ2 is the polygon
from (0, 0) to (1, 1). γ3 is the square with vertices (0, 0), (1, 0), (1, 1), (0, 1) passed
through once in positive direction, γ4 is the unit circle |z| = 1 passed through once
in positive direction, and γ5 is a quater of a circle with vertices (0, 0), (2, 0), (0, 2)
passed through once in positive direction.

29)Let Log denote the principal branch of the complex logarithm. Determine, for
which z, w ∈ C one has

Log(zw) = Log z + Logw.

30) Let z 6= 0. Determine α, β ∈ C such that

(zα)β = zαβ .

31) Show that the complex sine function sin maps the strip

{z = x+ iy : −π/2 < x < π/2, y ∈ R}
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bijectively onto the region G obtained from the plane by deleting the two intervals
(−∞,−1] and [1,∞). Determine the inverse function of sin on G in terms of the
principal branch of the complex logarithm.

32) Determine the real and imaginary part of tan z and cot z.

33) Show that for z = x+ iy one has

| tan z|2 = sin2 x+ sinh2 y

cos2 x+ sinh2 y
and | tanh z|2 = sinh2 x+ sin2 y

sinh2 x+ cos2 y
.

34) Compute the sum of the geometric series

n∑
k=0

ekiθ

conclude from the result the sums of
n∑
k=1

sin kθ and 1
2 +

n∑
k=1

cos kθ.



2 Cauchy’s theorem and Cauchy’s formula

2.1 Winding numbers

The boundary of a domain in Cmay be unusually complicated. A natural assumption
is that the boundary consists of one or several closed curves. For this purpose the
Jordan curve theorem will be relevant. We recall some topological concepts.

Remark. Let U ⊆ C be an open set, p, q ∈ U. We say p is equivalent to q (p ∼ q),
if there exists a curve in U joining p with q. It is easily seen that ∼ defines an
equivalence relation, the associated equivalence classes are the connected components
of U. For p ∈ U let Up denote the equivalence class containing p. Up is the largest
connected subset of U containing p.

Theorem 2.1 (Jordan curve theorem). 1 Let γ : [a, b] −→ C be a closed Jordan curve
in C, i.e. γ(a) = γ(b) , but γ(s) 6= γ(t) for any s, t ∈ (a, b), s 6= t. Then the open
set C \ γ∗ has two connected components, a bounded one and an unbounded one.
The bounded component is called the interior of γ, the unbounded one is called the
exterior of γ. The bounded one is simply connected and γ∗ is the boundary of each
of the components.

The proof is lengthy and difficult, see (1).

The next result leads to the concept of the winding number.

Theorem 2.2. Let γ be a closed path and let Ω = C \ γ∗. Let

Indγ(z) := 1
2πi

∫
γ

dζ

ζ − z
, z ∈ Ω.

Then Indγ is an integer-valued function on Ω, this means Indγ(Ω) ⊆ Z, and Indγ
is constant on each connected component of Ω, in addition, Indγ(z) = 0 for each z
belonging to the unbounded connected component of Ω.
Indγ(z) is called the winding number of γ with respect to z.

Remark. The set γ∗ is compact, hence there exists a disc D such that γ∗ ⊂ D. The
set C \ D is connected and is therefore contained in a connected component of Ω.
Hence Ω has exactly one unbounded connected component.

In order to prove the theorem from above we need the following

1 Jordan, Camille (1838–1921)
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Lemma 2.3. Let φ, ψ : [a, b] −→ C be two curves in C. Let Ω ⊂ C be an open subset
of C such that Ω ∩ φ∗ = ∅. Let

f(z) =
b∫
a

ψ(t)
φ(t)− z dt , z ∈ Ω.

Then f is a holomorphic function on Ω.

Remark. Later on we will prove another general result on a holomorpphic parameter
integral, see 2.39.

Proof. We consider an arbitrary w ∈ Ω. then there exists r > 0 such thatDr(w) ⊆ Ω.
we will show that

f(z) =
∞∑
n=0

cn(z − w)n,

where the sum is uniformly convergent on each compact subset of Dr(w). Then, by
1.44, then the function f is holomorphic on Dr(w) and as w ∈ Ω was an arbitrary
point, we conclude that f is holomorphic on Ω.
For this aim we take z ∈ Dr/2(w) and observe that the denominator in the integral
can be written as

1
φ(t)− z = 1

φ(t)− w
φ(t)− w

φ(t)− w − (z − w) = 1
φ(t)− w

1
1− z−w

φ(t)−w

= 1
φ(t)− w

∞∑
n=0

(
z − w
φ(t)− w

)n
=
∞∑
n=0

(z − w)n

(φ(t)− w)n+1 ,

since |φ(t) − w| > r , ∀t ∈ [a, b] and Ω ∩ φ∗ = ∅, the last sum converges uniformly
for all t ∈ [a, b].
Hence

f(z) =
b∫
a

[ ∞∑
n=0

(z − w)n

(φ(t)− w)n+1

]
ψ(t) dt =

∞∑
n=0

b∫
a

(z − w)n

(φ(t)− w)n+1ψ(t) dt

=
∞∑
n=0

 b∫
a

ψ(t)
(φ(t)− w)n+1 dt

 (z − w)n =
∞∑
n=0

cn(z − w)n,

where

|cn| =

∣∣∣∣∣∣
b∫
a

ψ(t)
(φ(t)− w)n+1 dt

∣∣∣∣∣∣ ≤ b− a
rn+1 max

t∈[a,b]
|ψ(t)|.
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Now the series

f(z) =
∞∑
n=0

cn(z − w)n

converges uniformly for z in an arbitrary compact subset of Dr(w), because we can
estimate

∞∑
n=0
|cn| |(z − w)n| ≤ C

∞∑
n=0

ρn,

for some ρ < 1.

Proof of Theorem 2.2. Since

Indγ(z) = 1
2πi

∫
γ

dζ

ζ − z
= 1

2πi

b∫
a

γ′(s)
γ(s)− z ds , z ∈ Ω,

we have Indγ(z) ∈ Z⇔ Φ(b) = 1, where

Φ(t) = exp

 t∫
a

γ′(s)
γ(s)− z ds

 ,
and we used the fact that

w

2πi ∈ Z⇔ ew = 1,

see 1.47. Now we compute the logarithmic derivative of Φ(t) :

Φ′(t)
Φ(t) = γ′(t)

γ(t)− z ,

excluding the finitely many points a = s0 < s1 < · · · < sn = b, where γ possibly
fails to be differentiable. In addition we have

Φ′(t)(γ(t)− z)− Φ(t)γ′(t) = 0,

hence (
Φ(t)

γ(t)− z

)′
= Φ′(t)(γ(t)− z)− Φ(t)γ′(t)

(γ(t)− z)2 = 0

except for finitely many points. On the other hand, the function

t 7→ Φ(t)
γ(t)− z

is continuous on [a, b], which follows from the fundamental theorem of calculus, hence
it must be constant on [a, b]. As Φ(a) = e0 = 1, it follows that

1
γ(a)− z = Φ(a)

γ(a)− z = Φ(t)
γ(t)− z , t ∈ [a, b]
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and
Φ(t) = γ(t)− z

γ(a)− z , t ∈ [a, b].

Since γ is a closed path, we have γ(a) = γ(b), and hence Φ(b) = 1, and Indγ(z) ∈ Z.
By Lemma 2.3, the function

z 7→ Indγ(z) = 1
2πi

b∫
a

γ′(s)
γ(s)− z ds

is holomorphic on Ω. Since the image of connected sets under continuous maps is
again connected, we obtain that the function Indγ is constant on the connected
components of Ω.
From

Indγ(z) = 1
2πi

b∫
a

γ′(s)
γ(s)− z ds

we conclude that | Indγ(z)| < 1, if |z| is sufficiently large. Hence Indγ(z) = 0 on the
unbounded connected component of Ω.

In the following we explain why Indγ(z) is called a winding number. For this purpose
let

λ(t) =
t∫
a

γ′(s)
γ(s)− z ds.

Then λ(b) = 2πi Indγ(z) and hence =λ(b) = 2π Indγ(z). Using the same notation
as in the proof from above we get

exp(λ(t)) = Φ(t) = γ(t)− z
γ(a)− z

and arg Φ(b) = =λ(b) = 2π Indγ(z). Now we set z = 0. We have arg Φ(a) = 0 and

arg Φ(t) = arg γ(t)− arg γ(a).

This means, if t runs through the interval [a, b], the expression Indγ(0) counts how
many times γ turns around z = 0.

For a circle we get

Theorem 2.4. Let γ(t) = re2πit + a , t ∈ [0, 1] , a ∈ C. Then

Indγ(z) =

{
1 for |z − a| < r

0 for |z − a| > r.
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Proof. From example (1) in 1.35 we know that

1
2πi

∫
γ

dζ

ζ − a
= 1.

Now we can apply 2.2 to finish the proof.

2.2 The Theorem of Cauchy–Goursat and Cauchy’s Formula

The following result was first formulated by C. Goursat in full generality with a
small gap in its proof (see ()), which was closed by A. Pringsheim one year later
(()). Pringsheim’s proof, which uses the method of shrinking triangles, became the
classical one, still usual nowadays. Later on, we will prove a more general result,
which is derived from Stokes’ Theorem from real analysis (see section ). The Theorem
of Cauchy–Goursat and Cauchy’s Formula yield powerful methods for the study of
holomorphic functions, having no similar counterpart in real analysis.

Theorem 2.5. Let Ω ⊆ C be an open subset and fix a point p ∈ Ω. Let f : Ω −→ C
be a continuous function and suppose that f ∈ H(Ω\{p}). Let ∆ be an open triangle
with ∆ ⊂ Ω. Then ∫

∂∆

f(z) dz = 0.

Proof. (by A. Pringsheim)
First we suppose that p /∈ ∆.
We divide ∆ into 4 area equal triangles ∆1,∆2,∆3,∆4 as in the figure from below.
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Then ∣∣∣∣∣∣
∫
∂∆

f(z) dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
4∑
j=1

∫
∂∆j

f(z) dz

∣∣∣∣∣∣∣ ≤ 4 max
1≤j≤4

∣∣∣∣∣∣∣
∫
∂∆j

f(z) dz

∣∣∣∣∣∣∣ .
The paths in the interior of the large triangle cancel each other out.
We denote the tringle where the maximum is attained by ∆(1) and repeat the pro-
cedure from above for the triangle ∆(1) instead of ∆ obtaining a triangle ∆(2), and
so on.
In this way we get a sequence of triangles ∆ ⊃ ∆(1) ⊃ ∆(2) ⊃ . . . and after n steps
the inequality ∣∣∣∣∣∣

∫
∂∆

f(z) dz

∣∣∣∣∣∣ ≤ 4n

∣∣∣∣∣∣
∫

∂∆(n)

f(z) dz

∣∣∣∣∣∣ .
Let L(∂∆(n)) be the circumference of ∂∆(n). Then we have

L(∂∆(n)) = 2−1L(∂∆(n−1)) = · · · = 2−nL(∂∆).

Next we show that there exists a uniquely determined point z0 ∈
⋂∞
n=1 ∆(n).

For this aim we choose a sequence (zn)n with zn ∈ ∆(n) , n ∈ N. Since ∆ is compact,
there exists a limit point z0 ∈ ∆ of the sequnce (zn)n, in addition, z0 also belongs
to ∆(m), m ∈ N, which follows from the fact that the sequence (zn)∞n=m+1 ⊂ ∆(m).

Hence we have z0 ∈
⋂∞
n=1 ∆(n). z0 is uniquely determined, since L(∂∆(n)) → 0 as

n→∞.
The function f is complex differentiable in z0. Hence, by 1.6, we can write

f(z) = f(z0) + (z − z0)(f ′(z0) +B(z)),

wherei B is continuous in z0 and B(z0) = 0. The function z 7→ f(z0)+(z−z0)f ′(z0)
has a primitive (by formal integration), hence, by Corollary 1.38,∫

∂∆(m)

(f(z0) + (z − z0)f ′(z0)) dz = 0 ∀m ∈ N.

Now we have∣∣∣∣∣∣
∫

∂∆(m)

f(z) dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

∂∆(m)

(z − z0)B(z) dz

∣∣∣∣∣∣ ≤ L(∂∆(m)) max
z∈∂∆(m)

[|z − z0| |B(z)|]

≤ [L(∂∆(m))]2 max
z∈∂∆(m)

|B(z)|,

where we estimated |z − z0| , z ∈ ∂∆(m) by the circumference L(∂∆(m)).
From this we get for the original integral∣∣∣∣∣∣

∫
∂∆

f(z) dz

∣∣∣∣∣∣ ≤ 4m (2−m)2[L(∂∆)]2 max
z∈∂∆(m)

|B(z)| = [L(∂∆)]2 max
z∈∂∆(m)

|B(z)|.
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As B is continuous in z0 and B(z0) = 0, the expression maxz∈∂∆(m) |B(z)| tends to
0 as m→∞, and hence ∫

∂∆

f(z) dz = 0.

If p is a corner point of ∆, for instance p = a, then we divide ∆ as in the figure from
below
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For the integral we obtain ∫
∂∆

=
∫

∂{a,x,y}

+
∫

+ . . . ,

where we only have to handle the first summand, because the other integrals do not
contain the point p and are therefore 0 by the first step of the proof. For the first
summand we can approach x and y arbitrarily close to a, by which∫

∂{a,x,y}

f(z) dz → 0

as f is continuous.
If p lies in the interior of ∆, we can use the following decomposition of the triangle
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to reduce everyting to the second step of the proof.
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Corollary 2.6. Let Ω a convex open subset of C, p ∈ Ω and let f : Ω −→ C be a
continuous function with f ∈ H(Ω \ {p}). Then f has a primitive on Ω and∫

γ

f(z) dz = 0,

for each closed path γ in Ω.

Proof. By 2.5, we have ∫
∂∆

f(z) dz = 0

for each triangle ∆ in Ω. Now, by 1.42, there exists a primitive of f on Ω and finally,
by 1.38. ∫

γ

f(z) dz = 0

for each closed path in Ω.

Definition 2.7. An open subsetM ⊆ C is called a starshaped domain, if there exists
a point z1 ∈M (called a centre), such that for each z ∈M the straight line segment
[z1, z] joining the points z1 and z is contained in M.

Examples.
(a) The figure from below shows a starshaped domain with centre z1.
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(b) C− : here the centre is to be chosen on the positive semi axis.

Theorem 2.8. Let G be a starshaped domain, let c be a centre for G and f ∈ H(G).
Then f has a primitive on G and ∫

γ

f(z) dz = 0,

for each closed path γ in G.
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Proof. Theorem 1.42 is also valid for starshaped domains as is easily seen. Hence we
can use the same proof as in 2.6.

Example. We consider C− with 1 as centre, we write z = reiφ ∈ C−, and take the
closed path γ, as shown in the figure from below
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By 2.8, we have ∫
γ

dζ

ζ
= 0.

In addition, we can define z 7→
∫

[1,z]
dζ
ζ as a primitive for z 7→ 1/z on C−. Then

∫
[1,z]

dζ

ζ
=

r∫
1

dt

t
+

φ∫
0

ireit

reit
dt = log r + iφ.

In this way we have found the principal branch of the logarithm.

In the following we study integral representations of holomorphic functions. Cauchy’s
formula is the prototype of an integral representation. It will allow us to estimate
the size of the holomorphic function involved, to show that all derivatives of holo-
morphic functions are again holomorphic and to obtain power series expansions of
holomorphic functions.

Theorem 2.9 ( Cauchy’s formula). Let Ω be a convex domain in C, let γ be a closed
path in Ω, and let z ∈ Ω, z /∈ γ∗. Suppose that f ∈ H(Ω). Then

f(z) Indγ(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ.

Proof. Let

g(ζ) =


f(ζ)− f(z)

ζ − z
, ζ 6= z

f ′(z) , ζ = z.
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Then g is continuous on Ω and g ∈ H(Ω \ {z}). Hence g satisfies the assumptions of
2.6. So we have

1
2πi

∫
γ

g(ζ) dζ = 0.

Finally we get

1
2πi

∫
γ

f(ζ)− f(z)
ζ − z

dζ = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ − f(z) 1
2πi

∫
γ

dζ

ζ − z
= 0.

We mention an important special case. Let γ(t) = z + reit , t ∈ [0, 2π] , f ∈
H(DR(z)) , R > r. Then Indγ(z) = 1 and

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ.

In addition, we obtain the important estimate

|f(z)| = 1
2π

∣∣∣∣∣∣
∫
γ

f(ζ)
ζ − z

dζ

∣∣∣∣∣∣ ≤ 1
2π 2πr max

ζ∈γ∗

∣∣∣∣ f(ζ)
ζ − z

∣∣∣∣ = max
ζ∈γ∗

|f(ζ)| .

Plugging in for the line integral we obtain

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ = 1
2πi

2π∫
0

f(z + reit)
reit

ireit dt = 1
2π

2π∫
0

f(z + reit) dt,

which is the mean value property of holomorphic functions.

Examples. Using Cauchy’s formula we compute the following line integral:

I =
∫
γ

ez

(z − 1)(z − 2) dz.

(a) G = D3/4(0) , f(z) = ez

(z−1)(z−2) , f ∈ H(G) , γ(t) = eit

2 , t ∈ [0, 2π] : I = 0,
by 2.6
(b) G = D11/6(0) , f(z) = ez

z−2 , f ∈ H(G) , γ(t) = 3eit
2 , t ∈ [0, 2π] : by 2.9, we

have
f(1) = 1

2πi

∫
γ

f(ζ)
ζ − 1 dζ = 1

2πi

∫
γ

eζ

(ζ − 2)(ζ − 1) dζ

Hence I = −2πie.
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(c) G = D4(0) , f(z) = ez , f ∈ H(G) , γ(t) = 3eit , t ∈ [0, 2π] : by 2.9 we have

I =
∫
γ

ez

z − 2 dz −
∫
γ

ez

z − 1 dz =
∫
γ

f(z)
z − 2 dz −

∫
γ

f(z)
z − 1 dz = 2πi(e2 − e).

Theorem 2.10 (Taylor series expansion). 2 Let Ω ⊆ C be an open set and let a ∈
Ω, R > 0 be such that DR(a) ⊆ Ω. Suppose that f ∈ H(Ω). Then

f(z) =
∞∑
n=0

an(z − a)n,

where the sum converges uniformly on all compact subsets of DR(a) and

an = f (n)(a)
n! , n = 0, 1, 2, . . . ,

an are the Taylor coefficients of f in the expansion around the point a.

Proof. Let γ(t) = a + reit , r < R , t ∈ [0, 2π]. Then Indγ(z) = 1 , ∀z ∈ Dr(a)
(see 2.4). By 2.9, we have

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ = 1
2πi

2π∫
0

f(γ(t))γ′(t)
γ(t)− z dt , ∀z ∈ Dr(a).

As in the proof of 2.3 we expand the last integral into a power series

f(z) =
∞∑
n=0

an(z − a)n,

where

an = 1
2πi

2π∫
0

f(γ(t))γ′(t)
(γ(t)− a)n+1 dt = 1

2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ

and the series converges uniformly on all compact subsets of Dr(a). Since r was an
arbitrary number such that r < R, we obtain the same assertion for DR(a).
By 1.44, we obtain the formula for the Taylor coefficients.

The proof of the last theorem contains the following important results:

Theorem 2.11. If f ∈ H(Ω), then f (n) ∈ H(Ω) , ∀n ∈ N, f has complex derivatives
of arbitrary order.

2 Taylor, Brook (1685–1731)
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Theorem 2.12. Under the same assumptions as in 2.10 and for γ(t) = a+reit , r <
R , t ∈ [0, 2π], we have

f (n)(a) = n!
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ , n ∈ N.

We are now able to prove the converse of Cauchy’s theorem.

Theorem 2.13 (Morera’s theorem). 3 Let G be an open set in C and let f : G −→ C
be continuous on G. Suppose that ∫

∂∆

f(z) dz = 0

for all solid triangles ∆ in G. Then f ∈ H(G).

Proof. Let V ⊆ G be an arbitrary convex subset of G. By 1.42, there exists a
primitive F of f on V, we have that F ∈ H(V ) and by 2.11, also that F ′ = f ∈ H(V ).
Since V was an arbitrary convex subset of G, we conclude that f ∈ H(G).

2.3 Important consequences of Cauchy’s theorem

In the following we study the zero sets of holomorphic functions. Also in this context
there is no analogue in the theory of real differentiable functions.

Theorem 2.14. Let Ω ⊆ C be a domain and f ∈ H(Ω). We define the zero set of f
by

Z(f) = {a ∈ Ω : f(a) = 0}.

Then Z(f) = Ω or Z(f) is a discreet subset of Ω (i.e. Z(f) has no limit point in Ω).
In the second case, for each a ∈ Z(f) there exists a uniquely determined integer
ma ∈ N such that

f(z) = (z − a)mag(z),

where g ∈ H(Ω) and g(a) 6= 0.
We say that a is a zero of order ma of f.
In addition the zero set Z(f) is at most countably infinite.

3 Morera, Giacinto (1856–1909)
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Proof. Let A the set of all limit points of Z(f) in Ω. Since f is continuous, we have
A ⊆ Z(f).
Fix a ∈ Z(f). fix. There exists r > 0, such that Dr(a) ⊆ Ω. By 2.10, we can expand
f into a Taylor series

f(z) =
∞∑
n=0

an(z − a)n , z ∈ Dr(a).

Now we can distinguish between two cases.
1.) All Taylor coefficients an = 0, which implies that f ≡ 0 in Dr(a). Hence Dr(a) ⊆
A, i.e. a is an interior point of A.
2.) There exists a minimal m ∈ N with am 6= 0. Now we define a function g by

g(z) =

{
(z − a)−mf(z) for z ∈ Ω \ {a}

am for z = a.

Then we have f(z) = (z − a)mg(z), for all z ∈ Ω \ {a} und g ∈ H(Ω \ {a}). But as
f(z) =

∑∞
n=0 an(z − a)n in Dr(a), we get

g(z) =
∞∑
n=0

an+m(z − a)n , z ∈ Dr(a).

Hence g ∈ H(Dr(a)) and, by the definition of g, we obtain g ∈ H(Ω). Since g(a) =
am 6= 0 and since g is continuous, there exists an open neighborhood U of a such
that g(z) 6= 0 for all z ∈ U, which implies that f(z) 6= 0, for all z ∈ U \ {a} . Now
we have shown that a is an isolated point in Z(f), i.e. there exists a neighborhood
U of a, containing no other point of Z(f).
In summary, we can state the following: if a ∈ A, then all an = 0, because otherwise
a would be an isolated point ( by 2.); so, by 1., we have Dr(a) ⊆ A and A is an open
set. But A is the set of all limit points of Z(f) and is therefore also closed in Ω,
and the set B = Ω \A is open.We have Ω = A ∪B, which is a union of two disjoint
open sets. We assumed that Ω is connected, hence Ω = A or A = ∅. If A = Ωwe
have f ≡ 0 on Ω; if A = ∅ we get that Z(f) is discreet in Ω. In this case, there are
at most finitely many points of Z(f) in each compact subset of Ω, otherwise a limit
point of Z(f) would belong to this compact subset and A 6= ∅. We can write Ω as a
countable union of compact subsets of Ω :

Ω =
∞⋃
n=1

(Dn(0) ∩ Ω1/n)−,

where
Ω1/n = {z ∈ Ω : dist(z, ∂Ω) > 1/n},

hence Z(f) is at most countably infinite.
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The following results are easy but important consequences, which are also referred
to as the identity principles.

Theorem 2.15. Let Ω be a domain in C, let f, g ∈ H(Ω) and suppose that f = g on
a subset M of Ω, which has a limit point in M. Then f = g on the whole of Ω.

Proof. Let φ = f − g. Then φ(z) = 0 for all z ∈ M and 2.14 iimplies that φ(z) = 0
on the whole of Ω.

Remark. If f = g on a non-empty open subset of Ω, then f = g on the whole of Ω.
If Ω is not connected, we cannot draw this conclusion: let Ω = D1(0) ∪D1(3) and

f(z) =

{
1, z ∈ D1(0)
0, z ∈ D1(3).

Then f ∈ H(Ω), f = 0 on the open subset D1(3) of Ω, but f is not identically zero
on Ω.

Corollary 2.16. Let G be a domain in C, let f ∈ H(G) and suppose that f (n)(a) =
0, n = 0, 1, 2, . . . , for some a ∈ G. Then f ≡ 0 on G.

Proof. Let r > 0 be such that Dr(a) ⊆ G. Then, by 2.10 , f can be expanded into
a Taylor series

f(z) =
∞∑
n=0

f (n)(a)
n! (z − a)n

for z ∈ Dr(a). Since f (n)(a) = 0, n = 0, 1, 2, . . . , we have f ≡ 0 on Dr(a). Now 2.15
implies that f ≡ 0 on G.

Remark. The above result is false for C∞– functions on R. Let

f(x) =

{
e−1/x2

, x ∈ R , x 6= 0
0 , x = 0.

It follows that f ∈ C∞(R) and f (n)(0) = 0 , n = 0, 1, 2, . . . , but f is not identically
zero on R.

Definition 2.17. Let U ⊆ C be open and f ∈ H(U).We say that f has a holomorphic
logarithm on U, if there exists a function g ∈ H(U) such that f = exp(g) on U.
We say that f has a holomorphicm-the root on U, if there exists a function q ∈ H(U)
such that qm = f on U.



2.4 Isolated singularities 55

Remark. If exp(g) = f, then f 6= 0 on U. In addition we have f ′ = g′ exp(g) = g′f.

Hence g′ = f ′/f. This expression is called the logarithmic derivative of f.

Theorem 2.18. Let G be a domain in C, and f ∈ H(G) with f 6= 0 on G. Then the
following assertions are equivalent:
(1) f has a holomorphic logarithm on G;
(2) f ′/f has a primitive on G.

Proof. Suppose (1). Then we have g′ = f ′/f. Hence f ′/f has a primitive on G.
Now suppose that (2) holds. Let F ∈ H(G) a primitive of f ′/f on G. Set h =
f exp(−F ). Then

h′ = f ′ exp(−F )− fF ′ exp(−F ) = f ′ exp(−F )− ff ′

f
exp(−F ) = 0.

Since h ∈ H(G) and h′ = 0 on G, it follows that h is constant on G, i.e. f = a exp(F )
for some a ∈ C , a 6= 0. Now there exists b ∈ C with eb = a. We define φ = F + b,

and observe that φ ∈ H(G) and

exp(φ) = exp(F + b) = a exp(F ) = f.

Theorem 2.19. Let G be a star-shaped domain in C, let f ∈ H(G) , f 6= 0 on G.

Then f has a holomorphic logarithm and a holomorphic m-th root on G.

Proof. By 2.18, it suffices to show that f ′/f has a primitive on G. Now we use 2.8
: if c is a centre for G, then

g(z) =
∫

[c,z]

f ′(ζ)
f(ζ) dζ + b , f(c) = eb

is a primitive of f ′/f on G and we have exp(g) = f.

q = exp(g/m) is the desired holomorphic m–th root.

2.4 Isolated singularities

Definition 2.20. Let Ω ⊆ C be an open set and a ∈ Ω. We say that a function
f ∈ H(Ω \ {a}) has an isolated singularity at a. If one can define f at a such that
f ∈ H(Ω), we say that a is a removable singularity of f..
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Theorem 2.21. Let f ∈ H(Ω \ {a}) and denote by D′r(a) = {z : 0 < |z− a| < r} the
punctured disk. Suppose that there exists a constant M > 0 such that |f(z)| ≤ M

for all z ∈ D′r(a). Then f has a removable singularity at a.

Proof. Let

h(z) =

{
(z − a)2f(z), z ∈ Ω \ {a}
0, z = a.

We claim that h ∈ H(Ω). For this aim we compute

h′(a) = lim
z→a

h(z)− h(a)
z − a

= lim
z→a

(z − a)2f(z)
z − a

= lim
z→a

(z − a)f(z) = 0,

where we used that f is bounded on D′r(a). By 2.10, we can expand h into a Taylor
series in Dr(a).

h(z) =
∞∑
n=0

an(z − a)n , z ∈ Dr(a).

Now we define f(a) = a2. Since h(z) = (z − a)2f(z) in Dr(a) we get

f(z) =
∞∑
n=0

an+2(z − a)n,

where the series converges in Dr(a). Hence f ∈ H(Dr(a)), and also that f ∈ H(Ω).

We can now characterize all possible isolated singularities of holomorphic functions.

Theorem 2.22. Let Ω ⊆ C be an open set, let a ∈ Ω, and f ∈ H(Ω \ {a}). We
distinguish between three possible cases:

(a) f has a removable singularity at a;

(b) there exist c1, . . . , cm ∈ C , m ∈ N , cm 6= 0, such that

f(z)−
m∑
k=1

ck
(z − a)k

has a removable singularity at a; in this case a is called a pole of order m of f ;

m∑
k=1

ck
(z − a)k

is called main part of f ;

(c) for all r > 0 with Dr(a) ⊆ Ω, the image f(D′r(a)) is dense in C, i.e. for all
w ∈ C and for all ε > 0 there exists z ∈ D′r(a) such that |f(z)−w| < ε; equivalently:
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for all w ∈ C there exists a sequence (zn)n in C with limn→∞ zn = a, such that
limn→∞ f(zn) = w; in this case, a is called an essential singularity of f.

Remark. The assertion from (c) is known as the Casorati–Weierstraß Theorem 4 .

Proof. We will show that cases (a) or (b) are valid, if (c) fails.
Suppose that (c) fails: then there exist r > 0 and δ > 0 and there exists some w ∈ C
such that

|f(z)− w| > δ,

for all z ∈ D′r(a).
Set

g(z) = 1
f(z)− w , z ∈ D′r(a).

Then g ∈ H(D′r(a)) and

|g(z)| < 1
δ
, ∀ z ∈ D′r(a),

hence g is bounded on D′r(a), so g has a removable singularity at a, see 2.21 .
Now we have two cases:

1.) g(a) 6= 0 : then there exist 0 < s < r and there exists ρ > 0 with |g(z)| ≥ ρ, for
all z ∈ Ds(a). Hence

|f(z)| =
∣∣∣∣ 1
g(z) + w

∣∣∣∣ ≤ 1
ρ

+ |w|,

for all z ∈ D′s(a), which means that f is bounded on D′s(a). By 2.21, f has a
removable singularity at a.

2.) g has a zero of order m , m ∈ N at a. (see 2.14). Therefore

g(z) = (z − a)mg1(z) , ∀z ∈ Dr(a),

where g1 ∈ H(Dr(a)) and g1(a) 6= 0. Since

g(z) = 1
f(z)− w = (z − a)mg1(z)

on D′r(a), we even have that g1(z) 6= 0 ∀ z ∈ Dr(a). Now we set h = 1/g1.Then
h ∈ H(Dr(a)) and

f(z)− w = (z − a)−mh(z),

for all z ∈ D′r(a).

4 Casorati, Felice (1835–1890)
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We expand h into a Taylor series on Dr(a)

h(z) =
∞∑
n=0

bn(z − a)n,

where b0 = h(a) 6= 0. Setting ck = bm−k , k = 1, . . . ,m, we have cm = b0 6= 0 and

f(z)−w = (z − a)−m (cm + cm−1(z − a) + · · ·+ c1(z − a)m−1 + bm(z − a)m + . . . )

= cm
(z − a)m + cm−1

(z − a)m−1 + · · ·+ c1
z − a

+ bm + bm+1(z − a) + . . . .

Hence

f(z)−
m∑
k=1

ck
(z − a)k

= w + bm + bm+1(z − a) + . . . ,

where the right hand side is a holomorphic function for z ∈ Dr(a).

Example 2.23. (a) Let f(z) = sin z/z , z ∈ C \ {0}. Then f ∈ H(C \ {0}), since
sin 0 = 0 and cos 0 = (sin z)′|z=0 we get from 2.14 that there exists g ∈ H(C) such
that sin z = zg(z). Hence f has a removable singulariy at z = 0 and f ∈ H(C). Since
sin z = z − z3

3! + z5

5! −+ . . . , we have f(z) = 1− z2

3! + z4

5! −+ . . . .

(b) Let f(z) = 1
sin z . Then f ∈ H(D′1(0)). Since sin z = zg(z) , g ∈ H(C) , g(0) 6= 0,

there exists r > 0 such that g(z) 6= 0 for all z ∈ Dr(0). Setting h(z) = 1/g(z) we get
h ∈ H(Dr(0)). Hence

f(z) = 1
sin z = h(z)

z
= 1
z

( ∞∑
n=0

bnz
n

)
,

where we used the Taylor series expansion of h on Dr(0) and that h(0) = b0 6= 0.
Therefore

f(z)− b0
z

= b1 + b2z + . . . ,

where the right hand side is a holomorphic function on Dr(0). This means that
f(z) = 1

sin z has a pole of order 1 at z = 0.

(c) Let f(z) = exp(1/z). Then f ∈ H(C∗). For n ∈ N we get that f(1/n) → ∞ as
n→∞. But |f(i/n)| = 1, for all n ∈ N. Hence the assertions (a) and (b) from 2.22
are not valid. Hence f has an essential singularity at z = 0.

(d) In a similar way one shows that f(z) = exp(−1/z2) has an essential singularity
at z = 0. But f |R ∈ C∞(R).
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2.5 The maximum principle and Cauchy’s estimates

In this section we prove some useful inequalities related to the absolute value of a
holomorphic function and its derivatives.

Theorem 2.24. Let f(z) =
∑∞
n=0 cn(z − a)n be a holomorphic function on DR(a).

Let 0 < r < R. Then

∞∑
n=0
|cn|2r2n = 1

2π

2π∫
0

|f(a+ reiθ)|2 dθ.

Proof. We write z − a = reiθ, then

1
2π

2π∫
0

|f(a+ reiθ)|2 dθ = 1
2π

2π∫
0

( ∞∑
n=0

cnr
neinθ

)( ∞∑
n=0

cnr
ne−inθ

)
dθ

=
∞∑
n=0
|cn|2r2n.

Definition 2.25. A function f ∈ H(C) is called an entire function.

Theorem 2.26 (Liouville’s theorem). 5 Each bounded entire function is constant.

Proof. Let f(z) =
∑∞
n=0 cnz

n be a bounded entire function, i.e. there exists a
constant M > 0 such that |f(z)| ≤M, for all z ∈ C. Then, by 2.24 , we have

∞∑
n=0
|cn|2r2n ≤M2,

for all r > 0, hence cn = 0 for all n ∈ N.

Theorem 2.27 (Maximum principle). Let Ω be a domain in C and f ∈ H(Ω). Let
a ∈ Ω be an arbitrary point in Ω and r > 0 such that Dr(a) ⊂⊂ Ω , i.e. Dr(a) ⊂ Ω.
Then

|f(a)| ≤ max{|f(a+ reiθ)| : 0 ≤ θ ≤ 2π},

with equality if and only if f is constant on Ω.

5 Liouville, Joseph (1809–1882)
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Remark. The assertion from above implies that the function z 7→ |f(z)| has no local
maximum in Ω.

Proof. If
max{|f(a+ reiθ)| : 0 ≤ θ ≤ 2π} ≤ |f(a)|,

then 2.24 implies that the function f(z) =
∑∞
n=0 cn(z − a)n satisfies

∞∑
n=0
|cn|2r2n = 1

2π

2π∫
0

|f(a+ reiθ)|2 dθ ≤ |f(a)|2 = |c0|2.

Hence cn = 0 for all n ∈ N, and f ≡ f(a) on Dr(a). Since Ω is connected, we get
from 2.15 that f ≡ f(a) on the whole of Ω.

Corollary 2.28. Let Ω be a bounded domain in C, and let f ∈ H(Ω) be a non-constant
function, which is continuous on Ω. Then the function |f | attains its maximum on
∂Ω.

Proof. Suppose that there exists z0 ∈ Ω with max
z∈Ω |f(z)| = |f(z0)|. Then there

exists r > 0 such that Dr(z0) ⊂⊂ Ω. By 2.27, we conclude that

|f(z0)| < max
0≤θ≤2π

|f(z0 + reiθ)|,

where we used that f is non-constant. So we arrive at a contradiction.

At this point we can give a proof of the fundamental theorem of algebra.

Theorem 2.29 (fundamental theorem of algebra). Let n ∈ N and let p(z) = zn +
an−1z

n−1 + · · · + a1z + a0 be a polynomial of degree n with complex coefficients
a0, a1, . . . , an−1 ∈ C. Then p has exactly n zeros (some of which may be counted
according to its multiplicities).

Proof. First we prove the following assertion:

|p(0)| = |a0| < |p(reiθ)|

for each θ ∈ [0, 2π] and each r > 1 + 2|a0|+ |a1|+ · · ·+ |an−1|.
This assertion implies, that all zeros of p are contained in the disk DR(0) where
R = 1 + 2|a0| + |a1| + · · · + |an−1|. In order to prove this assertion we take r > R.

Then r > 1 and we get

2|a0|+ |a1|r + · · ·+ |an−1|rn−1 ≤ rn−1(2|a0|+ |a1|+ · · ·+ |an−1|)
< rn−1r = rn.

(2.1)
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In addition we have

rn − |p(reiθ)| ≤ | |rneinθ| − |p(reiθ)| | ≤ |rneinθ − p(reiθ)|

= |rneinθ − rneinθ − an−1r
n−1ei(n−1)θ − · · · − a0| ≤ |an−1|rn−1 + · · ·+ |a1|r+ |a0|,

hence
rn − (|an−1|rn−1 + · · ·+ |a0|) ≤ |p(reiθ)|. (2.2)

Now we use (2.1) and (2.2) to obtain :

|a0| = 2|a0|+ |a1|r + · · ·+ |an−1|rn−1 − (|a0|+ |a1|r + · · ·+ |an−1|rn−1)

< rn − (|a0|+ |a1|r + · · ·+ |an−1|rn−1) ≤ |p(reiθ)|.

To prove the fundamental theorem of algebra, we suppose that p has no zero.Then
f = 1/p is an entire non-constant function and the assertion we just proved implies
that

|f(reiθ)| < |f(0)|

for all sufficiently large r, which contradicts 2.27. Hence there exists z1 ∈ C with
p(z1) = 0 and by 2.14 we have

p(z) = (z − z1)m q(z)

for some m ∈ N and a polynomial q with grad(q) < grad(p). (Expand p into a Taylor
series around the point z1.)
Induction on the degree of the polynomial concludes the proof.

The following estimate is related to the absolute value of a holomorphic function
and its derivatives.

Theorem 2.30 (Cauchy’s estimates). Let Ω ⊆ C be an open subset, a ∈ Ω, r >

0 , Dr(a) ⊂⊂ Ω , f ∈ H(Ω). Then for n ∈ N we have

|f (n)(a)| ≤ n!
rn

Mr,a(f),

where Mr,a(f) = maxz∈∂Dr(a) |f(z)|.

Proof. By 2.12, we have

f (n)(a) = n!
2πi

∫
∂Dr(a)

f(ζ)
(ζ − a)n+1 dζ

and hence
|f (n)(a)| ≤ n!

2π 2πr
Mr,a(f)
rn+1 .



62 2 Cauchy’s theorem and Cauchy’s formula

In the following we address the problem under which conditions the limit of a se-
quence of holomorphic functions is again holomorphic. We point out that we use
the whole theory we have developed up to now. This result will also be fundamental
for the study of topological vector spaces of holomorphic functions and gives a first
occasion to use the terminology of functional analysis.

Theorem 2.31 (Weierstraß’ theorem). Let Ω be an open subset of C , fn ∈
H(Ω) , n ∈ N. Suppose that the sequence (fn)n converges uniformly on all compact
subsets of Ω to a function f. Then f ∈ H(Ω) and, for each k ∈ N, the sequence f (k)

n

converges to f (k) uniformly on all compact subsets of Ω.
If fn ∈ H(Ω) is a Cauchy sequence in the sense of uniform convergence on all
compact subsets of Ω, i.e. for each compact subset K ⊂ Ω and for each ε > 0 there
exists Nε,K > 0 such that

sup
z∈K
|fn(z)− fm(z)| < ε

for all n,m > Nε,K , Then there exists a holomorphic function f ∈ H(Ω) with
limn→∞ fn = f uniformly on all compact subsets of Ω.
We say that the space H(Ω) is complete in the sense of uniform convergence on all
compact subsets of Ω.

Proof. f is the uniform limit of continuous functions and therefore again continuous.
Let ∆ be a solid triangle in Ω. We get from 2.5∫

∂∆

fn(z) dz = 0,

and, since ∂∆ is compact, ∫
∂∆

f(z) dz = 0.

Apply 2.13 , to get that f ∈ H(Ω).
If K is a compact subset of Ω, then s = dist(K,Ωc) > 0 and, for r = s/3, we have

K ⊂
⋃
z∈K

Dr(z) = U.

The closure U is a compact subset of Ω and we can apply 2.30

|f ′n(z)− f ′(z)| ≤ 1
r

max
w∈U

|fn(w)− f(w)| , ∀ z ∈ K,

hence f ′n converges to f ′ uniformly on K.
If fn ∈ H(Ω) is a Cauchy sequence, there exists a limit function f, which is at least
continuous on Ω (see reelle Analysis). The first part of the theorem implies that
f ∈ H(Ω).
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Remark. There are sequences of C∞–functions on R, which converge uniformly to
nowhere differentiable functions (see

Remark. We already mentioned that the space H(Ω), endowed with the topology of
uniform convergence on compact subsets of Ω is a complete topological vector space
(2.31). The topology on H(Ω) can be described by a metric:
consider a so-called compact exhaustion of Ω, which is a sequence (Kj)j of compact

subsets of Ω such that Kj ⊂
◦
Kj+1 , j ∈ N und

⋃∞
j=1Kj = Ω.

For instance, one can take

Kj = {z : dist(z,Ωc) ≥ 1/j} ∩Dj(0) , j ∈ N.

Now one defines a sequence of seminorms

‖f‖j = sup
z∈Kj

|f(z)| , f ∈ H(Ω) , j ∈ N,

and we have ‖f‖j ≤ ‖f‖j+1. The metric on H(Ω) is now defined by:

d(f, g) =
∞∑
j=1

2−j
‖f − g‖j

1 + ‖f − g‖j
, f, g ∈ H(Ω).

The metric d generates the original topology of uniform convergence on all compact
subsets of Ω on H(Ω). (see Exercises)
H(Ω) is a Fréchet space, a complete, metrizable topological vector space.

2.6 Open mappings

Definition 2.32. Let U ⊆ C be an open set and φ : U −→ C a function. φ is called
open, if φ(V ) is open, for each open subset V ⊆ U.

Remark. Recall that φ : U −→ C is continuous, if φ−1(O) is open, for each open
subset O ⊆ C. If φ is open and invertible, then φ−1 is continuous.

Example. Let φ : R −→ R , φ(x) = x2. We have φ((−1, 1)) = [0, 1). Hence φ is
not open.

Theorem 2.33 (minimum principle). Let U ⊆ C be open and f ∈ H(U), let c ∈ U

and let V a disk with center c and V ⊂ U. Suppose that

min
z∈∂V

|f(z)| > |f(c)|.

Then f has a zero in V.
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Proof. Suppose that f has no zero in V. Our assumption implies that there exists
an open neighborhood V1 of V such that V1 ⊆ U, and that f has no zero on V1. Set
g(z) = 1/f(z) , z ∈ V1. Then g ∈ H(V1), and by 2.27 we have

|f(c)|−1 = |g(c)| ≤ max
z∈∂V

|g(z)| =
[

min
z∈∂V

|f(z)|
]−1

,

and we arrive at a contradiction.

Theorem 2.34 (Open mapping theorem). Let U ⊆ C be an open set and f ∈ H(U).
Suppose that there is no open subset of U where f is constant. Then f is an open
mapping.

Proof. Let O ⊆ U be open and c ∈ O. We have to show that f(O) contains an
open disk with center f(c).Without loss of generality we can suppose that f(c) = 0,
otherwise we could consider the function z 7→ f(z)− f(c) instead of f. We supposed
that f is not constant in any neighborhood of c. We claim that there exists a disk
V with center c such that V ⊂ O and 0 /∈ f(∂V ). (If for each disk V with center
c and V ⊂ O there exists z0 ∈ ∂V with f(z0) = 0, then, by 2.15, f ≡ 0 in some
neighborhood of c, which contradicts our assumption on f.)
Now we set 2δ = minz∈∂V |f(z)| > 0 and D = Dδ(0). We will show that D ⊆ f(O).
For this aim let b ∈ D be an arbitrary point. Let |b| < δ and hence

|f(z)− b| ≥ |f(z)| − |b| > δ,

for all z ∈ ∂V, so we get

min
z∈∂V

|f(z)− b| ≥ δ > |b| = |f(c)− b|.

Now we can apply the minimum principle 2.33 for the function z 7→ f(z) − b, and
get z′ ∈ V with f(z′)− b = 0. Hence f(z′) = b and finally b ∈ f(O).

Remark. Let πm(z) = zm , m ∈ N. Then πm is an open mapping. Each w 6= 0 is
the image under πm of exactly m different points zk , k = 1, . . . ,m, i.e. πm(zk) =
w , k = 1, . . .m. For w = reiθ we have zk = r1/mei(θ+2kπ)/m , k = 1, . . . ,m. The
point w = 0 has only z = 0 as its preimage, it is a so-called branching point.
We will show that each non-constant holomorphic function is locally of the form
πm ◦ φ+ c, where φ is an invertible holomrphic function and c is a constant.

Lemma 2.35. Let Ω ⊆ C be open and f ∈ H(Ω). Define

g(z, w) =

{
f(z)−f(w)

z−w , z 6= w, z, w ∈ Ω
f ′(z) , z = w ∈ Ω.

Then g : Ω× Ω −→ C is continuous on Ω× Ω.
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Proof. It suffices to show continuity on the diagonal {(a, a) : a ∈ Ω}.
For this aim, fix a ∈ Ω and let r > 0 be such that Dr(a) ⊆ Ω and

|f ′(ζ)− f ′(a)| < ε , ∀ ζ ∈ Dr(a).

For z, w ∈ Dr(a) we set ζ(t) = (1− t)z+ tw , t ∈ [0, 1], which describes the straight
line from z to w. It is clear that ζ(t) ∈ Dr(a) , ∀ t ∈ [0, 1]. Now we compute the
integral

1∫
0

f ′(ζ(t)) dt = 1
−z + w

1∫
0

f ′(ζ(t))(−z + w) dt = 1
−z + w

1∫
0

df

dζ

dζ

dt
dt

= 1
−z + w

f(ζ(t))|10 = f(z)− f(w)
z − w

.

Hence we get

|g(z, w)− g(a, a)| =
∣∣∣∣f(z)− f(w)

z − w
− f ′(a)

∣∣∣∣ =

∣∣∣∣∣∣
1∫

0

[f ′(ζ(t))− f ′(a)] dt

∣∣∣∣∣∣
≤ sup
t∈[0,1]

|f ′(ζ(t))− f ′(a)| ≤ ε.

First we prove a result about invertible holomorphic functions.

Theorem 2.36. Let Ω ⊆ C be open, φ ∈ H(Ω) , z0 ∈ Ω and φ′(z0) 6= 0.
Then there exists an open neighborhood V of z0, V ⊆ Ω such that
(1) φ|V is injective,
(2) the function ψ : φ(V ) −→ V defined by ψ(φ(z)) = z , z ∈ V, is holomorphic on
W = φ(V ), φ has a holomorphic inverse on V.

Proof. By 2.35, there exists an open neighborhood V ⊆ Ω of z0 such that

|φ(z1)− φ(z2)| ≥ 1
2 |φ
′(z0)||z1 − z2| ,∀ z1, z2 ∈ V,

for this aim one has to choose V in such a way that∣∣∣∣φ(z1)− φ(z2)
z1 − z2

∣∣∣∣ ≥ |φ′(z0)|
2 .

If z1, z2 ∈ V , z1 6= z2, then φ(z1) 6= φ(z2) and φ is injective on V.

Since φ′(z0) 6= 0, we can choose V also such that φ′(z) 6= 0 , ∀ z ∈ V. By assertion
(1), each w ∈W = φ(V ) has a uniquely determined z ∈ V with φ(z) = w.
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Now let z, z1 ∈ V and w,w1 ∈ W be chosen such that φ(z) = w , φ(z1) = w1 and
ψ(w) = z , ψ(w1) = z1. Then we have

ψ(w)− ψ(w1)
w − w1

= z − z1
φ(z)− φ(z1) ;

if w → w1, then z → z1 and so the left hand side converges to ψ′(w1) as w → w1
and the right hand side converges at the same time to 1/φ′(z1). Hence we have

ψ′(w1) = 1
φ′(z1)

and since φ′ 6= 0 on V, we obtain ψ ∈ H(W ).

Now we are able to show the local form of a holomorphic function as indicated above.

Theorem 2.37. Let Ω be a domain in C, f ∈ H(Ω) non-constant. z0 ∈ Ω and
w0 = f(z0). Let m be the order of the zero z0 of the function z 7→ f(z)− w0.

Then there exists an open neighborhod V ⊆ Ω of z0 and a function φ ∈ H(V ) such
that
(1) f(z) = w0 + [φ(z)]m , ∀ z ∈ V ;
(2) φ is invertible on V.

Remark. On V, we have f −w0 = πm ◦φ, where πm(z) = zm. Hence f is an m–to–1
mapping on V \ {z0}.

Proof. We can take a convex open neighborhood V of z0 such that f(z) 6= w0 , ∀ z ∈
V \ {z0}, otherwise we could find a sequence (zn)n in V such that limn→∞ zn = z0
and f(zn) = w0 , ∀ n ∈ N, then, by 2.15, we would get that f ≡ w0 on V, which is
excluded by our assumption on f.
Now we can apply 2.14 to obtain that f(z)−w0 = (z − z0)mg(z) , ∀z ∈ V, where
g ∈ H(V ) and g 6= 0 on V.
By 2.19, g has a holomorphic logarithm on V, i.e. there exists h ∈ H(V ) such that
exp(h) = g on V. Now we set

φ(z) = (z − z0) exp(h(z)/m).

Then
[φ(z)]m = (z − z0)m exp(h(z)) = (z − z0)mg(z) = f(z)− w0.

In addition we have that

φ′(z) = exp(h(z)/m) + (z − z0)h′(z)/m exp(h(z)/m),

and since exp(h(z0)/m) 6= 0, we get φ′(z0) 6= 0. By taking a possibly smaller V we
can also get that φ′ 6= 0 on V. The rest of the proof now follows from 2.36.
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Theorem 2.38. Let Ω be a domain in C, f ∈ H(Ω). Suppose that f is injective on
Ω. Then f ′ 6= 0 on Ω and f has a holomorphic inverse .

Proof. If f ′(z0) = 0 for some z0 ∈ Ω, then f is an m–to–1 mapping in a punc-
tured neighborhood of z0, see 2.37, where m > 1. As f ′(z0) = 0, we arrive at a
contradiction.

Remark. The converse of the last theorem is false.

Example: f(z) = ez , f ′(z) = ez 6= 0 on C. But the exponential function is not
injective on C.

2.7 Holomorphic parameter integrals

In this section we prove a result about holomorphic parameter dependence of inte-
grals, which will be very useful for many applications later on. A first result in this
direction was already used for the Taylor series expansion of holomorphic functions,
see 2.3. Now we use general properties of L1-functions, see for instance (? ).

Theorem 2.39. Let Ω ⊂ C be open and let (X,µ) be a measure space with a positive
measure µ. Let

L1(µ) = {g : X −→ C messbar :
∫
X

|g| dµ <∞}.

Suppose that the function f : Ω×X −→ C has the following properties:
(i) f(z, .) ∈ L1(µ) for all z ∈ Ω;
(ii) for all x ∈ X, the function f(., x) : Ω −→ C is holomorphic;
(iii) for each disk K ⊂ Ω there exists an integrable non-negative function gK on X,
such that for all z ∈ K we have : |f(z, .)| ≤ gK µ-almost everywhere.
Then the function F : Ω −→ C, defined by

F (z) =
∫
X

f(z, x) dµ(x) , z ∈ Ω,

is holomorphic on Ω. For all integers n ≥ 0, the function

∂nf

∂zn
(z, .)
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is integrable on X, and for z ∈ Ω one has

F (n)(z) =
∫
X

∂nf

∂zn
(z, x) dµ(x).

Proof. Let a ∈ Ω and choose r > 0 such that K := D2r(a) ⊂ Ω. Then, by Cauchy’s
formula 2.9, we have for all z ∈ D2r(a)

f(z, x) = 1
2πi

∫
∂D2r(a)

f(ζ, x)
ζ − z

dζ.

Hence, for all z, w ∈ Dr(a) , z 6= w we obtain

F (z)− F (w)
z − w

=
∫
X

1
2πi

∫
∂D2r(a)

f(ζ, x)
(ζ − z)(ζ − w) dζ dµ(x).

Now let (wk)k be a sequence in Dr(a) with limk→∞ wk = z, where wk 6= z for all
k; define

ϕk(z, x) := 1
2πi

∫
∂D2r(a)

f(ζ, x)
(ζ − z)(ζ − wk) dζ.

Then
|ϕk(z, .)| ≤ 4πrgK(.)

2πr2 = 2
r
gK(.) µ− almost everywhere,

since |ζ − a| = 2r and wk, z ∈ Dr(a).
In addition we have

ϕk(z, .) = f(z, .)− f(wk, .)
z − wk

,

since
f(ζ, x)
ζ − z

− f(ζ, x)
ζ − wk

= (z − wk)f(ζ, x)
(ζ − z)(ζ − wk)

and we can apply Cauchy’s formula for ϕk. Hence ϕk(z, .)is a measurable function.
Considering the limit wk → z, we observe that f(ζ, x)/[(ζ − z)(ζ − wk)] tends to
f(ζ, x)/(ζ − z)2 uniformly for ζ ∈ ∂D2r(a). Hence we can interchange limit and
integration and obtain

lim
k→∞

ϕk(z, x) = 1
2πi

∫
∂D2r(a)

f(ζ, x)
(ζ − z)2 dζ = ∂f

∂z
(z.x),

where we used Cauchy’s formula for the first derivative of f with respect to z.
Now we apply the dominated convergence theorem (see (? )) and get the desired
assertion for n = 1. Using Cauchy’s formula for the higher derivatives we obtain the
general result.
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2.8 Complex differential forms

Here we recall Stokes’ theorem for 1-forms on R2, see for instance (? ). As R2 is
identified with C, we use a complex notion of differential forms which is compatible
with the Wirtinger derivatives.

Definition 2.40. We define the differential dx as a linear mapping from R2 ∼= C to
R,

dx : z 7→ (dx)z = x , z = x+ iy,

analogously (dy)z = y. If f : M ⊆ C −→ C is a real differentiable function, we define

(df)z0 := ∂f

∂x
(z0) dx+ ∂f

∂y
(z0) dy

as the complete differential of f at the point z0. More general, we say that

α = f dx+ g dy

is a 1-form , where f, g are functions. If h is another function, we define

hα := hf dx+ hg dy.

In particular, we have for f(z) = z and f(z) = z :

dz = dx+ idy and dz = dx− idy.

Recall the Wirtinger derivatives with respect to z and z:

∂

∂z
= 1

2

(
∂

∂x
− i ∂

∂y

)
bzw.

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

and a simple computation shows that

df = ∂f

∂x
dx+ ∂f

∂y
dy = ∂f

∂z
dz + ∂f

∂z
dz.

If f is a holomorphic function, we have df = ∂f
∂z dz, since

∂f
∂z = 0.

The 2-form dx ∧ dy : R2 × R2 → R is the alternating 2-linear form

dx ∧ dy(
(
ξ1
ξ2

)
,

(
η1
η2

)
) =

∣∣∣∣ξ1 η1
ξ2 η2

∣∣∣∣ = ξ1η2 − ξ2η1.

If f is a function,
ω = f(dx ∧ dy)

is a general 2-form. The following rules are valid

(f dx+ g dy) ∧ (f1 dx+ g1 dy) = (fg1 − gf1)dx ∧ dy , dx ∧ dy = −dy ∧ dx,
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dz ∧ dz = −2i dx ∧ dy = −2idλ(z),

where dλ is the Lebesgue measure in C ∼= R2,

dx ∧ dx = dy ∧ dy = dz ∧ dz = dz ∧ dz = 0.

The differential of a 1-form α = f dx+ g dy is defined by

dα := df ∧ dx+ dg ∧ dy =
(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

If α = F dz +G dz, we have

dα =
(
∂G

∂z
− ∂F

∂z

)
dz ∧ dz.

In addition, d(df) = 0 and if f is real differentiable, then

d(f dz) = −∂f
∂z

dz ∧ dz.

Example 2.41. Let z be a fixed point and let f be a real differentiable function, let
ω be the following 1-form

ω(ζ) = 1
2πi

f(ζ)
ζ − z

dζ für ζ 6= z.

Then

dω(ζ) = − 1
2πi

[
∂f/∂ζ

ζ − z
+ f(ζ) ∂

∂ζ
(ζ 7→ 1

ζ − z
)
]
dζ ∧ dζ

= − 1
2πi

∂f/∂ζ

ζ − z
dζ ∧ dζ,

since ζ 7→ 1
ζ−z is a holomorphic function.

Let G be an open in C and k ∈ N ∪ {∞}. Ck(G) denotes the space of k times
continuously differentiable (in the real sense) functions on G. We also write C(G)
instead of C0(G). The space Ck(G) is the space of all functions f in Ck(G) such that
all derivatives of f up to order k extend continuously to G.

Theorem 2.42 (Stokes’ theorem). Let G be a domain in C. Let ∂G consist of a pos-
itively oriented path and let ω ∈ C1(G) be a continuously differentiable 1-form on G.
Then ∫

∂G

ω =
∫
G

dω.

For a proof see (? ).
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2.9 The inhomogeneous Cauchy formula

Now we apply Stokes’ theorem to prove a more general version of Cauchy’s formula,
which will be a useful tool for the study of the inhomogeneous Cauchy-Riemann
equations.

Theorem 2.43. Let G be a bounded domain in C with piecewise smooth positively
oriented boundary ∂G. Let f ∈ C1(G). Then, for z ∈ G, we have

f(z) = 1
2πi

∫
∂G

f(ζ)
ζ − z

dζ + 1
2πi

∫
G

(∂f/∂ζ)(ζ)
ζ − z

dζ ∧ dζ.

Remark. If f ∈ H(G), we have (∂f/∂ζ)(ζ) = 0 , ∀ζ ∈ G and hence

f(z) = 1
2πi

∫
∂G

f(ζ)
ζ − z

dζ.

In this sense, 2.43 is a generalization of Cauchy’s formula.

Proof. Fix z ∈ G and choose r > 0 such that Dr(z) ⊆ G. We remove the disk Dr(z)
from G and define Gr = G \ Dr(z), the boundary of Gr consists of the positively
oriented boundary of G and of the negatively oriented circle κr. Walking on ∂Gr,

the domain Gr lies always on the left hand side.
For ζ ∈ Gr we define the 1-form

ω(ζ) = 1
2πi

f(ζ)
ζ − z

dζ,

we can apply Stokes’ theorem 2.42 and obtain from 2.41

1
2πi

∫
∂Gr

f(ζ)
ζ − z

dζ = − 1
2πi

∫
Gr

(∂f/∂ζ)(ζ)
ζ − z

dζ ∧ dζ.

Now we take the limit r → 0. First we show that the integral∫
Ds(0)

1
|z|

dz ∧ dz

exists. For this purpose we use polar coordinates and get

∫
Ds(0)

1
|z|

dz ∧ dz = −2i
∫

Ds(0)

1
|z|

dx ∧ dy = −2i
s∫

0

2π∫
0

1
r
r drdφ,
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and the last integral exists.
This implies that the function ζ 7→ (∂f/∂ζ)(ζ)

ζ−z is absolutely integrable on G. Hence
the integral ∫

Gr

(∂f/∂ζ)(ζ)
ζ − z

dζ ∧ dζ tends to
∫
G

(∂f/∂ζ)(ζ)
ζ − z

dζ ∧ dζ,

as r → 0. Here we used again the dominated convergence theorem.
Now we consider the line integral of Stokes’ theorem and get

1
2πi

∫
∂Gr

f(ζ)
ζ − z

dζ = 1
2πi

∫
∂G

f(ζ)
ζ − z

dζ + 1
2πi

∫
κr

f(ζ)
ζ − z

dζ.

We have
1

2πi

∫
κr

f(ζ)
ζ − z

dζ = 1
2πi

∫
κr

f(z)
ζ − z

dζ + 1
2πi

∫
κr

f(ζ)− f(z)
ζ − z

dζ

= f(z) · 1
2πi

∫
κr

1
ζ − z

dζ + 1
2πi

∫
κr

f(ζ)− f(z)
ζ − z

dζ

= −f(z) + 1
2πi

∫
κr

f(ζ)− f(z)
ζ − z

dζ,

and hence∣∣∣∣∣∣
∫
κr

f(ζ)− f(z)
ζ − z

dζ

∣∣∣∣∣∣ ≤ 2πrmax
ζ∈κ∗r

∣∣∣∣f(ζ)− f(z)
ζ − z

∣∣∣∣ = 2πmax
ζ∈κ∗r

|f(ζ)− f(z)| → 0,

as r → 0, since f is continuous.
So the line integral

1
2πi

∫
∂Gr

f(ζ)
ζ − z

dζ tends to 1
2πi

∫
∂G

f(ζ)
ζ − z

dζ − f(z),

as r → 0, and we arrive at the desired result.

2.10 General versions of Cauchy’s Theorem and Cauchy’s
Formula

It will be convenient to consider integrals over sums of paths. This leads to the
concepts of chains and cycles.
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Definition 2.44. Let Ω ⊆ C be open and let γ1, . . . , γn be paths in Ω. Let Γ∗ =⋃n
j=1 γ

∗
j and define

γ̃j(f) :=
∫
γj

f(z) dz,

for f ∈ C(Γ∗). γ̃j : C(Γ∗) −→ C can be seen as a linear functional on C(Γ∗). We set
Γ̃ = γ̃1 + · · · + γ̃n, and denote by Γ = γ1 + · · · + γn the formal sum of the paths
γ1, . . . , γn. We define ∫

Γ

f(z) dz = Γ̃(f) =
n∑
j=1

∫
γj

f(z) dz,

for f ∈ C(Γ∗). Γ is called a chain in Ω. If all paths γ1, . . . , γn are closed, we call Γ a
cycle in Ω.

Remark. (a) Chains and cycles cam be represented as sums of paths in many ways.
(b) By −Γ we denote the cycle, where each path γj , j = 1, . . . , n is replaced by its
opposite path, for f ∈ C(Γ∗) we have∫

−Γ

f(z) dz = −
∫
Γ

f(z) dz.

(c) If Γ1 and Γ2 are chains or cycles, we can form the sum Γ = Γ1 + Γ2 and have∫
Γ

f(z) dz =
∫
Γ1

f(z) dz +
∫
Γ2

f(z) dz , f ∈ C(Γ∗1 ∪ Γ∗2).

Definition 2.45. Let Γ = γ1 + · · · + γn be a cycle in Ω and α /∈ Γ∗. We define the
index of α with respect to Γ by

IndΓ(α) := 1
2πi

∫
Γ

dz

z − α
.

Obviously we have

IndΓ(α) =
n∑
j=1

Indγj (α).

Theorem 2.46 (Homology–version of Cauchy’s theorem). Let Ω ⊆ C be an arbitrary
open set, f ∈ H(Ω), let Γ be a cycle in Ω such that IndΓ(α) = 0 for every α /∈ Ω.
Then

f(z) IndΓ(z) = 1
2πi

∫
Γ

f(w)
w − z

dw , ∀ z ∈ Ω \ Γ∗,
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in addition ∫
Γ

f(w) dw = 0.

If Γ0 and Γ1 are cycles in Ω such that

IndΓ0(α) = IndΓ1(α) , ∀ α /∈ Ω

then ∫
Γ0

f(z) dz =
∫
Γ1

f(z) dz.

Proof. (Dickson 1969)(? )
Let

g(z, w) =

{
f(z)−f(w)

z−w , z 6= w, z, w ∈ Ω
f ′(z) , z = w ∈ Ω.

By 2.35, g : Ω×Ω −→ C is continuous. The first assertion of the theorem is equivalent
to the statement h(z) = 0 , ∀ z ∈ Ω \ Γ∗, where

h(z) = 1
2πi

∫
Γ

g(z, w) dw,

because

1
2πi

∫
Γ

f(z)− f(w)
z − w

dw = 1
2πi f(z)

∫
Γ

dw

z − w
− 1

2πi

∫
Γ

f(w)
z − w

dw

= −f(z) IndΓ(z) + 1
2πi

∫
Γ

f(w)
w − z

dw.

First we show: h ∈ H(Ω).
g is uniformly continuous on every compact subset of Ω × Ω. Hence, if z ∈ Ω and
zn → z in Ω,then g(zn, w) → g(z, w) uniformly for w ∈ Γ∗, which is a compact
subset. So we get

lim
n→∞

h(zn) = 1
2πi lim

n→∞

∫
Γ

g(zn, w) dw

= 1
2πi

∫
Γ

lim
n→∞

g(zn, w) dw = 1
2πi

∫
Γ

g(z, w) dw = h(z),

and h is continuous on Ω; limit and integral can be interchanged, because of uniform
convergence.
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Now let ∆ be an arbitrary closed triangle in Ω. Then Fubini’s theorem implies∫
∂∆

h(z) dz = 1
2πi

∫
∂∆

∫
Γ

g(z, w) dw

 dz = 1
2πi

∫
Γ

∫
∂∆

g(z, w) dz

 dw.

For w fixed, the function z 7→ g(z, w) has a removable singularity at z = w (see
2.21), so it is holomorphic on Ω and, by 2.5, we have∫

∂∆

g(z, w) dz = 0 , ∀ w ∈ Ω,

hence ∫
∂∆

h(z) dz = 0,

and, by 2.13, h ∈ H(Ω).

Next we prove that h(z) = 0 , ∀ z ∈ Ω \ Γ∗.
For this aim leti Ω1 = {z ∈ C : IndΓ(z) = 0}, we define

h1(z) = 1
2πi

∫
Γ

f(w)
w − z

dw,

then h1 ∈ H(Ω1), and for z ∈ Ω ∩ Ω1

h(z) = 1
2πi f(z)

∫
Γ

dw

z − w
− 1

2πi

∫
Γ

f(w)
z − w

dw = 0 + 1
2πi

∫
Γ

f(w)
w − z

dw = h1(z).

Hence the function

φ(z) =

{
h(z) , z ∈ Ω
h1(z) , z ∈ Ω1

is holomorphic on Ω ∪ Ω1.

By assumption, we have IndΓ(α) = 0 , ∀ α /∈ Ω, hence Ωc ⊆ Ω1 and Ω ∪ Ω1 = C.
So φ ∈ H(C) is an entire function.
The set Ω1 contains the unbounded connected component of C\Γ∗ , since the index
is always zero there (see 2.2). Therefore

lim
|z|→∞

φ(z) = lim
|z|→∞

h1(z) = 1
2πi lim

|z|→∞

∫
Γ

f(w)
w − z

dw = 0,

and Liouville’s theorem 2.26 implies φ ≡ 0, in particular h(z) = 0 , ∀ z ∈ Ω \ Γ∗.

Finally we have to show that
∫

Γ f(z) dz = 0. Let a ∈ Ω\Γ∗ and F (z) := (z−a)f(z).
From the first assertion of the theorem we get for F and z = a that

0 = F (a) IndΓ(a) = 1
2πi

∫
Γ

F (w)
w − a

dw = 1
2πi

∫
Γ

f(w) dw.
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For the last assertion of the theorem we pick two cycles Γ0 and Γ1 with

IndΓ0(α) = IndΓ1(α) , ∀ α /∈ Ω.

Define Γ = Γ0 − Γ1, then IndΓ(α) = 0 , ∀ α /∈ Ω and, by the first part of the
theorem,

0 =
∫
Γ

f(z) dz =
∫
Γ0

f(z) dz −
∫
Γ1

f(z) dz.

Remark. (a) If IndΓ(α) = 0 , ∀ α /∈ Ω, the cycle Γ is called null-homologous in Ω.
(b) 2.46 is a generalization of 2.9 : if Ω is convex γ a closed path in Ω, then w 7→
1/(w − α) is holomorphic on Ω for every α /∈ Ω and, by 2.6, we obtain

Indγ(α) = 1
2πi

∫
γ

dw

w − α
= 0.

Therefore the assumptions of 2.46 are satisfied, hence 2.46 implies 2.9.

Example. Let Ω = C \ (D1/2(−2) ∪ D1/2(0) ∪ D1/2(2)), and let γ1(t) = −2 +
3
4e
it, γ2(t) = 3

4e
it, γ3(t) = 2+ 3

4e
it, Γ(t) = 6eit, t ∈ [0, 2π]. Define γ = γ1 +γ2 +γ3.

Then
Indγ(α) = IndΓ(α) ,∀ α /∈ Ω,

hence, by 2.46, we have ∫
γ

f(z) dz =
∫
Γ

f(z) dz,

for each f ∈ H(Ω).
In the following we discuss another topological concept which is important for
Cauchy’s theorem.

Definition 2.47. Let Ω ⊆ C and γ0, γ1 : [0, 1] −→ Ω be closed curves. γ0 and γ1 are
Ω– homotopic, if there is a continuous mapping

H : [0, 1]× [0, 1] −→ Ω

such that

H(s, 0) = γ0(s) , ∀ s ∈ [0, 1] ; H(s, 1) = γ1(s) , ∀ s ∈ [0, 1]

and
H(0, t) = H(1, t) , ∀ t ∈ [0, 1].
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Set γt(s) = H(s, t) for a fixed t ∈ [0, 1] and s ∈ [0, 1]. Since H(0, t) = H(1, t), the
curves γt are also closed. We get a one-parameter familiy γt , t ∈ [0, 1] of closed
curves connecting γ0 and γ1.

If a closed curve γ0 is Ω–homotopic to a constant curve (consisting of just one point),
we say that γ0 null-homotopic in Ω.

A domain Ω is said to be simply connected, if every closed curve in Ω is null-
homotopic in Ω.

Example. Let Ω be a convex domain and let γ be a closed curve in Ω. Fix z0 ∈ Ω.
Define

H(s, t) = (1− t)γ(s) + tz0 , s, t ∈ [0, 1].

Then H(s, 0) = γ(s) and H(s, 1) = z0 , ∀ s ∈ [0, 1]. Since γ(0) = γ(1),we have

H(0, t) = (1− t)γ(0) + tz0 = (1− t)γ(1) + tz0 = H(1, t) , ∀ t ∈ [0, 1].

For a fixed s, the expression H(s, t) = (1 − t)γ(s) + tz0 , t ∈ [0, 1] describes the
straight line from γ(s) to z0, which is contained in Ω, as Ω is convex.
Hence H(s, t) ∈ Ω , ∀ s, t ∈ [0, 1] and γ is null-homotopic in Ω.. Therefore Ω is
simply connected.

Lemma 2.48. Let γ0 and γ1 be closed paths in C. Let α ∈ C be a complex number
such that

|γ0(s)− γ1(s)| < |α− γ0(s)| , ∀ s ∈ [0, 1].

Then Indγ0(α) = Indγ1(α).

Proof. The assumption implies that α /∈ γ∗0 and α /∈ γ∗1 .
We set

γ(s) = γ1(s)− α
γ0(s)− α , s ∈ [0, 1],

then we get for the derivatives

γ′(s) = (γ0(s)− α)γ′1(s)− (γ1(s)− α)γ′0(s)
(γ0(s)− α)2

and
γ′(s)
γ(s) = (γ0(s)− α)γ′1(s)− (γ1(s)− α)γ′0(s)

(γ0(s)− α)2
γ0(s)− α
γ1(s)− α

= γ′1(s)
γ1(s)− α −

γ′0(s)
γ0(s)− α.

By assumption we have

|1− γ(s)| =
∣∣∣∣γ0(s)− γ1(s)
γ0(s)− α

∣∣∣∣ < 1,
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hence γ∗ ⊂ D1(1) and, by 2.2, Indγ(0) = 0. This implies

0 = Indγ(0) = 1
2πi

∫
γ

dz

z
= 1

2πi

1∫
0

γ′(s)
γ(s) ds

= 1
2πi

1∫
0

γ′1(s)
γ1(s)− α ds−

1
2πi

1∫
0

γ′0(s)
γ0(s)− α ds = Indγ1(α)− Indγ0(α).

Theorem 2.49 (Homotopy version of Cauchy’s theorem). Let Ω be a domain in C, let
Γ0 and Γ1 closed paths in Ω, which are Ω–homotopic. Let α /∈ Ω. Then

IndΓ0(α) = IndΓ1(α)

and, by 2.46, ∫
Γ0

f(z) dz =
∫
Γ1

f(z) dz , ∀ f ∈ H(Ω).

Proof. Let H be a homotopy function between zwischen Γ0 and Γ1. The difficulty
of the proof relies on the fact that the one-parameter family Γt(s) = H(s, t) does
not consist of necessarily piece-wise differentiable curves. We will apporximate the
curves Γt by suitable paths, in our case by polygonal closed paths.
Fix α /∈ Ω. Since H is uniformly continuous on the compact set [0, 1]× [0, 1], there
exists ε > 0 such that

|α−H(s, t)| > 2ε , ∀ s, t ∈ [0, 1]; (2.3)

and there exists n ∈ N such that

|H(s, t)−H(s′, t′)| < ε/2, (2.4)

falls |s− s′|+ |t− t′| < 1/n.
Now we define the approximating polygonal paths: for k = 0, 1, . . . , n and s ∈ [0, 1]
let

γk(s) = H

(
j

n
,
k

n

)
(ns+ 1− j) +H

(
j − 1
n

,
k

n

)
(j − ns),

für j − 1 ≤ ns ≤ j , j = 1, . . . , n.
It is easily seen that the curves γ0, γ1, . . . , γn are closed. There are also piece-wise
differentiable, since the variable s only appears as a linear term, and not as an
argument of the function H. By (2.4) and from the definition of γk we get∣∣∣∣γk(s)−H

(
s,
k

n

)∣∣∣∣ < ε, (2.5)
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for s ∈ [0, 1] and k = 0, 1, . . . , n.
If j − 1 ≤ ns ≤ j, we have j − ns ≤ 1, hence∣∣∣∣γk(s)−H

(
s,
k

n

)∣∣∣∣
=
∣∣∣∣H ( jn , kn

)
(ns+ 1− j) +H

(
j − 1
n

,
k

n

)
(j − ns)−H

(
s,
k

n

)∣∣∣∣
≤ (j − ns)

∣∣∣∣H ( jn , kn
)
−H

(
j − 1
n

,
k

n

)∣∣∣∣+
∣∣∣∣H ( jn , kn

)
−H

(
s,
k

n

)∣∣∣∣
< ε/2 + ε/2 = ε.

In particular, for k = 0

|γ0(s)−H(s, 0)| = |γ0(s)− Γ0(s)| < ε

and for k = n

|γn(s)−H(s, 1)| = |γn(s)− Γ1(s)| < ε.

Now we get from (2.3) and (2.5)

|α− γk(s)| = |α−H(s, k/n)− (γk(s)−H(s, k/n))|
≥ |α−H(s, k/n)| − |γk(s)−H(s, k/n)|
> 2ε− ε = ε,

for s ∈ [0, 1] and k = 0, 1, . . . , n. Using (2.4) and the definition of γk we get

|γk−1(s)− γk(s)| < ε,

for s ∈ [0, 1] and k = 1, . . . , n.
If j − 1 ≤ ns ≤ j, we have ns+ 1− j ≤ 1, therefore

|γk−1(s)− γk(s)| ≤ (ns+ 1− j)
∣∣∣∣H ( jn , k − 1

n

)
−H

(
j

n
,
k

n

)∣∣∣∣
+ (j − ns)

∣∣∣∣H ( j − 1
n

,
k − 1
n

)
−H

(
j − 1
n

,
k

n

)∣∣∣∣
< ε/2 + ε/2 = ε.

Since |α− γk(s)| > ε and |γk−1(s)− γk(s)| < ε, we obtain

|γk−1(s)− γk(s)| < |α− γk(s)| ,

∀ s ∈ [0, 1] and k = 1, . . . , n.
Similarily

|γ0(s)− Γ0(s)| < |α− Γ0(s)| and |γn(s)− Γ1(s)| < |α− Γ1(s)|,
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∀ s ∈ [0, 1].
Now we can apply 2.48 for the pairs

(Γ0, γ0), (γ0, γ1), . . . , (γn−1, γn), (γn,Γ1)

and get

IndΓ0(α) = Indγ0(α) = Indγ1(α) = . . . Indγn−1(α) = Indγn(α) = IndΓ1(α).

Corollary 2.50. (a) Let Ω be a simply connected domain in C and let γ be a closed
path in Ω. Then ∫

γ

f(z) dz = 0,

for each f ∈ H(Ω).
(b) Let Ω ⊆ C be an open set and let a ∈ Ω. Let γ be a closed path in Ω \ {a}, which
isnull-homotopic in Ω. Then

f (n)(a) Indγ(a) = n!
2πi

∫
γ

f(z)
(z − a)n+1 dz , n ∈ N,

for each f ∈ H(Ω).

Proof. (b) For n = 1, fthe assertion follows from 2.46. Finally, differentiation in the
integral with respect to the variable a gives the desired result.

Remark. If Ω is a domain and γ a closed null-homotopic path in Ω, then∫
γ

dz

z − α
= 0 , ∀ α /∈ Ω,

this follows from 2.49, since the function z 7→ 1/(z−α) is holomorphic and γ is null-
homotopic in Ω. This implies that γ is also null-homologous. Every null-homotopic
path is null-homologous. The converse is false (see Exercises).
But if every closed path in Ω is null-homologous, then every closed path is also
null-homotopic and Ω is simply connected (see Chapter 4).

We conclude this chapter with two useful results about the index of a path.
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Definition 2.51. Let G be a domain in C and γ : [0, 1] −→ C a path. We say, γ runs
in G from boundary to boundary, if
(1) there exists t1, t2 ∈ [0, 1], t1 < t2, γ(t1), γ(t2) ∈ ∂G, γ(t1) 6= γ(t2);
(2) γ(t) ∈ G, for t1 < t < t2;
(3) γ(t) /∈ G, for t ∈ [0, 1] but t /∈ [t1, t2];
(4) G\γ∗ has exactly two connected components and γ∗∩G belongs to the boundary
of both of these components.

Remark. If γ is injective and smooth and z0 ∈ γ∗ is an arbitrary point on γ, there
exists a neighborhood U of z0, such that γ runs in U from boundary to boundary.

Theorem 2.52. Let γ be a closed path in C and let D be a disk. Suppose that γ
runs in D from boundary to boundary. Let t1, t2 ∈ [0, 1] with t1 < t2 and a =
γ(t1), , b = γ(t2) , a, b ∈ ∂D, and γ|[t1,t2] = γ0. Let D1, D2 denote the two connected
components of D \ γ∗. Suppose that D1 lies left of γ.
Then

Indγ(z1) = Indγ(z2) + 1,

for z1 ∈ D1 and z2 ∈ D2.

Remark. Let γ in C be an arbitrary path. The index Indγ(z) = 0 for z in the
unbounded component of C \ γ∗. Now one can use the theorem from above, in order
to compute the indices of γ one after the other.

Proof. We separate γ = γ0 + γ1, and ∂D in κ1 and κ2 (positively oriented), κ∗1 ⊂
∂D1 , κ

∗
2 ⊂ ∂D2.

�

-

κ1

κ2

D.z2

.z1

γ1

γ0

-

@
@

@
@@

@
@
@I

Then
Ind−κ1+γ1(z1) = Ind−κ1+γ1(z2)
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and hence
Indκ1(z1)− Indκ1(z2) = Indγ1(z1)− Indγ1(z2),

where we used the notation

Indκj (zj) = 1
2πi

∫
κj

dζ

ζ − zj
,

also for paths which are not closed.
z2 belongs to the unbounded component of C \ (κ1 + γ0)∗, so we have

Indκ1+γ0(z2) = 0.

Similarily
Indκ2−γ0(z1) = 0.

This gives

Indγ(z1)− Indγ(z2) = Indγ0(z1)− Indγ0(z2) + Indγ1(z1)− Indγ1(z2)
= Indγ0(z1)− Indγ0(z2) + Indκ1(z1)− Indκ1(z2)
= Indγ0(z1) + Indκ1(z1)
= Indγ0(z1) + Indκ1(z1) + Indκ2−γ0(z1)
= Indκ1+κ2(z1) = 1.

Lemma 2.53. Let A ⊂ C be a compact subset and U ⊃ A an open set. Then there
exists a cycle Γ in U \A such that

IndΓ(a) = 1 , ∀ a ∈ A and IndΓ(z) = 0 , ∀ z /∈ U.

Proof. 1.) First we suppose that A is connected. Let δ > 0 be such that 0 < 2δ <
dist(A, ∂U). We use a lattice parallel to the axes with mesh width δ and positively
oriented lattice squares. Since A is compact, there exist finitely many lattice squares
Q1, . . . , Qn with Qj ∩A 6= ∅ , j = 1, . . . , n. Let Γj be the boundary cycle of Qj and
define

Γ = Γ1 + · · ·+ Γn.

Let a ∈ A be an arbitrary point in the compact set A. Without loss of generality we
can suppose that a ∈ Q◦1. Then

IndΓ(a) =
n∑
j=1

IndΓj (a) = IndΓ1(a) = 1.



2.11 Laurent series and meromorphic functions 83

If a belongs to ∂Qj for some j, then a belongs to the interior of four adjacent squares
of the lattice, and we get the same result for IndΓ(a).
Now we modify Γ in the following way: we take only line segments [p, q], which are
line segments of exactly one square of our collection, these are line segments [p, q]
with [p, q] ∩ A = ∅; line segments with non-empty intersection with A are passed
through in both directions and drop out. The modified boundary cycle is again
denoted by Γ.
Now we have Γ∗ ∩A = ∅ and, by the choice of the mesh width, that Γ∗ ⊂ U. Hence
Γ∗ ⊂ U \A. As A is connected, we get from 2.2 that IndΓ(a) = 1 , ∀ a ∈ A.
If z /∈ U, it follows that IndΓj (z) = 0 , j = 1, . . . , n and IndΓ(z) = 0.

2.) A has finitle many connected components A1, . . . AN .

Now we choose points aj ∈ Aj , j = 1, . . . , N and a lattice parallel to the axes with
mesh width δ > 0, where

2δ < min{dist(A, ∂U), |aj − ak| j 6= k},

and we also choose the lattice such that different aj belong to the interior of different
squares of the lattice.
Then IndΓ(aj) = 1 and hence IndΓ(a) = 1 for every jedes a ∈ Aj , j = 1, . . . , N.
Everything else can now be reduced to the first case.

3.) In the general case, A could have infinitely many connected components. For
every z ∈ A there exists an open square Q(z) with line segments parallel to the axes
such that z ∈ Q(z) ⊂⊂ U ; since A is compact, finitely many of these squares cover
A. We denote them by Q1, . . . , Qm. Now let

A0 =
m⋃
j=1

Qj ⊂ U.

A0 is compact and has only finitely many connected components Since A ⊂ A0 ⊂ U,
it suffices to prove the assertion for A0, which follows from 2.).

2.11 Laurent series and meromorphic functions

We now study holomorphic functions on annuli and obtain their canonical represen-
tations as Laurent series.

Theorem 2.54. Leti Dr,R(a) = {z ∈ C : r < |z − a| < R} be an annulus, we define
D0,R(a) = DR(a) \ {a} and Dr,∞(a) = {z : |z − a| > r}. Let f ∈ H(Dr,R(a)), and
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define U1 = Dr,∞(a), U2 = DR(a). Then there exist functions f1 ∈ H(U1) and
f2 ∈ H(U2) such that

f = f1 + f2, auf U1 ∩ U2 = Dr,R(a).

The function f1 can be chosen with the property lim|z|→∞ f1(z) = 0. In this way f1
and f2 are uniquely determined.

Proof. Let r < ρ < R and define

f2,ρ(z) = 1
2πi

∫
γρ

f(ζ)
ζ − z

dζ,

where γρ(t) = a+ ρe2πit , t ∈ [0, 1]. The function in the integral is holomorphic for
z in Dρ(a), hence f2,ρ ∈ H(Dρ(a)). By 2.49, we have f2,ρ(z) = f2,ρ′(z) on Dρ(a) for
r < ρ < ρ′ < R.

For z ∈ U2 = DR(a) and max{r, |z − a|} < ρ < R, we define

f2(z) = 1
2πi

∫
γρ

f(ζ)
ζ − z

dζ,

where the integral is independent of ρ as long as r < ρ < R. Hence f2 ∈ H(U2).
For z ∈ U1 = {z : |z − a| > r} and r < σ < min{R, |z − a|}, we define

f1(z) = − 1
2πi

∫
γσ

f(ζ)
ζ − z

dζ.

Similarly we get f1 ∈ H(U1), and from the definition of f1 we derive immediately
that lim|z|→∞ |f1(z)| = 0.
For z ∈ Dr,R(a), we choose ρ and σ such that

r < σ < |z − a| < ρ < R

and define the cycle Γ = γρ − γσ.
It follows thatt IndΓ(α) = 0 , ∀ α /∈ Dr,R(a) and IndΓ(z) = 1. Now we apply 2.46
and obtain

f(z) = 1
2πi

∫
Γ

f(ζ)
ζ − z

dζ = 1
2πi

∫
γρ

f(ζ)
ζ − z

dζ − 1
2πi

∫
γσ

f(ζ)
ζ − z

dζ = f1(z) + f2(z).

It remains to show uniqueness of the representation f = f1 + f2. For this aim let
f = g1 + g2 another representation with g1 ∈ H(U1) and g2 ∈ H(U2), as well as
lim|z|→∞ |g1(z)| = 0.



2.11 Laurent series and meromorphic functions 85

Then we have f1 − g1 = g2 − f2 on U1 ∩ U2. We define

h =

{
f1 − g1 auf U1

g2 − f2 auf U2

and get a holomorphic function on U1 ∪ U2 = C.
Hence h ∈ H(C) and lim|z|→∞ |h(z)| = 0. So h is a bounded entire function. By
Liouville’s theorem 2.26, it follows that h ≡ 0, and f1 = g1 as well as f2 = g2.

Remark. f1 is called principal part of f.
Since f2 is holomorphic on DR(a), it can be expanded as a Taylor series

f2(z) =
∞∑
n=0

an(z − a)n , z ∈ DR(a).

Let F (w) = a+ 1/w. Then F is a biholomorphic mapping (i.e. holomorphic in bpth
directions) from D′1/r(0) = {w : 0 < |w| < 1/r} to U1 = {w : |w − a| > r}. Hence,
the composed function f1 ◦ F ∈ H(D′1/r(0)).
Since lim|z|→∞ |f1(z)| = 0, we have limw→0(f1 ◦ F )(w) = 0. Hence f1 ◦ F has a
removable singularity at w = 0 (see 2.21), hence also ist f1 ◦ F ∈ H(D1/r(0)) and
we can expand as a Taylor series around w = 0 :

(f1 ◦ F )(w) =
∞∑
n=1

bnw
n,

where the series converges uniformly on D1/ρ(0) ρ > r.

For w = 1/(z − a), we have F (w) = z and

f1(z) =
−∞∑
n=−1

an(z − a)n,

where a−n = bn and the series converges uniformly on C \Dρ(a) , ρ > r.

Theorem 2.55. Let f ∈ H(Dr,R(a)). Then f can be represented in the form

f(z) =
−∞∑
n=−1

an(z − a)n +
∞∑
n=0

an(z − a)n,

6 which is the Laurent series of f in Dr,R(a), and the series converges uniformly on
all compact subsets of Dr,R(a). The Laurent coefficients an are given by

an = 1
2πi

∫
γρ

f(z)
(z − a)n+1 dz , n ∈ Z

6 Laurent, Pierre Alphonse (1813–1854)
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where γρ(t) = a+ ρe2πit , t ∈ [0, 1] , r < ρ < R.

Proof. It remains to prove the formula for the Laurent coefficients an. We have

(z − a)−n−1f(z) =
−∞∑
k=−1

ak+n+1(z − a)k +
∞∑
k=0

ak+n+1(z − a)k

with uniform convergence on γ∗ρ . Hence integration term by term yields∫
γρ

f(z)
(z − a)n+1 dz = an

∫
γρ

dz

z − a
= 2πian,

all summands are zero, except for k = −1.

Example 2.56. 1) Let
f(z) = 1

z(z − i)2 .

(a) Laurent series expansion in D′1(0) = {z : 0 < |z| < 1} :

1
z(z − i)2 = −1

z

1
(1− z/i)2 = −1

z

∞∑
n=0

(n+ 1)
(z
i

)n
= −1

z
+ i

∞∑
n=0

n+ 2
in

zn.

(b) Laurent series expansion in D1,∞(0) = {z : |z| > 1} :

1
z(z − i)2 = 1

z3
1

(1− i/z)2 =
−∞∑
n=−3

i−n−1(n+ 2)zn.

(c) Laurent series expansion in D0,1(i) = {z : 0 < |z − i| < 1} :

1
z(z − i)2 = −i

(z − i)2 + 1
z − i

− 1
z

= −i
(z − i)2 + 1

z − i
− i

1− i(z − i) = . . . ,

where the last term can be written as the sum of a geometric series.
2) Consider the Laurent series

∞∑
n=1

z−n +
∞∑
n=0

zn

2n+1

with infinitely many negative powers of z. The first summand converges to 1
z−1 for

| z |> 1, and the second summand converges to 1
2−z for | z |< 2. So the whole series

converges to the function f(z) = 1
z−1 + 1

2−z on the annulus D1,2(0). The function
f is holomorphic at z = 0, altough the Laurent series in the annulus D1,2(0) has
infinitely many negative powers of z.
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Remark. We return to the characterization of isolated singularities 2.22, and can
easily show that a function f has a pole of order k in a point a if and only if the
Laurent expansion of f in the punctured disk D′r(a) has the form

f(z) = a−k(z − a)−k + · · ·+ a−1(z − a)−1 + a0 + a1(z − a) + . . . ,

where a−k 6= 0.
In addition, it follows that f has an essential singularity in a if and only if the
Laurent expansion of f in the punctured disk D′r(a) has infinitely many terms of the
form a−k(z − a)−k, where k > 0 and a−k 6= 0.

Definition 2.57. Let U ⊆ C be an open set. A function f is called meromorphic on
U, if there exists a discrete subset P of U such that f ∈ H(U \ P ) and f has poles
in P.
M(U) denotes the set of all meromorphic functions on U.

Examples. 1) Let U = D1(0) and f(z) = 1/z. Then f ∈M(U).
Every rational function p/q, where p and q are polynomials, belongs toM(C).
2) tan z = sin z

cos z belongs to M(C). It is easily seen that tan z has infinitely many
poles.
3) Let f, g ∈ H(U), suppose that g 6≡ 0 on every connected component of U. Then
f/g ∈M(U). (see 2.14)

Theorem 2.58. Let f ∈ M(U). Then, for each a ∈ U, there exists an open neigh-
borhood V of a, and g, h ∈ H(V ) such that f = g/h on V.

Proof. If a is not a pole of f, we put g = f and h ≡ 1 and take V = U \ Pf , where
Pf denotes the set of all poles of f. Then f = g/h on V and g, h ∈ H(V ).
If a is a pole of order m > 0 of f, then, by 2.22, there exist complex numbers
c1, . . . , cm (cm 6= 0) , such that the function

f(z)−
m∑
k=1

ck
(z − a)k

= φ(z)

has a removable singularity in a. Hence

f(z) = φ(z) +
m∑
k=1

ck
(z − a)k

= 1
(z − a)m

[
(z − a)mφ(z) +

m∑
k=1

ck(z − a)m−k
]
,

where the expression in brackets is holomorphic in a neighborhood of a. Denote this
expression by g, then we have g(a) = cm 6= 0 and f(z) = g(z)/(z−a)m in a suitable
neighborhood of a.
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Later we will be able to show that f = g/h globally on U.

Theorem 2.59. Let f ∈M(U) and let a be a pole of f. Then

lim
z→a
|f(z)| =∞,

i.e. for each compact subset K ⊂ C there exists δ > 0 with f(D′δ(a)) ⊆ C \K.

Proof. From the proof of the last theorem we get

f(z) = 1
(z − a)m

[
(z − a)mφ(z) +

m∑
k=1

ck(z − a)m−k
]
,

where cm 6= 0. The limit z → a yields the desired result.

Theorem 2.60. Let Ω be a domain in C. Then M(Ω) is a field with respect to
pointwise addition and multiplication of functions.

2.12 The Residue Theorem

The residue theorem is not only a generalization of the homology version of Cauchy’s
theorem when the function f has singularities, it enables us also to evaluate definite
real integrals which are certainly not solvable by methods of real analysis and to
count the number of zeroes and poles of meromorphic functions.

Definition 2.61. Let U ⊆ C be open and f a holomorphic function on U except for
isolated singularities. Let a be an isolated singularity of f. Then there exists r > 0,
such that f can be expanded in D′r(a) as a Laurent series

f(z) =
−∞∑
n=−1

cn(z − a)n +
∞∑
n=0

cn(z − a)n,

the coefficient c−1 = Res(f ; a) is called the residue of f at a.

Remark. If one computes the line integral∫
γs

f(z) dz,



2.12 The Residue Theorem 89

where γs(t) = a− seit, t ∈ [0, 2π] and 0 < s < r, one observes that the integral can
be computed term by term in the Laurent series expansion and that only one term
is left over, namely ∫

γs

c−1
z − a

dz = 2πic−1,

which motivates the notion of a residue.

Theorem 2.62 (Residue Theorem). Let U ⊆ C be open and f a holomorphic function
on U except for isolated singularities. Denote by Sf the set of all singularities of f
in U. Let Γ be a cycle in U \ Sf such that IndΓ(α) = 0 ∀ α /∈ U. Then

1
2πi

∫
Γ

f(z) dz =
∑
a∈Sf

Res(f ; a) IndΓ(a).

Proof. First we show that the set B = {a ∈ Sf : IndΓ(a) 6= 0}is finite, which implies
that the sum in the theorem is a finite sum. For this aim let W = C \ Γ∗. The
index IndΓ is constant on every connected components V of W. If V is unbounded
or if V ∩ (C \ U) 6= ∅, then IndΓ(α) = 0 , ∀ α ∈ V, by our assumption that
IndΓ(α) = 0 ∀ α /∈ U.
Sf has no limit point in U, the limit points of Sf can only be on the boundary
of U, therefore limit points can belong to the unbounded component of W or to a
component V with V ∩ (C \ U) 6= ∅. We have dist(Γ∗, ∂U) > 0, hence B must be
finite.
Let B = {a1, a2, . . . , an}, and let Qj be the principal parts of f in the Laurent
expansion around aj , j = 1, . . . , n. Define

g = f − (Q1 +Q2 + · · ·+Qn),

(if B = ∅, set g = f) then g has removable singularities in the points of B, and
g ∈ H(U0), where U0 = U \ (Sf \B). Now IndΓ(α) = 0 , ∀α /∈ U0, and, by 2.46, we
have ∫

Γ

g(z) dz = 0

and, by the definition of g, we get

1
2πi

∫
Γ

f(z) dz = 1
2πi

n∑
k=1

∫
Γ

Qk(z) dz =
n∑
k=1

Res(Qk; ak) IndΓ(ak)

=
n∑
k=1

Res(f ; ak) IndΓ(ak).
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Remark. If U is open and convex and Γ is a closed, positively oriented path without
double points in U and f is holomorphic in U except for isolated singularities, then

1
2πi

∫
Γ

f(z) dz =
∑

Res(f ; ak),

where the sum is taken over all singularities of f in the interior of Γ.

For the applications it will be convenient to know about some simple rules how to
compute residues.

Theorem 2.63. Let U ⊆ C be open and let f and g be holomorphic on U except for
isolated singularities. Then
(a)

Res(f + g; a) = Res(f ; a) + Res(g; a)

and for α1, α2 ∈ C

Res(α1f + α2g; a) = α1 Res(f ; a) + α2 Res(g; a).

(b) If z0 is a pole of first order of f, we have

Res(f ; z0) = lim
z→z0

[(z − z0)f(z)].

(c) If g is holomorphic in z0 and f has a pole of first order in z0, we have

Res(fg; z0) = g(z0) Res(f ; z0).

(d) If h is holomorphic in z0 und z0 is a simple zero of h, we have

Res(1/h; z0) = 1/h′(z0).

(e) If z0 is a pole of order n of f, we have

Res(f ; z0) = 1
(n− 1)! lim

z→z0

{
dn−1

dzn−1 [(z − z0)nf(z)]
}
.

Proof. (a) Follows from the Laurent expansion of f and g around a.

(b) The Laurent expansion of f around z0 has the form

f(z) = c−1
z − z0

+
∞∑
n=0

cn(z − z0)n,

hence

(z − z0)f(z) = c−1 +
∞∑
n=0

cn(z − z0)n+1,
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taking the limit z → z0, the infinite series disappears.

(c) We have

g(z) = g(z0) +
∞∑
n=1

bn(z − z0)n , f(z) = c−1
z − z0

+
∞∑
n=0

cn(z − z0)n,

this implies

f(z)g(z) = g(z0)c−1
z − z0

+
∞∑
n=0

dn(z − z0)n.

(d) 1/h has a pole of first order in z0. Hence, by (b),

Res(1/h; z0) = lim
z→z0

z − z0
h(z) = lim

z→z0

z − z0
h(z)− h(z0) = 1/h′(z0).

(e) We have

f(z) = c−n
(z − z0)n + · · ·+ c−1

z − z0
+
∞∑
k=0

ck(z − z0)k

which implies that

(z − z0)nf(z) = c−n + c−n+1(z − z0) + · · ·+ c−1(z − z0)n−1 +
∞∑
k=0

ck(z − z0)k+n.

Differentiating (n− 1) times we get the desired result.

Theorem 2.64 ( Rouché’s Theorem). 7 Let Ω be a domain in C and f ∈ M(Ω) a
meromorphic function. Let γ be a closed, null-homologous path in Ω. Suppose that
f has no zeros and no poles on γ∗ and that Indγ(α) = 1 or = 0 ∀ α ∈ C \ γ∗. Let
Ω1 = {z ∈ Ω : Indγ(z) = 1} and Nf the number of zeros of f in Ω1 and let Pf be
the number of poles of f in Ω1. Then

Nf − Pf = 1
2πi

∫
γ

f ′(z)
f(z) dz = IndΓ(0),

where Γ = f ◦ γ.
In addition, let g1, g2 ∈ H(Ω) be holomorphic functions on Ω such that

|g1(z)− g2(z)| < |g1(z)| , ∀ z ∈ γ∗.

Then Ng2 = Ng1 .

7 Rouché, Eugéne (1832–1910)
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Proof. Let φ = f ′/f. Then φ ∈M(Ω). Now let a be a zero of f of order m(a). Then,
by 2.14,

f(z) = (z − a)m(a)h(z),

where h is holomorphic in a neighborhood of a and h 6= 0 there. We obtain

φ(z) = m(a)(z − a)m(a)−1h(z) + (z − a)m(a)h′(z)
(z − a)m(a)h(z)

= m(a)
z − a

+ h′(z)
h(z) ,

where the second summand is holomorphic in a neighborhood of a. Hence Res(φ; a) =
m(a).
If b is a pole of f of order p(b), we obtain from the Laurent expansion of f around
b that

f(z) = (z − b)−p(b)k(z),

where k is holomorphic in a neighborhood of b and k 6= 0 there. An analogous
computation as above shows that Res(φ; b) = −p(b).
Let A = {a ∈ Ω1 : f(a) = 0} and B the set of all poles of f in Ω1. Then, by 2.62,

1
2πi

∫
γ

f ′(z)
f(z) dz =

∑
a∈A

Res(φ; a) +
∑
b∈B

Res(φ; b) =
∑
a∈A

m(a)−
∑
b∈B

p(b) = Nf − Pf .

The chain rule implies that

IndΓ(0) = 1
2πi

∫
Γ

dz

z
= 1

2πi

1∫
0

f ′(γ(s))
f(γ(s)) γ

′(s) ds = 1
2πi

∫
γ

f ′(z)
f(z) dz = Nf − Pf .

Our assumption |g1(z) − g2(z)| < |g1(z)| , ∀ z ∈ γ∗, implies that g2 has no zeros
on γ∗. Let Γ1 = g1 ◦ γ and let Γ2 = g2 ◦ γ. Then

|Γ1(s)− Γ2(s)| < |Γ1(s)| , ∀ s ∈ [0, 1].

Now we apply 2.48 and the first part of the proof to obtain

Ng1 = IndΓ1(0) = IndΓ2(0) = Ng2 .

Example. Let g(z) = z4 − 4z + 2. How many zeros has g in D1(0)?
On |z| = 1we have : |z|4 = 1 < 2 ≤ | − 4z + 2|. Set f(z) = −4z + 2, then on |z| = 1
we have

|f(z)− g(z)| = | − 4z + 2− z4 + 4z − 2| = |z4| < | − 4z + 2| = |f(z)|.

f has exactly one zero in D1(0), namely z0 = 1/2, henc, by 2.64, we get that g also
has exactly one zero in D1(0). hat.
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Example 2.65. Applications of the Residue Theorem

First we compute the real definite integrals
∞∫
−∞

cosx
x2 − 2x+ 2 dx and

∞∫
−∞

sin x
x2 − 2x+ 2 dx.

For this purpose we consider the line integral

∫
γR

eiz

z2 − 2z + 2 dz =
R∫
−R

eix

x2 − 2x+ 2 dx+
∫

ΓR

eiz

z2 − 2z + 2 dz (2.6)

where γR is the path consisting of the line segment on the real axis from −R to R
and the semicircle ΓR from R to −R in the upper halfplane, we take R > 3.
The function eiz/(z2 − 2z + 2) has poles of first order at the points 1 + i and 1− i.
The point 1 + i lies in the interior of γ and we use 2.63 (b) to compute the residue
of this function at 1 + i :

lim
z→1+i

eiz(z − 1− i)
z2 − 2z + 2 = lim

z→1+i

eiz

z − 1 + i
= − ie

−1+i

2 .

By the Residue Theorem 2.62 we have∫
γR

eiz

z2 − 2z + 2 dz = 2πi(−ie−1+i)/2 = πe−1+i. (2.7)

If z = x + iy lies on the semicircle ΓR from R to −R in the upper half plane, we
have y ≥ 0, hence |eiz| = e−y ≤ 1, and we can estimate∣∣∣∣ eiz

z2 − 2z + 2

∣∣∣∣ ≤ 1
R2 − 2R− 2 ,

for z ∈ Γ∗R. This implies∣∣∣∣∣∣
∫

ΓR

eiz

z2 − 2z + 2 dz

∣∣∣∣∣∣ ≤ πR

R2 − 2R− 2 ,

and we obtain ∫
ΓR

eiz

z2 − 2z + 2 dz → 0 as R→∞.

By (2.6) and (2.7), we get

lim
R→∞

R∫
−R

eix

x2 − 2x+ 2 dx = πe−1+i = π(cos 1 + i sin 1)
e

.
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Taking real and imaginary part on each side we finally obtain
∞∫
−∞

cosx
x2 − 2x+ 2 dx = π cos 1

e
and

∞∫
−∞

sin x
x2 − 2x+ 2 dx = π sin 1

e
.

In the next example we consider two polynomials P and Q with grad Q ≥ grad P+2.
Suppose that Q(x) 6= 0 ∀ x > 0 and that Q(0) = 0 is a simple zero. Let 0 < α < 1
and R = P/Q. Using the Residue Theorem we will compute the real definite integral

∞∫
0

xαR(x) dx,

where xα = exp(α log x).
For this purpose we choose the star-shaped domain Ω = C \ {x ∈ R : x ≥ 0}. By
2.19, there exists a branch g of the logarithm on Ω (it is not the principal branch)
such that for fix x > 0 :

lim
y→0+

g(x+ iy) = log x , lim
y→0+

g(x− iy) = log x+ 2πi.

For δ, ε > 0 small and ρ > 0 large, choose the following closed path γ in Ω :

-
�

@
@

@
@@

��

�

-

6
ε

δ

ρ
C1

C2

L1

L2

γ

By the Residue Theorem 2.62 we have

1
2πi

∫
γ

eαg(z)R(z) dz =
∑
a

Res(f ; a), (2.8)

where f(z) = eαg(z)R(z) and the sum is taken over all poles of f in the interior of
γ.

Observe that
|eαg(z)| = eα<g(z) = eα log |z| = |z|α
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and
|R(z)| ≤ M

|z|
, M > 0

in a neighborhood of zero, since we supposed that Q has a zero of order ≤ 1 at zero,
and choose δ > 0 small enough that the last estimate holds on C∗2 .
Now we have

|
∫
C2

f(z) dz| ≤ 2πδ max
z∈C∗2

(|z|α|R(z)|) ≤ 2πδδαM/δ = 2πMδα.

Hence
lim
δ→0
|
∫
C2

f(z) dz| = 0. (2.9)

On the other hand
|R(z)| ≤ M ′

|z|2
, M ′ > 0

for |z| large enough, since grad Q ≥ grad P + 2.
Hence we get for ρ > 0 large enough that

|
∫
C1

f(z) dz | ≤ 2πρ max
z∈C∗1

(|z|α|R(z)|) ≤ 2πρα+1M ′/ρ2 = 2πM ′ρα−1,

and since 0 < α < 1, we obtain

lim
ρ→∞

|
∫
C1

f(z) dz| = 0. (2.10)

Now fix δ and ρ, and take the limit ε→ 0

∫
L1

f(z) dz +
∫
L2

f(z) dz →
ρ∫
δ

eα log xR(x) dx−
ρ∫
δ

eα(log x+2πi)R(x) dx

= (1− e2πiα)
ρ∫
δ

eα log xR(x) dx.

Hence we obtain from (2.9) and (2.10)

∫
γ

f(z) dz =
∫
C1

+
∫
L1

+
∫
L2

+
∫
C2

→ (1− e2πiα)
∞∫

0

eα log xR(x) dx,

where we took first the limit ε→ 0, then δ → 0 and finally ρ→∞.
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Taking these limits, the sum on the right hand side of (2.8) must now we taken over
all poles of f in Ω. This implies

∞∫
0

xαR(x) dx = 2πi
1− e2πiα

∑
a∈Ω

Res(f ; a). (2.11)

Now let R(x) = 1/(1 + x2). By (2.11) we obtain

∞∫
0

xα

1 + x2 dx = 2πi
1− e2πiα

[
Res(zα/(1 + z2); i) + Res(zα/(1 + z2);−i)

]
.

Using 2.63 we can compute the residues

Res(zα/(1 + z2); i) = lim
z→i

[
(z − i) zα

(z + i)(z − i)

]
= iα

2i = 1
2 ei(α−1)π/2,

Res(zα/(1 + z2);−i) = lim
z→−i

[
(z + i) zα

(z + i)(z − i)

]
= (−i)α

−2i = 1
2 ei(α−1)3π/2,

and get finally
∞∫

0

xα

1 + x2 dx = 2πi
1− e2πiα

1
2

[
ei(α−1)π/2 + ei(α−1)3π/2

]
= π

2
1

cos(απ/2) .

Example 2.66. We compute the inverse Fourier transform of x 7→ sin x
x : for t ∈ R

we compute

lim
A→∞

A∫
−A

sin x
x

eitx dx.

The function z 7→ sin z
z has a removable singularity at 0, therefore

ψ(z) = sin z
z

eizt = 1
2i

eiz(1+t) − eiz(−1+t)

z

is an entire function. Hence, by 2.6, we obtain

A∫
−A

sin x
x

eitx dx =
∫

ΓA

ψ(z) dz,

where the path ΓA is shown in the figure from below.

−A −1 0 1 A

ΓA

--

-
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Now set
1
π
φA(s) = 1

2πi

∫
ΓA

eisz

z
dz.

Then
A∫
−A

sin x
x

eitx dx = φA(t+ 1)− φA(t− 1).

The function z 7→ eisz/z has a pole of first order at 0 with residue 1. Hence, by the
Residue Theorem 2.62, we have

1
2πi

∫
γ

eisz

z
dz = 0,

where the path γ is shown in the figure from below.

−A
−1 0 1

A

ΓA

γ

- -

�

-

In addition
1

2πi

∫
δ

eisz

z
dz = 1.

−A

−1 0 1

A
ΓA

δ

- -

�

-
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Hence we get

1
2πi

∫
γ

eisz

z
dz = 1

π
φA(s) + 1

2πi

−π∫
0

exp(isAeiθ) iAe
iθ

Aeiθ
dθ = 0,

which implies

1
π
φA(s) = 1

2π

0∫
−π

exp(isAeiθ) dθ, (2.12)

and
1

2πi

∫
δ

eisz

z
dz = 1

π
φA(s) + 1

2π

π∫
0

exp(isAeiθ) dθ = 1,

and finally
1
π
φA(s) = 1− 1

2π

π∫
0

exp(isAeiθ) dθ. (2.13)

If s and sin θ have the same signature,∣∣exp(isAeiθ)
∣∣ = exp(−sA sin θ)→ 0

as A→∞. By the dominated convergence theorem, we obtain from (2.12) and (2.13)

lim
A→∞

φA(s) =

{
π , s > 0
0 , s < 0.

Again from (2.12) or (2.13) we get φA(0) = π/2.
Hence

lim
A→∞

A∫
−A

sin x
x

eitx dx = lim
A→∞

[φA(t+ 1)− φA(t− 1)]

= χ(t) =


π , −1 < t < 1
π/2 , t = ±1
0 , |t| > 1

The Fourier transform of χ is

1
2π

∞∫
−∞

χ(t)e−itx dt = sin x
x

.
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2.13 Exercises

35) Compute the following line integrals:∫
γ1

(z − a)k dz,

where a ∈ C, k ∈ Z and γ1 is the unit circle |z| = 1 passed through once in positive
direction.

36) Let γ(t) = eit, 0 ≤ t ≤ 2π. Compute the following line integrals and compare
the results with the assertions of Cauchy’s Theorem:∫

γ

(z)2 dz,

∫
γ

z−2 dz,

where the annulus A = {z : 1
2 < |z| < 2} is the corresponding domain.

37) Let γ(t) = reit, r > 0, 0 ≤ t ≤ 2π, and let a, b ∈ C such that |a| < r < |b|.
Show that ∫

γ

dz

(z − a)(z − b) = 2πi
a− b

.

38) Let γ, a, b be as in Exercise 37), m,n ∈ N. Compute :∫
γ

dz

(z − a)m(z − b)n .

39) Let γ(t) = eit, 0 ≤ t ≤ 2π. Compute :∫
γ

eiz

z2 dz,

∫
γ

sin z
z3 dz.

40) Let γ(t) = eit, 0 ≤ t ≤ 2π and n ∈ N. Compute:∫
γ

ez − e−z

zn
dz,

∫
γ

dz

(z − 1/2)n .

41) Let γ(t) = 1 + 1
2e
it, 0 ≤ t ≤ 2π, n ∈ N0. Compute:∫

γ

Log(z)
zn

dz.
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42) Let γ(t) = −1 + eit, 0 ≤ t ≤ 2π. Compute:∫
γ

dz

(z + 1)(z − 1)3 .

43) Let γ(t) = 2eit, 0 ≤ t ≤ 2π. Compute:∫
γ

sin z
z + i

dz.

44) Let γ(t) = 1
2e
it, 0 ≤ t ≤ 2π. Compute:∫

γ

e1−z

z3(1− z) dz.

45) Compute: ∫
γ

z2 + 1
z(z2 + 4) dz,

where γ(t) = reit, 0 ≤ t ≤ 2π, first for 0 < r < 2 and then for 2 < r <∞.

46) Prove:
2π∫
0

cos(cos θ) cosh(sin θ) dθ = 2π.

Hint: use the mean value property for the function f(z) = cos z.

47)(a) Let U ⊆ C be an open and L a straight line, suppose that f : U −→ C is
continuous and holomorphic on U \ L. Show that f is holomorphic on the whole of
U. (Use Morera’s Theorem!)
(b) Let G be a domain in C, which is symmetric with respect to the real axis, i.e. if
z ∈ G then z ∈ G). Let

f : {z ∈ G : =z ≥ 0} −→ C

be continuous, suppose that f is holomorphic on {z ∈ G : =z > 0} and has real
values on {z ∈ G : =z = 0}. Show that

f̃(z) =

{
f(z), für =z ≥ 0
f(z), für =z < 0

is a holomorphic function on G. (Schwarz’s reflection principle)

48) Examine which functions can be holomorphically extended into the point 0 :

z cot z, z

ez − 1 , z2 sin 1
z
.
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49) If f is holomorphic in {z : |z| > R} and f( 1
z ) has an isolated singularity at 0, it

is said that f has an isolated singularity at ∞.
Determine the type of isolated singularities (possibly also at ∞) of the following
functions:

1
z − z3 ,

z5

(1− z)2 ,
ez

1 + z2 ,
1− ez

1 + ez
,

exp
( z

1− z

)
, (ez − 1)−1 exp

(
1

1− z

)
, exp

(
tan 1

z

)
, sin

(
cos 1

z

)−1
.

50) Let a ∈ C, R > 0 and f ∈ H(D′R(a)) and suppose that a is an essential
singularity of f. Let g be a non-constant entire function.
(i) Show that the closure of g(C) equals to C.
(ii) Prove that a is an essential singularity of g ◦ f.

51) Let a ∈ C, R > 0 and f ∈ H(D′R(a)) such that <f(z) ≥ 0 for each z ∈ D′R(a).
(i) Show that a is not an essential singularity of f.
(ii) Prove that f can in fact be extended to a holomorphic function on DR(a).

52) Expand the following functions as power series around z0 :

ez, z0 = πi; 2z + 1
(z2 + 1)(z + 1)2 , z0 = 0; 1

(z − i)3 , z0 = −i

and determine the radius of convergence.

53) As Exercise 52) for:

(cosh z)2, z0 = 0; 1
az + b

, b 6= 0, z0 = 0;∫
[0,z]

eζ
2
dζ, z0 = 0;

∫
[0,z]

sin ζ
ζ

dζ, z0 = 0.

54) Let f(z) = z/(ez − 1). Expand f as a power series around z0 = 0, and set

f(z) =
∞∑
k=0

ak
k! z

k.

Determine the radius of convergence and show that

0 = a0 +
(
n+ 1

1

)
a1 + · · ·+

(
n+ 1
n

)
an.

Use the fact that f(z) + 1
2z is an even function, in order to show that ak = 0, for k

odd and k > 1.

55) Let an, n ∈ N0 be as in Exercise 54). The numbers B2n = (−1)n−1a2n, n ≥ 1,
are called the Bernoulli numbers. Compute B2, B4, . . . , B10.
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56) Let f(z) =
∑∞
n=0 anz

n be a function in H(D1(0)) such that

|f(z)|(1− |z|) ≤ 1, z ∈ D1(0).

Prove that for n ∈ N :

|an| ≤
(

1 + 1
n

)n
(n+ 1) < e(n+ 1).

57) Let f be an entire function such that

|f(z)| ≤ A+B|z|k,

for z ∈ C, where A,B, k are positive constants. Show that f is a polynomial .

58) An entire function is called transcendental, if it has an essential singularity at
∞. Let f be a transcendental entire function and let M(r) = max{|f(z)| : |z| = r}.
Show that:

lim
r→∞

logM(r)
log r =∞.

59) Let a ∈ C, R > 0 and f ∈ H(D′R(a)). Suppose that a is a pole of f. Let g be a
transcendental entire function. Show that a is an essential singularity of g ◦ f.

60) Let f ∈ H(DR(0)) be non-constant. Show that the function r 7→ M(r) =
sup|z|=r |f(z)| is strictly increasing for r ∈ (0, R).

61) Let f be an entire function, α a zero of f and z ∈ C. Show that:

|f(z)| ≤ 2|z − α| sup{|f(w)| : |z − w| = 1},

for all z ∈ C.

62) Let f be a holomorphic onDr1,r2(0) = {z : r1 < |z| < r2}, suppose that f is con-
tinuous on Dr1,r2(0), letMk = sup|z|=rk |f(z)|, k = 1, 2, andM(r) = sup|z|=r |f(z)|.
Show that

logM(r) ≤ log r2 − log r
log r2 − log r1

logM1 + log r − log r1
log r2 − log r1

logM2.

(Hadamard’s Three Circle Theorem )
We say that logM(r) is a convex function of log r.
Hint: consider the function [f(z)]pz−q, where p, q are integers, and use the maximum
principle.

63) Which of the following domains are simply connected?

C \ {0};C \ [0, 1];C \ {x : x ≤ 0}.

64) Which of the following domains are simply connected?
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(1) C \ {(x, y) : x = 0, |y| ≤ 1} \ {(x, y) : x > 0, y = sin 1
x};

(2) the complement of an Archimedean spiral around 0 :

C∗ \ {z : z = et(1+i), t ∈ R};

(3) G = {(x, y) : 0 < x < 1, 0 < y < 1} \
⋃∞
n=1{(x, y) : x = 1

n , 0 < y ≤ 1
2};

(4) {z : |z| < 1} \ { 1
n : n = 2, 3, . . . } \ {0}.

65) Find a suitable domain G, and a path in G, which is null-homologous, but not
null-homotopic in G.

66) Determine the Laurent expansion of the function

f(z) = (z2 − 1)
(z + 2)(z + 3)

in
(1) {z : 2 < |z| < 3};
(2) {z : |z| > 3}.

67) Determine the Laurent expansion of the function

f(z) = 1
(z − a)(z − b) , 0 < |a| < |b|,

in
(1) {z : |a| < |z| < |b|};
(2) {z : |z| > b}.

68) Determine the Laurent expansion of the function

f(z) =
[

z

(z − 1)(z − 2)

]1/2
,=f(3/2) > 0

im Kreisring {z : 1 < |z| < 2}.

69) Compute the residues of the following functions at the given points:

z

(2− 3z)(4z + 3) in 2
3 ,−

3
4 ; ez−1

ez − 1 in 0 ; eiπz

16− z4 in 2 ;

sin z
1− 2 cos z in π

3 ; cos2 z

(2π − z)3 in 2π ; z tan z in π

2 ; z + 1
(z2 + 4)2 in 2i .

70) Let G be a domain in C, which is symmetric with respect to the real axis. Let
f ∈M(G) and suppose that f is real-valued on the real axis. Show that:

Res(f ; z) = Res(f ; z), z ∈ G.
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71) Compare the residue of the function f at a simple pole z = a 6= 0 with the
residue of the function zf(z2) at the point z = a1/2.

72) Suppose that the function f has an isolated residue at ∞. The residue of f at
∞ is defined by

2πiRes(f ;∞) =
∫
γ

f(z) dz,

where γ is a negatively oriented circle containing all other singularities f, this means
that ∞ lies on the left side of γ.
Prove: if f is holomorphic on C except for isolated singularities, then the sum of all
residues of f is zero.

73) Suppose that the function f has an isolated singularity at ∞.
Let g(z) = −z−2f(1/z). Show that: Res(f ;∞) = Res(g; 0).

74) Compute the residues at ∞ of the following functions:

f(z) = zn , n ∈ Z ; g(z) = z2 + 3
5z4 − 7z2 + 6z ; h(z) = 2z − 3

z2 .

75) How many zeros has the function f(z) = z8− 4z5 + z2− 1 in D = {z : |z| < 1}?

76) How many zeros has the function g(z) = 2iz2 + sin z in the rectangular R =
{(x, y) : |x| ≤ π/2, |y| ≤ 1}?

77) Prove the following theorem (Hurwitz’ Theorem): Let G be a domain in C and
(fn)n a sequence of holomorphic functions on G without zeros in G, which converges
uniformly on all compact subsets of G to f ∈ H(G). Then f ≡ 0 or f has no zeros
in G. 8 Hint: use Rouché’s Theorem .
What are the properties of the sequence fn(z) = ez/n with respect to this theorem?

78) Let G be a domain in C and let f ∈ H(G) be the limit of a sequence fn ∈
H(G), uniformly on all compact subsets of G. Show that the zeors of f are limits of
sequences of zeros of the functions fn.
Find an example of a limit point of zeros of the functions fn at the boundary of G
which is not necessarily a zeor of f.

79) Let R(x, y) be a rational function of two variables such that

R(cos t, sin t)

is defined for all t ∈ R. Show that:
2π∫
0

R(cos t, sin t) dt = 2π
∑
|z|<1

Res
(

1
ζ
R

(
1
2

(
ζ + 1

ζ

)
,

1
2i

(
ζ − 1

ζ

))
; z
)
.

8 Hurwitz, Adolf (1859-1919)
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Compute the following definite integrals using the formula from above:

π∫
0

dt

a+ cos t , a > 1;
π/2∫
0

dt

1 + sin2 t
;

2π∫
0

sin2 t

1− 2a cos t+ a2 dt , a ∈ R ;
2π∫
0

cos2 2t
1− 2a cos t+ a2 dt , −1 < a < 1.

80) Let R(z) be a rational function having no poles on R and suppose that the
degree of the denominator is larger than the degree of the numerator.Then

+∞∫
−∞

R(x)eix dx = 2πi
∑
=z>0

Res(R(ζ)eiζ ; z).

Hint: choose positive r1, r2, s so large that all poles of R in the upper halfspace lie
in the rectangular [r2, r2 + is,−r1 + is,−r1, r2] and use the Residue Theorem for
integration along the boundary of this rectangular. Finally take the limits r1, r2 →
∞.
Compute the following definite integrals using the formula from above:

∞∫
0

cosx
a2 + x2 dx , a > 0 ;

∞∫
0

cos ax
(x2 + b2)2 dx , a, b > 0.

81) Compute
∞∫
−∞

eitx

1 + x2 dx, t ∈ R.

82) Let α be a complex number, |α| 6= 1. Compute

2π∫
0

dθ

1− 2α cos θ + α2 ,

by integration of (z − α)−1(z − 1/α)−1 along the unit circle.

83) Let G be a domain in C and f ∈ H(G), let z1, z2, · · · ∈ G, set ω0(z) ≡ 1 and

ωk(z) =
k∏
j=1

(z − zj).

Let γ be a closed path in G without double points and such that the points z1, . . . , zn
belong to the interior of γ.
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Prove that:
Ln−1(z) = 1

2πi

∫
γ

f(ζ)
ωn(ζ)

ωn(ζ)− ωn(z)
ζ − z

dζ, z /∈ γ?

is a polynomial of degree n− 1 with the property

Ln−1(zj) = f(zj), j = 1, . . . , n.

Use the Residue Theorem to show that

Ln−1(z) =
n∑
j=1

f(zj)
ω′n(zj)

ωn(z)
z − zj

(Lagrange interpolation).
Put Rn(z) = f(z)− Ln−1(z) and show that

Rn(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

ωn(z)
ωn(ζ) dζ.

Finally prove that

Ln−1(z) =
n−1∑
j=0

 1
2πi

∫
γ

f(ζ)
ωj+1(ζ) dζ

ωj(z) , z ∈ G
(Newton interpolation )9.

9 Newton, Isaac (1643–1727)
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